xref: /OK3568_Linux_fs/kernel/mm/page_ext.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 #include <linux/rcupdate.h>
12 /*
13  * struct page extension
14  *
15  * This is the feature to manage memory for extended data per page.
16  *
17  * Until now, we must modify struct page itself to store extra data per page.
18  * This requires rebuilding the kernel and it is really time consuming process.
19  * And, sometimes, rebuild is impossible due to third party module dependency.
20  * At last, enlarging struct page could cause un-wanted system behaviour change.
21  *
22  * This feature is intended to overcome above mentioned problems. This feature
23  * allocates memory for extended data per page in certain place rather than
24  * the struct page itself. This memory can be accessed by the accessor
25  * functions provided by this code. During the boot process, it checks whether
26  * allocation of huge chunk of memory is needed or not. If not, it avoids
27  * allocating memory at all. With this advantage, we can include this feature
28  * into the kernel in default and can avoid rebuild and solve related problems.
29  *
30  * To help these things to work well, there are two callbacks for clients. One
31  * is the need callback which is mandatory if user wants to avoid useless
32  * memory allocation at boot-time. The other is optional, init callback, which
33  * is used to do proper initialization after memory is allocated.
34  *
35  * The need callback is used to decide whether extended memory allocation is
36  * needed or not. Sometimes users want to deactivate some features in this
37  * boot and extra memory would be unneccessary. In this case, to avoid
38  * allocating huge chunk of memory, each clients represent their need of
39  * extra memory through the need callback. If one of the need callbacks
40  * returns true, it means that someone needs extra memory so that
41  * page extension core should allocates memory for page extension. If
42  * none of need callbacks return true, memory isn't needed at all in this boot
43  * and page extension core can skip to allocate memory. As result,
44  * none of memory is wasted.
45  *
46  * When need callback returns true, page_ext checks if there is a request for
47  * extra memory through size in struct page_ext_operations. If it is non-zero,
48  * extra space is allocated for each page_ext entry and offset is returned to
49  * user through offset in struct page_ext_operations.
50  *
51  * The init callback is used to do proper initialization after page extension
52  * is completely initialized. In sparse memory system, extra memory is
53  * allocated some time later than memmap is allocated. In other words, lifetime
54  * of memory for page extension isn't same with memmap for struct page.
55  * Therefore, clients can't store extra data until page extension is
56  * initialized, even if pages are allocated and used freely. This could
57  * cause inadequate state of extra data per page, so, to prevent it, client
58  * can utilize this callback to initialize the state of it correctly.
59  */
60 
61 #ifdef CONFIG_SPARSEMEM
62 #define PAGE_EXT_INVALID       (0x1)
63 #endif
64 
65 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
need_page_idle(void)66 static bool need_page_idle(void)
67 {
68 	return true;
69 }
70 struct page_ext_operations page_idle_ops = {
71 	.need = need_page_idle,
72 };
73 #endif
74 
75 static struct page_ext_operations *page_ext_ops[] = {
76 #ifdef CONFIG_PAGE_OWNER
77 	&page_owner_ops,
78 #endif
79 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
80 	&page_idle_ops,
81 #endif
82 #ifdef CONFIG_PAGE_PINNER
83 	&page_pinner_ops,
84 #endif
85 };
86 
87 unsigned long page_ext_size = sizeof(struct page_ext);
88 
89 static unsigned long total_usage;
90 
invoke_need_callbacks(void)91 static bool __init invoke_need_callbacks(void)
92 {
93 	int i;
94 	int entries = ARRAY_SIZE(page_ext_ops);
95 	bool need = false;
96 
97 	for (i = 0; i < entries; i++) {
98 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
99 			page_ext_ops[i]->offset = page_ext_size;
100 			page_ext_size += page_ext_ops[i]->size;
101 			need = true;
102 		}
103 	}
104 
105 	return need;
106 }
107 
invoke_init_callbacks(void)108 static void __init invoke_init_callbacks(void)
109 {
110 	int i;
111 	int entries = ARRAY_SIZE(page_ext_ops);
112 
113 	for (i = 0; i < entries; i++) {
114 		if (page_ext_ops[i]->init)
115 			page_ext_ops[i]->init();
116 	}
117 }
118 
119 #ifndef CONFIG_SPARSEMEM
page_ext_init_flatmem_late(void)120 void __init page_ext_init_flatmem_late(void)
121 {
122 	invoke_init_callbacks();
123 }
124 #endif
125 
get_entry(void * base,unsigned long index)126 static inline struct page_ext *get_entry(void *base, unsigned long index)
127 {
128 	return base + page_ext_size * index;
129 }
130 
131 /**
132  * page_ext_get() - Get the extended information for a page.
