1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun * This is a maximally equidistributed combined Tausworthe generator
4*4882a593Smuzhiyun * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
5*4882a593Smuzhiyun *
6*4882a593Smuzhiyun * lfsr113 version:
7*4882a593Smuzhiyun *
8*4882a593Smuzhiyun * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
9*4882a593Smuzhiyun *
10*4882a593Smuzhiyun * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13))
11*4882a593Smuzhiyun * s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27))
12*4882a593Smuzhiyun * s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21))
13*4882a593Smuzhiyun * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12))
14*4882a593Smuzhiyun *
15*4882a593Smuzhiyun * The period of this generator is about 2^113 (see erratum paper).
16*4882a593Smuzhiyun *
17*4882a593Smuzhiyun * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
18*4882a593Smuzhiyun * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
19*4882a593Smuzhiyun * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
20*4882a593Smuzhiyun * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
21*4882a593Smuzhiyun *
22*4882a593Smuzhiyun * There is an erratum in the paper "Tables of Maximally Equidistributed
23*4882a593Smuzhiyun * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
24*4882a593Smuzhiyun * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
25*4882a593Smuzhiyun *
26*4882a593Smuzhiyun * ... the k_j most significant bits of z_j must be non-zero,
27*4882a593Smuzhiyun * for each j. (Note: this restriction also applies to the
28*4882a593Smuzhiyun * computer code given in [4], but was mistakenly not mentioned
29*4882a593Smuzhiyun * in that paper.)
30*4882a593Smuzhiyun *
31*4882a593Smuzhiyun * This affects the seeding procedure by imposing the requirement
32*4882a593Smuzhiyun * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
33*4882a593Smuzhiyun */
34*4882a593Smuzhiyun
35*4882a593Smuzhiyun #include <linux/types.h>
36*4882a593Smuzhiyun #include <linux/percpu.h>
37*4882a593Smuzhiyun #include <linux/export.h>
38*4882a593Smuzhiyun #include <linux/jiffies.h>
39*4882a593Smuzhiyun #include <linux/random.h>
40*4882a593Smuzhiyun #include <linux/sched.h>
41*4882a593Smuzhiyun #include <linux/bitops.h>
42*4882a593Smuzhiyun #include <linux/slab.h>
43*4882a593Smuzhiyun #include <linux/notifier.h>
44*4882a593Smuzhiyun #include <asm/unaligned.h>
45*4882a593Smuzhiyun
46*4882a593Smuzhiyun /**
47*4882a593Smuzhiyun * prandom_u32_state - seeded pseudo-random number generator.
48*4882a593Smuzhiyun * @state: pointer to state structure holding seeded state.
49*4882a593Smuzhiyun *
50*4882a593Smuzhiyun * This is used for pseudo-randomness with no outside seeding.
51*4882a593Smuzhiyun * For more random results, use prandom_u32().
52*4882a593Smuzhiyun */
prandom_u32_state(struct rnd_state * state)53*4882a593Smuzhiyun u32 prandom_u32_state(struct rnd_state *state)
54*4882a593Smuzhiyun {
55*4882a593Smuzhiyun #define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
56*4882a593Smuzhiyun state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U);
57*4882a593Smuzhiyun state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U);
58*4882a593Smuzhiyun state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U);
59*4882a593Smuzhiyun state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U);
60*4882a593Smuzhiyun
61*4882a593Smuzhiyun return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
62*4882a593Smuzhiyun }
63*4882a593Smuzhiyun EXPORT_SYMBOL(prandom_u32_state);
64*4882a593Smuzhiyun
65*4882a593Smuzhiyun /**
66*4882a593Smuzhiyun * prandom_bytes_state - get the requested number of pseudo-random bytes
67*4882a593Smuzhiyun *
68*4882a593Smuzhiyun * @state: pointer to state structure holding seeded state.
69*4882a593Smuzhiyun * @buf: where to copy the pseudo-random bytes to
70*4882a593Smuzhiyun * @bytes: the requested number of bytes
71*4882a593Smuzhiyun *
72*4882a593Smuzhiyun * This is used for pseudo-randomness with no outside seeding.
73*4882a593Smuzhiyun * For more random results, use prandom_bytes().
