xref: /OK3568_Linux_fs/kernel/lib/math/prime_numbers.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0-only
2*4882a593Smuzhiyun #define pr_fmt(fmt) "prime numbers: " fmt
3*4882a593Smuzhiyun 
4*4882a593Smuzhiyun #include <linux/module.h>
5*4882a593Smuzhiyun #include <linux/mutex.h>
6*4882a593Smuzhiyun #include <linux/prime_numbers.h>
7*4882a593Smuzhiyun #include <linux/slab.h>
8*4882a593Smuzhiyun 
9*4882a593Smuzhiyun #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
10*4882a593Smuzhiyun 
11*4882a593Smuzhiyun struct primes {
12*4882a593Smuzhiyun 	struct rcu_head rcu;
13*4882a593Smuzhiyun 	unsigned long last, sz;
14*4882a593Smuzhiyun 	unsigned long primes[];
15*4882a593Smuzhiyun };
16*4882a593Smuzhiyun 
17*4882a593Smuzhiyun #if BITS_PER_LONG == 64
18*4882a593Smuzhiyun static const struct primes small_primes = {
19*4882a593Smuzhiyun 	.last = 61,
20*4882a593Smuzhiyun 	.sz = 64,
21*4882a593Smuzhiyun 	.primes = {
22*4882a593Smuzhiyun 		BIT(2) |
23*4882a593Smuzhiyun 		BIT(3) |
24*4882a593Smuzhiyun 		BIT(5) |
25*4882a593Smuzhiyun 		BIT(7) |
26*4882a593Smuzhiyun 		BIT(11) |
27*4882a593Smuzhiyun 		BIT(13) |
28*4882a593Smuzhiyun 		BIT(17) |
29*4882a593Smuzhiyun 		BIT(19) |
30*4882a593Smuzhiyun 		BIT(23) |
31*4882a593Smuzhiyun 		BIT(29) |
32*4882a593Smuzhiyun 		BIT(31) |
33*4882a593Smuzhiyun 		BIT(37) |
34*4882a593Smuzhiyun 		BIT(41) |
35*4882a593Smuzhiyun 		BIT(43) |
36*4882a593Smuzhiyun 		BIT(47) |
37*4882a593Smuzhiyun 		BIT(53) |
38*4882a593Smuzhiyun 		BIT(59) |
39*4882a593Smuzhiyun 		BIT(61)
40*4882a593Smuzhiyun 	}
41*4882a593Smuzhiyun };
42*4882a593Smuzhiyun #elif BITS_PER_LONG == 32
43*4882a593Smuzhiyun static const struct primes small_primes = {
44*4882a593Smuzhiyun 	.last = 31,
45*4882a593Smuzhiyun 	.sz = 32,
46*4882a593Smuzhiyun 	.primes = {
47*4882a593Smuzhiyun 		BIT(2) |
48*4882a593Smuzhiyun 		BIT(3) |
49*4882a593Smuzhiyun 		BIT(5) |
50*4882a593Smuzhiyun 		BIT(7) |
51*4882a593Smuzhiyun 		BIT(11) |
52*4882a593Smuzhiyun 		BIT(13) |
53*4882a593Smuzhiyun 		BIT(17) |
54*4882a593Smuzhiyun 		BIT(19) |
55*4882a593Smuzhiyun 		BIT(23) |
56*4882a593Smuzhiyun 		BIT(29) |
57*4882a593Smuzhiyun 		BIT(31)
58*4882a593Smuzhiyun 	}
59*4882a593Smuzhiyun };
60*4882a593Smuzhiyun #else
61*4882a593Smuzhiyun #error "unhandled BITS_PER_LONG"
62*4882a593Smuzhiyun #endif
63*4882a593Smuzhiyun 
64*4882a593Smuzhiyun static DEFINE_MUTEX(lock);
