xref: /OK3568_Linux_fs/kernel/mm/compaction.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 	count_vm_event(item);
32 }
33 
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 	count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42 
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47 
48 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
52 
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57 
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
69 #endif
70 
release_freepages(struct list_head * freelist)71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 	struct page *page, *next;
74 	unsigned long high_pfn = 0;
75 
76 	list_for_each_entry_safe(page, next, freelist, lru) {
77 		unsigned long pfn = page_to_pfn(page);
78 		list_del(&page->lru);
79 		__free_page(page);
80 		if (pfn > high_pfn)
81 			high_pfn = pfn;
82 	}
83 
84 	return high_pfn;
85 }
86 
split_map_pages(struct list_head * list)87 static void split_map_pages(struct list_head *list)
88 {
89 	unsigned int i, order, nr_pages;
90 	struct page *page, *next;
91 	LIST_HEAD(tmp_list);
92 
93 	list_for_each_entry_safe(page, next, list, lru) {
94 		list_del(&page->lru);
95 
96 		order = page_private(page);
97 		nr_pages = 1 << order;
98 
99 		post_alloc_hook(page, order, __GFP_MOVABLE);
100 		if (order)
101 			split_page(page, order);
102 
103 		for (i = 0; i < nr_pages; i++) {
104 			list_add(&page->lru, &tmp_list);
105 			page++;
106 		}
107 	}
108 
109 	list_splice(&tmp_list, list);
110 }
111 
112 #ifdef CONFIG_COMPACTION
113 
PageMovable(struct page * page)114 int PageMovable(struct page *page)
115 {
116 	struct address_space *mapping;
117 
118 	VM_BUG_ON_PAGE(!PageLocked(page), page);
119 	if (!__PageMovable(page))
120 		return 0;
121 
122 	mapping = page_mapping(page);
123 	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 		return 1;
125 
126 	return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129 
__SetPageMovable(struct page * page,struct address_space * mapping)130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 	VM_BUG_ON_PAGE(!PageLocked(page), page);
133 	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137 
__ClearPageMovable(struct page * page)138 void __ClearPageMovable(struct page *page)
139 {
140 	VM_BUG_ON_PAGE(!PageLocked(page), page);
141 	VM_BUG_ON_PAGE(!PageMovable(page), page);
142 	/*
143 	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 	 * flag so that VM can catch up released page by driver after isolation.
145 	 * With it, VM migration doesn't try to put it back.
146 	 */
147 	page->mapping = (void *)((unsigned long)page->mapping &
148 				PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151 
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154 
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
defer_compaction(struct zone * zone,int order)160 void defer_compaction(struct zone *zone, int order)
161 {
162 	zone->compact_considered = 0;
163 	zone->compact_defer_shift++;
164 
165 	if (order < zone->compact_order_failed)
166 		zone->compact_order_failed = order;
167 
168 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170 
171 	trace_mm_compaction_defer_compaction(zone, order);
172 }
173 
174 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)175 bool compaction_deferred(struct zone *zone, int order)
176 {
177 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178 
179 	if (order < zone->compact_order_failed)
180 		return false;
181 
182 	/* Avoid possible overflow */
183 	if (++zone->compact_considered >= defer_limit) {
184 		zone->compact_considered = defer_limit;
185 		return false;
186 	}
187 
188 	trace_mm_compaction_deferred(zone, order);
189 
190 	return true;
191 }
192 
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)198 void compaction_defer_reset(struct zone *zone, int order,
199 		bool alloc_success)
200 {
201 	if (alloc_success) {
202 		zone->compact_considered = 0;
203 		zone->compact_defer_shift = 0;
204 	}
205 	if (order >= zone->compact_order_failed)
206 		zone->compact_order_failed = order + 1;
207 
208 	trace_mm_compaction_defer_reset(zone, order);
209 }
210 
211 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)212 bool compaction_restarting(struct zone *zone, int order)
213 {
214 	if (order < zone->compact_order_failed)
215 		return false;
216 
217 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220 
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)222 static inline bool isolation_suitable(struct compact_control *cc,
223 					struct page *page)
224 {
225 	if (cc->ignore_skip_hint)
226 		return true;
227 
228 	return !get_pageblock_skip(page);
229 }
230 
reset_cached_positions(struct zone * zone)231 static void reset_cached_positions(struct zone *zone)
232 {
233 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 	zone->compact_cached_free_pfn =
236 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238 
239 /*
240  * Compound pages of >= pageblock_order should consistenly be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
pageblock_skip_persistent(struct page * page)244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 	if (!PageCompound(page))
247 		return false;
248 
249 	page = compound_head(page);
250 
251 	if (compound_order(page) >= pageblock_order)
252 		return true;
253 
254 	return false;
255 }
256 
257 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 							bool check_target)
260 {
261 	struct page *page = pfn_to_online_page(pfn);
262 	struct page *block_page;
263 	struct page *end_page;
264 	unsigned long block_pfn;
265 
266 	if (!page)
267 		return false;
268 	if (zone != page_zone(page))
269 		return false;
270 	if (pageblock_skip_persistent(page))
271 		return false;
272 
273 	/*
274 	 * If skip is already cleared do no further checking once the
275 	 * restart points have been set.
276 	 */
277 	if (check_source && check_target && !get_pageblock_skip(page))
278 		return true;
279 
280 	/*
281 	 * If clearing skip for the target scanner, do not select a
282 	 * non-movable pageblock as the starting point.
283 	 */
284 	if (!check_source && check_target &&
285 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 		return false;
287 
288 	/* Ensure the start of the pageblock or zone is online and valid */
289 	block_pfn = pageblock_start_pfn(pfn);
290 	block_pfn = max(block_pfn, zone->zone_start_pfn);
291 	block_page = pfn_to_online_page(block_pfn);
292 	if (block_page) {
293 		page = block_page;
294 		pfn = block_pfn;
295 	}
296 
297 	/* Ensure the end of the pageblock or zone is online and valid */
298 	block_pfn = pageblock_end_pfn(pfn) - 1;
299 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 	end_page = pfn_to_online_page(block_pfn);
301 	if (!end_page)
302 		return false;
303 
304 	/*
305 	 * Only clear the hint if a sample indicates there is either a
306 	 * free page or an LRU page in the block. One or other condition
307 	 * is necessary for the block to be a migration source/target.
308 	 */
309 	do {
310 		if (pfn_valid_within(pfn)) {
311 			if (check_source && PageLRU(page)) {
312 				clear_pageblock_skip(page);
313 				return true;
314 			}
315 
316 			if (check_target && PageBuddy(page)) {
317 				clear_pageblock_skip(page);
318 				return true;
319 			}
320 		}
321 
322 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 	} while (page <= end_page);
325 
326 	return false;
327 }
328 
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
__reset_isolation_suitable(struct zone * zone)334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 	unsigned long migrate_pfn = zone->zone_start_pfn;
337 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 	unsigned long reset_migrate = free_pfn;
339 	unsigned long reset_free = migrate_pfn;
340 	bool source_set = false;
341 	bool free_set = false;
342 
343 	if (!zone->compact_blockskip_flush)
344 		return;
345 
346 	zone->compact_blockskip_flush = false;
347 
348 	/*
349 	 * Walk the zone and update pageblock skip information. Source looks
350 	 * for PageLRU while target looks for PageBuddy. When the scanner
351 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 	 * is suitable as both source and target.
353 	 */
354 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 					free_pfn -= pageblock_nr_pages) {
356 		cond_resched();
357 
358 		/* Update the migrate PFN */
359 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 		    migrate_pfn < reset_migrate) {
361 			source_set = true;
362 			reset_migrate = migrate_pfn;
363 			zone->compact_init_migrate_pfn = reset_migrate;
364 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 		}
367 
368 		/* Update the free PFN */
369 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 		    free_pfn > reset_free) {
371 			free_set = true;
372 			reset_free = free_pfn;
373 			zone->compact_init_free_pfn = reset_free;
374 			zone->compact_cached_free_pfn = reset_free;
375 		}
376 	}
377 
378 	/* Leave no distance if no suitable block was reset */
379 	if (reset_migrate >= reset_free) {
380 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 		zone->compact_cached_free_pfn = free_pfn;
383 	}
384 }
385 
reset_isolation_suitable(pg_data_t * pgdat)386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 	int zoneid;
389 
390 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 		struct zone *zone = &pgdat->node_zones[zoneid];
392 		if (!populated_zone(zone))
393 			continue;
394 
395 		/* Only flush if a full compaction finished recently */
396 		if (zone->compact_blockskip_flush)
397 			__reset_isolation_suitable(zone);
398 	}
399 }
400 
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 							unsigned long pfn)
407 {
408 	bool skip;
409 
410 	/* Do no update if skip hint is being ignored */
411 	if (cc->ignore_skip_hint)
412 		return false;
413 
414 	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 		return false;
416 
417 	skip = get_pageblock_skip(page);
418 	if (!skip && !cc->no_set_skip_hint)
419 		set_pageblock_skip(page);
420 
421 	return skip;
422 }
423 
update_cached_migrate(struct compact_control * cc,unsigned long pfn)424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 	struct zone *zone = cc->zone;
427 
428 	pfn = pageblock_end_pfn(pfn);
429 
430 	/* Set for isolation rather than compaction */
431 	if (cc->no_set_skip_hint)
432 		return;
433 
434 	if (pfn > zone->compact_cached_migrate_pfn[0])
435 		zone->compact_cached_migrate_pfn[0] = pfn;
436 	if (cc->mode != MIGRATE_ASYNC &&
437 	    pfn > zone->compact_cached_migrate_pfn[1])
438 		zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440 
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)445 static void update_pageblock_skip(struct compact_control *cc,
446 			struct page *page, unsigned long pfn)
447 {
448 	struct zone *zone = cc->zone;
449 
450 	if (cc->no_set_skip_hint)
451 		return;
452 
453 	if (!page)
454 		return;
455 
456 	set_pageblock_skip(page);
457 
458 	/* Update where async and sync compaction should restart */
459 	if (pfn < zone->compact_cached_free_pfn)
460 		zone->compact_cached_free_pfn = pfn;
461 }
462 #else
isolation_suitable(struct compact_control * cc,struct page * page)463 static inline bool isolation_suitable(struct compact_control *cc,
464 					struct page *page)
465 {
466 	return true;
467 }
468 
pageblock_skip_persistent(struct page * page)469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 	return false;
472 }
473 
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)474 static inline void update_pageblock_skip(struct compact_control *cc,
475 			struct page *page, unsigned long pfn)
476 {
477 }
478 
update_cached_migrate(struct compact_control * cc,unsigned long pfn)479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482 
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 							unsigned long pfn)
485 {
486 	return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489 
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 						struct compact_control *cc)
501 	__acquires(lock)
502 {
503 	/* Track if the lock is contended in async mode */
504 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 		if (spin_trylock_irqsave(lock, *flags))
506 			return true;
507 
508 		cc->contended = true;
509 	}
510 
511 	spin_lock_irqsave(lock, *flags);
512 	return true;
513 }
514 
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *		async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *		scheduled)
529  */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 		unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 	if (*locked) {
534 		spin_unlock_irqrestore(lock, flags);
535 		*locked = false;
536 	}
537 
538 	if (fatal_signal_pending(current)) {
539 		cc->contended = true;
540 		return true;
541 	}
542 
543 	cond_resched();
544 
545 	return false;
546 }
547 
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 				unsigned long *start_pfn,
555 				unsigned long end_pfn,
556 				struct list_head *freelist,
557 				unsigned int stride,
558 				bool strict)
559 {
560 	int nr_scanned = 0, total_isolated = 0;
561 	struct page *cursor;
562 	unsigned long flags = 0;
563 	bool locked = false;
564 	unsigned long blockpfn = *start_pfn;
565 	unsigned int order;
566 
567 	/* Strict mode is for isolation, speed is secondary */
568 	if (strict)
569 		stride = 1;
570 
571 	cursor = pfn_to_page(blockpfn);
572 
573 	/* Isolate free pages. */
574 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 		int isolated;
576 		struct page *page = cursor;
577 
578 		/*
579 		 * Periodically drop the lock (if held) regardless of its
580 		 * contention, to give chance to IRQs. Abort if fatal signal
581 		 * pending or async compaction detects need_resched()
582 		 */
583 		if (!(blockpfn % SWAP_CLUSTER_MAX)
584 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
585 								&locked, cc))
586 			break;
587 
588 		nr_scanned++;
589 		if (!pfn_valid_within(blockpfn))
590 			goto isolate_fail;
591 
592 		/*
593 		 * For compound pages such as THP and hugetlbfs, we can save
594 		 * potentially a lot of iterations if we skip them at once.