74*4882a593Smuzhiyun */
prandom_bytes_state(struct rnd_state * state,void * buf,size_t bytes)75*4882a593Smuzhiyun void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
76*4882a593Smuzhiyun {
77*4882a593Smuzhiyun u8 *ptr = buf;
78*4882a593Smuzhiyun
79*4882a593Smuzhiyun while (bytes >= sizeof(u32)) {
80*4882a593Smuzhiyun put_unaligned(prandom_u32_state(state), (u32 *) ptr);
81*4882a593Smuzhiyun ptr += sizeof(u32);
82*4882a593Smuzhiyun bytes -= sizeof(u32);
83*4882a593Smuzhiyun }
84*4882a593Smuzhiyun
85*4882a593Smuzhiyun if (bytes > 0) {
86*4882a593Smuzhiyun u32 rem = prandom_u32_state(state);
87*4882a593Smuzhiyun do {
88*4882a593Smuzhiyun *ptr++ = (u8) rem;
89*4882a593Smuzhiyun bytes--;
90*4882a593Smuzhiyun rem >>= BITS_PER_BYTE;
91*4882a593Smuzhiyun } while (bytes > 0);
92*4882a593Smuzhiyun }
93*4882a593Smuzhiyun }
94*4882a593Smuzhiyun EXPORT_SYMBOL(prandom_bytes_state);
95*4882a593Smuzhiyun
prandom_warmup(struct rnd_state * state)96*4882a593Smuzhiyun static void prandom_warmup(struct rnd_state *state)
97*4882a593Smuzhiyun {
98*4882a593Smuzhiyun /* Calling RNG ten times to satisfy recurrence condition */
99*4882a593Smuzhiyun prandom_u32_state(state);
100*4882a593Smuzhiyun prandom_u32_state(state);
101*4882a593Smuzhiyun prandom_u32_state(state);
102*4882a593Smuzhiyun prandom_u32_state(state);
103*4882a593Smuzhiyun prandom_u32_state(state);
104*4882a593Smuzhiyun prandom_u32_state(state);
105*4882a593Smuzhiyun prandom_u32_state(state);
106*4882a593Smuzhiyun prandom_u32_state(state);
107*4882a593Smuzhiyun prandom_u32_state(state);
108*4882a593Smuzhiyun prandom_u32_state(state);
109*4882a593Smuzhiyun }
110*4882a593Smuzhiyun
prandom_seed_full_state(struct rnd_state __percpu * pcpu_state)111*4882a593Smuzhiyun void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
112*4882a593Smuzhiyun {
113*4882a593Smuzhiyun int i;
114*4882a593Smuzhiyun
115*4882a593Smuzhiyun for_each_possible_cpu(i) {
116*4882a593Smuzhiyun struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
117*4882a593Smuzhiyun u32 seeds[4];
118*4882a593Smuzhiyun
119*4882a593Smuzhiyun get_random_bytes(&seeds, sizeof(seeds));
120*4882a593Smuzhiyun state->s1 = __seed(seeds[0], 2U);
121*4882a593Smuzhiyun state->s2 = __seed(seeds[1], 8U);
122*4882a593Smuzhiyun state->s3 = __seed(seeds[2], 16U);
123*4882a593Smuzhiyun state->s4 = __seed(seeds[3], 128U);
124*4882a593Smuzhiyun
125*4882a593Smuzhiyun prandom_warmup(state);
126*4882a593Smuzhiyun }
127*4882a593Smuzhiyun }
128*4882a593Smuzhiyun EXPORT_SYMBOL(prandom_seed_full_state);
129*4882a593Smuzhiyun
130*4882a593Smuzhiyun #ifdef CONFIG_RANDOM32_SELFTEST
131*4882a593Smuzhiyun static struct prandom_test1 {
132*4882a593Smuzhiyun u32 seed;
133*4882a593Smuzhiyun u32 result;
134*4882a593Smuzhiyun } test1[] = {
135*4882a593Smuzhiyun { 1U, 3484351685U },
136*4882a593Smuzhiyun { 2U, 2623130059U },
137*4882a593Smuzhiyun { 3U, 3125133893U },
138*4882a593Smuzhiyun { 4U, 984847254U },
139*4882a593Smuzhiyun };
140*4882a593Smuzhiyun
141*4882a593Smuzhiyun static struct prandom_test2 {
142*4882a593Smuzhiyun u32 seed;
143*4882a593Smuzhiyun u32 iteration;
144*4882a593Smuzhiyun u32 result;
145*4882a593Smuzhiyun } test2[] = {
146*4882a593Smuzhiyun /* Test cases against taus113 from GSL library. */
147*4882a593Smuzhiyun { 931557656U, 959U, 2975593782U },
148*4882a593Smuzhiyun { 1339693295U, 876U, 3887776532U },
149*4882a593Smuzhiyun { 1545556285U, 961U, 1615538833U },
150*4882a593Smuzhiyun { 601730776U, 723U, 1776162651U },
151*4882a593Smuzhiyun { 1027516047U, 687U, 511983079U },
152*4882a593Smuzhiyun { 416526298U, 700U, 916156552U },
153*4882a593Smuzhiyun { 1395522032U, 652U, 2222063676U },
154*4882a593Smuzhiyun { 366221443U, 617U, 2992857763U },
155*4882a593Smuzhiyun { 1539836965U, 714U, 3783265725U },
156*4882a593Smuzhiyun { 556206671U, 994U, 799626459U },
157*4882a593Smuzhiyun { 684907218U, 799U, 367789491U },
158*4882a593Smuzhiyun { 2121230701U, 931U, 2115467001U },
159*4882a593Smuzhiyun { 1668516451U, 644U, 3620590685U },
160*4882a593Smuzhiyun { 768046066U, 883U, 2034077390U },
161*4882a593Smuzhiyun { 1989159136U, 833U, 1195767305U },