133  * @page: The page we're interested in.
134  *
135  * Ensures that the page_ext will remain valid until page_ext_put()
136  * is called.
137  *
138  * Return: NULL if no page_ext exists for this page.
139  * Context: Any context.  Caller may not sleep until they have called
140  * page_ext_put().
141  */
page_ext_get(struct page * page)142 struct page_ext *page_ext_get(struct page *page)
143 {
144 	struct page_ext *page_ext;
145 
146 	rcu_read_lock();
147 	page_ext = lookup_page_ext(page);
148 	if (!page_ext) {
149 		rcu_read_unlock();
150 		return NULL;
151 	}
152 
153 	return page_ext;
154 }
155 
156 /**
157  * page_ext_put() - Working with page extended information is done.
158  * @page_ext - Page extended information received from page_ext_get().
159  *
160  * The page extended information of the page may not be valid after this
161  * function is called.
162  *
163  * Return: None.
164  * Context: Any context with corresponding page_ext_get() is called.
165  */
page_ext_put(struct page_ext * page_ext)166 void page_ext_put(struct page_ext *page_ext)
167 {
168 	if (unlikely(!page_ext))
169 		return;
170 
171 	rcu_read_unlock();
172 }
173 #ifndef CONFIG_SPARSEMEM
174 
175 
pgdat_page_ext_init(struct pglist_data * pgdat)176 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
177 {
178 	pgdat->node_page_ext = NULL;
179 }
180 
lookup_page_ext(const struct page * page)181 struct page_ext *lookup_page_ext(const struct page *page)
182 {
183 	unsigned long pfn = page_to_pfn(page);
184 	unsigned long index;
185 	struct page_ext *base;
186 
187 	WARN_ON_ONCE(!rcu_read_lock_held());
188 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
189 	/*
190 	 * The sanity checks the page allocator does upon freeing a
191 	 * page can reach here before the page_ext arrays are
192 	 * allocated when feeding a range of pages to the allocator
193 	 * for the first time during bootup or memory hotplug.
194 	 */
195 	if (unlikely(!base))
196 		return NULL;
197 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
198 					MAX_ORDER_NR_PAGES);
199 	return get_entry(base, index);
200 }
201 EXPORT_SYMBOL_GPL(lookup_page_ext);
202 
alloc_node_page_ext(int nid)203 static int __init alloc_node_page_ext(int nid)
204 {
205 	struct page_ext *base;
206 	unsigned long table_size;
207 	unsigned long nr_pages;
208 
209 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
210 	if (!nr_pages)
211 		return 0;
212 
213 	/*
214 	 * Need extra space if node range is not aligned with
215 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
216 	 * checks buddy's status, range could be out of exact node range.
217 	 */
218 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
219 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
220 		nr_pages += MAX_ORDER_NR_PAGES;
221 
222 	table_size = page_ext_size * nr_pages;
223 
224 	base = memblock_alloc_try_nid(
225 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
226 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
227 	if (!base)
228 		return -ENOMEM;
229 	NODE_DATA(nid)->node_page_ext = base;
230 	total_usage += table_size;
231 	return 0;
232 }
233 
page_ext_init_flatmem(void)234 void __init page_ext_init_flatmem(void)
235 {
236 
237 	int nid, fail;
238 
239 	if (!invoke_need_callbacks())
240 		return;
241 
242 	for_each_online_node(nid)  {
243 		fail = alloc_node_page_ext(nid);
244 		if (fail)
245 			goto fail;
246 	}
247 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
248 	return;
249 
250 fail:
251 	pr_crit("allocation of page_ext failed.\n");
252 	panic("Out of memory");
253 }
254 
255 #else /* CONFIG_FLAT_NODE_MEM_MAP */
page_ext_invalid(struct page_ext * page_ext)256 static bool page_ext_invalid(struct page_ext *page_ext)
257 {
258 	return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
259 }
260 
lookup_page_ext(const struct page * page)261 struct page_ext *lookup_page_ext(const struct page *page)
262 {
263 	unsigned long pfn = page_to_pfn(page);
264 	struct mem_section *section = __pfn_to_section(pfn);
265 	struct page_ext *page_ext = READ_ONCE(section->page_ext);
266 
267 	WARN_ON_ONCE(!rcu_read_lock_held());
268 	/*
269 	 * The sanity checks the page allocator does upon freeing a
270 	 * page can reach here before the page_ext arrays are
271 	 * allocated when feeding a range of pages to the allocator
272 	 * for the first time during bootup or memory hotplug.
