xref: /OK3568_Linux_fs/kernel/mm/memblock.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19 
20 #include <asm/sections.h>
21 #include <linux/io.h>
22 
23 #include "internal.h"
24 
25 #define INIT_MEMBLOCK_REGIONS			128
26 #define INIT_PHYSMEM_REGIONS			4
27 
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30 #endif
31 
32 /**
33  * DOC: memblock overview
34  *
35  * Memblock is a method of managing memory regions during the early
36  * boot period when the usual kernel memory allocators are not up and
37  * running.
38  *
39  * Memblock views the system memory as collections of contiguous
40  * regions. There are several types of these collections:
41  *
42  * * ``memory`` - describes the physical memory available to the
43  *   kernel; this may differ from the actual physical memory installed
44  *   in the system, for instance when the memory is restricted with
45  *   ``mem=`` command line parameter
46  * * ``reserved`` - describes the regions that were allocated
47  * * ``physmem`` - describes the actual physical memory available during
48  *   boot regardless of the possible restrictions and memory hot(un)plug;
49  *   the ``physmem`` type is only available on some architectures.
50  *
51  * Each region is represented by struct memblock_region that
52  * defines the region extents, its attributes and NUMA node id on NUMA
53  * systems. Every memory type is described by the struct memblock_type
54  * which contains an array of memory regions along with
55  * the allocator metadata. The "memory" and "reserved" types are nicely
56  * wrapped with struct memblock. This structure is statically
57  * initialized at build time. The region arrays are initially sized to
58  * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59  * for "reserved". The region array for "physmem" is initially sized to
60  * %INIT_PHYSMEM_REGIONS.
61  * The memblock_allow_resize() enables automatic resizing of the region
62  * arrays during addition of new regions. This feature should be used
63  * with care so that memory allocated for the region array will not
64  * overlap with areas that should be reserved, for example initrd.
65  *
66  * The early architecture setup should tell memblock what the physical
67  * memory layout is by using memblock_add() or memblock_add_node()
68  * functions. The first function does not assign the region to a NUMA
69  * node and it is appropriate for UMA systems. Yet, it is possible to
70  * use it on NUMA systems as well and assign the region to a NUMA node
71  * later in the setup process using memblock_set_node(). The
72  * memblock_add_node() performs such an assignment directly.
73  *
74  * Once memblock is setup the memory can be allocated using one of the
75  * API variants:
76  *
77  * * memblock_phys_alloc*() - these functions return the **physical**
78  *   address of the allocated memory
79  * * memblock_alloc*() - these functions return the **virtual** address
80  *   of the allocated memory.
81  *
82  * Note, that both API variants use implicit assumptions about allowed
83  * memory ranges and the fallback methods. Consult the documentation
84  * of memblock_alloc_internal() and memblock_alloc_range_nid()
85  * functions for more elaborate description.
86  *
87  * As the system boot progresses, the architecture specific mem_init()
88  * function frees all the memory to the buddy page allocator.
89  *
90  * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91  * memblock data structures (except "physmem") will be discarded after the
92  * system initialization completes.
93  */
94 
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99 
100 #if defined(CONFIG_ROCKCHIP_THUNDER_BOOT) && defined(CONFIG_SMP)
101 static unsigned long defer_start __initdata;
102 static unsigned long defer_end __initdata;
103 
104 #define DEFAULT_DEFER_FREE_BLOCK_SIZE SZ_256M
105 static unsigned long defer_free_block_size __initdata =
106 	DEFAULT_DEFER_FREE_BLOCK_SIZE;
107 
early_defer_free_block_size(char * p)108 static int __init early_defer_free_block_size(char *p)
109 {
110 	defer_free_block_size = memparse(p, &p);
111 
112 	pr_debug("defer_free_block_size = 0x%lx\n", defer_free_block_size);
113 
114 	return 0;
115 }
116 
117 early_param("defer_free_block_size", early_defer_free_block_size);
118 #endif
119 
120 unsigned long max_low_pfn;
121 unsigned long min_low_pfn;
122 unsigned long max_pfn;
123 unsigned long long max_possible_pfn;
124 
125 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
126 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
127 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
128 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
129 #endif
130 
131 struct memblock memblock __initdata_memblock = {
132 	.memory.regions		= memblock_memory_init_regions,
133 	.memory.cnt		= 1,	/* empty dummy entry */
134 	.memory.max		= INIT_MEMBLOCK_REGIONS,
135 	.memory.name		= "memory",
136 
137 	.reserved.regions	= memblock_reserved_init_regions,
138 	.reserved.cnt		= 1,	/* empty dummy entry */
139 	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
140 	.reserved.name		= "reserved",
141 
142 	.bottom_up		= false,
143 	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
144 };
145 
146 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
147 struct memblock_type physmem = {
148 	.regions		= memblock_physmem_init_regions,
149 	.cnt			= 1,	/* empty dummy entry */
150 	.max			= INIT_PHYSMEM_REGIONS,
151 	.name			= "physmem",
152 };
153 #endif
154 
155 /*
156  * keep a pointer to &memblock.memory in the text section to use it in
157  * __next_mem_range() and its helpers.
158  *  For architectures that do not keep memblock data after init, this
159  * pointer will be reset to NULL at memblock_discard()
160  */
161 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
162 
163 #define for_each_memblock_type(i, memblock_type, rgn)			\
164 	for (i = 0, rgn = &memblock_type->regions[0];			\
165 	     i < memblock_type->cnt;					\
166 	     i++, rgn = &memblock_type->regions[i])
167 
168 #define memblock_dbg(fmt, ...)						\
169 	do {								\
170 		if (memblock_debug)					\
171 			pr_info(fmt, ##__VA_ARGS__);			\
172 	} while (0)
173 
174 static int memblock_debug __initdata_memblock;
175 static bool memblock_nomap_remove __initdata_memblock;
176 static bool system_has_some_mirror __initdata_memblock = false;
177 static int memblock_can_resize __initdata_memblock;
178 static int memblock_memory_in_slab __initdata_memblock = 0;
179 static int memblock_reserved_in_slab __initdata_memblock = 0;
180 
choose_memblock_flags(void)181 static enum memblock_flags __init_memblock choose_memblock_flags(void)
182 {
183 	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
184 }
185 
186 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)187 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
188 {
189 	return *size = min(*size, PHYS_ADDR_MAX - base);
190 }
191 
192 /*
193  * Address comparison utilities
194  */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)195 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
196 				       phys_addr_t base2, phys_addr_t size2)
197 {
198 	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
199 }
200 
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)201 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
202 					phys_addr_t base, phys_addr_t size)
203 {
204 	unsigned long i;
205 
206 	memblock_cap_size(base, &size);
207 
208 	for (i = 0; i < type->cnt; i++)
209 		if (memblock_addrs_overlap(base, size, type->regions[i].base,
210 					   type->regions[i].size))
211 			break;
212 	return i < type->cnt;
213 }
214 
215 /**
216  * __memblock_find_range_bottom_up - find free area utility in bottom-up
217  * @start: start of candidate range
218  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
219  *       %MEMBLOCK_ALLOC_ACCESSIBLE
220  * @size: size of free area to find
221  * @align: alignment of free area to find
222  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
223  * @flags: pick from blocks based on memory attributes
224  *
225  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
226  *
227  * Return:
228  * Found address on success, 0 on failure.
229  */
230 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)231 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
232 				phys_addr_t size, phys_addr_t align, int nid,
233 				enum memblock_flags flags)
234 {
235 	phys_addr_t this_start, this_end, cand;
236 	u64 i;
237 
238 	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
239 		this_start = clamp(this_start, start, end);
240 		this_end = clamp(this_end, start, end);
241 
242 		cand = round_up(this_start, align);
243 		if (cand < this_end && this_end - cand >= size)
244 			return cand;
245 	}
246 
247 	return 0;
248 }
249 
250 /**
251  * __memblock_find_range_top_down - find free area utility, in top-down
252  * @start: start of candidate range
253  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
254  *       %MEMBLOCK_ALLOC_ACCESSIBLE
255  * @size: size of free area to find
256  * @align: alignment of free area to find
257  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
258  * @flags: pick from blocks based on memory attributes
259  *
260  * Utility called from memblock_find_in_range_node(), find free area top-down.
261  *
262  * Return:
263  * Found address on success, 0 on failure.