162*4882a593Smuzhiyun { 536585145U, 996U, 3577259204U },
163*4882a593Smuzhiyun { 1008129373U, 642U, 1478080776U },
164*4882a593Smuzhiyun { 1740775604U, 939U, 1264980372U },
165*4882a593Smuzhiyun { 1967883163U, 508U, 10734624U },
166*4882a593Smuzhiyun { 1923019697U, 730U, 3821419629U },
167*4882a593Smuzhiyun { 442079932U, 560U, 3440032343U },
168*4882a593Smuzhiyun { 1961302714U, 845U, 841962572U },
169*4882a593Smuzhiyun { 2030205964U, 962U, 1325144227U },
170*4882a593Smuzhiyun { 1160407529U, 507U, 240940858U },
171*4882a593Smuzhiyun { 635482502U, 779U, 4200489746U },
172*4882a593Smuzhiyun { 1252788931U, 699U, 867195434U },
173*4882a593Smuzhiyun { 1961817131U, 719U, 668237657U },
174*4882a593Smuzhiyun { 1071468216U, 983U, 917876630U },
175*4882a593Smuzhiyun { 1281848367U, 932U, 1003100039U },
176*4882a593Smuzhiyun { 582537119U, 780U, 1127273778U },
177*4882a593Smuzhiyun { 1973672777U, 853U, 1071368872U },
178*4882a593Smuzhiyun { 1896756996U, 762U, 1127851055U },
179*4882a593Smuzhiyun { 847917054U, 500U, 1717499075U },
180*4882a593Smuzhiyun { 1240520510U, 951U, 2849576657U },
181*4882a593Smuzhiyun { 1685071682U, 567U, 1961810396U },
182*4882a593Smuzhiyun { 1516232129U, 557U, 3173877U },
183*4882a593Smuzhiyun { 1208118903U, 612U, 1613145022U },
184*4882a593Smuzhiyun { 1817269927U, 693U, 4279122573U },
185*4882a593Smuzhiyun { 1510091701U, 717U, 638191229U },
186*4882a593Smuzhiyun { 365916850U, 807U, 600424314U },
187*4882a593Smuzhiyun { 399324359U, 702U, 1803598116U },
188*4882a593Smuzhiyun { 1318480274U, 779U, 2074237022U },
189*4882a593Smuzhiyun { 697758115U, 840U, 1483639402U },
190*4882a593Smuzhiyun { 1696507773U, 840U, 577415447U },
191*4882a593Smuzhiyun { 2081979121U, 981U, 3041486449U },
192*4882a593Smuzhiyun { 955646687U, 742U, 3846494357U },
193*4882a593Smuzhiyun { 1250683506U, 749U, 836419859U },
194*4882a593Smuzhiyun { 595003102U, 534U, 366794109U },
195*4882a593Smuzhiyun { 47485338U, 558U, 3521120834U },
196*4882a593Smuzhiyun { 619433479U, 610U, 3991783875U },
197*4882a593Smuzhiyun { 704096520U, 518U, 4139493852U },
198*4882a593Smuzhiyun { 1712224984U, 606U, 2393312003U },
199*4882a593Smuzhiyun { 1318233152U, 922U, 3880361134U },
200*4882a593Smuzhiyun { 855572992U, 761U, 1472974787U },
201*4882a593Smuzhiyun { 64721421U, 703U, 683860550U },
202*4882a593Smuzhiyun { 678931758U, 840U, 380616043U },
203*4882a593Smuzhiyun { 692711973U, 778U, 1382361947U },
204*4882a593Smuzhiyun { 677703619U, 530U, 2826914161U },
205*4882a593Smuzhiyun { 92393223U, 586U, 1522128471U },
206*4882a593Smuzhiyun { 1222592920U, 743U, 3466726667U },
207*4882a593Smuzhiyun { 358288986U, 695U, 1091956998U },
208*4882a593Smuzhiyun { 1935056945U, 958U, 514864477U },
209*4882a593Smuzhiyun { 735675993U, 990U, 1294239989U },
210*4882a593Smuzhiyun { 1560089402U, 897U, 2238551287U },
211*4882a593Smuzhiyun { 70616361U, 829U, 22483098U },
212*4882a593Smuzhiyun { 368234700U, 731U, 2913875084U },
213*4882a593Smuzhiyun { 20221190U, 879U, 1564152970U },
214*4882a593Smuzhiyun { 539444654U, 682U, 1835141259U },
215*4882a593Smuzhiyun { 1314987297U, 840U, 1801114136U },
216*4882a593Smuzhiyun { 2019295544U, 645U, 3286438930U },
217*4882a593Smuzhiyun { 469023838U, 716U, 1637918202U },
218*4882a593Smuzhiyun { 1843754496U, 653U, 2562092152U },
219*4882a593Smuzhiyun { 400672036U, 809U, 4264212785U },
220*4882a593Smuzhiyun { 404722249U, 965U, 2704116999U },
221*4882a593Smuzhiyun { 600702209U, 758U, 584979986U },
222*4882a593Smuzhiyun { 519953954U, 667U, 2574436237U },
223*4882a593Smuzhiyun { 1658071126U, 694U, 2214569490U },
224*4882a593Smuzhiyun { 420480037U, 749U, 3430010866U },
225*4882a593Smuzhiyun { 690103647U, 969U, 3700758083U },
226*4882a593Smuzhiyun { 1029424799U, 937U, 3787746841U },
227*4882a593Smuzhiyun { 2012608669U, 506U, 3362628973U },
228*4882a593Smuzhiyun { 1535432887U, 998U, 42610943U },
229*4882a593Smuzhiyun { 1330635533U, 857U, 3040806504U },
230*4882a593Smuzhiyun { 1223800550U, 539U, 3954229517U },
231*4882a593Smuzhiyun { 1322411537U, 680U, 3223250324U },
232*4882a593Smuzhiyun { 1877847898U, 945U, 2915147143U },
233*4882a593Smuzhiyun { 1646356099U, 874U, 965988280U },