595 		 * The check is racy, but we can consider only valid values
596 		 * and the only danger is skipping too much.
597 		 */
598 		if (PageCompound(page)) {
599 			const unsigned int order = compound_order(page);
600 
601 			if (likely(order < MAX_ORDER)) {
602 				blockpfn += (1UL << order) - 1;
603 				cursor += (1UL << order) - 1;
604 			}
605 			goto isolate_fail;
606 		}
607 
608 		if (!PageBuddy(page))
609 			goto isolate_fail;
610 
611 		/*
612 		 * If we already hold the lock, we can skip some rechecking.
613 		 * Note that if we hold the lock now, checked_pageblock was
614 		 * already set in some previous iteration (or strict is true),
615 		 * so it is correct to skip the suitable migration target
616 		 * recheck as well.
617 		 */
618 		if (!locked) {
619 			locked = compact_lock_irqsave(&cc->zone->lock,
620 								&flags, cc);
621 
622 			/* Recheck this is a buddy page under lock */
623 			if (!PageBuddy(page))
624 				goto isolate_fail;
625 		}
626 
627 		/* Found a free page, will break it into order-0 pages */
628 		order = buddy_order(page);
629 		isolated = __isolate_free_page(page, order);
630 		if (!isolated)
631 			break;
632 		set_page_private(page, order);
633 
634 		total_isolated += isolated;
635 		cc->nr_freepages += isolated;
636 		list_add_tail(&page->lru, freelist);
637 
638 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 			blockpfn += isolated;
640 			break;
641 		}
642 		/* Advance to the end of split page */
643 		blockpfn += isolated - 1;
644 		cursor += isolated - 1;
645 		continue;
646 
647 isolate_fail:
648 		if (strict)
649 			break;
650 		else
651 			continue;
652 
653 	}
654 
655 	if (locked)
656 		spin_unlock_irqrestore(&cc->zone->lock, flags);
657 
658 	/*
659 	 * There is a tiny chance that we have read bogus compound_order(),
660 	 * so be careful to not go outside of the pageblock.
661 	 */
662 	if (unlikely(blockpfn > end_pfn))
663 		blockpfn = end_pfn;
664 
665 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 					nr_scanned, total_isolated);
667 
668 	/* Record how far we have got within the block */
669 	*start_pfn = blockpfn;
670 
671 	/*
672 	 * If strict isolation is requested by CMA then check that all the
673 	 * pages requested were isolated. If there were any failures, 0 is
674 	 * returned and CMA will fail.
675 	 */
676 	if (strict && blockpfn < end_pfn)
677 		total_isolated = 0;
678 
679 	cc->total_free_scanned += nr_scanned;
680 	if (total_isolated)
681 		count_compact_events(COMPACTISOLATED, total_isolated);
682 	return total_isolated;
683 }
684 
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)700 isolate_freepages_range(struct compact_control *cc,
701 			unsigned long start_pfn, unsigned long end_pfn)
702 {
703 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 	LIST_HEAD(freelist);
705 
706 	pfn = start_pfn;
707 	block_start_pfn = pageblock_start_pfn(pfn);
708 	if (block_start_pfn < cc->zone->zone_start_pfn)
709 		block_start_pfn = cc->zone->zone_start_pfn;
710 	block_end_pfn = pageblock_end_pfn(pfn);
711 
712 	for (; pfn < end_pfn; pfn += isolated,
713 				block_start_pfn = block_end_pfn,
714 				block_end_pfn += pageblock_nr_pages) {
715 		/* Protect pfn from changing by isolate_freepages_block */
716 		unsigned long isolate_start_pfn = pfn;
717 
718 		block_end_pfn = min(block_end_pfn, end_pfn);
719 
720 		/*
721 		 * pfn could pass the block_end_pfn if isolated freepage
722 		 * is more than pageblock order. In this case, we adjust
723 		 * scanning range to right one.
724 		 */
725 		if (pfn >= block_end_pfn) {
726 			block_start_pfn = pageblock_start_pfn(pfn);
727 			block_end_pfn = pageblock_end_pfn(pfn);
728 			block_end_pfn = min(block_end_pfn, end_pfn);
729 		}
730 
731 		if (!pageblock_pfn_to_page(block_start_pfn,
732 					block_end_pfn, cc->zone))
733 			break;
734 
735 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 					block_end_pfn, &freelist, 0, true);
737 
738 		/*
739 		 * In strict mode, isolate_freepages_block() returns 0 if
740 		 * there are any holes in the block (ie. invalid PFNs or
741 		 * non-free pages).
742 		 */
743 		if (!isolated)
744 			break;
745 
746 		/*
747 		 * If we managed to isolate pages, it is always (1 << n) *
748 		 * pageblock_nr_pages for some non-negative n.  (Max order
749 		 * page may span two pageblocks).
750 		 */
751 	}
752 
753 	/* __isolate_free_page() does not map the pages */
754 	split_map_pages(&freelist);
755 
756 	if (pfn < end_pfn) {
757 		/* Loop terminated early, cleanup. */
758 		release_freepages(&freelist);
759 		return 0;
760 	}
761 
762 	/* We don't use freelists for anything. */
763 	return pfn;
764 }
765 
766 #ifdef CONFIG_COMPACTION
isolate_and_split_free_page(struct page * page,struct list_head * list)767 unsigned long isolate_and_split_free_page(struct page *page,
768 						struct list_head *list)
769 {
770 	unsigned long isolated;
771 	unsigned int order;
772 
773 	if (!PageBuddy(page))
774 		return 0;
775 
776 	order = buddy_order(page);
777 	isolated = __isolate_free_page(page, order);
778 	if (!isolated)
779 		return 0;
780 
781 	set_page_private(page, order);
782 	list_add(&page->lru, list);
783 
784 	split_map_pages(list);
785 
786 	return isolated;
787 }
788 EXPORT_SYMBOL_GPL(isolate_and_split_free_page);
789 #endif
790 
791 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)792 static bool too_many_isolated(pg_data_t *pgdat)
793 {
794 	unsigned long active, inactive, isolated;
795 
796 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
797 			node_page_state(pgdat, NR_INACTIVE_ANON);
798 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
799 			node_page_state(pgdat, NR_ACTIVE_ANON);
800 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
801 			node_page_state(pgdat, NR_ISOLATED_ANON);
802 
803 	return isolated > (inactive + active) / 2;
804 }
805 
806 /**
807  * isolate_migratepages_block() - isolate all migrate-able pages within
808  *				  a single pageblock
809  * @cc:		Compaction control structure.
810  * @low_pfn:	The first PFN to isolate
811  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
812  * @isolate_mode: Isolation mode to be used.
813  *
814  * Isolate all pages that can be migrated from the range specified by
815  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
816  * Returns zero if there is a fatal signal pending, otherwise PFN of the
817  * first page that was not scanned (which may be both less, equal to or more
818  * than end_pfn).
819  *
820  * The pages are isolated on cc->migratepages list (not required to be empty),
821  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
822  * is neither read nor updated.
823  */
824 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)825 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
826 			unsigned long end_pfn, isolate_mode_t isolate_mode)
827 {
828 	pg_data_t *pgdat = cc->zone->zone_pgdat;
829 	unsigned long nr_scanned = 0, nr_isolated = 0;
830 	struct lruvec *lruvec;
831 	unsigned long flags = 0;
832 	bool locked = false;
833 	struct page *page = NULL, *valid_page = NULL;
834 	unsigned long start_pfn = low_pfn;
835 	bool skip_on_failure = false;
836 	unsigned long next_skip_pfn = 0;
837 	bool skip_updated = false;
838 
839 	/*
840 	 * Ensure that there are not too many pages isolated from the LRU
841 	 * list by either parallel reclaimers or compaction. If there are,
842 	 * delay for some time until fewer pages are isolated
843 	 */
844 	while (unlikely(too_many_isolated(pgdat))) {
845 		/* stop isolation if there are still pages not migrated */
846 		if (cc->nr_migratepages)
847 			return 0;
848 
849 		/* async migration should just abort */
850 		if (cc->mode == MIGRATE_ASYNC)
851 			return 0;
852 
853 		congestion_wait(BLK_RW_ASYNC, HZ/10);
854 
855 		if (fatal_signal_pending(current))
856 			return 0;
857 	}
858 
859 	cond_resched();
860 
861 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
862 		skip_on_failure = true;
863 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864 	}
865 
866 	/* Time to isolate some pages for migration */
867 	for (; low_pfn < end_pfn; low_pfn++) {
868 
869 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
870 			/*
871 			 * We have isolated all migration candidates in the
872 			 * previous order-aligned block, and did not skip it due
873 			 * to failure. We should migrate the pages now and
874 			 * hopefully succeed compaction.
875 			 */
876 			if (nr_isolated)
877 				break;
878 
879 			/*
880 			 * We failed to isolate in the previous order-aligned
881 			 * block. Set the new boundary to the end of the
882 			 * current block. Note we can't simply increase
883 			 * next_skip_pfn by 1 << order, as low_pfn might have
884 			 * been incremented by a higher number due to skipping
885 			 * a compound or a high-order buddy page in the
886 			 * previous loop iteration.
887 			 */
888 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
889 		}
890 
891 		/*
892 		 * Periodically drop the lock (if held) regardless of its
893 		 * contention, to give chance to IRQs. Abort completely if
894 		 * a fatal signal is pending.
895 		 */
896 		if (!(low_pfn % SWAP_CLUSTER_MAX)
897 		    && compact_unlock_should_abort(&pgdat->lru_lock,
898 					    flags, &locked, cc)) {
899 			low_pfn = 0;
900 			goto fatal_pending;
901 		}
902 
903 		if (!pfn_valid_within(low_pfn))
904 			goto isolate_fail;
905 		nr_scanned++;
906 
907 		page = pfn_to_page(low_pfn);
908 
909 		/*
910 		 * Check if the pageblock has already been marked skipped.
911 		 * Only the aligned PFN is checked as the caller isolates
912 		 * COMPACT_CLUSTER_MAX at a time so the second call must
913 		 * not falsely conclude that the block should be skipped.
914 		 */
915 		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
916 			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
917 				low_pfn = end_pfn;
918 				goto isolate_abort;
919 			}
920 			valid_page = page;
921 		}
922 
923 		/*
924 		 * Skip if free. We read page order here without zone lock
925 		 * which is generally unsafe, but the race window is small and
926 		 * the worst thing that can happen is that we skip some
927 		 * potential isolation targets.
