xref: /OK3568_Linux_fs/kernel/lib/bch.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /*
2*4882a593Smuzhiyun  * Generic binary BCH encoding/decoding library
3*4882a593Smuzhiyun  *
4*4882a593Smuzhiyun  * This program is free software; you can redistribute it and/or modify it
5*4882a593Smuzhiyun  * under the terms of the GNU General Public License version 2 as published by
6*4882a593Smuzhiyun  * the Free Software Foundation.
7*4882a593Smuzhiyun  *
8*4882a593Smuzhiyun  * This program is distributed in the hope that it will be useful, but WITHOUT
9*4882a593Smuzhiyun  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10*4882a593Smuzhiyun  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11*4882a593Smuzhiyun  * more details.
12*4882a593Smuzhiyun  *
13*4882a593Smuzhiyun  * You should have received a copy of the GNU General Public License along with
14*4882a593Smuzhiyun  * this program; if not, write to the Free Software Foundation, Inc., 51
15*4882a593Smuzhiyun  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
16*4882a593Smuzhiyun  *
17*4882a593Smuzhiyun  * Copyright © 2011 Parrot S.A.
18*4882a593Smuzhiyun  *
19*4882a593Smuzhiyun  * Author: Ivan Djelic <ivan.djelic@parrot.com>
20*4882a593Smuzhiyun  *
21*4882a593Smuzhiyun  * Description:
22*4882a593Smuzhiyun  *
23*4882a593Smuzhiyun  * This library provides runtime configurable encoding/decoding of binary
24*4882a593Smuzhiyun  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
25*4882a593Smuzhiyun  *
26*4882a593Smuzhiyun  * Call bch_init to get a pointer to a newly allocated bch_control structure for
27*4882a593Smuzhiyun  * the given m (Galois field order), t (error correction capability) and
28*4882a593Smuzhiyun  * (optional) primitive polynomial parameters.
29*4882a593Smuzhiyun  *
30*4882a593Smuzhiyun  * Call bch_encode to compute and store ecc parity bytes to a given buffer.
31*4882a593Smuzhiyun  * Call bch_decode to detect and locate errors in received data.
32*4882a593Smuzhiyun  *
33*4882a593Smuzhiyun  * On systems supporting hw BCH features, intermediate results may be provided
34*4882a593Smuzhiyun  * to bch_decode in order to skip certain steps. See bch_decode() documentation
35*4882a593Smuzhiyun  * for details.
36*4882a593Smuzhiyun  *
37*4882a593Smuzhiyun  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38*4882a593Smuzhiyun  * parameters m and t; thus allowing extra compiler optimizations and providing
39*4882a593Smuzhiyun  * better (up to 2x) encoding performance. Using this option makes sense when
40*4882a593Smuzhiyun  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
41*4882a593Smuzhiyun  * on a particular NAND flash device.
42*4882a593Smuzhiyun  *
43*4882a593Smuzhiyun  * Algorithmic details:
44*4882a593Smuzhiyun  *
45*4882a593Smuzhiyun  * Encoding is performed by processing 32 input bits in parallel, using 4
46*4882a593Smuzhiyun  * remainder lookup tables.
47*4882a593Smuzhiyun  *
48*4882a593Smuzhiyun  * The final stage of decoding involves the following internal steps:
49*4882a593Smuzhiyun  * a. Syndrome computation
50*4882a593Smuzhiyun  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
51*4882a593Smuzhiyun  * c. Error locator root finding (by far the most expensive step)
52*4882a593Smuzhiyun  *
53*4882a593Smuzhiyun  * In this implementation, step c is not performed using the usual Chien search.
54*4882a593Smuzhiyun  * Instead, an alternative approach described in [1] is used. It consists in
55*4882a593Smuzhiyun  * factoring the error locator polynomial using the Berlekamp Trace algorithm
56*4882a593Smuzhiyun  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57*4882a593Smuzhiyun  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58*4882a593Smuzhiyun  * much better performance than Chien search for usual (m,t) values (typically
59*4882a593Smuzhiyun  * m >= 13, t < 32, see [1]).