234*4882a593Smuzhiyun { 805687536U, 744U, 4032277920U },
235*4882a593Smuzhiyun { 1948093210U, 633U, 1346597684U },
236*4882a593Smuzhiyun { 392609744U, 783U, 1636083295U },
237*4882a593Smuzhiyun { 690241304U, 770U, 1201031298U },
238*4882a593Smuzhiyun { 1360302965U, 696U, 1665394461U },
239*4882a593Smuzhiyun { 1220090946U, 780U, 1316922812U },
240*4882a593Smuzhiyun { 447092251U, 500U, 3438743375U },
241*4882a593Smuzhiyun { 1613868791U, 592U, 828546883U },
242*4882a593Smuzhiyun { 523430951U, 548U, 2552392304U },
243*4882a593Smuzhiyun { 726692899U, 810U, 1656872867U },
244*4882a593Smuzhiyun { 1364340021U, 836U, 3710513486U },
245*4882a593Smuzhiyun { 1986257729U, 931U, 935013962U },
246*4882a593Smuzhiyun { 407983964U, 921U, 728767059U },
247*4882a593Smuzhiyun };
248*4882a593Smuzhiyun
__extract_hwseed(void)249*4882a593Smuzhiyun static u32 __extract_hwseed(void)
250*4882a593Smuzhiyun {
251*4882a593Smuzhiyun unsigned int val = 0;
252*4882a593Smuzhiyun
253*4882a593Smuzhiyun (void)(arch_get_random_seed_int(&val) ||
254*4882a593Smuzhiyun arch_get_random_int(&val));
255*4882a593Smuzhiyun
256*4882a593Smuzhiyun return val;
257*4882a593Smuzhiyun }
258*4882a593Smuzhiyun
prandom_seed_early(struct rnd_state * state,u32 seed,bool mix_with_hwseed)259*4882a593Smuzhiyun static void prandom_seed_early(struct rnd_state *state, u32 seed,
260*4882a593Smuzhiyun bool mix_with_hwseed)
261*4882a593Smuzhiyun {
262*4882a593Smuzhiyun #define LCG(x) ((x) * 69069U) /* super-duper LCG */
263*4882a593Smuzhiyun #define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
264*4882a593Smuzhiyun state->s1 = __seed(HWSEED() ^ LCG(seed), 2U);
265*4882a593Smuzhiyun state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U);
266*4882a593Smuzhiyun state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U);
267*4882a593Smuzhiyun state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
268*4882a593Smuzhiyun }
269*4882a593Smuzhiyun
prandom_state_selftest(void)270*4882a593Smuzhiyun static int __init prandom_state_selftest(void)
271*4882a593Smuzhiyun {
272*4882a593Smuzhiyun int i, j, errors = 0, runs = 0;
273*4882a593Smuzhiyun bool error = false;
274*4882a593Smuzhiyun
275*4882a593Smuzhiyun for (i = 0; i < ARRAY_SIZE(test1); i++) {
276*4882a593Smuzhiyun struct rnd_state state;
277*4882a593Smuzhiyun
278*4882a593Smuzhiyun prandom_seed_early(&state, test1[i].seed, false);
279*4882a593Smuzhiyun prandom_warmup(&state);
280*4882a593Smuzhiyun
281*4882a593Smuzhiyun if (test1[i].result != prandom_u32_state(&state))
282*4882a593Smuzhiyun error = true;
283*4882a593Smuzhiyun }
284*4882a593Smuzhiyun
285*4882a593Smuzhiyun if (error)
286*4882a593Smuzhiyun pr_warn("prandom: seed boundary self test failed\n");
287*4882a593Smuzhiyun else
288*4882a593Smuzhiyun pr_info("prandom: seed boundary self test passed\n");
289*4882a593Smuzhiyun
290*4882a593Smuzhiyun for (i = 0; i < ARRAY_SIZE(test2); i++) {
291*4882a593Smuzhiyun struct rnd_state state;
292*4882a593Smuzhiyun
293*4882a593Smuzhiyun prandom_seed_early(&state, test2[i].seed, false);
294*4882a593Smuzhiyun prandom_warmup(&state);
295*4882a593Smuzhiyun
296*4882a593Smuzhiyun for (j = 0; j < test2[i].iteration - 1; j++)
297*4882a593Smuzhiyun prandom_u32_state(&state);
298*4882a593Smuzhiyun
299*4882a593Smuzhiyun if (test2[i].result != prandom_u32_state(&state))
300*4882a593Smuzhiyun errors++;
301*4882a593Smuzhiyun
302*4882a593Smuzhiyun runs++;
303*4882a593Smuzhiyun cond_resched();
304*4882a593Smuzhiyun }
305*4882a593Smuzhiyun
306*4882a593Smuzhiyun if (errors)
307*4882a593Smuzhiyun pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
308*4882a593Smuzhiyun else
309*4882a593Smuzhiyun pr_info("prandom: %d self tests passed\n", runs);
310*4882a593Smuzhiyun return 0;
311*4882a593Smuzhiyun }
312*4882a593Smuzhiyun core_initcall(prandom_state_selftest);
313*4882a593Smuzhiyun #endif
314*4882a593Smuzhiyun
315*4882a593Smuzhiyun /*
316*4882a593Smuzhiyun * The prandom_u32() implementation is now completely separate from the
317*4882a593Smuzhiyun * prandom_state() functions, which are retained (for now) for compatibility.