65*4882a593Smuzhiyun static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
66*4882a593Smuzhiyun 
67*4882a593Smuzhiyun static unsigned long selftest_max;
68*4882a593Smuzhiyun 
slow_is_prime_number(unsigned long x)69*4882a593Smuzhiyun static bool slow_is_prime_number(unsigned long x)
70*4882a593Smuzhiyun {
71*4882a593Smuzhiyun 	unsigned long y = int_sqrt(x);
72*4882a593Smuzhiyun 
73*4882a593Smuzhiyun 	while (y > 1) {
74*4882a593Smuzhiyun 		if ((x % y) == 0)
75*4882a593Smuzhiyun 			break;
76*4882a593Smuzhiyun 		y--;
77*4882a593Smuzhiyun 	}
78*4882a593Smuzhiyun 
79*4882a593Smuzhiyun 	return y == 1;
80*4882a593Smuzhiyun }
81*4882a593Smuzhiyun 
slow_next_prime_number(unsigned long x)82*4882a593Smuzhiyun static unsigned long slow_next_prime_number(unsigned long x)
83*4882a593Smuzhiyun {
84*4882a593Smuzhiyun 	while (x < ULONG_MAX && !slow_is_prime_number(++x))
85*4882a593Smuzhiyun 		;
86*4882a593Smuzhiyun 
87*4882a593Smuzhiyun 	return x;
88*4882a593Smuzhiyun }
89*4882a593Smuzhiyun 
clear_multiples(unsigned long x,unsigned long * p,unsigned long start,unsigned long end)90*4882a593Smuzhiyun static unsigned long clear_multiples(unsigned long x,
91*4882a593Smuzhiyun 				     unsigned long *p,
92*4882a593Smuzhiyun 				     unsigned long start,
93*4882a593Smuzhiyun 				     unsigned long end)
94*4882a593Smuzhiyun {
95*4882a593Smuzhiyun 	unsigned long m;
96*4882a593Smuzhiyun 
97*4882a593Smuzhiyun 	m = 2 * x;
98*4882a593Smuzhiyun 	if (m < start)
99*4882a593Smuzhiyun 		m = roundup(start, x);
100*4882a593Smuzhiyun 
101*4882a593Smuzhiyun 	while (m < end) {
102*4882a593Smuzhiyun 		__clear_bit(m, p);
103*4882a593Smuzhiyun 		m += x;
104*4882a593Smuzhiyun 	}
105*4882a593Smuzhiyun 
106*4882a593Smuzhiyun 	return x;
107*4882a593Smuzhiyun }
108*4882a593Smuzhiyun 
expand_to_next_prime(unsigned long x)109*4882a593Smuzhiyun static bool expand_to_next_prime(unsigned long x)
110*4882a593Smuzhiyun {
111*4882a593Smuzhiyun 	const struct primes *p;
112*4882a593Smuzhiyun 	struct primes *new;
113*4882a593Smuzhiyun 	unsigned long sz, y;
114*4882a593Smuzhiyun 
115*4882a593Smuzhiyun 	/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
116*4882a593Smuzhiyun 	 * there is always at least one prime p between n and 2n - 2.
117*4882a593Smuzhiyun 	 * Equivalently, if n > 1, then there is always at least one prime p
118*4882a593Smuzhiyun 	 * such that n < p < 2n.
