xref: /OK3568_Linux_fs/kernel/net/core/request_sock.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0-or-later
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun  * NET		Generic infrastructure for Network protocols.
4*4882a593Smuzhiyun  *
5*4882a593Smuzhiyun  * Authors:	Arnaldo Carvalho de Melo <acme@conectiva.com.br>
6*4882a593Smuzhiyun  *
7*4882a593Smuzhiyun  * 		From code originally in include/net/tcp.h
8*4882a593Smuzhiyun  */
9*4882a593Smuzhiyun 
10*4882a593Smuzhiyun #include <linux/module.h>
11*4882a593Smuzhiyun #include <linux/random.h>
12*4882a593Smuzhiyun #include <linux/slab.h>
13*4882a593Smuzhiyun #include <linux/string.h>
14*4882a593Smuzhiyun #include <linux/tcp.h>
15*4882a593Smuzhiyun #include <linux/vmalloc.h>
16*4882a593Smuzhiyun 
17*4882a593Smuzhiyun #include <net/request_sock.h>
18*4882a593Smuzhiyun 
19*4882a593Smuzhiyun /*
20*4882a593Smuzhiyun  * Maximum number of SYN_RECV sockets in queue per LISTEN socket.
21*4882a593Smuzhiyun  * One SYN_RECV socket costs about 80bytes on a 32bit machine.
22*4882a593Smuzhiyun  * It would be better to replace it with a global counter for all sockets
23*4882a593Smuzhiyun  * but then some measure against one socket starving all other sockets
24*4882a593Smuzhiyun  * would be needed.
25*4882a593Smuzhiyun  *
26*4882a593Smuzhiyun  * The minimum value of it is 128. Experiments with real servers show that
27*4882a593Smuzhiyun  * it is absolutely not enough even at 100conn/sec. 256 cures most
28*4882a593Smuzhiyun  * of problems.
29*4882a593Smuzhiyun  * This value is adjusted to 128 for low memory machines,
30*4882a593Smuzhiyun  * and it will increase in proportion to the memory of machine.
31*4882a593Smuzhiyun  * Note : Dont forget somaxconn that may limit backlog too.
32*4882a593Smuzhiyun  */
33*4882a593Smuzhiyun 
reqsk_queue_alloc(struct request_sock_queue * queue)34*4882a593Smuzhiyun void reqsk_queue_alloc(struct request_sock_queue *queue)
35*4882a593Smuzhiyun {
36*4882a593Smuzhiyun 	spin_lock_init(&queue->rskq_lock);
37*4882a593Smuzhiyun 
38*4882a593Smuzhiyun 	spin_lock_init(&queue->fastopenq.lock);
39*4882a593Smuzhiyun 	queue->fastopenq.rskq_rst_head = NULL;
40*4882a593Smuzhiyun 	queue->fastopenq.rskq_rst_tail = NULL;
41*4882a593Smuzhiyun 	queue->fastopenq.qlen = 0;
42*4882a593Smuzhiyun 
43*4882a593Smuzhiyun 	queue->rskq_accept_head = NULL;
44*4882a593Smuzhiyun }
45*4882a593Smuzhiyun 
46*4882a593Smuzhiyun /*
47*4882a593Smuzhiyun  * This function is called to set a Fast Open socket's "fastopen_rsk" field
48*4882a593Smuzhiyun  * to NULL when a TFO socket no longer needs to access the request_sock.
49*4882a593Smuzhiyun  * This happens only after 3WHS has been either completed or aborted (e.g.,
50*4882a593Smuzhiyun  * RST is received).
51*4882a593Smuzhiyun  *
52*4882a593Smuzhiyun  * Before TFO, a child socket is created only after 3WHS is completed,
53*4882a593Smuzhiyun  * hence it never needs to access the request_sock. things get a lot more
54*4882a593Smuzhiyun  * complex with TFO. A child socket, accepted or not, has to access its
55*4882a593Smuzhiyun  * request_sock for 3WHS processing, e.g., to retransmit SYN-ACK pkts,
56*4882a593Smuzhiyun  * until 3WHS is either completed or aborted. Afterwards the req will stay
57*4882a593Smuzhiyun  * until either the child socket is accepted, or in the rare case when the
58*4882a593Smuzhiyun  * listener is closed before the child is accepted.
59*4882a593Smuzhiyun  *
60*4882a593Smuzhiyun  * In short, a request socket is only freed after BOTH 3WHS has completed
61*4882a593Smuzhiyun  * (or aborted) and the child socket has been accepted (or listener closed).
62*4882a593Smuzhiyun  * When a child socket is accepted, its corresponding req->sk is set to
63*4882a593Smuzhiyun  * NULL since it's no longer needed. More importantly, "req->sk == NULL"
64*4882a593Smuzhiyun  * will be used by the code below to determine if a child socket has been
65*4882a593Smuzhiyun  * accepted or not, and the check is protected by the fastopenq->lock
66*4882a593Smuzhiyun  * described below.