60*4882a593Smuzhiyun  *
61*4882a593Smuzhiyun  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62*4882a593Smuzhiyun  * of characteristic 2, in: Western European Workshop on Research in Cryptology
63*4882a593Smuzhiyun  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64*4882a593Smuzhiyun  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65*4882a593Smuzhiyun  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
66*4882a593Smuzhiyun  */
67*4882a593Smuzhiyun 
68*4882a593Smuzhiyun #include <linux/kernel.h>
69*4882a593Smuzhiyun #include <linux/errno.h>
70*4882a593Smuzhiyun #include <linux/init.h>
71*4882a593Smuzhiyun #include <linux/module.h>
72*4882a593Smuzhiyun #include <linux/slab.h>
73*4882a593Smuzhiyun #include <linux/bitops.h>
74*4882a593Smuzhiyun #include <asm/byteorder.h>
75*4882a593Smuzhiyun #include <linux/bch.h>
76*4882a593Smuzhiyun 
77*4882a593Smuzhiyun #if defined(CONFIG_BCH_CONST_PARAMS)
78*4882a593Smuzhiyun #define GF_M(_p)               (CONFIG_BCH_CONST_M)
79*4882a593Smuzhiyun #define GF_T(_p)               (CONFIG_BCH_CONST_T)
80*4882a593Smuzhiyun #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
81*4882a593Smuzhiyun #define BCH_MAX_M              (CONFIG_BCH_CONST_M)
82*4882a593Smuzhiyun #define BCH_MAX_T	       (CONFIG_BCH_CONST_T)
83*4882a593Smuzhiyun #else
84*4882a593Smuzhiyun #define GF_M(_p)               ((_p)->m)
85*4882a593Smuzhiyun #define GF_T(_p)               ((_p)->t)
86*4882a593Smuzhiyun #define GF_N(_p)               ((_p)->n)
87*4882a593Smuzhiyun #define BCH_MAX_M              15 /* 2KB */
88*4882a593Smuzhiyun #define BCH_MAX_T              64 /* 64 bit correction */
89*4882a593Smuzhiyun #endif
90*4882a593Smuzhiyun 
91*4882a593Smuzhiyun #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
92*4882a593Smuzhiyun #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
93*4882a593Smuzhiyun 
94*4882a593Smuzhiyun #define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
95*4882a593Smuzhiyun 
96*4882a593Smuzhiyun #ifndef dbg
97*4882a593Smuzhiyun #define dbg(_fmt, args...)     do {} while (0)
98*4882a593Smuzhiyun #endif
99*4882a593Smuzhiyun 
100*4882a593Smuzhiyun /*
101*4882a593Smuzhiyun  * represent a polynomial over GF(2^m)
102*4882a593Smuzhiyun  */
103*4882a593Smuzhiyun struct gf_poly {
104*4882a593Smuzhiyun 	unsigned int deg;    /* polynomial degree */
105*4882a593Smuzhiyun 	unsigned int c[];   /* polynomial terms */
106*4882a593Smuzhiyun };
107*4882a593Smuzhiyun 
108*4882a593Smuzhiyun /* given its degree, compute a polynomial size in bytes */
109*4882a593Smuzhiyun #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
110*4882a593Smuzhiyun 
111*4882a593Smuzhiyun /* polynomial of degree 1 */
112*4882a593Smuzhiyun struct gf_poly_deg1 {
113*4882a593Smuzhiyun 	struct gf_poly poly;
114*4882a593Smuzhiyun 	unsigned int   c[2];
115*4882a593Smuzhiyun };
116*4882a593Smuzhiyun 
117*4882a593Smuzhiyun static u8 swap_bits_table[] = {
118*4882a593Smuzhiyun 	0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
119*4882a593Smuzhiyun 	0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
120*4882a593Smuzhiyun 	0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
121*4882a593Smuzhiyun 	0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
122*4882a593Smuzhiyun 	0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
123*4882a593Smuzhiyun 	0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
124*4882a593Smuzhiyun 	0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