264  */
265 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)266 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
267 			       phys_addr_t size, phys_addr_t align, int nid,
268 			       enum memblock_flags flags)
269 {
270 	phys_addr_t this_start, this_end, cand;
271 	u64 i;
272 
273 	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
274 					NULL) {
275 		this_start = clamp(this_start, start, end);
276 		this_end = clamp(this_end, start, end);
277 
278 		if (this_end < size)
279 			continue;
280 
281 		cand = round_down(this_end - size, align);
282 		if (cand >= this_start)
283 			return cand;
284 	}
285 
286 	return 0;
287 }
288 
289 /**
290  * memblock_find_in_range_node - find free area in given range and node
291  * @size: size of free area to find
292  * @align: alignment of free area to find
293  * @start: start of candidate range
294  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
295  *       %MEMBLOCK_ALLOC_ACCESSIBLE
296  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
297  * @flags: pick from blocks based on memory attributes
298  *
299  * Find @size free area aligned to @align in the specified range and node.
300  *
301  * Return:
302  * Found address on success, 0 on failure.
303  */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)304 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
305 					phys_addr_t align, phys_addr_t start,
306 					phys_addr_t end, int nid,
307 					enum memblock_flags flags)
308 {
309 	/* pump up @end */
310 	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
311 	    end == MEMBLOCK_ALLOC_KASAN)
312 		end = memblock.current_limit;
313 
314 	/* avoid allocating the first page */
315 	start = max_t(phys_addr_t, start, PAGE_SIZE);
316 	end = max(start, end);
317 
318 	if (memblock_bottom_up())
319 		return __memblock_find_range_bottom_up(start, end, size, align,
320 						       nid, flags);
321 	else
322 		return __memblock_find_range_top_down(start, end, size, align,
323 						      nid, flags);
324 }
325 
326 /**
327  * memblock_find_in_range - find free area in given range
328  * @start: start of candidate range
329  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
330  *       %MEMBLOCK_ALLOC_ACCESSIBLE
331  * @size: size of free area to find
332  * @align: alignment of free area to find
333  *
334  * Find @size free area aligned to @align in the specified range.
335  *
336  * Return:
337  * Found address on success, 0 on failure.
338  */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)339 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
340 					phys_addr_t end, phys_addr_t size,
341 					phys_addr_t align)
342 {
343 	phys_addr_t ret;
344 	enum memblock_flags flags = choose_memblock_flags();
345 
346 again:
347 	ret = memblock_find_in_range_node(size, align, start, end,
348 					    NUMA_NO_NODE, flags);
349 
350 	if (!ret && (flags & MEMBLOCK_MIRROR)) {
351 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
352 			&size);
353 		flags &= ~MEMBLOCK_MIRROR;
354 		goto again;
355 	}
356 
357 	return ret;
358 }
359 
memblock_remove_region(struct memblock_type * type,unsigned long r)360 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
361 {
362 	type->total_size -= type->regions[r].size;
363 	memmove(&type->regions[r], &type->regions[r + 1],
364 		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
365 	type->cnt--;
366 
367 	/* Special case for empty arrays */
368 	if (type->cnt == 0) {
369 		WARN_ON(type->total_size != 0);
370 		type->cnt = 1;
371 		type->regions[0].base = 0;
372 		type->regions[0].size = 0;
373 		type->regions[0].flags = 0;
374 		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
375 	}
376 }
377 
378 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
379 /**
380  * memblock_discard - discard memory and reserved arrays if they were allocated
381  */
memblock_discard(void)382 void __init memblock_discard(void)
383 {
384 	phys_addr_t addr, size;
385 
386 	if (memblock.reserved.regions != memblock_reserved_init_regions) {
387 		addr = __pa(memblock.reserved.regions);
388 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
389 				  memblock.reserved.max);
390 		if (memblock_reserved_in_slab)
391 			kfree(memblock.reserved.regions);
392 		else
393 			__memblock_free_late(addr, size);
394 	}
395 
396 	if (memblock.memory.regions != memblock_memory_init_regions) {
397 		addr = __pa(memblock.memory.regions);
398 		size = PAGE_ALIGN(sizeof(struct memblock_region) *
399 				  memblock.memory.max);
400 		if (memblock_memory_in_slab)
401 			kfree(memblock.memory.regions);
402 		else
403 			__memblock_free_late(addr, size);
404 	}
405 
406 	memblock_memory = NULL;
407 }
408 #endif
409 
410 /**
411  * memblock_double_array - double the size of the memblock regions array
412  * @type: memblock type of the regions array being doubled
413  * @new_area_start: starting address of memory range to avoid overlap with
414  * @new_area_size: size of memory range to avoid overlap with
415  *
416  * Double the size of the @type regions array. If memblock is being used to
417  * allocate memory for a new reserved regions array and there is a previously
418  * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
419  * waiting to be reserved, ensure the memory used by the new array does
420  * not overlap.
421  *
422  * Return:
423  * 0 on success, -1 on failure.
424  */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)425 static int __init_memblock memblock_double_array(struct memblock_type *type,
426 						phys_addr_t new_area_start,
427 						phys_addr_t new_area_size)
428 {
429 	struct memblock_region *new_array, *old_array;
430 	phys_addr_t old_alloc_size, new_alloc_size;
431 	phys_addr_t old_size, new_size, addr, new_end;
432 	int use_slab = slab_is_available();
433 	int *in_slab;
434 
435 	/* We don't allow resizing until we know about the reserved regions
436 	 * of memory that aren't suitable for allocation
437 	 */
438 	if (!memblock_can_resize)
439 		return -1;
440 
441 	/* Calculate new doubled size */
442 	old_size = type->max * sizeof(struct memblock_region);
443 	new_size = old_size << 1;
444 	/*
445 	 * We need to allocated new one align to PAGE_SIZE,
446 	 *   so we can free them completely later.
447 	 */
448 	old_alloc_size = PAGE_ALIGN(old_size);
449 	new_alloc_size = PAGE_ALIGN(new_size);
450 
451 	/* Retrieve the slab flag */
452 	if (type == &memblock.memory)
453 		in_slab = &memblock_memory_in_slab;
454 	else
455 		in_slab = &memblock_reserved_in_slab;
456 
457 	/* Try to find some space for it */
458 	if (use_slab) {
459 		new_array = kmalloc(new_size, GFP_KERNEL);
460 		addr = new_array ? __pa(new_array) : 0;
461 	} else {
462 		/* only exclude range when trying to double reserved.regions */
463 		if (type != &memblock.reserved)
464 			new_area_start = new_area_size = 0;
465 
466 		addr = memblock_find_in_range(new_area_start + new_area_size,
467 						memblock.current_limit,
468 						new_alloc_size, PAGE_SIZE);
469 		if (!addr && new_area_size)
470 			addr = memblock_find_in_range(0,
471 				min(new_area_start, memblock.current_limit),
472 				new_alloc_size, PAGE_SIZE);
473 
474 		new_array = addr ? __va(addr) : NULL;
475 	}
476 	if (!addr) {
477 		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
478 		       type->name, type->max, type->max * 2);
479 		return -1;
480 	}
481 
482 	new_end = addr + new_size - 1;
483 	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
484 			type->name, type->max * 2, &addr, &new_end);
485 
486 	/*
487 	 * Found space, we now need to move the array over before we add the
488 	 * reserved region since it may be our reserved array itself that is
489 	 * full.
490 	 */
491 	memcpy(new_array, type->regions, old_size);
492 	memset(new_array + type->max, 0, old_size);
493 	old_array = type->regions;
494 	type->regions = new_array;
495 	type->max <<= 1;
496 
497 	/* Free old array. We needn't free it if the array is the static one */
498 	if (*in_slab)
499 		kfree(old_array);
500 	else if (old_array != memblock_memory_init_regions &&
501 		 old_array != memblock_reserved_init_regions)
502 		memblock_free(__pa(old_array), old_alloc_size);
503 
504 	/*
505 	 * Reserve the new array if that comes from the memblock.  Otherwise, we
506 	 * needn't do it
507 	 */
508 	if (!use_slab)
509 		BUG_ON(memblock_reserve(addr, new_alloc_size));
510 
511 	/* Update slab flag */
512 	*in_slab = use_slab;
513 
514 	return 0;
515 }
516 
517 /**
518  * memblock_merge_regions - merge neighboring compatible regions
519  * @type: memblock type to scan
520  *
521  * Scan @type and merge neighboring compatible regions.