928 		 */
929 		if (PageBuddy(page)) {
930 			unsigned long freepage_order = buddy_order_unsafe(page);
931 
932 			/*
933 			 * Without lock, we cannot be sure that what we got is
934 			 * a valid page order. Consider only values in the
935 			 * valid order range to prevent low_pfn overflow.
936 			 */
937 			if (freepage_order > 0 && freepage_order < MAX_ORDER)
938 				low_pfn += (1UL << freepage_order) - 1;
939 			continue;
940 		}
941 
942 		/*
943 		 * Regardless of being on LRU, compound pages such as THP and
944 		 * hugetlbfs are not to be compacted unless we are attempting
945 		 * an allocation much larger than the huge page size (eg CMA).
946 		 * We can potentially save a lot of iterations if we skip them
947 		 * at once. The check is racy, but we can consider only valid
948 		 * values and the only danger is skipping too much.
949 		 */
950 		if (PageCompound(page) && !cc->alloc_contig) {
951 			const unsigned int order = compound_order(page);
952 
953 			if (likely(order < MAX_ORDER))
954 				low_pfn += (1UL << order) - 1;
955 			goto isolate_fail;
956 		}
957 
958 		/*
959 		 * Check may be lockless but that's ok as we recheck later.
960 		 * It's possible to migrate LRU and non-lru movable pages.
961 		 * Skip any other type of page
962 		 */
963 		if (!PageLRU(page)) {
964 			/*
965 			 * __PageMovable can return false positive so we need
966 			 * to verify it under page_lock.
967 			 */
968 			if (unlikely(__PageMovable(page)) &&
969 					!PageIsolated(page)) {
970 				if (locked) {
971 					spin_unlock_irqrestore(&pgdat->lru_lock,
972 									flags);
973 					locked = false;
974 				}
975 
976 				if (!isolate_movable_page(page, isolate_mode))
977 					goto isolate_success;
978 			}
979 
980 			goto isolate_fail;
981 		}
982 
983 		/*
984 		 * Migration will fail if an anonymous page is pinned in memory,
985 		 * so avoid taking lru_lock and isolating it unnecessarily in an
986 		 * admittedly racy check.
987 		 */
988 		if (!page_mapping(page) &&
989 		    page_count(page) > page_mapcount(page))
990 			goto isolate_fail;
991 
992 		/*
993 		 * Only allow to migrate anonymous pages in GFP_NOFS context
994 		 * because those do not depend on fs locks.
995 		 */
996 		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
997 			goto isolate_fail;
998 
999 		/* If we already hold the lock, we can skip some rechecking */
1000 		if (!locked) {
1001 			locked = compact_lock_irqsave(&pgdat->lru_lock,
1002 								&flags, cc);
1003 
1004 			/* Try get exclusive access under lock */
1005 			if (!skip_updated) {
1006 				skip_updated = true;
1007 				if (test_and_set_skip(cc, page, low_pfn))
1008 					goto isolate_abort;
1009 			}
1010 
1011 			/* Recheck PageLRU and PageCompound under lock */
1012 			if (!PageLRU(page))
1013 				goto isolate_fail;
1014 
1015 			/*
1016 			 * Page become compound since the non-locked check,
1017 			 * and it's on LRU. It can only be a THP so the order
1018 			 * is safe to read and it's 0 for tail pages.
1019 			 */
1020 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1021 				low_pfn += compound_nr(page) - 1;
1022 				goto isolate_fail;
1023 			}
1024 		}
1025 
1026 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1027 
1028 		/* Try isolate the page */
1029 		if (__isolate_lru_page(page, isolate_mode) != 0)
1030 			goto isolate_fail;
1031 
1032 		/* The whole page is taken off the LRU; skip the tail pages. */
1033 		if (PageCompound(page))
1034 			low_pfn += compound_nr(page) - 1;
1035 
1036 		/* Successfully isolated */
1037 		del_page_from_lru_list(page, lruvec, page_lru(page));
1038 		mod_node_page_state(page_pgdat(page),
1039 				NR_ISOLATED_ANON + page_is_file_lru(page),
1040 				thp_nr_pages(page));
1041 
1042 isolate_success:
1043 		list_add(&page->lru, &cc->migratepages);
1044 		cc->nr_migratepages += compound_nr(page);
1045 		nr_isolated += compound_nr(page);
1046 
1047 		/*
1048 		 * Avoid isolating too much unless this block is being
1049 		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1050 		 * or a lock is contended. For contention, isolate quickly to
1051 		 * potentially remove one source of contention.
1052 		 */
1053 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1054 		    !cc->rescan && !cc->contended) {
1055 			++low_pfn;
1056 			break;
1057 		}
1058 
1059 		continue;
1060 isolate_fail:
1061 		if (!skip_on_failure)
1062 			continue;
1063 
1064 		/*
1065 		 * We have isolated some pages, but then failed. Release them
1066 		 * instead of migrating, as we cannot form the cc->order buddy
1067 		 * page anyway.
1068 		 */
1069 		if (nr_isolated) {
1070 			if (locked) {
1071 				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1072 				locked = false;
1073 			}
1074 			putback_movable_pages(&cc->migratepages);
1075 			cc->nr_migratepages = 0;
1076 			nr_isolated = 0;
1077 		}
1078 
1079 		if (low_pfn < next_skip_pfn) {
1080 			low_pfn = next_skip_pfn - 1;
1081 			/*
1082 			 * The check near the loop beginning would have updated
1083 			 * next_skip_pfn too, but this is a bit simpler.
1084 			 */
1085 			next_skip_pfn += 1UL << cc->order;
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * The PageBuddy() check could have potentially brought us outside
1091 	 * the range to be scanned.
1092 	 */
1093 	if (unlikely(low_pfn > end_pfn))
1094 		low_pfn = end_pfn;
1095 
1096 isolate_abort:
1097 	if (locked)
1098 		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1099 
1100 	/*
1101 	 * Updated the cached scanner pfn once the pageblock has been scanned
1102 	 * Pages will either be migrated in which case there is no point
1103 	 * scanning in the near future or migration failed in which case the
1104 	 * failure reason may persist. The block is marked for skipping if
1105 	 * there were no pages isolated in the block or if the block is
1106 	 * rescanned twice in a row.
1107 	 */
1108 	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1109 		if (valid_page && !skip_updated)
1110 			set_pageblock_skip(valid_page);
1111 		update_cached_migrate(cc, low_pfn);
1112 	}
1113 
1114 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1115 						nr_scanned, nr_isolated);
1116 
1117 fatal_pending:
1118 	cc->total_migrate_scanned += nr_scanned;
1119 	if (nr_isolated)
1120 		count_compact_events(COMPACTISOLATED, nr_isolated);
1121 
1122 	return low_pfn;
1123 }
1124 
1125 /**
1126  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1127  * @cc:        Compaction control structure.
1128  * @start_pfn: The first PFN to start isolating.
1129  * @end_pfn:   The one-past-last PFN.
1130  *
1131  * Returns zero if isolation fails fatally due to e.g. pending signal.
1132  * Otherwise, function returns one-past-the-last PFN of isolated page
1133  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1134  */
1135 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1136 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1137 							unsigned long end_pfn)
1138 {
1139 	unsigned long pfn, block_start_pfn, block_end_pfn;
1140 
1141 	/* Scan block by block. First and last block may be incomplete */
1142 	pfn = start_pfn;
1143 	block_start_pfn = pageblock_start_pfn(pfn);
1144 	if (block_start_pfn < cc->zone->zone_start_pfn)
1145 		block_start_pfn = cc->zone->zone_start_pfn;
1146 	block_end_pfn = pageblock_end_pfn(pfn);
1147 
1148 	for (; pfn < end_pfn; pfn = block_end_pfn,
1149 				block_start_pfn = block_end_pfn,
1150 				block_end_pfn += pageblock_nr_pages) {
1151 
1152 		block_end_pfn = min(block_end_pfn, end_pfn);
1153 
1154 		if (!pageblock_pfn_to_page(block_start_pfn,
1155 					block_end_pfn, cc->zone))
1156 			continue;
1157 
1158 		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1159 							ISOLATE_UNEVICTABLE);
1160 
1161 		if (!pfn)
1162 			break;
1163 
1164 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1165 			break;
1166 	}
1167 
1168 	return pfn;
1169 }
1170 
1171 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1172 #ifdef CONFIG_COMPACTION
1173 
suitable_migration_source(struct compact_control * cc,struct page * page)1174 static bool suitable_migration_source(struct compact_control *cc,
1175 							struct page *page)
1176 {
1177 	int block_mt;
1178 
1179 	if (pageblock_skip_persistent(page))
1180 		return false;
1181 
1182 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1183 		return true;
1184 
1185 	block_mt = get_pageblock_migratetype(page);
1186 
1187 	if (cc->migratetype == MIGRATE_MOVABLE)
1188 		return is_migrate_movable(block_mt);
1189 	else
1190 		return block_mt == cc->migratetype;
1191 }
1192 
1193 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1194 static bool suitable_migration_target(struct compact_control *cc,
1195 							struct page *page)
1196 {
1197 	/* If the page is a large free page, then disallow migration */
1198 	if (PageBuddy(page)) {
1199 		/*
1200 		 * We are checking page_order without zone->lock taken. But
1201 		 * the only small danger is that we skip a potentially suitable
1202 		 * pageblock, so it's not worth to check order for valid range.
1203 		 */
1204 		if (buddy_order_unsafe(page) >= pageblock_order)
1205 			return false;
1206 	}
1207 
1208 	if (cc->ignore_block_suitable)
1209 		return true;
1210 
1211 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1212 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1213 		return true;
1214 
1215 	/* Otherwise skip the block */
1216 	return false;
1217 }
1218 
1219 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1220 freelist_scan_limit(struct compact_control *cc)
1221 {
1222 	unsigned short shift = BITS_PER_LONG - 1;
1223 
1224 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1225 }
1226 
1227 /*
1228  * Test whether the free scanner has reached the same or lower pageblock than
1229  * the migration scanner, and compaction should thus terminate.
1230  */
compact_scanners_met(struct compact_control * cc)1231 static inline bool compact_scanners_met(struct compact_control *cc)
1232 {
1233 	return (cc->free_pfn >> pageblock_order)
1234 		<= (cc->migrate_pfn >> pageblock_order);
1235 }
1236 
1237 /*
1238  * Used when scanning for a suitable migration target which scans freelists
1239  * in reverse. Reorders the list such as the unscanned pages are scanned
1240  * first on the next iteration of the free scanner
1241  */
1242 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1243 move_freelist_head(struct list_head *freelist, struct page *freepage)
1244 {
1245 	LIST_HEAD(sublist);
1246 
1247 	if (!list_is_last(freelist, &freepage->lru)) {
1248 		list_cut_before(&sublist, freelist, &freepage->lru);
1249 		if (!list_empty(&sublist))
1250 			list_splice_tail(&sublist, freelist);
1251 	}
1252 }
1253 
1254 /*
1255  * Similar to move_freelist_head except used by the migration scanner
1256  * when scanning forward. It's possible for these list operations to
1257  * move against each other if they search the free list exactly in
1258  * lockstep.