125*4882a593Smuzhiyun 	0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
126*4882a593Smuzhiyun 	0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
127*4882a593Smuzhiyun 	0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
128*4882a593Smuzhiyun 	0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
129*4882a593Smuzhiyun 	0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
130*4882a593Smuzhiyun 	0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
131*4882a593Smuzhiyun 	0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
132*4882a593Smuzhiyun 	0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
133*4882a593Smuzhiyun 	0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
134*4882a593Smuzhiyun 	0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
135*4882a593Smuzhiyun 	0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
136*4882a593Smuzhiyun 	0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
137*4882a593Smuzhiyun 	0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
138*4882a593Smuzhiyun 	0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
139*4882a593Smuzhiyun 	0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
140*4882a593Smuzhiyun 	0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
141*4882a593Smuzhiyun 	0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
142*4882a593Smuzhiyun 	0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
143*4882a593Smuzhiyun 	0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
144*4882a593Smuzhiyun 	0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
145*4882a593Smuzhiyun 	0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
146*4882a593Smuzhiyun 	0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
147*4882a593Smuzhiyun 	0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
148*4882a593Smuzhiyun 	0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
149*4882a593Smuzhiyun 	0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
150*4882a593Smuzhiyun };
151*4882a593Smuzhiyun 
swap_bits(struct bch_control * bch,u8 in)152*4882a593Smuzhiyun static u8 swap_bits(struct bch_control *bch, u8 in)
153*4882a593Smuzhiyun {
154*4882a593Smuzhiyun 	if (!bch->swap_bits)
155*4882a593Smuzhiyun 		return in;
156*4882a593Smuzhiyun 
157*4882a593Smuzhiyun 	return swap_bits_table[in];
158*4882a593Smuzhiyun }
159*4882a593Smuzhiyun 
160*4882a593Smuzhiyun /*
161*4882a593Smuzhiyun  * same as bch_encode(), but process input data one byte at a time
162*4882a593Smuzhiyun  */
bch_encode_unaligned(struct bch_control * bch,const unsigned char * data,unsigned int len,uint32_t * ecc)163*4882a593Smuzhiyun static void bch_encode_unaligned(struct bch_control *bch,
164*4882a593Smuzhiyun 				 const unsigned char *data, unsigned int len,
165*4882a593Smuzhiyun 				 uint32_t *ecc)
166*4882a593Smuzhiyun {
167*4882a593Smuzhiyun 	int i;
168*4882a593Smuzhiyun 	const uint32_t *p;
169*4882a593Smuzhiyun 	const int l = BCH_ECC_WORDS(bch)-1;
170*4882a593Smuzhiyun 
171*4882a593Smuzhiyun 	while (len--) {
172*4882a593Smuzhiyun 		u8 tmp = swap_bits(bch, *data++);
173*4882a593Smuzhiyun 
174*4882a593Smuzhiyun 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
175*4882a593Smuzhiyun 
176*4882a593Smuzhiyun 		for (i = 0; i < l; i++)
177*4882a593Smuzhiyun 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
178*4882a593Smuzhiyun 
179*4882a593Smuzhiyun 		ecc[l] = (ecc[l] << 8)^(*p);
180*4882a593Smuzhiyun 	}
181*4882a593Smuzhiyun }
182*4882a593Smuzhiyun 
183*4882a593Smuzhiyun /*
184*4882a593Smuzhiyun  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