522  */
memblock_merge_regions(struct memblock_type * type)523 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
524 {
525 	int i = 0;
526 
527 	/* cnt never goes below 1 */
528 	while (i < type->cnt - 1) {
529 		struct memblock_region *this = &type->regions[i];
530 		struct memblock_region *next = &type->regions[i + 1];
531 
532 		if (this->base + this->size != next->base ||
533 		    memblock_get_region_node(this) !=
534 		    memblock_get_region_node(next) ||
535 		    this->flags != next->flags) {
536 			BUG_ON(this->base + this->size > next->base);
537 			i++;
538 			continue;
539 		}
540 
541 		this->size += next->size;
542 		/* move forward from next + 1, index of which is i + 2 */
543 		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
544 		type->cnt--;
545 	}
546 }
547 
548 /**
549  * memblock_insert_region - insert new memblock region
550  * @type:	memblock type to insert into
551  * @idx:	index for the insertion point
552  * @base:	base address of the new region
553  * @size:	size of the new region
554  * @nid:	node id of the new region
555  * @flags:	flags of the new region
556  *
557  * Insert new memblock region [@base, @base + @size) into @type at @idx.
558  * @type must already have extra room to accommodate the new region.
559  */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)560 static void __init_memblock memblock_insert_region(struct memblock_type *type,
561 						   int idx, phys_addr_t base,
562 						   phys_addr_t size,
563 						   int nid,
564 						   enum memblock_flags flags)
565 {
566 	struct memblock_region *rgn = &type->regions[idx];
567 
568 	BUG_ON(type->cnt >= type->max);
569 	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
570 	rgn->base = base;
571 	rgn->size = size;
572 	rgn->flags = flags;
573 	memblock_set_region_node(rgn, nid);
574 	type->cnt++;
575 	type->total_size += size;
576 }
577 
578 /**
579  * memblock_add_range - add new memblock region
580  * @type: memblock type to add new region into
581  * @base: base address of the new region
582  * @size: size of the new region
583  * @nid: nid of the new region
584  * @flags: flags of the new region
585  *
586  * Add new memblock region [@base, @base + @size) into @type.  The new region
587  * is allowed to overlap with existing ones - overlaps don't affect already
588  * existing regions.  @type is guaranteed to be minimal (all neighbouring
589  * compatible regions are merged) after the addition.
590  *
591  * Return:
592  * 0 on success, -errno on failure.
593  */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)594 static int __init_memblock memblock_add_range(struct memblock_type *type,
595 				phys_addr_t base, phys_addr_t size,
596 				int nid, enum memblock_flags flags)
597 {
598 	bool insert = false;
599 	phys_addr_t obase = base;
600 	phys_addr_t end = base + memblock_cap_size(base, &size);
601 	int idx, nr_new;
602 	struct memblock_region *rgn;
603 
604 	if (!size)
605 		return 0;
606 
607 	/* special case for empty array */
608 	if (type->regions[0].size == 0) {
609 		WARN_ON(type->cnt != 1 || type->total_size);
610 		type->regions[0].base = base;
611 		type->regions[0].size = size;
612 		type->regions[0].flags = flags;
613 		memblock_set_region_node(&type->regions[0], nid);
614 		type->total_size = size;
615 		return 0;
616 	}
617 repeat:
618 	/*
619 	 * The following is executed twice.  Once with %false @insert and
620 	 * then with %true.  The first counts the number of regions needed
621 	 * to accommodate the new area.  The second actually inserts them.
622 	 */
623 	base = obase;
624 	nr_new = 0;
625 
626 	for_each_memblock_type(idx, type, rgn) {
627 		phys_addr_t rbase = rgn->base;
628 		phys_addr_t rend = rbase + rgn->size;
629 
630 		if (rbase >= end)
631 			break;
632 		if (rend <= base)
633 			continue;
634 		/*
635 		 * @rgn overlaps.  If it separates the lower part of new
636 		 * area, insert that portion.
637 		 */
638 		if (rbase > base) {
639 #ifdef CONFIG_NEED_MULTIPLE_NODES
640 			WARN_ON(nid != memblock_get_region_node(rgn));
641 #endif
642 			WARN_ON(flags != rgn->flags);
643 			nr_new++;
644 			if (insert)
645 				memblock_insert_region(type, idx++, base,
646 						       rbase - base, nid,
647 						       flags);
648 		}
649 		/* area below @rend is dealt with, forget about it */
650 		base = min(rend, end);
651 	}
652 
653 	/* insert the remaining portion */
654 	if (base < end) {
655 		nr_new++;
656 		if (insert)
657 			memblock_insert_region(type, idx, base, end - base,
658 					       nid, flags);
659 	}
660 
661 	if (!nr_new)
662 		return 0;
663 
664 	/*
665 	 * If this was the first round, resize array and repeat for actual
666 	 * insertions; otherwise, merge and return.
667 	 */
668 	if (!insert) {
669 		while (type->cnt + nr_new > type->max)
670 			if (memblock_double_array(type, obase, size) < 0)
671 				return -ENOMEM;
672 		insert = true;
673 		goto repeat;
674 	} else {
675 		memblock_merge_regions(type);
676 		return 0;
677 	}
678 }
679 
680 /**
681  * memblock_add_node - add new memblock region within a NUMA node
682  * @base: base address of the new region
683  * @size: size of the new region
684  * @nid: nid of the new region
685  *
686  * Add new memblock region [@base, @base + @size) to the "memory"
687  * type. See memblock_add_range() description for mode details
688  *
689  * Return:
690  * 0 on success, -errno on failure.
691  */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)692 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
693 				       int nid)
694 {
695 	return memblock_add_range(&memblock.memory, base, size, nid, 0);
696 }
697 
698 /**
699  * memblock_add - add new memblock region
700  * @base: base address of the new region
701  * @size: size of the new region
702  *
703  * Add new memblock region [@base, @base + @size) to the "memory"
704  * type. See memblock_add_range() description for mode details
705  *
706  * Return:
707  * 0 on success, -errno on failure.
708  */
memblock_add(phys_addr_t base,phys_addr_t size)709 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
710 {
711 	phys_addr_t end = base + size - 1;
712 
713 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
714 		     &base, &end, (void *)_RET_IP_);
715 
716 	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
717 }
718 
719 /**
720  * memblock_isolate_range - isolate given range into disjoint memblocks
721  * @type: memblock type to isolate range for
722  * @base: base of range to isolate
723  * @size: size of range to isolate
724  * @start_rgn: out parameter for the start of isolated region
725  * @end_rgn: out parameter for the end of isolated region
726  *
727  * Walk @type and ensure that regions don't cross the boundaries defined by
728  * [@base, @base + @size).  Crossing regions are split at the boundaries,
729  * which may create at most two more regions.  The index of the first
730  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
731  *
732  * Return:
733  * 0 on success, -errno on failure.
734  */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)735 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
736 					phys_addr_t base, phys_addr_t size,
737 					int *start_rgn, int *end_rgn)
738 {
739 	phys_addr_t end = base + memblock_cap_size(base, &size);
740 	int idx;
741 	struct memblock_region *rgn;
742 
743 	*start_rgn = *end_rgn = 0;
744 
745 	if (!size)
746 		return 0;
747 
748 	/* we'll create at most two more regions */
749 	while (type->cnt + 2 > type->max)
750 		if (memblock_double_array(type, base, size) < 0)
751 			return -ENOMEM;
752 
753 	for_each_memblock_type(idx, type, rgn) {
754 		phys_addr_t rbase = rgn->base;
755 		phys_addr_t rend = rbase + rgn->size;
756 
757 		if (rbase >= end)
758 			break;
759 		if (rend <= base)
760 			continue;
761 
762 		if (rbase < base) {
763 			/*
764 			 * @rgn intersects from below.  Split and continue
765 			 * to process the next region - the new top half.
766 			 */
767 			rgn->base = base;
768 			rgn->size -= base - rbase;
769 			type->total_size -= base - rbase;
770 			memblock_insert_region(type, idx, rbase, base - rbase,
771 					       memblock_get_region_node(rgn),
772 					       rgn->flags);
773 		} else if (rend > end) {
774 			/*
775 			 * @rgn intersects from above.  Split and redo the
776 			 * current region - the new bottom half.