119*4882a593Smuzhiyun 	 *
120*4882a593Smuzhiyun 	 * http://mathworld.wolfram.com/BertrandsPostulate.html
121*4882a593Smuzhiyun 	 * https://en.wikipedia.org/wiki/Bertrand's_postulate
122*4882a593Smuzhiyun 	 */
123*4882a593Smuzhiyun 	sz = 2 * x;
124*4882a593Smuzhiyun 	if (sz < x)
125*4882a593Smuzhiyun 		return false;
126*4882a593Smuzhiyun 
127*4882a593Smuzhiyun 	sz = round_up(sz, BITS_PER_LONG);
128*4882a593Smuzhiyun 	new = kmalloc(sizeof(*new) + bitmap_size(sz),
129*4882a593Smuzhiyun 		      GFP_KERNEL | __GFP_NOWARN);
130*4882a593Smuzhiyun 	if (!new)
131*4882a593Smuzhiyun 		return false;
132*4882a593Smuzhiyun 
133*4882a593Smuzhiyun 	mutex_lock(&lock);
134*4882a593Smuzhiyun 	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
135*4882a593Smuzhiyun 	if (x < p->last) {
136*4882a593Smuzhiyun 		kfree(new);
137*4882a593Smuzhiyun 		goto unlock;
138*4882a593Smuzhiyun 	}
139*4882a593Smuzhiyun 
140*4882a593Smuzhiyun 	/* Where memory permits, track the primes using the
141*4882a593Smuzhiyun 	 * Sieve of Eratosthenes. The sieve is to remove all multiples of known
142*4882a593Smuzhiyun 	 * primes from the set, what remains in the set is therefore prime.
143*4882a593Smuzhiyun 	 */
144*4882a593Smuzhiyun 	bitmap_fill(new->primes, sz);
145*4882a593Smuzhiyun 	bitmap_copy(new->primes, p->primes, p->sz);
146*4882a593Smuzhiyun 	for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
147*4882a593Smuzhiyun 		new->last = clear_multiples(y, new->primes, p->sz, sz);
148*4882a593Smuzhiyun 	new->sz = sz;
149*4882a593Smuzhiyun 
150*4882a593Smuzhiyun 	BUG_ON(new->last <= x);
151*4882a593Smuzhiyun 
152*4882a593Smuzhiyun 	rcu_assign_pointer(primes, new);
153*4882a593Smuzhiyun 	if (p != &small_primes)
154*4882a593Smuzhiyun 		kfree_rcu((struct primes *)p, rcu);
155*4882a593Smuzhiyun 
156*4882a593Smuzhiyun unlock:
157*4882a593Smuzhiyun 	mutex_unlock(&lock);
158*4882a593Smuzhiyun 	return true;
159*4882a593Smuzhiyun }
160*4882a593Smuzhiyun 
free_primes(void)161*4882a593Smuzhiyun static void free_primes(void)
162*4882a593Smuzhiyun {
163*4882a593Smuzhiyun 	const struct primes *p;
164*4882a593Smuzhiyun 
165*4882a593Smuzhiyun 	mutex_lock(&lock);
166*4882a593Smuzhiyun 	p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
167*4882a593Smuzhiyun 	if (p != &small_primes) {
168*4882a593Smuzhiyun 		rcu_assign_pointer(primes, &small_primes);
169*4882a593Smuzhiyun 		kfree_rcu((struct primes *)p, rcu);
170*4882a593Smuzhiyun 	}
171*4882a593Smuzhiyun 	mutex_unlock(&lock);
172*4882a593Smuzhiyun }
173*4882a593Smuzhiyun 
174*4882a593Smuzhiyun /**
175*4882a593Smuzhiyun  * next_prime_number - return the next prime number
176*4882a593Smuzhiyun  * @x: the starting point for searching to test
177*4882a593Smuzhiyun  *
178*4882a593Smuzhiyun  * A prime number is an integer greater than 1 that is only divisible by
179*4882a593Smuzhiyun  * itself and 1.  The set of prime numbers is computed using the Sieve of
180*4882a593Smuzhiyun  * Eratoshenes (on finding a prime, all multiples of that prime are removed
181*4882a593Smuzhiyun  * from the set) enabling a fast lookup of the next prime number larger than
182*4882a593Smuzhiyun  * @x. If the sieve fails (memory limitation), the search falls back to using
183*4882a593Smuzhiyun  * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
184*4882a593Smuzhiyun  * final prime as a sentinel).