1259  */
1260 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1261 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1262 {
1263 	LIST_HEAD(sublist);
1264 
1265 	if (!list_is_first(freelist, &freepage->lru)) {
1266 		list_cut_position(&sublist, freelist, &freepage->lru);
1267 		if (!list_empty(&sublist))
1268 			list_splice_tail(&sublist, freelist);
1269 	}
1270 }
1271 
1272 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn,unsigned long nr_isolated)1273 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1274 {
1275 	unsigned long start_pfn, end_pfn;
1276 	struct page *page;
1277 
1278 	/* Do not search around if there are enough pages already */
1279 	if (cc->nr_freepages >= cc->nr_migratepages)
1280 		return;
1281 
1282 	/* Minimise scanning during async compaction */
1283 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1284 		return;
1285 
1286 	/* Pageblock boundaries */
1287 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1288 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1289 
1290 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1291 	if (!page)
1292 		return;
1293 
1294 	/* Scan before */
1295 	if (start_pfn != pfn) {
1296 		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1297 		if (cc->nr_freepages >= cc->nr_migratepages)
1298 			return;
1299 	}
1300 
1301 	/* Scan after */
1302 	start_pfn = pfn + nr_isolated;
1303 	if (start_pfn < end_pfn)
1304 		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1305 
1306 	/* Skip this pageblock in the future as it's full or nearly full */
1307 	if (cc->nr_freepages < cc->nr_migratepages)
1308 		set_pageblock_skip(page);
1309 }
1310 
1311 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1312 static int next_search_order(struct compact_control *cc, int order)
1313 {
1314 	order--;
1315 	if (order < 0)
1316 		order = cc->order - 1;
1317 
1318 	/* Search wrapped around? */
1319 	if (order == cc->search_order) {
1320 		cc->search_order--;
1321 		if (cc->search_order < 0)
1322 			cc->search_order = cc->order - 1;
1323 		return -1;
1324 	}
1325 
1326 	return order;
1327 }
1328 
1329 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1330 fast_isolate_freepages(struct compact_control *cc)
1331 {
1332 	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1333 	unsigned int nr_scanned = 0;
1334 	unsigned long low_pfn, min_pfn, highest = 0;
1335 	unsigned long nr_isolated = 0;
1336 	unsigned long distance;
1337 	struct page *page = NULL;
1338 	bool scan_start = false;
1339 	int order;
1340 
1341 	/* Full compaction passes in a negative order */
1342 	if (cc->order <= 0)
1343 		return cc->free_pfn;
1344 
1345 	/*
1346 	 * If starting the scan, use a deeper search and use the highest
1347 	 * PFN found if a suitable one is not found.
1348 	 */
1349 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1350 		limit = pageblock_nr_pages >> 1;
1351 		scan_start = true;
1352 	}
1353 
1354 	/*
1355 	 * Preferred point is in the top quarter of the scan space but take
1356 	 * a pfn from the top half if the search is problematic.
1357 	 */
1358 	distance = (cc->free_pfn - cc->migrate_pfn);
1359 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1360 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1361 
1362 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1363 		low_pfn = min_pfn;
1364 
1365 	/*
1366 	 * Search starts from the last successful isolation order or the next
1367 	 * order to search after a previous failure
1368 	 */
1369 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1370 
1371 	for (order = cc->search_order;
1372 	     !page && order >= 0;
1373 	     order = next_search_order(cc, order)) {
1374 		struct free_area *area = &cc->zone->free_area[order];
1375 		struct list_head *freelist;
1376 		struct page *freepage;
1377 		unsigned long flags;
1378 		unsigned int order_scanned = 0;
1379 		unsigned long high_pfn = 0;
1380 
1381 		if (!area->nr_free)
1382 			continue;
1383 
1384 		spin_lock_irqsave(&cc->zone->lock, flags);
1385 		freelist = &area->free_list[MIGRATE_MOVABLE];
1386 		list_for_each_entry_reverse(freepage, freelist, lru) {
1387 			unsigned long pfn;
1388 
1389 			order_scanned++;
1390 			nr_scanned++;
1391 			pfn = page_to_pfn(freepage);
1392 
1393 			if (pfn >= highest)
1394 				highest = max(pageblock_start_pfn(pfn),
1395 					      cc->zone->zone_start_pfn);
1396 
1397 			if (pfn >= low_pfn) {
1398 				cc->fast_search_fail = 0;
1399 				cc->search_order = order;
1400 				page = freepage;
1401 				break;
1402 			}
1403 
1404 			if (pfn >= min_pfn && pfn > high_pfn) {
1405 				high_pfn = pfn;
1406 
1407 				/* Shorten the scan if a candidate is found */
1408 				limit >>= 1;
1409 			}
1410 
1411 			if (order_scanned >= limit)
1412 				break;
1413 		}
1414 
1415 		/* Use a minimum pfn if a preferred one was not found */
1416 		if (!page && high_pfn) {
1417 			page = pfn_to_page(high_pfn);
1418 
1419 			/* Update freepage for the list reorder below */
1420 			freepage = page;
1421 		}
1422 
1423 		/* Reorder to so a future search skips recent pages */
1424 		move_freelist_head(freelist, freepage);
1425 
1426 		/* Isolate the page if available */
1427 		if (page) {
1428 			if (__isolate_free_page(page, order)) {
1429 				set_page_private(page, order);
1430 				nr_isolated = 1 << order;
1431 				cc->nr_freepages += nr_isolated;
1432 				list_add_tail(&page->lru, &cc->freepages);
1433 				count_compact_events(COMPACTISOLATED, nr_isolated);
1434 			} else {
1435 				/* If isolation fails, abort the search */
1436 				order = cc->search_order + 1;
1437 				page = NULL;
1438 			}
1439 		}
1440 
1441 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1442 
1443 		/*
1444 		 * Smaller scan on next order so the total scan ig related
1445 		 * to freelist_scan_limit.
1446 		 */
1447 		if (order_scanned >= limit)
1448 			limit = min(1U, limit >> 1);
1449 	}
1450 
1451 	if (!page) {
1452 		cc->fast_search_fail++;
1453 		if (scan_start) {
1454 			/*
1455 			 * Use the highest PFN found above min. If one was
1456 			 * not found, be pessimistic for direct compaction
1457 			 * and use the min mark.
1458 			 */
1459 			if (highest) {
1460 				page = pfn_to_page(highest);
1461 				cc->free_pfn = highest;
1462 			} else {
1463 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1464 					page = pageblock_pfn_to_page(min_pfn,
1465 						min(pageblock_end_pfn(min_pfn),
1466 						    zone_end_pfn(cc->zone)),
1467 						cc->zone);
1468 					cc->free_pfn = min_pfn;
1469 				}
1470 			}
1471 		}
1472 	}
1473 
1474 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1475 		highest -= pageblock_nr_pages;
1476 		cc->zone->compact_cached_free_pfn = highest;
1477 	}
1478 
1479 	cc->total_free_scanned += nr_scanned;
1480 	if (!page)
1481 		return cc->free_pfn;
1482 
1483 	low_pfn = page_to_pfn(page);
1484 	fast_isolate_around(cc, low_pfn, nr_isolated);
1485 	return low_pfn;
1486 }
1487 
1488 /*
1489  * Based on information in the current compact_control, find blocks
1490  * suitable for isolating free pages from and then isolate them.
1491  */
isolate_freepages(struct compact_control * cc)1492 static void isolate_freepages(struct compact_control *cc)
1493 {
1494 	struct zone *zone = cc->zone;
1495 	struct page *page;
1496 	unsigned long block_start_pfn;	/* start of current pageblock */
1497 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1498 	unsigned long block_end_pfn;	/* end of current pageblock */
1499 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1500 	struct list_head *freelist = &cc->freepages;
1501 	unsigned int stride;
1502 
1503 	/* Try a small search of the free lists for a candidate */
1504 	isolate_start_pfn = fast_isolate_freepages(cc);
1505 	if (cc->nr_freepages)
1506 		goto splitmap;
1507 
1508 	/*
1509 	 * Initialise the free scanner. The starting point is where we last
1510 	 * successfully isolated from, zone-cached value, or the end of the
1511 	 * zone when isolating for the first time. For looping we also need
1512 	 * this pfn aligned down to the pageblock boundary, because we do
1513 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1514 	 * For ending point, take care when isolating in last pageblock of a
1515 	 * zone which ends in the middle of a pageblock.
1516 	 * The low boundary is the end of the pageblock the migration scanner
1517 	 * is using.
1518 	 */
1519 	isolate_start_pfn = cc->free_pfn;
1520 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1521 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1522 						zone_end_pfn(zone));
1523 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1524 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1525 
1526 	/*
1527 	 * Isolate free pages until enough are available to migrate the
1528 	 * pages on cc->migratepages. We stop searching if the migrate
1529 	 * and free page scanners meet or enough free pages are isolated.
1530 	 */
1531 	for (; block_start_pfn >= low_pfn;
1532 				block_end_pfn = block_start_pfn,
1533 				block_start_pfn -= pageblock_nr_pages,
1534 				isolate_start_pfn = block_start_pfn) {
1535 		unsigned long nr_isolated;
1536 
1537 		/*
1538 		 * This can iterate a massively long zone without finding any
1539 		 * suitable migration targets, so periodically check resched.
1540 		 */
1541 		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1542 			cond_resched();
1543 
1544 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1545 									zone);
1546 		if (!page)
1547 			continue;
1548 
1549 		/* Check the block is suitable for migration */
1550 		if (!suitable_migration_target(cc, page))
1551 			continue;
1552 
1553 		/* If isolation recently failed, do not retry */
1554 		if (!isolation_suitable(cc, page))
1555 			continue;
1556 
1557 		/* Found a block suitable for isolating free pages from. */
1558 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1559 					block_end_pfn, freelist, stride, false);
1560 
1561 		/* Update the skip hint if the full pageblock was scanned */
1562 		if (isolate_start_pfn == block_end_pfn)
1563 			update_pageblock_skip(cc, page, block_start_pfn);
1564 
1565 		/* Are enough freepages isolated? */
1566 		if (cc->nr_freepages >= cc->nr_migratepages) {
1567 			if (isolate_start_pfn >= block_end_pfn) {
1568 				/*
1569 				 * Restart at previous pageblock if more
1570 				 * freepages can be isolated next time.
1571 				 */
1572 				isolate_start_pfn =
1573 					block_start_pfn - pageblock_nr_pages;
1574 			}
1575 			break;
1576 		} else if (isolate_start_pfn < block_end_pfn) {
1577 			/*
1578 			 * If isolation failed early, do not continue
1579 			 * needlessly.
1580 			 */
1581 			break;
1582 		}
1583 
1584 		/* Adjust stride depending on isolation */
1585 		if (nr_isolated) {
1586 			stride = 1;
1587 			continue;
1588 		}
1589 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1590 	}
1591 
1592 	/*
1593 	 * Record where the free scanner will restart next time. Either we
1594 	 * broke from the loop and set isolate_start_pfn based on the last
1595 	 * call to isolate_freepages_block(), or we met the migration scanner
1596 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1597 	 */
1598 	cc->free_pfn = isolate_start_pfn;
1599 
1600 splitmap:
1601 	/* __isolate_free_page() does not map the pages */
1602 	split_map_pages(freelist);
1603 }
1604 
1605 /*
1606  * This is a migrate-callback that "allocates" freepages by taking pages
1607  * from the isolated freelists in the block we are migrating to.