777 			 */
778 			rgn->base = end;
779 			rgn->size -= end - rbase;
780 			type->total_size -= end - rbase;
781 			memblock_insert_region(type, idx--, rbase, end - rbase,
782 					       memblock_get_region_node(rgn),
783 					       rgn->flags);
784 		} else {
785 			/* @rgn is fully contained, record it */
786 			if (!*end_rgn)
787 				*start_rgn = idx;
788 			*end_rgn = idx + 1;
789 		}
790 	}
791 
792 	return 0;
793 }
794 
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)795 static int __init_memblock memblock_remove_range(struct memblock_type *type,
796 					  phys_addr_t base, phys_addr_t size)
797 {
798 	int start_rgn, end_rgn;
799 	int i, ret;
800 
801 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
802 	if (ret)
803 		return ret;
804 
805 	for (i = end_rgn - 1; i >= start_rgn; i--)
806 		memblock_remove_region(type, i);
807 	return 0;
808 }
809 
memblock_remove(phys_addr_t base,phys_addr_t size)810 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
811 {
812 	phys_addr_t end = base + size - 1;
813 
814 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
815 		     &base, &end, (void *)_RET_IP_);
816 
817 	return memblock_remove_range(&memblock.memory, base, size);
818 }
819 
820 /**
821  * memblock_free - free boot memory block
822  * @base: phys starting address of the  boot memory block
823  * @size: size of the boot memory block in bytes
824  *
825  * Free boot memory block previously allocated by memblock_alloc_xx() API.
826  * The freeing memory will not be released to the buddy allocator.
827  */
memblock_free(phys_addr_t base,phys_addr_t size)828 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
829 {
830 	phys_addr_t end = base + size - 1;
831 
832 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
833 		     &base, &end, (void *)_RET_IP_);
834 
835 	kmemleak_free_part_phys(base, size);
836 	return memblock_remove_range(&memblock.reserved, base, size);
837 }
838 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
839 EXPORT_SYMBOL_GPL(memblock_free);
840 #endif
841 
memblock_reserve(phys_addr_t base,phys_addr_t size)842 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
843 {
844 	phys_addr_t end = base + size - 1;
845 
846 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
847 		     &base, &end, (void *)_RET_IP_);
848 
849 	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
850 }
851 
852 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)853 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
854 {
855 	phys_addr_t end = base + size - 1;
856 
857 	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
858 		     &base, &end, (void *)_RET_IP_);
859 
860 	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
861 }
862 #endif
863 
864 /**
865  * memblock_setclr_flag - set or clear flag for a memory region
866  * @base: base address of the region
867  * @size: size of the region
868  * @set: set or clear the flag
869  * @flag: the flag to udpate
870  *
871  * This function isolates region [@base, @base + @size), and sets/clears flag
872  *
873  * Return: 0 on success, -errno on failure.
874  */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)875 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
876 				phys_addr_t size, int set, int flag)
877 {
878 	struct memblock_type *type = &memblock.memory;
879 	int i, ret, start_rgn, end_rgn;
880 
881 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
882 	if (ret)
883 		return ret;
884 
885 	for (i = start_rgn; i < end_rgn; i++) {
886 		struct memblock_region *r = &type->regions[i];
887 
888 		if (set)
889 			r->flags |= flag;
890 		else
891 			r->flags &= ~flag;
892 	}
893 
894 	memblock_merge_regions(type);
895 	return 0;
896 }
897 
898 /**
899  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
900  * @base: the base phys addr of the region
901  * @size: the size of the region
902  *
903  * Return: 0 on success, -errno on failure.
904  */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)905 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
906 {
907 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
908 }
909 
910 /**
911  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
912  * @base: the base phys addr of the region
913  * @size: the size of the region
914  *
915  * Return: 0 on success, -errno on failure.
916  */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)917 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
918 {
919 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
920 }
921 
922 /**
923  * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
924  * @base: the base phys addr of the region
925  * @size: the size of the region
926  *
927  * Return: 0 on success, -errno on failure.
928  */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)929 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
930 {
931 	system_has_some_mirror = true;
932 
933 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
934 }
935 
936 /**
937  * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
938  * @base: the base phys addr of the region
939  * @size: the size of the region
940  *
941  * Return: 0 on success, -errno on failure.
942  */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)943 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
944 {
945 	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
946 }
947 
948 /**
949  * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
950  * @base: the base phys addr of the region
951  * @size: the size of the region
952  *
953  * Return: 0 on success, -errno on failure.
954  */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)955 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
956 {
957 	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
958 }
959 
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)960 static bool should_skip_region(struct memblock_type *type,
961 			       struct memblock_region *m,
962 			       int nid, int flags)
963 {
964 	int m_nid = memblock_get_region_node(m);
965 
966 	/* we never skip regions when iterating memblock.reserved or physmem */
967 	if (type != memblock_memory)
968 		return false;
969 
970 	/* only memory regions are associated with nodes, check it */
971 	if (nid != NUMA_NO_NODE && nid != m_nid)
972 		return true;
973 
974 	/* skip hotpluggable memory regions if needed */
975 	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
976 	    !(flags & MEMBLOCK_HOTPLUG))
977 		return true;
978 
979 	/* if we want mirror memory skip non-mirror memory regions */
980 	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
981 		return true;
982 
983 	/* skip nomap memory unless we were asked for it explicitly */
984 	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
985 		return true;
986 
987 	return false;
988 }
989 
990 /**
991  * __next_mem_range - next function for for_each_free_mem_range() etc.
992  * @idx: pointer to u64 loop variable
993  * @nid: node selector, %NUMA_NO_NODE for all nodes
994  * @flags: pick from blocks based on memory attributes
995  * @type_a: pointer to memblock_type from where the range is taken
996  * @type_b: pointer to memblock_type which excludes memory from being taken
997  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
998  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
999  * @out_nid: ptr to int for nid of the range, can be %NULL
1000  *
1001  * Find the first area from *@idx which matches @nid, fill the out
1002  * parameters, and update *@idx for the next iteration.  The lower 32bit of
1003  * *@idx contains index into type_a and the upper 32bit indexes the
1004  * areas before each region in type_b.	For example, if type_b regions
1005  * look like the following,
1006  *
1007  *	0:[0-16), 1:[32-48), 2:[128-130)
1008  *
1009  * The upper 32bit indexes the following regions.
1010  *
1011  *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1012  *
1013  * As both region arrays are sorted, the function advances the two indices
1014  * in lockstep and returns each intersection.
1015  */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1016 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1017 		      struct memblock_type *type_a,
1018 		      struct memblock_type *type_b, phys_addr_t *out_start,
1019 		      phys_addr_t *out_end, int *out_nid)
1020 {
1021 	int idx_a = *idx & 0xffffffff;
1022 	int idx_b = *idx >> 32;
1023 
1024 	if (WARN_ONCE(nid == MAX_NUMNODES,
1025 	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1026 		nid = NUMA_NO_NODE;
1027 
1028 	for (; idx_a < type_a->cnt; idx_a++) {
1029 		struct memblock_region *m = &type_a->regions[idx_a];
1030 
1031 		phys_addr_t m_start = m->base;
1032 		phys_addr_t m_end = m->base + m->size;
1033 		int	    m_nid = memblock_get_region_node(m);
1034 
1035 		if (should_skip_region(type_a, m, nid, flags))
1036 			continue;
1037 
1038 		if (!type_b) {
1039 			if (out_start)
1040 				*out_start = m_start;
1041 			if (out_end)
1042 				*out_end = m_end;
1043 			if (out_nid)
1044 				*out_nid = m_nid;
1045 			idx_a++;
1046 			*idx = (u32)idx_a | (u64)idx_b << 32;
1047 			return;
1048 		}
1049 
1050 		/* scan areas before each reservation */
1051 		for (; idx_b < type_b->cnt + 1; idx_b++) {
1052 			struct memblock_region *r;
1053 			phys_addr_t r_start;
1054 			phys_addr_t r_end;
1055 
1056 			r = &type_b->regions[idx_b];
1057 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058 			r_end = idx_b < type_b->cnt ?
1059 				r->base : PHYS_ADDR_MAX;
1060 
1061 			/*
1062 			 * if idx_b advanced past idx_a,
1063 			 * break out to advance idx_a
1064 			 */
1065 			if (r_start >= m_end)
1066 				break;
1067 			/* if the two regions intersect, we're done */
1068 			if (m_start < r_end) {
1069 				if (out_start)
1070 					*out_start =
1071 						max(m_start, r_start);
1072 				if (out_end)
1073 					*out_end = min(m_end, r_end);
1074 				if (out_nid)
1075 					*out_nid = m_nid;
1076 				/*
1077 				 * The region which ends first is
1078 				 * advanced for the next iteration.