273 	 */
274 	if (page_ext_invalid(page_ext))
275 		return NULL;
276 	return get_entry(page_ext, pfn);
277 }
278 EXPORT_SYMBOL_GPL(lookup_page_ext);
279 
alloc_page_ext(size_t size,int nid)280 static void *__meminit alloc_page_ext(size_t size, int nid)
281 {
282 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
283 	void *addr = NULL;
284 
285 	addr = alloc_pages_exact_nid(nid, size, flags);
286 	if (addr) {
287 		kmemleak_alloc(addr, size, 1, flags);
288 		return addr;
289 	}
290 
291 	addr = vzalloc_node(size, nid);
292 
293 	return addr;
294 }
295 
init_section_page_ext(unsigned long pfn,int nid)296 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
297 {
298 	struct mem_section *section;
299 	struct page_ext *base;
300 	unsigned long table_size;
301 
302 	section = __pfn_to_section(pfn);
303 
304 	if (section->page_ext)
305 		return 0;
306 
307 	table_size = page_ext_size * PAGES_PER_SECTION;
308 	base = alloc_page_ext(table_size, nid);
309 
310 	/*
311 	 * The value stored in section->page_ext is (base - pfn)
312 	 * and it does not point to the memory block allocated above,
313 	 * causing kmemleak false positives.
314 	 */
315 	kmemleak_not_leak(base);
316 
317 	if (!base) {
318 		pr_err("page ext allocation failure\n");
319 		return -ENOMEM;
320 	}
321 
322 	/*
323 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
324 	 * we need to apply a mask.
325 	 */
326 	pfn &= PAGE_SECTION_MASK;
327 	section->page_ext = (void *)base - page_ext_size * pfn;
328 	total_usage += table_size;
329 	return 0;
330 }
331 #ifdef CONFIG_MEMORY_HOTPLUG
free_page_ext(void * addr)332 static void free_page_ext(void *addr)
333 {
334 	if (is_vmalloc_addr(addr)) {
335 		vfree(addr);
336 	} else {
337 		struct page *page = virt_to_page(addr);
338 		size_t table_size;
339 
340 		table_size = page_ext_size * PAGES_PER_SECTION;
341 
342 		BUG_ON(PageReserved(page));
343 		kmemleak_free(addr);
344 		free_pages_exact(addr, table_size);
345 	}
346 }
347 
__free_page_ext(unsigned long pfn)348 static void __free_page_ext(unsigned long pfn)
349 {
350 	struct mem_section *ms;
351 	struct page_ext *base;
352 
353 	ms = __pfn_to_section(pfn);
354 	if (!ms || !ms->page_ext)
355 		return;
356 
357 	base = READ_ONCE(ms->page_ext);
358 	/*
359 	 * page_ext here can be valid while doing the roll back
360 	 * operation in online_page_ext().
361 	 */
362 	if (page_ext_invalid(base))
363 		base = (void *)base - PAGE_EXT_INVALID;
364 	WRITE_ONCE(ms->page_ext, NULL);
365 
366 	base = get_entry(base, pfn);
367 	free_page_ext(base);
368 }
369 
__invalidate_page_ext(unsigned long pfn)370 static void __invalidate_page_ext(unsigned long pfn)
371 {
372 	struct mem_section *ms;
373 	void *val;
374 
375 	ms = __pfn_to_section(pfn);
376 	if (!ms || !ms->page_ext)
377 		return;
378 	val = (void *)ms->page_ext + PAGE_EXT_INVALID;
379 	WRITE_ONCE(ms->page_ext, val);
380 }
381 
online_page_ext(unsigned long start_pfn,unsigned long nr_pages,int nid)382 static int __meminit online_page_ext(unsigned long start_pfn,
383 				unsigned long nr_pages,
384 				int nid)
385 {
386 	unsigned long start, end, pfn;
387 	int fail = 0;
388 
389 	start = SECTION_ALIGN_DOWN(start_pfn);
390 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
391 
392 	if (nid == NUMA_NO_NODE) {
393 		/*
394 		 * In this case, "nid" already exists and contains valid memory.