1608  */
compaction_alloc(struct page * migratepage,unsigned long data)1609 static struct page *compaction_alloc(struct page *migratepage,
1610 					unsigned long data)
1611 {
1612 	struct compact_control *cc = (struct compact_control *)data;
1613 	struct page *freepage;
1614 
1615 	if (list_empty(&cc->freepages)) {
1616 		isolate_freepages(cc);
1617 
1618 		if (list_empty(&cc->freepages))
1619 			return NULL;
1620 	}
1621 
1622 	freepage = list_entry(cc->freepages.next, struct page, lru);
1623 	list_del(&freepage->lru);
1624 	cc->nr_freepages--;
1625 
1626 	return freepage;
1627 }
1628 
1629 /*
1630  * This is a migrate-callback that "frees" freepages back to the isolated
1631  * freelist.  All pages on the freelist are from the same zone, so there is no
1632  * special handling needed for NUMA.
1633  */
compaction_free(struct page * page,unsigned long data)1634 static void compaction_free(struct page *page, unsigned long data)
1635 {
1636 	struct compact_control *cc = (struct compact_control *)data;
1637 
1638 	list_add(&page->lru, &cc->freepages);
1639 	cc->nr_freepages++;
1640 }
1641 
1642 /* possible outcome of isolate_migratepages */
1643 typedef enum {
1644 	ISOLATE_ABORT,		/* Abort compaction now */
1645 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1646 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1647 } isolate_migrate_t;
1648 
1649 /*
1650  * Allow userspace to control policy on scanning the unevictable LRU for
1651  * compactable pages.
1652  */
1653 #ifdef CONFIG_PREEMPT_RT
1654 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1655 #else
1656 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1657 #endif
1658 
1659 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1660 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1661 {
1662 	if (cc->fast_start_pfn == ULONG_MAX)
1663 		return;
1664 
1665 	if (!cc->fast_start_pfn)
1666 		cc->fast_start_pfn = pfn;
1667 
1668 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1669 }
1670 
1671 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1672 reinit_migrate_pfn(struct compact_control *cc)
1673 {
1674 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1675 		return cc->migrate_pfn;
1676 
1677 	cc->migrate_pfn = cc->fast_start_pfn;
1678 	cc->fast_start_pfn = ULONG_MAX;
1679 
1680 	return cc->migrate_pfn;
1681 }
1682 
1683 /*
1684  * Briefly search the free lists for a migration source that already has
1685  * some free pages to reduce the number of pages that need migration
1686  * before a pageblock is free.
1687  */
fast_find_migrateblock(struct compact_control * cc)1688 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1689 {
1690 	unsigned int limit = freelist_scan_limit(cc);
1691 	unsigned int nr_scanned = 0;
1692 	unsigned long distance;
1693 	unsigned long pfn = cc->migrate_pfn;
1694 	unsigned long high_pfn;
1695 	int order;
1696 	bool found_block = false;
1697 
1698 	/* Skip hints are relied on to avoid repeats on the fast search */
1699 	if (cc->ignore_skip_hint)
1700 		return pfn;
1701 
1702 	/*
1703 	 * If the migrate_pfn is not at the start of a zone or the start
1704 	 * of a pageblock then assume this is a continuation of a previous
1705 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1706 	 */
1707 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1708 		return pfn;
1709 
1710 	/*
1711 	 * For smaller orders, just linearly scan as the number of pages
1712 	 * to migrate should be relatively small and does not necessarily
1713 	 * justify freeing up a large block for a small allocation.
1714 	 */
1715 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1716 		return pfn;
1717 
1718 	/*
1719 	 * Only allow kcompactd and direct requests for movable pages to
1720 	 * quickly clear out a MOVABLE pageblock for allocation. This
1721 	 * reduces the risk that a large movable pageblock is freed for
1722 	 * an unmovable/reclaimable small allocation.
1723 	 */
1724 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1725 		return pfn;
1726 
1727 	/*
1728 	 * When starting the migration scanner, pick any pageblock within the
1729 	 * first half of the search space. Otherwise try and pick a pageblock
1730 	 * within the first eighth to reduce the chances that a migration
1731 	 * target later becomes a source.
1732 	 */
1733 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1734 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1735 		distance >>= 2;
1736 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1737 
1738 	for (order = cc->order - 1;
1739 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1740 	     order--) {
1741 		struct free_area *area = &cc->zone->free_area[order];
1742 		struct list_head *freelist;
1743 		unsigned long flags;
1744 		struct page *freepage;
1745 
1746 		if (!area->nr_free)
1747 			continue;
1748 
1749 		spin_lock_irqsave(&cc->zone->lock, flags);
1750 		freelist = &area->free_list[MIGRATE_MOVABLE];
1751 		list_for_each_entry(freepage, freelist, lru) {
1752 			unsigned long free_pfn;
1753 
1754 			if (nr_scanned++ >= limit) {
1755 				move_freelist_tail(freelist, freepage);
1756 				break;
1757 			}
1758 
1759 			free_pfn = page_to_pfn(freepage);
1760 			if (free_pfn < high_pfn) {
1761 				/*
1762 				 * Avoid if skipped recently. Ideally it would
1763 				 * move to the tail but even safe iteration of
1764 				 * the list assumes an entry is deleted, not
1765 				 * reordered.
1766 				 */
1767 				if (get_pageblock_skip(freepage))
1768 					continue;
1769 
1770 				/* Reorder to so a future search skips recent pages */
1771 				move_freelist_tail(freelist, freepage);
1772 
1773 				update_fast_start_pfn(cc, free_pfn);
1774 				pfn = pageblock_start_pfn(free_pfn);
1775 				if (pfn < cc->zone->zone_start_pfn)
1776 					pfn = cc->zone->zone_start_pfn;
1777 				cc->fast_search_fail = 0;
1778 				found_block = true;
1779 				set_pageblock_skip(freepage);
1780 				break;
1781 			}
1782 		}
1783 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1784 	}
1785 
1786 	cc->total_migrate_scanned += nr_scanned;
1787 
1788 	/*
1789 	 * If fast scanning failed then use a cached entry for a page block
1790 	 * that had free pages as the basis for starting a linear scan.
1791 	 */
1792 	if (!found_block) {
1793 		cc->fast_search_fail++;
1794 		pfn = reinit_migrate_pfn(cc);
1795 	}
1796 	return pfn;
1797 }
1798 
1799 /*
1800  * Isolate all pages that can be migrated from the first suitable block,
1801  * starting at the block pointed to by the migrate scanner pfn within
1802  * compact_control.
1803  */
isolate_migratepages(struct compact_control * cc)1804 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1805 {
1806 	unsigned long block_start_pfn;
1807 	unsigned long block_end_pfn;
1808 	unsigned long low_pfn;
1809 	struct page *page;
1810 	const isolate_mode_t isolate_mode =
1811 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1812 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1813 	bool fast_find_block;
1814 
1815 	/*
1816 	 * Start at where we last stopped, or beginning of the zone as
1817 	 * initialized by compact_zone(). The first failure will use
1818 	 * the lowest PFN as the starting point for linear scanning.
1819 	 */
1820 	low_pfn = fast_find_migrateblock(cc);
1821 	block_start_pfn = pageblock_start_pfn(low_pfn);
1822 	if (block_start_pfn < cc->zone->zone_start_pfn)
1823 		block_start_pfn = cc->zone->zone_start_pfn;
1824 
1825 	/*
1826 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1827 	 * the isolation_suitable check below, check whether the fast
1828 	 * search was successful.
1829 	 */
1830 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1831 
1832 	/* Only scan within a pageblock boundary */
1833 	block_end_pfn = pageblock_end_pfn(low_pfn);
1834 
1835 	/*
1836 	 * Iterate over whole pageblocks until we find the first suitable.
1837 	 * Do not cross the free scanner.
1838 	 */
1839 	for (; block_end_pfn <= cc->free_pfn;
1840 			fast_find_block = false,
1841 			low_pfn = block_end_pfn,
1842 			block_start_pfn = block_end_pfn,
1843 			block_end_pfn += pageblock_nr_pages) {
1844 
1845 		/*
1846 		 * This can potentially iterate a massively long zone with
1847 		 * many pageblocks unsuitable, so periodically check if we
1848 		 * need to schedule.
1849 		 */
1850 		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1851 			cond_resched();
1852 
1853 		page = pageblock_pfn_to_page(block_start_pfn,
1854 						block_end_pfn, cc->zone);
1855 		if (!page)
1856 			continue;
1857 
1858 		/*
1859 		 * If isolation recently failed, do not retry. Only check the
1860 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1861 		 * to be visited multiple times. Assume skip was checked
1862 		 * before making it "skip" so other compaction instances do
1863 		 * not scan the same block.
1864 		 */
1865 		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1866 		    !fast_find_block && !isolation_suitable(cc, page))
1867 			continue;
1868 
1869 		/*
1870 		 * For async compaction, also only scan in MOVABLE blocks
1871 		 * without huge pages. Async compaction is optimistic to see
1872 		 * if the minimum amount of work satisfies the allocation.
1873 		 * The cached PFN is updated as it's possible that all
1874 		 * remaining blocks between source and target are unsuitable
1875 		 * and the compaction scanners fail to meet.
1876 		 */
1877 		if (!suitable_migration_source(cc, page)) {
1878 			update_cached_migrate(cc, block_end_pfn);
1879 			continue;
1880 		}
1881 
1882 		/* Perform the isolation */
1883 		low_pfn = isolate_migratepages_block(cc, low_pfn,
1884 						block_end_pfn, isolate_mode);
1885 
1886 		if (!low_pfn)
1887 			return ISOLATE_ABORT;
1888 
1889 		/*
1890 		 * Either we isolated something and proceed with migration. Or
1891 		 * we failed and compact_zone should decide if we should
1892 		 * continue or not.
1893 		 */
1894 		break;
1895 	}
1896 
1897 	/* Record where migration scanner will be restarted. */
1898 	cc->migrate_pfn = low_pfn;
1899 
1900 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1901 }
1902 
1903 /*
1904  * order == -1 is expected when compacting via
1905  * /proc/sys/vm/compact_memory
1906  */
is_via_compact_memory(int order)1907 static inline bool is_via_compact_memory(int order)
1908 {
1909 	return order == -1;
1910 }
1911 
kswapd_is_running(pg_data_t * pgdat)1912 static bool kswapd_is_running(pg_data_t *pgdat)
1913 {
1914 	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1915 }
1916 
1917 /*
1918  * A zone's fragmentation score is the external fragmentation wrt to the
1919  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1920  */
fragmentation_score_zone(struct zone * zone)1921 static unsigned int fragmentation_score_zone(struct zone *zone)
1922 {
1923 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1924 }
1925 
1926 /*
1927  * A weighted zone's fragmentation score is the external fragmentation
1928  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1929  * returns a value in the range [0, 100].
1930  *
1931  * The scaling factor ensures that proactive compaction focuses on larger
1932  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1933  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1934  * and thus never exceeds the high threshold for proactive compaction.
1935  */
fragmentation_score_zone_weighted(struct zone * zone)1936 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1937 {
1938 	unsigned long score;
1939 
1940 	score = zone->present_pages * fragmentation_score_zone(zone);
1941 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1942 }
1943 
1944 /*
1945  * The per-node proactive (background) compaction process is started by its
1946  * corresponding kcompactd thread when the node's fragmentation score
1947  * exceeds the high threshold. The compaction process remains active till
1948  * the node's score falls below the low threshold, or one of the back-off
1949  * conditions is met.
1950  */
fragmentation_score_node(pg_data_t * pgdat)1951 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1952 {
1953 	unsigned int score = 0;
1954 	int zoneid;
1955 
1956 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1957 		struct zone *zone;
1958 
1959 		zone = &pgdat->node_zones[zoneid];
1960 		score += fragmentation_score_zone_weighted(zone);
1961 	}
1962 
1963 	return score;
1964 }
1965 
fragmentation_score_wmark(pg_data_t * pgdat,bool low)1966 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1967 {
1968 	unsigned int wmark_low;
1969 
1970 	/*
1971 	 * Cap the low watermak to avoid excessive compaction
1972 	 * activity in case a user sets the proactivess tunable
1973 	 * close to 100 (maximum).