1079 				 */
1080 				if (m_end <= r_end)
1081 					idx_a++;
1082 				else
1083 					idx_b++;
1084 				*idx = (u32)idx_a | (u64)idx_b << 32;
1085 				return;
1086 			}
1087 		}
1088 	}
1089 
1090 	/* signal end of iteration */
1091 	*idx = ULLONG_MAX;
1092 }
1093 
1094 /**
1095  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1096  *
1097  * @idx: pointer to u64 loop variable
1098  * @nid: node selector, %NUMA_NO_NODE for all nodes
1099  * @flags: pick from blocks based on memory attributes
1100  * @type_a: pointer to memblock_type from where the range is taken
1101  * @type_b: pointer to memblock_type which excludes memory from being taken
1102  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1103  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1104  * @out_nid: ptr to int for nid of the range, can be %NULL
1105  *
1106  * Finds the next range from type_a which is not marked as unsuitable
1107  * in type_b.
1108  *
1109  * Reverse of __next_mem_range().
1110  */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1111 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1112 					  enum memblock_flags flags,
1113 					  struct memblock_type *type_a,
1114 					  struct memblock_type *type_b,
1115 					  phys_addr_t *out_start,
1116 					  phys_addr_t *out_end, int *out_nid)
1117 {
1118 	int idx_a = *idx & 0xffffffff;
1119 	int idx_b = *idx >> 32;
1120 
1121 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1122 		nid = NUMA_NO_NODE;
1123 
1124 	if (*idx == (u64)ULLONG_MAX) {
1125 		idx_a = type_a->cnt - 1;
1126 		if (type_b != NULL)
1127 			idx_b = type_b->cnt;
1128 		else
1129 			idx_b = 0;
1130 	}
1131 
1132 	for (; idx_a >= 0; idx_a--) {
1133 		struct memblock_region *m = &type_a->regions[idx_a];
1134 
1135 		phys_addr_t m_start = m->base;
1136 		phys_addr_t m_end = m->base + m->size;
1137 		int m_nid = memblock_get_region_node(m);
1138 
1139 		if (should_skip_region(type_a, m, nid, flags))
1140 			continue;
1141 
1142 		if (!type_b) {
1143 			if (out_start)
1144 				*out_start = m_start;
1145 			if (out_end)
1146 				*out_end = m_end;
1147 			if (out_nid)
1148 				*out_nid = m_nid;
1149 			idx_a--;
1150 			*idx = (u32)idx_a | (u64)idx_b << 32;
1151 			return;
1152 		}
1153 
1154 		/* scan areas before each reservation */
1155 		for (; idx_b >= 0; idx_b--) {
1156 			struct memblock_region *r;
1157 			phys_addr_t r_start;
1158 			phys_addr_t r_end;
1159 
1160 			r = &type_b->regions[idx_b];
1161 			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1162 			r_end = idx_b < type_b->cnt ?
1163 				r->base : PHYS_ADDR_MAX;
1164 			/*
1165 			 * if idx_b advanced past idx_a,
1166 			 * break out to advance idx_a
1167 			 */
1168 
1169 			if (r_end <= m_start)
1170 				break;
1171 			/* if the two regions intersect, we're done */
1172 			if (m_end > r_start) {
1173 				if (out_start)
1174 					*out_start = max(m_start, r_start);
1175 				if (out_end)
1176 					*out_end = min(m_end, r_end);
1177 				if (out_nid)
1178 					*out_nid = m_nid;
1179 				if (m_start >= r_start)
1180 					idx_a--;
1181 				else
1182 					idx_b--;
1183 				*idx = (u32)idx_a | (u64)idx_b << 32;
1184 				return;
1185 			}
1186 		}
1187 	}
1188 	/* signal end of iteration */
1189 	*idx = ULLONG_MAX;
1190 }
1191 
1192 /*
1193  * Common iterator interface used to define for_each_mem_pfn_range().
1194  */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1195 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1196 				unsigned long *out_start_pfn,
1197 				unsigned long *out_end_pfn, int *out_nid)
1198 {
1199 	struct memblock_type *type = &memblock.memory;
1200 	struct memblock_region *r;
1201 	int r_nid;
1202 
1203 	while (++*idx < type->cnt) {
1204 		r = &type->regions[*idx];
1205 		r_nid = memblock_get_region_node(r);
1206 
1207 		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1208 			continue;
1209 		if (nid == MAX_NUMNODES || nid == r_nid)
1210 			break;
1211 	}
1212 	if (*idx >= type->cnt) {
1213 		*idx = -1;
1214 		return;
1215 	}
1216 
1217 	if (out_start_pfn)
1218 		*out_start_pfn = PFN_UP(r->base);
1219 	if (out_end_pfn)
1220 		*out_end_pfn = PFN_DOWN(r->base + r->size);
1221 	if (out_nid)
1222 		*out_nid = r_nid;
1223 }
1224 
1225 /**
1226  * memblock_set_node - set node ID on memblock regions
1227  * @base: base of area to set node ID for
1228  * @size: size of area to set node ID for
1229  * @type: memblock type to set node ID for
1230  * @nid: node ID to set
1231  *
1232  * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1233  * Regions which cross the area boundaries are split as necessary.
1234  *
1235  * Return:
1236  * 0 on success, -errno on failure.
1237  */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1238 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1239 				      struct memblock_type *type, int nid)
1240 {
1241 #ifdef CONFIG_NEED_MULTIPLE_NODES
1242 	int start_rgn, end_rgn;
1243 	int i, ret;
1244 
1245 	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1246 	if (ret)
1247 		return ret;
1248 
1249 	for (i = start_rgn; i < end_rgn; i++)
1250 		memblock_set_region_node(&type->regions[i], nid);
1251 
1252 	memblock_merge_regions(type);
1253 #endif
1254 	return 0;
1255 }
1256 
1257 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1258 /**
1259  * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1260  *
1261  * @idx: pointer to u64 loop variable
1262  * @zone: zone in which all of the memory blocks reside
1263  * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1264  * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1265  *
1266  * This function is meant to be a zone/pfn specific wrapper for the
1267  * for_each_mem_range type iterators. Specifically they are used in the
1268  * deferred memory init routines and as such we were duplicating much of
1269  * this logic throughout the code. So instead of having it in multiple
1270  * locations it seemed like it would make more sense to centralize this to
1271  * one new iterator that does everything they need.
1272  */
1273 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1274 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1275 			     unsigned long *out_spfn, unsigned long *out_epfn)
1276 {
1277 	int zone_nid = zone_to_nid(zone);
1278 	phys_addr_t spa, epa;
1279 	int nid;
1280 
1281 	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1282 			 &memblock.memory, &memblock.reserved,
1283 			 &spa, &epa, &nid);
1284 
1285 	while (*idx != U64_MAX) {
1286 		unsigned long epfn = PFN_DOWN(epa);
1287 		unsigned long spfn = PFN_UP(spa);
1288 
1289 		/*
1290 		 * Verify the end is at least past the start of the zone and
1291 		 * that we have at least one PFN to initialize.
1292 		 */
1293 		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1294 			/* if we went too far just stop searching */
1295 			if (zone_end_pfn(zone) <= spfn) {
1296 				*idx = U64_MAX;
1297 				break;
1298 			}
1299 
1300 			if (out_spfn)
1301 				*out_spfn = max(zone->zone_start_pfn, spfn);
1302 			if (out_epfn)
1303 				*out_epfn = min(zone_end_pfn(zone), epfn);
1304 
1305 			return;
1306 		}
1307 
1308 		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1309 				 &memblock.memory, &memblock.reserved,
1310 				 &spa, &epa, &nid);
1311 	}
1312 
1313 	/* signal end of iteration */
1314 	if (out_spfn)
1315 		*out_spfn = ULONG_MAX;
1316 	if (out_epfn)
1317 		*out_epfn = 0;
1318 }
1319 
1320 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1321 
1322 /**
1323  * memblock_alloc_range_nid - allocate boot memory block
1324  * @size: size of memory block to be allocated in bytes
1325  * @align: alignment of the region and block's size
1326  * @start: the lower bound of the memory region to allocate (phys address)
1327  * @end: the upper bound of the memory region to allocate (phys address)
1328  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1329  * @exact_nid: control the allocation fall back to other nodes
1330  *
1331  * The allocation is performed from memory region limited by
1332  * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1333  *
1334  * If the specified node can not hold the requested memory and @exact_nid
1335  * is false, the allocation falls back to any node in the system.
1336  *
1337  * For systems with memory mirroring, the allocation is attempted first
1338  * from the regions with mirroring enabled and then retried from any
1339  * memory region.
1340  *
1341  * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1342  * allocated boot memory block, so that it is never reported as leaks.