318*4882a593Smuzhiyun *
319*4882a593Smuzhiyun * Because of (ab)use in the networking code for choosing random TCP/UDP port
320*4882a593Smuzhiyun * numbers, which open DoS possibilities if guessable, we want something
321*4882a593Smuzhiyun * stronger than a standard PRNG. But the performance requirements of
322*4882a593Smuzhiyun * the network code do not allow robust crypto for this application.
323*4882a593Smuzhiyun *
324*4882a593Smuzhiyun * So this is a homebrew Junior Spaceman implementation, based on the
325*4882a593Smuzhiyun * lowest-latency trustworthy crypto primitive available, SipHash.
326*4882a593Smuzhiyun * (The authors of SipHash have not been consulted about this abuse of
327*4882a593Smuzhiyun * their work.)
328*4882a593Smuzhiyun *
329*4882a593Smuzhiyun * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to
330*4882a593Smuzhiyun * one word of output. This abbreviated version uses 2 rounds per word
331*4882a593Smuzhiyun * of output.
332*4882a593Smuzhiyun */
333*4882a593Smuzhiyun
334*4882a593Smuzhiyun struct siprand_state {
335*4882a593Smuzhiyun unsigned long v0;
336*4882a593Smuzhiyun unsigned long v1;
337*4882a593Smuzhiyun unsigned long v2;
338*4882a593Smuzhiyun unsigned long v3;
339*4882a593Smuzhiyun };
340*4882a593Smuzhiyun
341*4882a593Smuzhiyun static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy;
342*4882a593Smuzhiyun DEFINE_PER_CPU(unsigned long, net_rand_noise);
343*4882a593Smuzhiyun EXPORT_PER_CPU_SYMBOL(net_rand_noise);
344*4882a593Smuzhiyun
345*4882a593Smuzhiyun /*
346*4882a593Smuzhiyun * This is the core CPRNG function. As "pseudorandom", this is not used
347*4882a593Smuzhiyun * for truly valuable things, just intended to be a PITA to guess.
348*4882a593Smuzhiyun * For maximum speed, we do just two SipHash rounds per word. This is
349*4882a593Smuzhiyun * the same rate as 4 rounds per 64 bits that SipHash normally uses,
350*4882a593Smuzhiyun * so hopefully it's reasonably secure.
351*4882a593Smuzhiyun *
352*4882a593Smuzhiyun * There are two changes from the official SipHash finalization:
353*4882a593Smuzhiyun * - We omit some constants XORed with v2 in the SipHash spec as irrelevant;
354*4882a593Smuzhiyun * they are there only to make the output rounds distinct from the input
355*4882a593Smuzhiyun * rounds, and this application has no input rounds.
356*4882a593Smuzhiyun * - Rather than returning v0^v1^v2^v3, return v1+v3.
357*4882a593Smuzhiyun * If you look at the SipHash round, the last operation on v3 is
358*4882a593Smuzhiyun * "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time.
359*4882a593Smuzhiyun * Likewise "v1 ^= v2". (The rotate of v2 makes a difference, but
360*4882a593Smuzhiyun * it still cancels out half of the bits in v2 for no benefit.)
361*4882a593Smuzhiyun * Second, since the last combining operation was xor, continue the
362*4882a593Smuzhiyun * pattern of alternating xor/add for a tiny bit of extra non-linearity.
363*4882a593Smuzhiyun */
siprand_u32(struct siprand_state * s)364*4882a593Smuzhiyun static inline u32 siprand_u32(struct siprand_state *s)
365*4882a593Smuzhiyun {
366*4882a593Smuzhiyun unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3;
367*4882a593Smuzhiyun unsigned long n = raw_cpu_read(net_rand_noise);
368*4882a593Smuzhiyun
369*4882a593Smuzhiyun v3 ^= n;
370*4882a593Smuzhiyun PRND_SIPROUND(v0, v1, v2, v3);
371*4882a593Smuzhiyun PRND_SIPROUND(v0, v1, v2, v3);
372*4882a593Smuzhiyun v0 ^= n;
373*4882a593Smuzhiyun s->v0 = v0; s->v1 = v1; s->v2 = v2; s->v3 = v3;
374*4882a593Smuzhiyun return v1 + v3;
375*4882a593Smuzhiyun }
376*4882a593Smuzhiyun
377*4882a593Smuzhiyun
378*4882a593Smuzhiyun /**
379*4882a593Smuzhiyun * prandom_u32 - pseudo random number generator
380*4882a593Smuzhiyun *
381*4882a593Smuzhiyun * A 32 bit pseudo-random number is generated using a fast
382*4882a593Smuzhiyun * algorithm suitable for simulation. This algorithm is NOT
383*4882a593Smuzhiyun * considered safe for cryptographic use.