67*4882a593Smuzhiyun  *
68*4882a593Smuzhiyun  * Note that fastopen_rsk is only accessed from the child socket's context
69*4882a593Smuzhiyun  * with its socket lock held. But a request_sock (req) can be accessed by
70*4882a593Smuzhiyun  * both its child socket through fastopen_rsk, and a listener socket through
71*4882a593Smuzhiyun  * icsk_accept_queue.rskq_accept_head. To protect the access a simple spin
72*4882a593Smuzhiyun  * lock per listener "icsk->icsk_accept_queue.fastopenq->lock" is created.
73*4882a593Smuzhiyun  * only in the rare case when both the listener and the child locks are held,
74*4882a593Smuzhiyun  * e.g., in inet_csk_listen_stop() do we not need to acquire the lock.
75*4882a593Smuzhiyun  * The lock also protects other fields such as fastopenq->qlen, which is
76*4882a593Smuzhiyun  * decremented by this function when fastopen_rsk is no longer needed.
77*4882a593Smuzhiyun  *
78*4882a593Smuzhiyun  * Note that another solution was to simply use the existing socket lock
79*4882a593Smuzhiyun  * from the listener. But first socket lock is difficult to use. It is not
80*4882a593Smuzhiyun  * a simple spin lock - one must consider sock_owned_by_user() and arrange
81*4882a593Smuzhiyun  * to use sk_add_backlog() stuff. But what really makes it infeasible is the
82*4882a593Smuzhiyun  * locking hierarchy violation. E.g., inet_csk_listen_stop() may try to
83*4882a593Smuzhiyun  * acquire a child's lock while holding listener's socket lock. A corner
84*4882a593Smuzhiyun  * case might also exist in tcp_v4_hnd_req() that will trigger this locking
85*4882a593Smuzhiyun  * order.
86*4882a593Smuzhiyun  *
87*4882a593Smuzhiyun  * This function also sets "treq->tfo_listener" to false.
88*4882a593Smuzhiyun  * treq->tfo_listener is used by the listener so it is protected by the
89*4882a593Smuzhiyun  * fastopenq->lock in this function.
90*4882a593Smuzhiyun  */
reqsk_fastopen_remove(struct sock * sk,struct request_sock * req,bool reset)91*4882a593Smuzhiyun void reqsk_fastopen_remove(struct sock *sk, struct request_sock *req,
92*4882a593Smuzhiyun 			   bool reset)
93*4882a593Smuzhiyun {
94*4882a593Smuzhiyun 	struct sock *lsk = req->rsk_listener;
95*4882a593Smuzhiyun 	struct fastopen_queue *fastopenq;
96*4882a593Smuzhiyun 
97*4882a593Smuzhiyun 	fastopenq = &inet_csk(lsk)->icsk_accept_queue.fastopenq;
98*4882a593Smuzhiyun 
99*4882a593Smuzhiyun 	RCU_INIT_POINTER(tcp_sk(sk)->fastopen_rsk, NULL);
100*4882a593Smuzhiyun 	spin_lock_bh(&fastopenq->lock);
101*4882a593Smuzhiyun 	fastopenq->qlen--;
102*4882a593Smuzhiyun 	tcp_rsk(req)->tfo_listener = false;
103*4882a593Smuzhiyun 	if (req->sk)	/* the child socket hasn't been accepted yet */
104*4882a593Smuzhiyun 		goto out;
105*4882a593Smuzhiyun 
106*4882a593Smuzhiyun 	if (!reset || lsk->sk_state != TCP_LISTEN) {
107*4882a593Smuzhiyun 		/* If the listener has been closed don't bother with the
108*4882a593Smuzhiyun 		 * special RST handling below.
109*4882a593Smuzhiyun 		 */
110*4882a593Smuzhiyun 		spin_unlock_bh(&fastopenq->lock);
111*4882a593Smuzhiyun 		reqsk_put(req);
112*4882a593Smuzhiyun 		return;
113*4882a593Smuzhiyun 	}
114*4882a593Smuzhiyun 	/* Wait for 60secs before removing a req that has triggered RST.
115*4882a593Smuzhiyun 	 * This is a simple defense against TFO spoofing attack - by
116*4882a593Smuzhiyun 	 * counting the req against fastopen.max_qlen, and disabling
117*4882a593Smuzhiyun 	 * TFO when the qlen exceeds max_qlen.
118*4882a593Smuzhiyun 	 *
119*4882a593Smuzhiyun 	 * For more details see CoNext'11 "TCP Fast Open" paper.
120*4882a593Smuzhiyun 	 */
121*4882a593Smuzhiyun 	req->rsk_timer.expires = jiffies + 60*HZ;
122*4882a593Smuzhiyun 	if (fastopenq->rskq_rst_head == NULL)
123*4882a593Smuzhiyun 		fastopenq->rskq_rst_head = req;
124*4882a593Smuzhiyun 	else
125*4882a593Smuzhiyun 		fastopenq->rskq_rst_tail->dl_next = req;
126*4882a593Smuzhiyun 
127*4882a593Smuzhiyun 	req->dl_next = NULL;
128*4882a593Smuzhiyun 	fastopenq->rskq_rst_tail = req;
129*4882a593Smuzhiyun 	fastopenq->qlen++;
130*4882a593Smuzhiyun out:
131*4882a593Smuzhiyun 	spin_unlock_bh(&fastopenq->lock);
132*4882a593Smuzhiyun }
133