1343  *
1344  * Return:
1345  * Physical address of allocated memory block on success, %0 on failure.
1346  */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1347 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1348 					phys_addr_t align, phys_addr_t start,
1349 					phys_addr_t end, int nid,
1350 					bool exact_nid)
1351 {
1352 	enum memblock_flags flags = choose_memblock_flags();
1353 	phys_addr_t found;
1354 
1355 	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1356 		nid = NUMA_NO_NODE;
1357 
1358 	if (!align) {
1359 		/* Can't use WARNs this early in boot on powerpc */
1360 		dump_stack();
1361 		align = SMP_CACHE_BYTES;
1362 	}
1363 
1364 again:
1365 	found = memblock_find_in_range_node(size, align, start, end, nid,
1366 					    flags);
1367 	if (found && !memblock_reserve(found, size))
1368 		goto done;
1369 
1370 	if (nid != NUMA_NO_NODE && !exact_nid) {
1371 		found = memblock_find_in_range_node(size, align, start,
1372 						    end, NUMA_NO_NODE,
1373 						    flags);
1374 		if (found && !memblock_reserve(found, size))
1375 			goto done;
1376 	}
1377 
1378 	if (flags & MEMBLOCK_MIRROR) {
1379 		flags &= ~MEMBLOCK_MIRROR;
1380 		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1381 			&size);
1382 		goto again;
1383 	}
1384 
1385 	return 0;
1386 
1387 done:
1388 	/* Skip kmemleak for kasan_init() due to high volume. */
1389 	if (end != MEMBLOCK_ALLOC_KASAN)
1390 		/*
1391 		 * The min_count is set to 0 so that memblock allocated
1392 		 * blocks are never reported as leaks. This is because many
1393 		 * of these blocks are only referred via the physical
1394 		 * address which is not looked up by kmemleak.
1395 		 */
1396 		kmemleak_alloc_phys(found, size, 0, 0);
1397 
1398 	return found;
1399 }
1400 
1401 /**
1402  * memblock_phys_alloc_range - allocate a memory block inside specified range
1403  * @size: size of memory block to be allocated in bytes
1404  * @align: alignment of the region and block's size
1405  * @start: the lower bound of the memory region to allocate (physical address)
1406  * @end: the upper bound of the memory region to allocate (physical address)
1407  *
1408  * Allocate @size bytes in the between @start and @end.
1409  *
1410  * Return: physical address of the allocated memory block on success,
1411  * %0 on failure.
1412  */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1413 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1414 					     phys_addr_t align,
1415 					     phys_addr_t start,
1416 					     phys_addr_t end)
1417 {
1418 	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1419 		     __func__, (u64)size, (u64)align, &start, &end,
1420 		     (void *)_RET_IP_);
1421 	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1422 					false);
1423 }
1424 
1425 /**
1426  * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1427  * @size: size of memory block to be allocated in bytes
1428  * @align: alignment of the region and block's size
1429  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1430  *
1431  * Allocates memory block from the specified NUMA node. If the node
1432  * has no available memory, attempts to allocated from any node in the
1433  * system.
1434  *
1435  * Return: physical address of the allocated memory block on success,
1436  * %0 on failure.
1437  */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1438 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1439 {
1440 	return memblock_alloc_range_nid(size, align, 0,
1441 					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1442 }
1443 
1444 /**
1445  * memblock_alloc_internal - allocate boot memory block
1446  * @size: size of memory block to be allocated in bytes
1447  * @align: alignment of the region and block's size
1448  * @min_addr: the lower bound of the memory region to allocate (phys address)
1449  * @max_addr: the upper bound of the memory region to allocate (phys address)
1450  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1451  * @exact_nid: control the allocation fall back to other nodes
1452  *
1453  * Allocates memory block using memblock_alloc_range_nid() and
1454  * converts the returned physical address to virtual.
1455  *
1456  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1457  * will fall back to memory below @min_addr. Other constraints, such
1458  * as node and mirrored memory will be handled again in
1459  * memblock_alloc_range_nid().
1460  *
1461  * Return:
1462  * Virtual address of allocated memory block on success, NULL on failure.
1463  */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1464 static void * __init memblock_alloc_internal(
1465 				phys_addr_t size, phys_addr_t align,
1466 				phys_addr_t min_addr, phys_addr_t max_addr,
1467 				int nid, bool exact_nid)
1468 {
1469 	phys_addr_t alloc;
1470 
1471 	/*
1472 	 * Detect any accidental use of these APIs after slab is ready, as at
1473 	 * this moment memblock may be deinitialized already and its
1474 	 * internal data may be destroyed (after execution of memblock_free_all)
1475 	 */
1476 	if (WARN_ON_ONCE(slab_is_available()))
1477 		return kzalloc_node(size, GFP_NOWAIT, nid);
1478 
1479 	if (max_addr > memblock.current_limit)
1480 		max_addr = memblock.current_limit;
1481 
1482 	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1483 					exact_nid);
1484 
1485 	/* retry allocation without lower limit */
1486 	if (!alloc && min_addr)
1487 		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1488 						exact_nid);
1489 
1490 	if (!alloc)
1491 		return NULL;
1492 
1493 	return phys_to_virt(alloc);
1494 }
1495 
1496 /**
1497  * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1498  * without zeroing memory
1499  * @size: size of memory block to be allocated in bytes
1500  * @align: alignment of the region and block's size
1501  * @min_addr: the lower bound of the memory region from where the allocation
1502  *	  is preferred (phys address)
1503  * @max_addr: the upper bound of the memory region from where the allocation
1504  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1505  *	      allocate only from memory limited by memblock.current_limit value
1506  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1507  *
1508  * Public function, provides additional debug information (including caller
1509  * info), if enabled. Does not zero allocated memory.
1510  *
1511  * Return:
1512  * Virtual address of allocated memory block on success, NULL on failure.
1513  */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1514 void * __init memblock_alloc_exact_nid_raw(
1515 			phys_addr_t size, phys_addr_t align,
1516 			phys_addr_t min_addr, phys_addr_t max_addr,
1517 			int nid)
1518 {
1519 	void *ptr;
1520 
1521 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1522 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1523 		     &max_addr, (void *)_RET_IP_);
1524 
1525 	ptr = memblock_alloc_internal(size, align,
1526 					   min_addr, max_addr, nid, true);
1527 	if (ptr && size > 0)
1528 		page_init_poison(ptr, size);
1529 
1530 	return ptr;
1531 }
1532 
1533 /**
1534  * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1535  * memory and without panicking
1536  * @size: size of memory block to be allocated in bytes
1537  * @align: alignment of the region and block's size
1538  * @min_addr: the lower bound of the memory region from where the allocation
1539  *	  is preferred (phys address)
1540  * @max_addr: the upper bound of the memory region from where the allocation
1541  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1542  *	      allocate only from memory limited by memblock.current_limit value
1543  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1544  *
1545  * Public function, provides additional debug information (including caller
1546  * info), if enabled. Does not zero allocated memory, does not panic if request
1547  * cannot be satisfied.
1548  *
1549  * Return:
1550  * Virtual address of allocated memory block on success, NULL on failure.
1551  */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1552 void * __init memblock_alloc_try_nid_raw(
1553 			phys_addr_t size, phys_addr_t align,
1554 			phys_addr_t min_addr, phys_addr_t max_addr,
1555 			int nid)
1556 {
1557 	void *ptr;
1558 
1559 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1560 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1561 		     &max_addr, (void *)_RET_IP_);
1562 
1563 	ptr = memblock_alloc_internal(size, align,
1564 					   min_addr, max_addr, nid, false);
1565 	if (ptr && size > 0)
1566 		page_init_poison(ptr, size);
1567 
1568 	return ptr;
1569 }
1570 
1571 /**
1572  * memblock_alloc_try_nid - allocate boot memory block
1573  * @size: size of memory block to be allocated in bytes
1574  * @align: alignment of the region and block's size
1575  * @min_addr: the lower bound of the memory region from where the allocation
1576  *	  is preferred (phys address)
1577  * @max_addr: the upper bound of the memory region from where the allocation
1578  *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1579  *	      allocate only from memory limited by memblock.current_limit value
1580  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1581  *
1582  * Public function, provides additional debug information (including caller
1583  * info), if enabled. This function zeroes the allocated memory.
1584  *
1585  * Return:
1586  * Virtual address of allocated memory block on success, NULL on failure.