384*4882a593Smuzhiyun */
prandom_u32(void)385*4882a593Smuzhiyun u32 prandom_u32(void)
386*4882a593Smuzhiyun {
387*4882a593Smuzhiyun struct siprand_state *state = get_cpu_ptr(&net_rand_state);
388*4882a593Smuzhiyun u32 res = siprand_u32(state);
389*4882a593Smuzhiyun
390*4882a593Smuzhiyun put_cpu_ptr(&net_rand_state);
391*4882a593Smuzhiyun return res;
392*4882a593Smuzhiyun }
393*4882a593Smuzhiyun EXPORT_SYMBOL(prandom_u32);
394*4882a593Smuzhiyun
395*4882a593Smuzhiyun /**
396*4882a593Smuzhiyun * prandom_bytes - get the requested number of pseudo-random bytes
397*4882a593Smuzhiyun * @buf: where to copy the pseudo-random bytes to
398*4882a593Smuzhiyun * @bytes: the requested number of bytes
399*4882a593Smuzhiyun */
prandom_bytes(void * buf,size_t bytes)400*4882a593Smuzhiyun void prandom_bytes(void *buf, size_t bytes)
401*4882a593Smuzhiyun {
402*4882a593Smuzhiyun struct siprand_state *state = get_cpu_ptr(&net_rand_state);
403*4882a593Smuzhiyun u8 *ptr = buf;
404*4882a593Smuzhiyun
405*4882a593Smuzhiyun while (bytes >= sizeof(u32)) {
406*4882a593Smuzhiyun put_unaligned(siprand_u32(state), (u32 *)ptr);
407*4882a593Smuzhiyun ptr += sizeof(u32);
408*4882a593Smuzhiyun bytes -= sizeof(u32);
409*4882a593Smuzhiyun }
410*4882a593Smuzhiyun
411*4882a593Smuzhiyun if (bytes > 0) {
412*4882a593Smuzhiyun u32 rem = siprand_u32(state);
413*4882a593Smuzhiyun
414*4882a593Smuzhiyun do {
415*4882a593Smuzhiyun *ptr++ = (u8)rem;
416*4882a593Smuzhiyun rem >>= BITS_PER_BYTE;
417*4882a593Smuzhiyun } while (--bytes > 0);
418*4882a593Smuzhiyun }
419*4882a593Smuzhiyun put_cpu_ptr(&net_rand_state);
420*4882a593Smuzhiyun }
421*4882a593Smuzhiyun EXPORT_SYMBOL(prandom_bytes);
422*4882a593Smuzhiyun
423*4882a593Smuzhiyun /**
424*4882a593Smuzhiyun * prandom_seed - add entropy to pseudo random number generator
425*4882a593Smuzhiyun * @entropy: entropy value
426*4882a593Smuzhiyun *
427*4882a593Smuzhiyun * Add some additional seed material to the prandom pool.
428*4882a593Smuzhiyun * The "entropy" is actually our IP address (the only caller is
429*4882a593Smuzhiyun * the network code), not for unpredictability, but to ensure that
430*4882a593Smuzhiyun * different machines are initialized differently.
431*4882a593Smuzhiyun */
prandom_seed(u32 entropy)432*4882a593Smuzhiyun void prandom_seed(u32 entropy)
433*4882a593Smuzhiyun {
434*4882a593Smuzhiyun int i;
435*4882a593Smuzhiyun
436*4882a593Smuzhiyun add_device_randomness(&entropy, sizeof(entropy));
437*4882a593Smuzhiyun
438*4882a593Smuzhiyun for_each_possible_cpu(i) {
439*4882a593Smuzhiyun struct siprand_state *state = per_cpu_ptr(&net_rand_state, i);
440*4882a593Smuzhiyun unsigned long v0 = state->v0, v1 = state->v1;
441*4882a593Smuzhiyun unsigned long v2 = state->v2, v3 = state->v3;
442*4882a593Smuzhiyun
443*4882a593Smuzhiyun do {
444*4882a593Smuzhiyun v3 ^= entropy;
445*4882a593Smuzhiyun PRND_SIPROUND(v0, v1, v2, v3);
446*4882a593Smuzhiyun PRND_SIPROUND(v0, v1, v2, v3);
447*4882a593Smuzhiyun v0 ^= entropy;
448*4882a593Smuzhiyun } while (unlikely(!v0 || !v1 || !v2 || !v3));
449*4882a593Smuzhiyun
450*4882a593Smuzhiyun WRITE_ONCE(state->v0, v0);
451*4882a593Smuzhiyun WRITE_ONCE(state->v1, v1);
452*4882a593Smuzhiyun WRITE_ONCE(state->v2, v2);
453*4882a593Smuzhiyun WRITE_ONCE(state->v3, v3);
454*4882a593Smuzhiyun }
455*4882a593Smuzhiyun }
456*4882a593Smuzhiyun EXPORT_SYMBOL(prandom_seed);
457*4882a593Smuzhiyun
458*4882a593Smuzhiyun /*
459*4882a593Smuzhiyun * Generate some initially weak seeding values to allow
460*4882a593Smuzhiyun * the prandom_u32() engine to be started.