1974 	 */
1975 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1976 	return low ? wmark_low : min(wmark_low + 10, 100U);
1977 }
1978 
should_proactive_compact_node(pg_data_t * pgdat)1979 static bool should_proactive_compact_node(pg_data_t *pgdat)
1980 {
1981 	int wmark_high;
1982 
1983 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1984 		return false;
1985 
1986 	wmark_high = fragmentation_score_wmark(pgdat, false);
1987 	return fragmentation_score_node(pgdat) > wmark_high;
1988 }
1989 
__compact_finished(struct compact_control * cc)1990 static enum compact_result __compact_finished(struct compact_control *cc)
1991 {
1992 	unsigned int order;
1993 	const int migratetype = cc->migratetype;
1994 	int ret;
1995 
1996 	/* Compaction run completes if the migrate and free scanner meet */
1997 	if (compact_scanners_met(cc)) {
1998 		/* Let the next compaction start anew. */
1999 		reset_cached_positions(cc->zone);
2000 
2001 		/*
2002 		 * Mark that the PG_migrate_skip information should be cleared
2003 		 * by kswapd when it goes to sleep. kcompactd does not set the
2004 		 * flag itself as the decision to be clear should be directly
2005 		 * based on an allocation request.
2006 		 */
2007 		if (cc->direct_compaction)
2008 			cc->zone->compact_blockskip_flush = true;
2009 
2010 		if (cc->whole_zone)
2011 			return COMPACT_COMPLETE;
2012 		else
2013 			return COMPACT_PARTIAL_SKIPPED;
2014 	}
2015 
2016 	if (cc->proactive_compaction) {
2017 		int score, wmark_low;
2018 		pg_data_t *pgdat;
2019 
2020 		pgdat = cc->zone->zone_pgdat;
2021 		if (kswapd_is_running(pgdat))
2022 			return COMPACT_PARTIAL_SKIPPED;
2023 
2024 		score = fragmentation_score_zone(cc->zone);
2025 		wmark_low = fragmentation_score_wmark(pgdat, true);
2026 
2027 		if (score > wmark_low)
2028 			ret = COMPACT_CONTINUE;
2029 		else
2030 			ret = COMPACT_SUCCESS;
2031 
2032 		goto out;
2033 	}
2034 
2035 	if (is_via_compact_memory(cc->order))
2036 		return COMPACT_CONTINUE;
2037 
2038 	/*
2039 	 * Always finish scanning a pageblock to reduce the possibility of
2040 	 * fallbacks in the future. This is particularly important when
2041 	 * migration source is unmovable/reclaimable but it's not worth
2042 	 * special casing.
2043 	 */
2044 	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2045 		return COMPACT_CONTINUE;
2046 
2047 	/* Direct compactor: Is a suitable page free? */
2048 	ret = COMPACT_NO_SUITABLE_PAGE;
2049 	for (order = cc->order; order < MAX_ORDER; order++) {
2050 		struct free_area *area = &cc->zone->free_area[order];
2051 		bool can_steal;
2052 
2053 		/* Job done if page is free of the right migratetype */
2054 		if (!free_area_empty(area, migratetype))
2055 			return COMPACT_SUCCESS;
2056 
2057 #ifdef CONFIG_CMA
2058 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2059 		if (migratetype == MIGRATE_MOVABLE &&
2060 			!free_area_empty(area, MIGRATE_CMA))
2061 			return COMPACT_SUCCESS;
2062 #endif
2063 		/*
2064 		 * Job done if allocation would steal freepages from
2065 		 * other migratetype buddy lists.
2066 		 */
2067 		if (find_suitable_fallback(area, order, migratetype,
2068 						true, &can_steal) != -1) {
2069 
2070 			/* movable pages are OK in any pageblock */
2071 			if (migratetype == MIGRATE_MOVABLE)
2072 				return COMPACT_SUCCESS;
2073 
2074 			/*
2075 			 * We are stealing for a non-movable allocation. Make
2076 			 * sure we finish compacting the current pageblock
2077 			 * first so it is as free as possible and we won't
2078 			 * have to steal another one soon. This only applies
2079 			 * to sync compaction, as async compaction operates
2080 			 * on pageblocks of the same migratetype.
2081 			 */
2082 			if (cc->mode == MIGRATE_ASYNC ||
2083 					IS_ALIGNED(cc->migrate_pfn,
2084 							pageblock_nr_pages)) {
2085 				return COMPACT_SUCCESS;
2086 			}
2087 
2088 			ret = COMPACT_CONTINUE;
2089 			break;
2090 		}
2091 	}
2092 
2093 out:
2094 	if (cc->contended || fatal_signal_pending(current))
2095 		ret = COMPACT_CONTENDED;
2096 
2097 	return ret;
2098 }
2099 
compact_finished(struct compact_control * cc)2100 static enum compact_result compact_finished(struct compact_control *cc)
2101 {
2102 	int ret;
2103 
2104 	ret = __compact_finished(cc);
2105 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2106 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2107 		ret = COMPACT_CONTINUE;
2108 
2109 	return ret;
2110 }
2111 
2112 /*
2113  * compaction_suitable: Is this suitable to run compaction on this zone now?
2114  * Returns
2115  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2116  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2117  *   COMPACT_CONTINUE - If compaction should run now
2118  */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx,unsigned long wmark_target)2119 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2120 					unsigned int alloc_flags,
2121 					int highest_zoneidx,
2122 					unsigned long wmark_target)
2123 {
2124 	unsigned long watermark;
2125 
2126 	if (is_via_compact_memory(order))
2127 		return COMPACT_CONTINUE;
2128 
2129 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2130 	/*
2131 	 * If watermarks for high-order allocation are already met, there
2132 	 * should be no need for compaction at all.
2133 	 */
2134 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2135 								alloc_flags))
2136 		return COMPACT_SUCCESS;
2137 
2138 	/*
2139 	 * Watermarks for order-0 must be met for compaction to be able to
2140 	 * isolate free pages for migration targets. This means that the
2141 	 * watermark and alloc_flags have to match, or be more pessimistic than
2142 	 * the check in __isolate_free_page(). We don't use the direct
2143 	 * compactor's alloc_flags, as they are not relevant for freepage
2144 	 * isolation. We however do use the direct compactor's highest_zoneidx
2145 	 * to skip over zones where lowmem reserves would prevent allocation
2146 	 * even if compaction succeeds.
2147 	 * For costly orders, we require low watermark instead of min for
2148 	 * compaction to proceed to increase its chances.
2149 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2150 	 * suitable migration targets
2151 	 */
2152 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2153 				low_wmark_pages(zone) : min_wmark_pages(zone);
2154 	watermark += compact_gap(order);
2155 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2156 						ALLOC_CMA, wmark_target))
2157 		return COMPACT_SKIPPED;
2158 
2159 	return COMPACT_CONTINUE;
2160 }
2161 
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx)2162 enum compact_result compaction_suitable(struct zone *zone, int order,
2163 					unsigned int alloc_flags,
2164 					int highest_zoneidx)
2165 {
2166 	enum compact_result ret;
2167 	int fragindex;
2168 
2169 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2170 				    zone_page_state(zone, NR_FREE_PAGES));
2171 	/*
2172 	 * fragmentation index determines if allocation failures are due to
2173 	 * low memory or external fragmentation
2174 	 *
2175 	 * index of -1000 would imply allocations might succeed depending on
2176 	 * watermarks, but we already failed the high-order watermark check
2177 	 * index towards 0 implies failure is due to lack of memory
2178 	 * index towards 1000 implies failure is due to fragmentation
2179 	 *
2180 	 * Only compact if a failure would be due to fragmentation. Also
2181 	 * ignore fragindex for non-costly orders where the alternative to
2182 	 * a successful reclaim/compaction is OOM. Fragindex and the
2183 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2184 	 * excessive compaction for costly orders, but it should not be at the
2185 	 * expense of system stability.
2186 	 */
2187 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2188 		fragindex = fragmentation_index(zone, order);
2189 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2190 			ret = COMPACT_NOT_SUITABLE_ZONE;
2191 	}
2192 
2193 	trace_mm_compaction_suitable(zone, order, ret);
2194 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2195 		ret = COMPACT_SKIPPED;
2196 
2197 	return ret;
2198 }
2199 
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2200 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2201 		int alloc_flags)
2202 {
2203 	struct zone *zone;
2204 	struct zoneref *z;
2205 
2206 	/*
2207 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2208 	 * retrying the reclaim.
2209 	 */
2210 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2211 				ac->highest_zoneidx, ac->nodemask) {
2212 		unsigned long available;
2213 		enum compact_result compact_result;
2214 
2215 		/*
2216 		 * Do not consider all the reclaimable memory because we do not
2217 		 * want to trash just for a single high order allocation which
2218 		 * is even not guaranteed to appear even if __compaction_suitable
2219 		 * is happy about the watermark check.
2220 		 */
2221 		available = zone_reclaimable_pages(zone) / order;
2222 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2223 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2224 				ac->highest_zoneidx, available);
2225 		if (compact_result != COMPACT_SKIPPED)
2226 			return true;
2227 	}
2228 
2229 	return false;
2230 }
2231 
2232 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2233 compact_zone(struct compact_control *cc, struct capture_control *capc)
2234 {
2235 	enum compact_result ret;
2236 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2237 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2238 	unsigned long last_migrated_pfn;
2239 	const bool sync = cc->mode != MIGRATE_ASYNC;
2240 	bool update_cached;
2241 
2242 	/*
2243 	 * These counters track activities during zone compaction.  Initialize
2244 	 * them before compacting a new zone.
2245 	 */
2246 	cc->total_migrate_scanned = 0;
2247 	cc->total_free_scanned = 0;
2248 	cc->nr_migratepages = 0;
2249 	cc->nr_freepages = 0;
2250 	INIT_LIST_HEAD(&cc->freepages);
2251 	INIT_LIST_HEAD(&cc->migratepages);
2252 
2253 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2254 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2255 							cc->highest_zoneidx);
2256 	/* Compaction is likely to fail */
2257 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2258 		return ret;
2259 
2260 	/* huh, compaction_suitable is returning something unexpected */
2261 	VM_BUG_ON(ret != COMPACT_CONTINUE);
2262 
2263 	/*
2264 	 * Clear pageblock skip if there were failures recently and compaction
2265 	 * is about to be retried after being deferred.
2266 	 */
2267 	if (compaction_restarting(cc->zone, cc->order))
2268 		__reset_isolation_suitable(cc->zone);
2269 
2270 	/*
2271 	 * Setup to move all movable pages to the end of the zone. Used cached
2272 	 * information on where the scanners should start (unless we explicitly
2273 	 * want to compact the whole zone), but check that it is initialised
2274 	 * by ensuring the values are within zone boundaries.
2275 	 */
2276 	cc->fast_start_pfn = 0;
2277 	if (cc->whole_zone) {
2278 		cc->migrate_pfn = start_pfn;
2279 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2280 	} else {
2281 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2282 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2283 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2284 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2285 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2286 		}
2287 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2288 			cc->migrate_pfn = start_pfn;
2289 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2290 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2291 		}
2292 
2293 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2294 			cc->whole_zone = true;
2295 	}
2296 
2297 	last_migrated_pfn = 0;
2298 
2299 	/*
2300 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2301 	 * the basis that some migrations will fail in ASYNC mode. However,
2302 	 * if the cached PFNs match and pageblocks are skipped due to having
2303 	 * no isolation candidates, then the sync state does not matter.