395 		 * "start_pfn" passed to us is a pfn which is an arg for
396 		 * online__pages(), and start_pfn should exist.
397 		 */
398 		nid = pfn_to_nid(start_pfn);
399 		VM_BUG_ON(!node_state(nid, N_ONLINE));
400 	}
401 
402 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
403 		fail = init_section_page_ext(pfn, nid);
404 	if (!fail)
405 		return 0;
406 
407 	/* rollback */
408 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
409 		__free_page_ext(pfn);
410 
411 	return -ENOMEM;
412 }
413 
offline_page_ext(unsigned long start_pfn,unsigned long nr_pages,int nid)414 static int __meminit offline_page_ext(unsigned long start_pfn,
415 				unsigned long nr_pages, int nid)
416 {
417 	unsigned long start, end, pfn;
418 
419 	start = SECTION_ALIGN_DOWN(start_pfn);
420 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
421 
422 	/*
423 	 * Freeing of page_ext is done in 3 steps to avoid
424 	 * use-after-free of it:
425 	 * 1) Traverse all the sections and mark their page_ext
426 	 *    as invalid.
427 	 * 2) Wait for all the existing users of page_ext who
428 	 *    started before invalidation to finish.
429 	 * 3) Free the page_ext.
430 	 */
431 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
432 		__invalidate_page_ext(pfn);
433 
434 	synchronize_rcu();
435 
436 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
437 		__free_page_ext(pfn);
438 	return 0;
439 
440 }
441 
page_ext_callback(struct notifier_block * self,unsigned long action,void * arg)442 static int __meminit page_ext_callback(struct notifier_block *self,
443 			       unsigned long action, void *arg)
444 {
445 	struct memory_notify *mn = arg;
446 	int ret = 0;
447 
448 	switch (action) {
449 	case MEM_GOING_ONLINE:
450 		ret = online_page_ext(mn->start_pfn,
451 				   mn->nr_pages, mn->status_change_nid);
452 		break;
453 	case MEM_OFFLINE:
454 		offline_page_ext(mn->start_pfn,
455 				mn->nr_pages, mn->status_change_nid);
456 		break;
457 	case MEM_CANCEL_ONLINE:
458 		offline_page_ext(mn->start_pfn,
459 				mn->nr_pages, mn->status_change_nid);
460 		break;
461 	case MEM_GOING_OFFLINE:
462 		break;
463 	case MEM_ONLINE:
464 	case MEM_CANCEL_OFFLINE:
465 		break;
466 	}
467 
468 	return notifier_from_errno(ret);
469 }
470 
471 #endif
472 
page_ext_init(void)473 void __init page_ext_init(void)
474 {
475 	unsigned long pfn;
476 	int nid;
477 
478 	if (!invoke_need_callbacks())
479 		return;
480 
481 	for_each_node_state(nid, N_MEMORY) {
482 		unsigned long start_pfn, end_pfn;
483 
484 		start_pfn = node_start_pfn(nid);
485 		end_pfn = node_end_pfn(nid);
486 		/*
487 		 * start_pfn and end_pfn may not be aligned to SECTION and the
488 		 * page->flags of out of node pages are not initialized.  So we
489 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
490 		 */
491 		for (pfn = start_pfn; pfn < end_pfn;
492 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
493 
494 			if (!pfn_valid(pfn))
495 				continue;
496 			/*
497 			 * Nodes's pfns can be overlapping.
498 			 * We know some arch can have a nodes layout such as
499 			 * -------------pfn-------------->
500 			 * N0 | N1 | N2 | N0 | N1 | N2|....
501 			 */
502 			if (pfn_to_nid(pfn) != nid)
503 				continue;
504 			if (init_section_page_ext(pfn, nid))
505 				goto oom;
506 			cond_resched();
507 		}
508 	}
509 	hotplug_memory_notifier(page_ext_callback, 0);
510 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
511 	invoke_init_callbacks();
512 	return;
513 
514 oom:
515 	panic("Out of memory");
516 }
517 
pgdat_page_ext_init(struct pglist_data * pgdat)518 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
519 {
520 }
521 
522 #endif
523