461*4882a593Smuzhiyun */
prandom_init_early(void)462*4882a593Smuzhiyun static int __init prandom_init_early(void)
463*4882a593Smuzhiyun {
464*4882a593Smuzhiyun int i;
465*4882a593Smuzhiyun unsigned long v0, v1, v2, v3;
466*4882a593Smuzhiyun
467*4882a593Smuzhiyun if (!arch_get_random_long(&v0))
468*4882a593Smuzhiyun v0 = jiffies;
469*4882a593Smuzhiyun if (!arch_get_random_long(&v1))
470*4882a593Smuzhiyun v1 = random_get_entropy();
471*4882a593Smuzhiyun v2 = v0 ^ PRND_K0;
472*4882a593Smuzhiyun v3 = v1 ^ PRND_K1;
473*4882a593Smuzhiyun
474*4882a593Smuzhiyun for_each_possible_cpu(i) {
475*4882a593Smuzhiyun struct siprand_state *state;
476*4882a593Smuzhiyun
477*4882a593Smuzhiyun v3 ^= i;
478*4882a593Smuzhiyun PRND_SIPROUND(v0, v1, v2, v3);
479*4882a593Smuzhiyun PRND_SIPROUND(v0, v1, v2, v3);
480*4882a593Smuzhiyun v0 ^= i;
481*4882a593Smuzhiyun
482*4882a593Smuzhiyun state = per_cpu_ptr(&net_rand_state, i);
483*4882a593Smuzhiyun state->v0 = v0; state->v1 = v1;
484*4882a593Smuzhiyun state->v2 = v2; state->v3 = v3;
485*4882a593Smuzhiyun }
486*4882a593Smuzhiyun
487*4882a593Smuzhiyun return 0;
488*4882a593Smuzhiyun }
489*4882a593Smuzhiyun core_initcall(prandom_init_early);
490*4882a593Smuzhiyun
491*4882a593Smuzhiyun
492*4882a593Smuzhiyun /* Stronger reseeding when available, and periodically thereafter. */
493*4882a593Smuzhiyun static void prandom_reseed(struct timer_list *unused);
494*4882a593Smuzhiyun
495*4882a593Smuzhiyun static DEFINE_TIMER(seed_timer, prandom_reseed);
496*4882a593Smuzhiyun
prandom_reseed(struct timer_list * unused)497*4882a593Smuzhiyun static void prandom_reseed(struct timer_list *unused)
498*4882a593Smuzhiyun {
499*4882a593Smuzhiyun unsigned long expires;
500*4882a593Smuzhiyun int i;
501*4882a593Smuzhiyun
502*4882a593Smuzhiyun /*
503*4882a593Smuzhiyun * Reinitialize each CPU's PRNG with 128 bits of key.
504*4882a593Smuzhiyun * No locking on the CPUs, but then somewhat random results are,
505*4882a593Smuzhiyun * well, expected.
506*4882a593Smuzhiyun */
507*4882a593Smuzhiyun for_each_possible_cpu(i) {
508*4882a593Smuzhiyun struct siprand_state *state;
509*4882a593Smuzhiyun unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0;
510*4882a593Smuzhiyun unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1;
511*4882a593Smuzhiyun #if BITS_PER_LONG == 32
512*4882a593Smuzhiyun int j;
513*4882a593Smuzhiyun
514*4882a593Smuzhiyun /*
515*4882a593Smuzhiyun * On 32-bit machines, hash in two extra words to
516*4882a593Smuzhiyun * approximate 128-bit key length. Not that the hash
517*4882a593Smuzhiyun * has that much security, but this prevents a trivial
518*4882a593Smuzhiyun * 64-bit brute force.
519*4882a593Smuzhiyun */
520*4882a593Smuzhiyun for (j = 0; j < 2; j++) {
521*4882a593Smuzhiyun unsigned long m = get_random_long();
522*4882a593Smuzhiyun
523*4882a593Smuzhiyun v3 ^= m;
524*4882a593Smuzhiyun PRND_SIPROUND(v0, v1, v2, v3);
525*4882a593Smuzhiyun PRND_SIPROUND(v0, v1, v2, v3);
526*4882a593Smuzhiyun v0 ^= m;
527*4882a593Smuzhiyun }
528*4882a593Smuzhiyun #endif
529*4882a593Smuzhiyun /*
530*4882a593Smuzhiyun * Probably impossible in practice, but there is a
531*4882a593Smuzhiyun * theoretical risk that a race between this reseeding
532*4882a593Smuzhiyun * and the target CPU writing its state back could
533*4882a593Smuzhiyun * create the all-zero SipHash fixed point.
534*4882a593Smuzhiyun *
535*4882a593Smuzhiyun * To ensure that never happens, ensure the state
536*4882a593Smuzhiyun * we write contains no zero words.
537*4882a593Smuzhiyun */
538*4882a593Smuzhiyun state = per_cpu_ptr(&net_rand_state, i);
539*4882a593Smuzhiyun WRITE_ONCE(state->v0, v0 ? v0 : -1ul);
540*4882a593Smuzhiyun WRITE_ONCE(state->v1, v1 ? v1 : -1ul);
541*4882a593Smuzhiyun WRITE_ONCE(state->v2, v2 ? v2 : -1ul);
542*4882a593Smuzhiyun WRITE_ONCE(state->v3, v3 ? v3 : -1ul);
543*4882a593Smuzhiyun }
544*4882a593Smuzhiyun
545*4882a593Smuzhiyun /* reseed every ~60 seconds, in [40 .. 80) interval with slack */
546*4882a593Smuzhiyun expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ));
547*4882a593Smuzhiyun mod_timer(&seed_timer, expires);
548*4882a593Smuzhiyun }
549*4882a593Smuzhiyun
550*4882a593Smuzhiyun /*
551*4882a593Smuzhiyun * The random ready callback can be called from almost any interrupt.
552*4882a593Smuzhiyun * To avoid worrying about whether it's safe to delay that interrupt
553*4882a593Smuzhiyun * long enough to seed all CPUs, just schedule an immediate timer event.