2304 	 * Until a pageblock with isolation candidates is found, keep the
2305 	 * cached PFNs in sync to avoid revisiting the same blocks.
2306 	 */
2307 	update_cached = !sync &&
2308 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2309 
2310 	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2311 				cc->free_pfn, end_pfn, sync);
2312 
2313 	/* lru_add_drain_all could be expensive with involving other CPUs */
2314 	lru_add_drain();
2315 
2316 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2317 		int err;
2318 		unsigned long start_pfn = cc->migrate_pfn;
2319 
2320 		/*
2321 		 * Avoid multiple rescans which can happen if a page cannot be
2322 		 * isolated (dirty/writeback in async mode) or if the migrated
2323 		 * pages are being allocated before the pageblock is cleared.
2324 		 * The first rescan will capture the entire pageblock for
2325 		 * migration. If it fails, it'll be marked skip and scanning
2326 		 * will proceed as normal.
2327 		 */
2328 		cc->rescan = false;
2329 		if (pageblock_start_pfn(last_migrated_pfn) ==
2330 		    pageblock_start_pfn(start_pfn)) {
2331 			cc->rescan = true;
2332 		}
2333 
2334 		switch (isolate_migratepages(cc)) {
2335 		case ISOLATE_ABORT:
2336 			ret = COMPACT_CONTENDED;
2337 			putback_movable_pages(&cc->migratepages);
2338 			cc->nr_migratepages = 0;
2339 			goto out;
2340 		case ISOLATE_NONE:
2341 			if (update_cached) {
2342 				cc->zone->compact_cached_migrate_pfn[1] =
2343 					cc->zone->compact_cached_migrate_pfn[0];
2344 			}
2345 
2346 			/*
2347 			 * We haven't isolated and migrated anything, but
2348 			 * there might still be unflushed migrations from
2349 			 * previous cc->order aligned block.
2350 			 */
2351 			goto check_drain;
2352 		case ISOLATE_SUCCESS:
2353 			update_cached = false;
2354 			last_migrated_pfn = start_pfn;
2355 			;
2356 		}
2357 
2358 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2359 				compaction_free, (unsigned long)cc, cc->mode,
2360 				MR_COMPACTION);
2361 
2362 		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2363 							&cc->migratepages);
2364 
2365 		/* All pages were either migrated or will be released */
2366 		cc->nr_migratepages = 0;
2367 		if (err) {
2368 			putback_movable_pages(&cc->migratepages);
2369 			/*
2370 			 * migrate_pages() may return -ENOMEM when scanners meet
2371 			 * and we want compact_finished() to detect it
2372 			 */
2373 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2374 				ret = COMPACT_CONTENDED;
2375 				goto out;
2376 			}
2377 			/*
2378 			 * We failed to migrate at least one page in the current
2379 			 * order-aligned block, so skip the rest of it.
2380 			 */
2381 			if (cc->direct_compaction &&
2382 						(cc->mode == MIGRATE_ASYNC)) {
2383 				cc->migrate_pfn = block_end_pfn(
2384 						cc->migrate_pfn - 1, cc->order);
2385 				/* Draining pcplists is useless in this case */
2386 				last_migrated_pfn = 0;
2387 			}
2388 		}
2389 
2390 check_drain:
2391 		/*
2392 		 * Has the migration scanner moved away from the previous
2393 		 * cc->order aligned block where we migrated from? If yes,
2394 		 * flush the pages that were freed, so that they can merge and
2395 		 * compact_finished() can detect immediately if allocation
2396 		 * would succeed.
2397 		 */
2398 		if (cc->order > 0 && last_migrated_pfn) {
2399 			unsigned long current_block_start =
2400 				block_start_pfn(cc->migrate_pfn, cc->order);
2401 
2402 			if (last_migrated_pfn < current_block_start) {
2403 				lru_add_drain_cpu_zone(cc->zone);
2404 				/* No more flushing until we migrate again */
2405 				last_migrated_pfn = 0;
2406 			}
2407 		}
2408 
2409 		/* Stop if a page has been captured */
2410 		if (capc && capc->page) {
2411 			ret = COMPACT_SUCCESS;
2412 			break;
2413 		}
2414 	}
2415 
2416 out:
2417 	/*
2418 	 * Release free pages and update where the free scanner should restart,
2419 	 * so we don't leave any returned pages behind in the next attempt.
2420 	 */
2421 	if (cc->nr_freepages > 0) {
2422 		unsigned long free_pfn = release_freepages(&cc->freepages);
2423 
2424 		cc->nr_freepages = 0;
2425 		VM_BUG_ON(free_pfn == 0);
2426 		/* The cached pfn is always the first in a pageblock */
2427 		free_pfn = pageblock_start_pfn(free_pfn);
2428 		/*
2429 		 * Only go back, not forward. The cached pfn might have been
2430 		 * already reset to zone end in compact_finished()
2431 		 */
2432 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2433 			cc->zone->compact_cached_free_pfn = free_pfn;
2434 	}
2435 
2436 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2437 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2438 
2439 	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2440 				cc->free_pfn, end_pfn, sync, ret);
2441 
2442 	return ret;
2443 }
2444 
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2445 static enum compact_result compact_zone_order(struct zone *zone, int order,
2446 		gfp_t gfp_mask, enum compact_priority prio,
2447 		unsigned int alloc_flags, int highest_zoneidx,
2448 		struct page **capture)
2449 {
2450 	enum compact_result ret;
2451 	struct compact_control cc = {
2452 		.order = order,
2453 		.search_order = order,
2454 		.gfp_mask = gfp_mask,
2455 		.zone = zone,
2456 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2457 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2458 		.alloc_flags = alloc_flags,
2459 		.highest_zoneidx = highest_zoneidx,
2460 		.direct_compaction = true,
2461 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2462 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2463 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2464 	};
2465 	struct capture_control capc = {
2466 		.cc = &cc,
2467 		.page = NULL,
2468 	};
2469 
2470 	/*
2471 	 * Make sure the structs are really initialized before we expose the
2472 	 * capture control, in case we are interrupted and the interrupt handler
2473 	 * frees a page.
2474 	 */
2475 	barrier();
2476 	WRITE_ONCE(current->capture_control, &capc);
2477 
2478 	ret = compact_zone(&cc, &capc);
2479 
2480 	VM_BUG_ON(!list_empty(&cc.freepages));
2481 	VM_BUG_ON(!list_empty(&cc.migratepages));
2482 
2483 	/*
2484 	 * Make sure we hide capture control first before we read the captured
2485 	 * page pointer, otherwise an interrupt could free and capture a page
2486 	 * and we would leak it.
2487 	 */
2488 	WRITE_ONCE(current->capture_control, NULL);
2489 	*capture = READ_ONCE(capc.page);
2490 
2491 	return ret;
2492 }
2493 
2494 int sysctl_extfrag_threshold = 500;
2495 
2496 /**
2497  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2498  * @gfp_mask: The GFP mask of the current allocation
2499  * @order: The order of the current allocation
2500  * @alloc_flags: The allocation flags of the current allocation
2501  * @ac: The context of current allocation
2502  * @prio: Determines how hard direct compaction should try to succeed
2503  * @capture: Pointer to free page created by compaction will be stored here
2504  *
2505  * This is the main entry point for direct page compaction.
2506  */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2507 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2508 		unsigned int alloc_flags, const struct alloc_context *ac,
2509 		enum compact_priority prio, struct page **capture)
2510 {
2511 	int may_perform_io = gfp_mask & __GFP_IO;
2512 	struct zoneref *z;
2513 	struct zone *zone;
2514 	enum compact_result rc = COMPACT_SKIPPED;
2515 
2516 	/*
2517 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2518 	 * tricky context because the migration might require IO
2519 	 */
2520 	if (!may_perform_io)
2521 		return COMPACT_SKIPPED;
2522 
2523 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2524 
2525 	/* Compact each zone in the list */
2526 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2527 					ac->highest_zoneidx, ac->nodemask) {
2528 		enum compact_result status;
2529 
2530 		if (prio > MIN_COMPACT_PRIORITY
2531 					&& compaction_deferred(zone, order)) {
2532 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2533 			continue;
2534 		}
2535 
2536 		status = compact_zone_order(zone, order, gfp_mask, prio,
2537 				alloc_flags, ac->highest_zoneidx, capture);
2538 		rc = max(status, rc);
2539 
2540 		/* The allocation should succeed, stop compacting */
2541 		if (status == COMPACT_SUCCESS) {
2542 			/*
2543 			 * We think the allocation will succeed in this zone,
2544 			 * but it is not certain, hence the false. The caller
2545 			 * will repeat this with true if allocation indeed
2546 			 * succeeds in this zone.
2547 			 */
2548 			compaction_defer_reset(zone, order, false);
2549 
2550 			break;
2551 		}
2552 
2553 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2554 					status == COMPACT_PARTIAL_SKIPPED))
2555 			/*
2556 			 * We think that allocation won't succeed in this zone
2557 			 * so we defer compaction there. If it ends up
2558 			 * succeeding after all, it will be reset.
2559 			 */
2560 			defer_compaction(zone, order);
2561 
2562 		/*
2563 		 * We might have stopped compacting due to need_resched() in
2564 		 * async compaction, or due to a fatal signal detected. In that
2565 		 * case do not try further zones
2566 		 */
2567 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2568 					|| fatal_signal_pending(current))
2569 			break;
2570 	}
2571 
2572 	return rc;
2573 }
2574 
2575 /*
2576  * Compact all zones within a node till each zone's fragmentation score
2577  * reaches within proactive compaction thresholds (as determined by the
2578  * proactiveness tunable).
2579  *
2580  * It is possible that the function returns before reaching score targets
2581  * due to various back-off conditions, such as, contention on per-node or
2582  * per-zone locks.
2583  */
proactive_compact_node(pg_data_t * pgdat)2584 static void proactive_compact_node(pg_data_t *pgdat)
2585 {
2586 	int zoneid;
2587 	struct zone *zone;
2588 	struct compact_control cc = {
2589 		.order = -1,
2590 		.mode = MIGRATE_SYNC_LIGHT,
2591 		.ignore_skip_hint = true,
2592 		.whole_zone = true,
2593 		.gfp_mask = GFP_KERNEL,
2594 		.proactive_compaction = true,
2595 	};
2596 
2597 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2598 		zone = &pgdat->node_zones[zoneid];
2599 		if (!populated_zone(zone))
2600 			continue;
2601 
2602 		cc.zone = zone;
2603 
2604 		compact_zone(&cc, NULL);
2605 
2606 		VM_BUG_ON(!list_empty(&cc.freepages));
2607 		VM_BUG_ON(!list_empty(&cc.migratepages));
2608 	}
2609 }
2610 
2611 /* Compact all zones within a node */
compact_node(int nid)2612 static void compact_node(int nid)
2613 {
2614 	pg_data_t *pgdat = NODE_DATA(nid);
2615 	int zoneid;
2616 	struct zone *zone;
2617 	struct compact_control cc = {
2618 		.order = -1,
2619 		.mode = MIGRATE_SYNC,
2620 		.ignore_skip_hint = true,
2621 		.whole_zone = true,
2622 		.gfp_mask = GFP_KERNEL,
2623 	};
2624 
2625 
2626 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2627 
2628 		zone = &pgdat->node_zones[zoneid];
2629 		if (!populated_zone(zone))
2630 			continue;
2631 
2632 		cc.zone = zone;
2633 
2634 		compact_zone(&cc, NULL);
2635 
2636 		VM_BUG_ON(!list_empty(&cc.freepages));
2637 		VM_BUG_ON(!list_empty(&cc.migratepages));
2638 	}
2639 }
2640 
2641 /* Compact all nodes in the system */
compact_nodes(void)2642 static void compact_nodes(void)
2643 {
2644 	int nid;
2645 
2646 	/* Flush pending updates to the LRU lists */
2647 	lru_add_drain_all();
2648 
2649 	for_each_online_node(nid)
2650 		compact_node(nid);
2651 }
2652 
2653 /* The written value is actually unused, all memory is compacted */
2654 int sysctl_compact_memory;
2655 
2656 /*
2657  * Tunable for proactive compaction. It determines how
2658  * aggressively the kernel should compact memory in the
2659  * background. It takes values in the range [0, 100].