185*4882a593Smuzhiyun  *
186*4882a593Smuzhiyun  * Returns: the next prime number larger than @x
187*4882a593Smuzhiyun  */
next_prime_number(unsigned long x)188*4882a593Smuzhiyun unsigned long next_prime_number(unsigned long x)
189*4882a593Smuzhiyun {
190*4882a593Smuzhiyun 	const struct primes *p;
191*4882a593Smuzhiyun 
192*4882a593Smuzhiyun 	rcu_read_lock();
193*4882a593Smuzhiyun 	p = rcu_dereference(primes);
194*4882a593Smuzhiyun 	while (x >= p->last) {
195*4882a593Smuzhiyun 		rcu_read_unlock();
196*4882a593Smuzhiyun 
197*4882a593Smuzhiyun 		if (!expand_to_next_prime(x))
198*4882a593Smuzhiyun 			return slow_next_prime_number(x);
199*4882a593Smuzhiyun 
200*4882a593Smuzhiyun 		rcu_read_lock();
201*4882a593Smuzhiyun 		p = rcu_dereference(primes);
202*4882a593Smuzhiyun 	}
203*4882a593Smuzhiyun 	x = find_next_bit(p->primes, p->last, x + 1);
204*4882a593Smuzhiyun 	rcu_read_unlock();
205*4882a593Smuzhiyun 
206*4882a593Smuzhiyun 	return x;
207*4882a593Smuzhiyun }
208*4882a593Smuzhiyun EXPORT_SYMBOL(next_prime_number);
209*4882a593Smuzhiyun 
210*4882a593Smuzhiyun /**
211*4882a593Smuzhiyun  * is_prime_number - test whether the given number is prime
212*4882a593Smuzhiyun  * @x: the number to test
213*4882a593Smuzhiyun  *
214*4882a593Smuzhiyun  * A prime number is an integer greater than 1 that is only divisible by
215*4882a593Smuzhiyun  * itself and 1. Internally a cache of prime numbers is kept (to speed up
216*4882a593Smuzhiyun  * searching for sequential primes, see next_prime_number()), but if the number
217*4882a593Smuzhiyun  * falls outside of that cache, its primality is tested using trial-divison.
218*4882a593Smuzhiyun  *
219*4882a593Smuzhiyun  * Returns: true if @x is prime, false for composite numbers.
220*4882a593Smuzhiyun  */
is_prime_number(unsigned long x)221*4882a593Smuzhiyun bool is_prime_number(unsigned long x)
222*4882a593Smuzhiyun {
223*4882a593Smuzhiyun 	const struct primes *p;
224*4882a593Smuzhiyun 	bool result;
225*4882a593Smuzhiyun 
226*4882a593Smuzhiyun 	rcu_read_lock();
227*4882a593Smuzhiyun 	p = rcu_dereference(primes);
228*4882a593Smuzhiyun 	while (x >= p->sz) {
229*4882a593Smuzhiyun 		rcu_read_unlock();
230*4882a593Smuzhiyun 
231*4882a593Smuzhiyun 		if (!expand_to_next_prime(x))
232*4882a593Smuzhiyun 			return slow_is_prime_number(x);
233*4882a593Smuzhiyun 
234*4882a593Smuzhiyun 		rcu_read_lock();
235*4882a593Smuzhiyun 		p = rcu_dereference(primes);
236*4882a593Smuzhiyun 	}
237*4882a593Smuzhiyun 	result = test_bit(x, p->primes);
238*4882a593Smuzhiyun 	rcu_read_unlock();
239*4882a593Smuzhiyun 
240*4882a593Smuzhiyun 	return result;
241*4882a593Smuzhiyun }
242*4882a593Smuzhiyun EXPORT_SYMBOL(is_prime_number);
243*4882a593Smuzhiyun 
dump_primes(void)244*4882a593Smuzhiyun static void dump_primes(void)
245*4882a593Smuzhiyun {
246*4882a593Smuzhiyun 	const struct primes *p;
247*4882a593Smuzhiyun 	char *buf;