554*4882a593Smuzhiyun */
prandom_timer_start(struct notifier_block * nb,unsigned long action,void * data)555*4882a593Smuzhiyun static int prandom_timer_start(struct notifier_block *nb,
556*4882a593Smuzhiyun unsigned long action, void *data)
557*4882a593Smuzhiyun {
558*4882a593Smuzhiyun mod_timer(&seed_timer, jiffies);
559*4882a593Smuzhiyun return 0;
560*4882a593Smuzhiyun }
561*4882a593Smuzhiyun
562*4882a593Smuzhiyun #ifdef CONFIG_RANDOM32_SELFTEST
563*4882a593Smuzhiyun /* Principle: True 32-bit random numbers will all have 16 differing bits on
564*4882a593Smuzhiyun * average. For each 32-bit number, there are 601M numbers differing by 16
565*4882a593Smuzhiyun * bits, and 89% of the numbers differ by at least 12 bits. Note that more
566*4882a593Smuzhiyun * than 16 differing bits also implies a correlation with inverted bits. Thus
567*4882a593Smuzhiyun * we take 1024 random numbers and compare each of them to the other ones,
568*4882a593Smuzhiyun * counting the deviation of correlated bits to 16. Constants report 32,
569*4882a593Smuzhiyun * counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the
570*4882a593Smuzhiyun * u32 total, TEST_SIZE may be as large as 4096 samples.
571*4882a593Smuzhiyun */
572*4882a593Smuzhiyun #define TEST_SIZE 1024
prandom32_state_selftest(void)573*4882a593Smuzhiyun static int __init prandom32_state_selftest(void)
574*4882a593Smuzhiyun {
575*4882a593Smuzhiyun unsigned int x, y, bits, samples;
576*4882a593Smuzhiyun u32 xor, flip;
577*4882a593Smuzhiyun u32 total;
578*4882a593Smuzhiyun u32 *data;
579*4882a593Smuzhiyun
580*4882a593Smuzhiyun data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL);
581*4882a593Smuzhiyun if (!data)
582*4882a593Smuzhiyun return 0;
583*4882a593Smuzhiyun
584*4882a593Smuzhiyun for (samples = 0; samples < TEST_SIZE; samples++)
585*4882a593Smuzhiyun data[samples] = prandom_u32();
586*4882a593Smuzhiyun
587*4882a593Smuzhiyun flip = total = 0;
588*4882a593Smuzhiyun for (x = 0; x < samples; x++) {
589*4882a593Smuzhiyun for (y = 0; y < samples; y++) {
590*4882a593Smuzhiyun if (x == y)
591*4882a593Smuzhiyun continue;
592*4882a593Smuzhiyun xor = data[x] ^ data[y];
593*4882a593Smuzhiyun flip |= xor;
594*4882a593Smuzhiyun bits = hweight32(xor);
595*4882a593Smuzhiyun total += (bits - 16) * (bits - 16);
596*4882a593Smuzhiyun }
597*4882a593Smuzhiyun }
598*4882a593Smuzhiyun
599*4882a593Smuzhiyun /* We'll return the average deviation as 2*sqrt(corr/samples), which
600*4882a593Smuzhiyun * is also sqrt(4*corr/samples) which provides a better resolution.
601*4882a593Smuzhiyun */
602*4882a593Smuzhiyun bits = int_sqrt(total / (samples * (samples - 1)) * 4);
603*4882a593Smuzhiyun if (bits > 6)
604*4882a593Smuzhiyun pr_warn("prandom32: self test failed (at least %u bits"
605*4882a593Smuzhiyun " correlated, fixed_mask=%#x fixed_value=%#x\n",
606*4882a593Smuzhiyun bits, ~flip, data[0] & ~flip);
607*4882a593Smuzhiyun else
608*4882a593Smuzhiyun pr_info("prandom32: self test passed (less than %u bits"
609*4882a593Smuzhiyun " correlated)\n",
610*4882a593Smuzhiyun bits+1);
611*4882a593Smuzhiyun kfree(data);
612*4882a593Smuzhiyun return 0;
613*4882a593Smuzhiyun }
614*4882a593Smuzhiyun core_initcall(prandom32_state_selftest);
615*4882a593Smuzhiyun #endif /* CONFIG_RANDOM32_SELFTEST */
616*4882a593Smuzhiyun
617*4882a593Smuzhiyun /*
618*4882a593Smuzhiyun * Start periodic full reseeding as soon as strong
619*4882a593Smuzhiyun * random numbers are available.
620*4882a593Smuzhiyun */
prandom_init_late(void)621*4882a593Smuzhiyun static int __init prandom_init_late(void)
622*4882a593Smuzhiyun {
623*4882a593Smuzhiyun static struct notifier_block random_ready = {
624*4882a593Smuzhiyun .notifier_call = prandom_timer_start
625*4882a593Smuzhiyun };
626*4882a593Smuzhiyun int ret = register_random_ready_notifier(&random_ready);
627*4882a593Smuzhiyun
628*4882a593Smuzhiyun if (ret == -EALREADY) {
629*4882a593Smuzhiyun prandom_timer_start(&random_ready, 0, NULL);
630*4882a593Smuzhiyun ret = 0;
631*4882a593Smuzhiyun }
632*4882a593Smuzhiyun return ret;
633*4882a593Smuzhiyun }
634*4882a593Smuzhiyun late_initcall(prandom_init_late);
635