1587  */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1588 void * __init memblock_alloc_try_nid(
1589 			phys_addr_t size, phys_addr_t align,
1590 			phys_addr_t min_addr, phys_addr_t max_addr,
1591 			int nid)
1592 {
1593 	void *ptr;
1594 
1595 	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1596 		     __func__, (u64)size, (u64)align, nid, &min_addr,
1597 		     &max_addr, (void *)_RET_IP_);
1598 	ptr = memblock_alloc_internal(size, align,
1599 					   min_addr, max_addr, nid, false);
1600 	if (ptr)
1601 		memset(ptr, 0, size);
1602 
1603 	return ptr;
1604 }
1605 
1606 /**
1607  * __memblock_free_late - free pages directly to buddy allocator
1608  * @base: phys starting address of the  boot memory block
1609  * @size: size of the boot memory block in bytes
1610  *
1611  * This is only useful when the memblock allocator has already been torn
1612  * down, but we are still initializing the system.  Pages are released directly
1613  * to the buddy allocator.
1614  */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1615 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1616 {
1617 	phys_addr_t cursor, end;
1618 
1619 	end = base + size - 1;
1620 	memblock_dbg("%s: [%pa-%pa] %pS\n",
1621 		     __func__, &base, &end, (void *)_RET_IP_);
1622 	kmemleak_free_part_phys(base, size);
1623 	cursor = PFN_UP(base);
1624 	end = PFN_DOWN(base + size);
1625 
1626 	for (; cursor < end; cursor++) {
1627 		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1628 		totalram_pages_inc();
1629 	}
1630 }
1631 
1632 /*
1633  * Remaining API functions
1634  */
1635 
memblock_phys_mem_size(void)1636 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1637 {
1638 	return memblock.memory.total_size;
1639 }
1640 
memblock_reserved_size(void)1641 phys_addr_t __init_memblock memblock_reserved_size(void)
1642 {
1643 	return memblock.reserved.total_size;
1644 }
1645 
1646 /* lowest address */
memblock_start_of_DRAM(void)1647 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1648 {
1649 	return memblock.memory.regions[0].base;
1650 }
1651 
memblock_end_of_DRAM(void)1652 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1653 {
1654 	int idx = memblock.memory.cnt - 1;
1655 
1656 	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1657 }
1658 EXPORT_SYMBOL_GPL(memblock_end_of_DRAM);
1659 
__find_max_addr(phys_addr_t limit)1660 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1661 {
1662 	phys_addr_t max_addr = PHYS_ADDR_MAX;
1663 	struct memblock_region *r;
1664 
1665 	/*
1666 	 * translate the memory @limit size into the max address within one of
1667 	 * the memory memblock regions, if the @limit exceeds the total size
1668 	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1669 	 */
1670 	for_each_mem_region(r) {
1671 		if (limit <= r->size) {
1672 			max_addr = r->base + limit;
1673 			break;
1674 		}
1675 		limit -= r->size;
1676 	}
1677 
1678 	return max_addr;
1679 }
1680 
memblock_enforce_memory_limit(phys_addr_t limit)1681 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1682 {
1683 	phys_addr_t max_addr;
1684 
1685 	if (!limit)
1686 		return;
1687 
1688 	max_addr = __find_max_addr(limit);
1689 
1690 	/* @limit exceeds the total size of the memory, do nothing */
1691 	if (max_addr == PHYS_ADDR_MAX)
1692 		return;
1693 
1694 	/* truncate both memory and reserved regions */
1695 	memblock_remove_range(&memblock.memory, max_addr,
1696 			      PHYS_ADDR_MAX);
1697 	memblock_remove_range(&memblock.reserved, max_addr,
1698 			      PHYS_ADDR_MAX);
1699 }
1700 
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1701 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1702 {
1703 	int start_rgn, end_rgn;
1704 	int i, ret;
1705 
1706 	if (!size)
1707 		return;
1708 
1709 	ret = memblock_isolate_range(&memblock.memory, base, size,
1710 						&start_rgn, &end_rgn);
1711 	if (ret)
1712 		return;
1713 
1714 	/* remove all the MAP regions */
1715 	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1716 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1717 			memblock_remove_region(&memblock.memory, i);
1718 
1719 	for (i = start_rgn - 1; i >= 0; i--)
1720 		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1721 			memblock_remove_region(&memblock.memory, i);
1722 
1723 	/* truncate the reserved regions */
1724 	memblock_remove_range(&memblock.reserved, 0, base);
1725 	memblock_remove_range(&memblock.reserved,
1726 			base + size, PHYS_ADDR_MAX);
1727 }
1728 
memblock_mem_limit_remove_map(phys_addr_t limit)1729 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1730 {
1731 	phys_addr_t max_addr;
1732 
1733 	if (!limit)
1734 		return;
1735 
1736 	max_addr = __find_max_addr(limit);
1737 
1738 	/* @limit exceeds the total size of the memory, do nothing */
1739 	if (max_addr == PHYS_ADDR_MAX)
1740 		return;
1741 
1742 	memblock_cap_memory_range(0, max_addr);
1743 }
1744 
memblock_search(struct memblock_type * type,phys_addr_t addr)1745 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1746 {
1747 	unsigned int left = 0, right = type->cnt;
1748 
1749 	do {
1750 		unsigned int mid = (right + left) / 2;
1751 
1752 		if (addr < type->regions[mid].base)
1753 			right = mid;
1754 		else if (addr >= (type->regions[mid].base +
1755 				  type->regions[mid].size))
1756 			left = mid + 1;
1757 		else
1758 			return mid;
1759 	} while (left < right);
1760 	return -1;
1761 }
1762 
memblock_is_reserved(phys_addr_t addr)1763 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1764 {
1765 	return memblock_search(&memblock.reserved, addr) != -1;
1766 }
1767 
memblock_is_memory(phys_addr_t addr)1768 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1769 {
1770 	return memblock_search(&memblock.memory, addr) != -1;
1771 }
1772 
memblock_is_map_memory(phys_addr_t addr)1773 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1774 {
1775 	int i = memblock_search(&memblock.memory, addr);
1776 
1777 	if (i == -1)
1778 		return false;
1779 	return !memblock_is_nomap(&memblock.memory.regions[i]);
1780 }
1781 
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1782 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1783 			 unsigned long *start_pfn, unsigned long *end_pfn)
1784 {
1785 	struct memblock_type *type = &memblock.memory;
1786 	int mid = memblock_search(type, PFN_PHYS(pfn));
1787 
1788 	if (mid == -1)
1789 		return -1;
1790 
1791 	*start_pfn = PFN_DOWN(type->regions[mid].base);
1792 	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1793 
1794 	return memblock_get_region_node(&type->regions[mid]);
1795 }
1796 
1797 /**
1798  * memblock_is_region_memory - check if a region is a subset of memory
1799  * @base: base of region to check
1800  * @size: size of region to check
1801  *
1802  * Check if the region [@base, @base + @size) is a subset of a memory block.
1803  *
1804  * Return:
1805  * 0 if false, non-zero if true
1806  */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1807 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1808 {
1809 	int idx = memblock_search(&memblock.memory, base);
1810 	phys_addr_t end = base + memblock_cap_size(base, &size);
1811 
1812 	if (idx == -1)
1813 		return false;
1814 	return (memblock.memory.regions[idx].base +
1815 		 memblock.memory.regions[idx].size) >= end;
1816 }
1817 
1818 /**
1819  * memblock_is_region_reserved - check if a region intersects reserved memory
1820  * @base: base of region to check
1821  * @size: size of region to check
1822  *
1823  * Check if the region [@base, @base + @size) intersects a reserved
1824  * memory block.
1825  *
1826  * Return:
1827  * True if they intersect, false if not.