248*4882a593Smuzhiyun 
249*4882a593Smuzhiyun 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
250*4882a593Smuzhiyun 
251*4882a593Smuzhiyun 	rcu_read_lock();
252*4882a593Smuzhiyun 	p = rcu_dereference(primes);
253*4882a593Smuzhiyun 
254*4882a593Smuzhiyun 	if (buf)
255*4882a593Smuzhiyun 		bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
256*4882a593Smuzhiyun 	pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
257*4882a593Smuzhiyun 		p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
258*4882a593Smuzhiyun 
259*4882a593Smuzhiyun 	rcu_read_unlock();
260*4882a593Smuzhiyun 
261*4882a593Smuzhiyun 	kfree(buf);
262*4882a593Smuzhiyun }
263*4882a593Smuzhiyun 
selftest(unsigned long max)264*4882a593Smuzhiyun static int selftest(unsigned long max)
265*4882a593Smuzhiyun {
266*4882a593Smuzhiyun 	unsigned long x, last;
267*4882a593Smuzhiyun 
268*4882a593Smuzhiyun 	if (!max)
269*4882a593Smuzhiyun 		return 0;
270*4882a593Smuzhiyun 
271*4882a593Smuzhiyun 	for (last = 0, x = 2; x < max; x++) {
272*4882a593Smuzhiyun 		bool slow = slow_is_prime_number(x);
273*4882a593Smuzhiyun 		bool fast = is_prime_number(x);
274*4882a593Smuzhiyun 
275*4882a593Smuzhiyun 		if (slow != fast) {
276*4882a593Smuzhiyun 			pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
277*4882a593Smuzhiyun 			       x, slow ? "yes" : "no", fast ? "yes" : "no");
278*4882a593Smuzhiyun 			goto err;
279*4882a593Smuzhiyun 		}
280*4882a593Smuzhiyun 
281*4882a593Smuzhiyun 		if (!slow)
282*4882a593Smuzhiyun 			continue;
283*4882a593Smuzhiyun 
284*4882a593Smuzhiyun 		if (next_prime_number(last) != x) {
285*4882a593Smuzhiyun 			pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
286*4882a593Smuzhiyun 			       last, x, next_prime_number(last));
287*4882a593Smuzhiyun 			goto err;
288*4882a593Smuzhiyun 		}
289*4882a593Smuzhiyun 		last = x;
290*4882a593Smuzhiyun 	}
291*4882a593Smuzhiyun 
292*4882a593Smuzhiyun 	pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
293*4882a593Smuzhiyun 	return 0;
294*4882a593Smuzhiyun 
295*4882a593Smuzhiyun err:
296*4882a593Smuzhiyun 	dump_primes();
297*4882a593Smuzhiyun 	return -EINVAL;
298*4882a593Smuzhiyun }
299*4882a593Smuzhiyun 
primes_init(void)300*4882a593Smuzhiyun static int __init primes_init(void)
301*4882a593Smuzhiyun {
302*4882a593Smuzhiyun 	return selftest(selftest_max);
303*4882a593Smuzhiyun }
304*4882a593Smuzhiyun 
primes_exit(void)305*4882a593Smuzhiyun static void __exit primes_exit(void)
306*4882a593Smuzhiyun {
307*4882a593Smuzhiyun 	free_primes();
308*4882a593Smuzhiyun }
309*4882a593Smuzhiyun 
310*4882a593Smuzhiyun module_init(primes_init);
311*4882a593Smuzhiyun module_exit(primes_exit);
312*4882a593Smuzhiyun 
313*4882a593Smuzhiyun module_param_named(selftest, selftest_max, ulong, 0400);
314*4882a593Smuzhiyun 
315*4882a593Smuzhiyun MODULE_AUTHOR("Intel Corporation");
316*4882a593Smuzhiyun MODULE_LICENSE("GPL");
317