2660  */
2661 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2662 
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2663 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2664 		void *buffer, size_t *length, loff_t *ppos)
2665 {
2666 	int rc, nid;
2667 
2668 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2669 	if (rc)
2670 		return rc;
2671 
2672 	if (write && sysctl_compaction_proactiveness) {
2673 		for_each_online_node(nid) {
2674 			pg_data_t *pgdat = NODE_DATA(nid);
2675 
2676 			if (pgdat->proactive_compact_trigger)
2677 				continue;
2678 
2679 			pgdat->proactive_compact_trigger = true;
2680 			wake_up_interruptible(&pgdat->kcompactd_wait);
2681 		}
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 /*
2688  * This is the entry point for compacting all nodes via
2689  * /proc/sys/vm/compact_memory
2690  */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2691 int sysctl_compaction_handler(struct ctl_table *table, int write,
2692 			void *buffer, size_t *length, loff_t *ppos)
2693 {
2694 	if (write)
2695 		compact_nodes();
2696 
2697 	return 0;
2698 }
2699 
2700 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2701 static ssize_t sysfs_compact_node(struct device *dev,
2702 			struct device_attribute *attr,
2703 			const char *buf, size_t count)
2704 {
2705 	int nid = dev->id;
2706 
2707 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2708 		/* Flush pending updates to the LRU lists */
2709 		lru_add_drain_all();
2710 
2711 		compact_node(nid);
2712 	}
2713 
2714 	return count;
2715 }
2716 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2717 
compaction_register_node(struct node * node)2718 int compaction_register_node(struct node *node)
2719 {
2720 	return device_create_file(&node->dev, &dev_attr_compact);
2721 }
2722 
compaction_unregister_node(struct node * node)2723 void compaction_unregister_node(struct node *node)
2724 {
2725 	return device_remove_file(&node->dev, &dev_attr_compact);
2726 }
2727 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2728 
kcompactd_work_requested(pg_data_t * pgdat)2729 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2730 {
2731 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2732 		pgdat->proactive_compact_trigger;
2733 }
2734 
kcompactd_node_suitable(pg_data_t * pgdat)2735 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2736 {
2737 	int zoneid;
2738 	struct zone *zone;
2739 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2740 
2741 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2742 		zone = &pgdat->node_zones[zoneid];
2743 
2744 		if (!populated_zone(zone))
2745 			continue;
2746 
2747 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2748 					highest_zoneidx) == COMPACT_CONTINUE)
2749 			return true;
2750 	}
2751 
2752 	return false;
2753 }
2754 
kcompactd_do_work(pg_data_t * pgdat)2755 static void kcompactd_do_work(pg_data_t *pgdat)
2756 {
2757 	/*
2758 	 * With no special task, compact all zones so that a page of requested
2759 	 * order is allocatable.
2760 	 */
2761 	int zoneid;
2762 	struct zone *zone;
2763 	struct compact_control cc = {
2764 		.order = pgdat->kcompactd_max_order,
2765 		.search_order = pgdat->kcompactd_max_order,
2766 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2767 		.mode = MIGRATE_SYNC_LIGHT,
2768 		.ignore_skip_hint = false,
2769 		.gfp_mask = GFP_KERNEL,
2770 	};
2771 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2772 							cc.highest_zoneidx);
2773 	count_compact_event(KCOMPACTD_WAKE);
2774 
2775 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2776 		int status;
2777 
2778 		zone = &pgdat->node_zones[zoneid];
2779 		if (!populated_zone(zone))
2780 			continue;
2781 
2782 		if (compaction_deferred(zone, cc.order))
2783 			continue;
2784 
2785 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2786 							COMPACT_CONTINUE)
2787 			continue;
2788 
2789 		if (kthread_should_stop())
2790 			return;
2791 
2792 		cc.zone = zone;
2793 		status = compact_zone(&cc, NULL);
2794 
2795 		if (status == COMPACT_SUCCESS) {
2796 			compaction_defer_reset(zone, cc.order, false);
2797 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2798 			/*
2799 			 * Buddy pages may become stranded on pcps that could
2800 			 * otherwise coalesce on the zone's free area for
2801 			 * order >= cc.order.  This is ratelimited by the
2802 			 * upcoming deferral.
2803 			 */
2804 			drain_all_pages(zone);
2805 
2806 			/*
2807 			 * We use sync migration mode here, so we defer like
2808 			 * sync direct compaction does.
2809 			 */
2810 			defer_compaction(zone, cc.order);
2811 		}
2812 
2813 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2814 				     cc.total_migrate_scanned);
2815 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2816 				     cc.total_free_scanned);
2817 
2818 		VM_BUG_ON(!list_empty(&cc.freepages));
2819 		VM_BUG_ON(!list_empty(&cc.migratepages));
2820 	}
2821 
2822 	/*
2823 	 * Regardless of success, we are done until woken up next. But remember
2824 	 * the requested order/highest_zoneidx in case it was higher/tighter
2825 	 * than our current ones
2826 	 */
2827 	if (pgdat->kcompactd_max_order <= cc.order)
2828 		pgdat->kcompactd_max_order = 0;
2829 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2830 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2831 }
2832 
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)2833 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2834 {
2835 	if (!order)
2836 		return;
2837 
2838 	if (pgdat->kcompactd_max_order < order)
2839 		pgdat->kcompactd_max_order = order;
2840 
2841 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2842 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2843 
2844 	/*
2845 	 * Pairs with implicit barrier in wait_event_freezable()
2846 	 * such that wakeups are not missed.
2847 	 */
2848 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2849 		return;
2850 
2851 	if (!kcompactd_node_suitable(pgdat))
2852 		return;
2853 
2854 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2855 							highest_zoneidx);
2856 	wake_up_interruptible(&pgdat->kcompactd_wait);
2857 }
2858 
2859 /*
2860  * The background compaction daemon, started as a kernel thread
2861  * from the init process.
2862  */
kcompactd(void * p)2863 static int kcompactd(void *p)
2864 {
2865 	pg_data_t *pgdat = (pg_data_t*)p;
2866 	struct task_struct *tsk = current;
2867 	unsigned int proactive_defer = 0;
2868 
2869 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2870 
2871 	if (!cpumask_empty(cpumask))
2872 		set_cpus_allowed_ptr(tsk, cpumask);
2873 
2874 	set_freezable();
2875 
2876 	pgdat->kcompactd_max_order = 0;
2877 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2878 
2879 	while (!kthread_should_stop()) {
2880 		unsigned long pflags;
2881 		long timeout;
2882 
2883 		timeout = sysctl_compaction_proactiveness ?
2884 			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC) :
2885 			MAX_SCHEDULE_TIMEOUT;
2886 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2887 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2888 			kcompactd_work_requested(pgdat), timeout) &&
2889 			!pgdat->proactive_compact_trigger) {
2890 
2891 			psi_memstall_enter(&pflags);
2892 			kcompactd_do_work(pgdat);
2893 			psi_memstall_leave(&pflags);
2894 			continue;
2895 		}
2896 
2897 		/* kcompactd wait timeout */
2898 		if (should_proactive_compact_node(pgdat)) {
2899 			unsigned int prev_score, score;
2900 
2901 			/*
2902 			 * On wakeup of proactive compaction by sysctl
2903 			 * write, ignore the accumulated defer score.
2904 			 * Anyway, if the proactive compaction didn't
2905 			 * make any progress for the new value, it will
2906 			 * be further deferred by 2^COMPACT_MAX_DEFER_SHIFT
2907 			 * times.
2908 			 */
2909 			if (proactive_defer &&
2910 				!pgdat->proactive_compact_trigger) {
2911 				proactive_defer--;
2912 				continue;
2913 			}
2914 
2915 			prev_score = fragmentation_score_node(pgdat);
2916 			proactive_compact_node(pgdat);
2917 			score = fragmentation_score_node(pgdat);
2918 			/*
2919 			 * Defer proactive compaction if the fragmentation
2920 			 * score did not go down i.e. no progress made.
2921 			 */
2922 			proactive_defer = score < prev_score ?
2923 					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2924 		}
2925 		if (pgdat->proactive_compact_trigger)
2926 			pgdat->proactive_compact_trigger = false;
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 /*
2933  * This kcompactd start function will be called by init and node-hot-add.
2934  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2935  */
kcompactd_run(int nid)2936 int kcompactd_run(int nid)
2937 {
2938 	pg_data_t *pgdat = NODE_DATA(nid);
2939 	int ret = 0;
2940 
2941 	if (pgdat->kcompactd)
2942 		return 0;
2943 
2944 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2945 	if (IS_ERR(pgdat->kcompactd)) {
2946 		pr_err("Failed to start kcompactd on node %d\n", nid);
2947 		ret = PTR_ERR(pgdat->kcompactd);
2948 		pgdat->kcompactd = NULL;
2949 	}
2950 	return ret;
2951 }
2952 
2953 /*
2954  * Called by memory hotplug when all memory in a node is offlined. Caller must
2955  * hold mem_hotplug_begin/end().
2956  */
kcompactd_stop(int nid)2957 void kcompactd_stop(int nid)
2958 {
2959 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2960 
2961 	if (kcompactd) {
2962 		kthread_stop(kcompactd);
2963 		NODE_DATA(nid)->kcompactd = NULL;
2964 	}
2965 }
2966 
2967 /*
2968  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2969  * not required for correctness. So if the last cpu in a node goes
2970  * away, we get changed to run anywhere: as the first one comes back,
2971  * restore their cpu bindings.
2972  */
kcompactd_cpu_online(unsigned int cpu)2973 static int kcompactd_cpu_online(unsigned int cpu)
2974 {
2975 	int nid;
2976 
2977 	for_each_node_state(nid, N_MEMORY) {
2978 		pg_data_t *pgdat = NODE_DATA(nid);
2979 		const struct cpumask *mask;
2980 
2981 		mask = cpumask_of_node(pgdat->node_id);
2982 
2983 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2984 			/* One of our CPUs online: restore mask */
2985 			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2986 	}
2987 	return 0;
2988 }
2989 
kcompactd_init(void)2990 static int __init kcompactd_init(void)
2991 {
2992 	int nid;
2993 	int ret;
2994 
2995 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2996 					"mm/compaction:online",
2997 					kcompactd_cpu_online, NULL);
2998 	if (ret < 0) {
2999 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3000 		return ret;
3001 	}
3002 
3003 	for_each_node_state(nid, N_MEMORY)
3004 		kcompactd_run(nid);
3005 	return 0;
3006 }
3007 subsys_initcall(kcompactd_init)
3008 
3009 #endif /* CONFIG_COMPACTION */
3010