1828  */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1829 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1830 {
1831 	return memblock_overlaps_region(&memblock.reserved, base, size);
1832 }
1833 
memblock_trim_memory(phys_addr_t align)1834 void __init_memblock memblock_trim_memory(phys_addr_t align)
1835 {
1836 	phys_addr_t start, end, orig_start, orig_end;
1837 	struct memblock_region *r;
1838 
1839 	for_each_mem_region(r) {
1840 		orig_start = r->base;
1841 		orig_end = r->base + r->size;
1842 		start = round_up(orig_start, align);
1843 		end = round_down(orig_end, align);
1844 
1845 		if (start == orig_start && end == orig_end)
1846 			continue;
1847 
1848 		if (start < end) {
1849 			r->base = start;
1850 			r->size = end - start;
1851 		} else {
1852 			memblock_remove_region(&memblock.memory,
1853 					       r - memblock.memory.regions);
1854 			r--;
1855 		}
1856 	}
1857 }
1858 
memblock_set_current_limit(phys_addr_t limit)1859 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1860 {
1861 	memblock.current_limit = limit;
1862 }
1863 
memblock_get_current_limit(void)1864 phys_addr_t __init_memblock memblock_get_current_limit(void)
1865 {
1866 	return memblock.current_limit;
1867 }
1868 
memblock_dump(struct memblock_type * type)1869 static void __init_memblock memblock_dump(struct memblock_type *type)
1870 {
1871 	phys_addr_t base, end, size;
1872 	enum memblock_flags flags;
1873 	int idx;
1874 	struct memblock_region *rgn;
1875 
1876 	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1877 
1878 	for_each_memblock_type(idx, type, rgn) {
1879 		char nid_buf[32] = "";
1880 
1881 		base = rgn->base;
1882 		size = rgn->size;
1883 		end = base + size - 1;
1884 		flags = rgn->flags;
1885 #ifdef CONFIG_NEED_MULTIPLE_NODES
1886 		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1887 			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1888 				 memblock_get_region_node(rgn));
1889 #endif
1890 		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1891 			type->name, idx, &base, &end, &size, nid_buf, flags);
1892 	}
1893 }
1894 
__memblock_dump_all(void)1895 static void __init_memblock __memblock_dump_all(void)
1896 {
1897 	pr_info("MEMBLOCK configuration:\n");
1898 	pr_info(" memory size = %pa reserved size = %pa\n",
1899 		&memblock.memory.total_size,
1900 		&memblock.reserved.total_size);
1901 
1902 	memblock_dump(&memblock.memory);
1903 	memblock_dump(&memblock.reserved);
1904 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1905 	memblock_dump(&physmem);
1906 #endif
1907 }
1908 
memblock_dump_all(void)1909 void __init_memblock memblock_dump_all(void)
1910 {
1911 	if (memblock_debug)
1912 		__memblock_dump_all();
1913 }
1914 
memblock_allow_resize(void)1915 void __init memblock_allow_resize(void)
1916 {
1917 	memblock_can_resize = 1;
1918 }
1919 
early_memblock(char * p)1920 static int __init early_memblock(char *p)
1921 {
1922 	if (p && strstr(p, "debug"))
1923 		memblock_debug = 1;
1924 	return 0;
1925 }
1926 early_param("memblock", early_memblock);
1927 
early_memblock_nomap(char * str)1928 static int __init early_memblock_nomap(char *str)
1929 {
1930 	return kstrtobool(str, &memblock_nomap_remove);
1931 }
1932 early_param("android12_only.will_be_removed_soon.memblock_nomap_remove", early_memblock_nomap);
1933 
memblock_is_nomap_remove(void)1934 bool __init memblock_is_nomap_remove(void)
1935 {
1936 	return memblock_nomap_remove;
1937 }
1938 
__free_pages_memory(unsigned long start,unsigned long end)1939 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1940 {
1941 	int order;
1942 
1943 	while (start < end) {
1944 		order = min(MAX_ORDER - 1UL, __ffs(start));
1945 
1946 		while (start + (1UL << order) > end)
1947 			order--;
1948 
1949 		memblock_free_pages(pfn_to_page(start), start, order);
1950 
1951 		start += (1UL << order);
1952 	}
1953 }
1954 
1955 #if defined(CONFIG_ROCKCHIP_THUNDER_BOOT) && defined(CONFIG_SMP)
defer_free_memblock(void * unused)1956 int __init defer_free_memblock(void *unused)
1957 {
1958 	if (defer_start == 0)
1959 		return 0;
1960 
1961 	pr_debug("start = %ld, end = %ld\n", defer_start, defer_end);
1962 
1963 	__free_pages_memory(defer_start, defer_end);
1964 
1965 	totalram_pages_add(defer_end - defer_start);
1966 
1967 	pr_info("%s: size %luM free %luM [%luM - %luM] total %luM\n", __func__,
1968 		defer_free_block_size >> 20,
1969 		(defer_end - defer_start) >> (20 - PAGE_SHIFT),
1970 		defer_end >> (20 - PAGE_SHIFT),
1971 		defer_start >> (20 - PAGE_SHIFT),
1972 		totalram_pages() >> (20 - PAGE_SHIFT));
1973 	return 0;
1974 }
1975 #endif
1976 
__free_memory_core(phys_addr_t start,phys_addr_t end)1977 static unsigned long __init __free_memory_core(phys_addr_t start,
1978 				 phys_addr_t end)
1979 {
1980 	unsigned long start_pfn = PFN_UP(start);
1981 	unsigned long end_pfn = min_t(unsigned long,
1982 				      PFN_DOWN(end), max_low_pfn);
1983 
1984 	if (start_pfn >= end_pfn)
1985 		return 0;
1986 
1987 #if defined(CONFIG_ROCKCHIP_THUNDER_BOOT) && defined(CONFIG_SMP)
1988 	if ((end - start) > defer_free_block_size) {
1989 		defer_start = start_pfn;
1990 		defer_end = end_pfn;
1991 
1992 		return 0;
1993 	}
1994 #endif
1995 
1996 	__free_pages_memory(start_pfn, end_pfn);
1997 
1998 	return end_pfn - start_pfn;
1999 }
2000 
free_low_memory_core_early(void)2001 static unsigned long __init free_low_memory_core_early(void)
2002 {
2003 	unsigned long count = 0;
2004 	phys_addr_t start, end;
2005 	u64 i;
2006 
2007 	memblock_clear_hotplug(0, -1);
2008 
2009 	for_each_reserved_mem_range(i, &start, &end)
2010 		reserve_bootmem_region(start, end);
2011 
2012 	/*
2013 	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2014 	 *  because in some case like Node0 doesn't have RAM installed
2015 	 *  low ram will be on Node1
2016 	 */
2017 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2018 				NULL)
2019 		count += __free_memory_core(start, end);
2020 
2021 	return count;
2022 }
2023 
2024 static int reset_managed_pages_done __initdata;
2025 
reset_node_managed_pages(pg_data_t * pgdat)2026 void reset_node_managed_pages(pg_data_t *pgdat)
2027 {
2028 	struct zone *z;
2029 
2030 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2031 		atomic_long_set(&z->managed_pages, 0);
2032 }
2033 
reset_all_zones_managed_pages(void)2034 void __init reset_all_zones_managed_pages(void)
2035 {
2036 	struct pglist_data *pgdat;
2037 
2038 	if (reset_managed_pages_done)
2039 		return;
2040 
2041 	for_each_online_pgdat(pgdat)
2042 		reset_node_managed_pages(pgdat);
2043 
2044 	reset_managed_pages_done = 1;
2045 }
2046 
2047 /**
2048  * memblock_free_all - release free pages to the buddy allocator
2049  *
2050  * Return: the number of pages actually released.
2051  */
memblock_free_all(void)2052 unsigned long __init memblock_free_all(void)
2053 {
2054 	unsigned long pages;
2055 
2056 	reset_all_zones_managed_pages();
2057 
2058 	pages = free_low_memory_core_early();
2059 	totalram_pages_add(pages);
2060 
2061 	return pages;
2062 }
2063 
2064 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2065 
memblock_debug_show(struct seq_file * m,void * private)2066 static int memblock_debug_show(struct seq_file *m, void *private)
2067 {
2068 	struct memblock_type *type = m->private;
2069 	struct memblock_region *reg;
2070 	int i;
2071 	phys_addr_t end;
2072 
2073 	for (i = 0; i < type->cnt; i++) {
2074 		reg = &type->regions[i];
2075 		end = reg->base + reg->size - 1;
2076 
2077 		seq_printf(m, "%4d: ", i);
2078 		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2079 	}
2080 	return 0;
2081 }
2082 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2083 
memblock_init_debugfs(void)2084 static int __init memblock_init_debugfs(void)
2085 {
2086 	struct dentry *root = debugfs_create_dir("memblock", NULL);
2087 
2088 	debugfs_create_file("memory", 0444, root,
2089 			    &memblock.memory, &memblock_debug_fops);
2090 	debugfs_create_file("reserved", 0444, root,
2091 			    &memblock.reserved, &memblock_debug_fops);
2092 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2093 	debugfs_create_file("physmem", 0444, root, &physmem,
2094 			    &memblock_debug_fops);
2095 #endif
2096 
2097 	return 0;
2098 }
2099 __initcall(memblock_init_debugfs);
2100 
2101 #endif /* CONFIG_DEBUG_FS */
2102