185*4882a593Smuzhiyun  */
load_ecc8(struct bch_control * bch,uint32_t * dst,const uint8_t * src)186*4882a593Smuzhiyun static void load_ecc8(struct bch_control *bch, uint32_t *dst,
187*4882a593Smuzhiyun 		      const uint8_t *src)
188*4882a593Smuzhiyun {
189*4882a593Smuzhiyun 	uint8_t pad[4] = {0, 0, 0, 0};
190*4882a593Smuzhiyun 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
191*4882a593Smuzhiyun 
192*4882a593Smuzhiyun 	for (i = 0; i < nwords; i++, src += 4)
193*4882a593Smuzhiyun 		dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
194*4882a593Smuzhiyun 			((u32)swap_bits(bch, src[1]) << 16) |
195*4882a593Smuzhiyun 			((u32)swap_bits(bch, src[2]) << 8) |
196*4882a593Smuzhiyun 			swap_bits(bch, src[3]);
197*4882a593Smuzhiyun 
198*4882a593Smuzhiyun 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
199*4882a593Smuzhiyun 	dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
200*4882a593Smuzhiyun 		((u32)swap_bits(bch, pad[1]) << 16) |
201*4882a593Smuzhiyun 		((u32)swap_bits(bch, pad[2]) << 8) |
202*4882a593Smuzhiyun 		swap_bits(bch, pad[3]);
203*4882a593Smuzhiyun }
204*4882a593Smuzhiyun 
205*4882a593Smuzhiyun /*
206*4882a593Smuzhiyun  * convert 32-bit ecc words to ecc bytes
207*4882a593Smuzhiyun  */
store_ecc8(struct bch_control * bch,uint8_t * dst,const uint32_t * src)208*4882a593Smuzhiyun static void store_ecc8(struct bch_control *bch, uint8_t *dst,
209*4882a593Smuzhiyun 		       const uint32_t *src)
210*4882a593Smuzhiyun {
211*4882a593Smuzhiyun 	uint8_t pad[4];
212*4882a593Smuzhiyun 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
213*4882a593Smuzhiyun 
214*4882a593Smuzhiyun 	for (i = 0; i < nwords; i++) {
215*4882a593Smuzhiyun 		*dst++ = swap_bits(bch, src[i] >> 24);
216*4882a593Smuzhiyun 		*dst++ = swap_bits(bch, src[i] >> 16);
217*4882a593Smuzhiyun 		*dst++ = swap_bits(bch, src[i] >> 8);
218*4882a593Smuzhiyun 		*dst++ = swap_bits(bch, src[i]);
219*4882a593Smuzhiyun 	}
220*4882a593Smuzhiyun 	pad[0] = swap_bits(bch, src[nwords] >> 24);
221*4882a593Smuzhiyun 	pad[1] = swap_bits(bch, src[nwords] >> 16);
222*4882a593Smuzhiyun 	pad[2] = swap_bits(bch, src[nwords] >> 8);
223*4882a593Smuzhiyun 	pad[3] = swap_bits(bch, src[nwords]);
224*4882a593Smuzhiyun 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
225*4882a593Smuzhiyun }
226*4882a593Smuzhiyun 
227*4882a593Smuzhiyun /**
228*4882a593Smuzhiyun  * bch_encode - calculate BCH ecc parity of data
229*4882a593Smuzhiyun  * @bch:   BCH control structure
230*4882a593Smuzhiyun  * @data:  data to encode
231*4882a593Smuzhiyun  * @len:   data length in bytes
232*4882a593Smuzhiyun  * @ecc:   ecc parity data, must be initialized by caller
233*4882a593Smuzhiyun  *
234*4882a593Smuzhiyun  * The @ecc parity array is used both as input and output parameter, in order to
235*4882a593Smuzhiyun  * allow incremental computations. It should be of the size indicated by member
236*4882a593Smuzhiyun  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
237*4882a593Smuzhiyun  *
238*4882a593Smuzhiyun  * The exact number of computed ecc parity bits is given by member @ecc_bits of
239*4882a593Smuzhiyun  * @bch; it may be less than m*t for large values of t.
240*4882a593Smuzhiyun  */
bch_encode(struct bch_control * bch,const uint8_t * data,unsigned int len,uint8_t * ecc)241*4882a593Smuzhiyun void bch_encode(struct bch_control *bch, const uint8_t *data,
242*4882a593Smuzhiyun 		unsigned int len, uint8_t *ecc)
243*4882a593Smuzhiyun {
244*4882a593Smuzhiyun 	const unsigned int l = BCH_ECC_WORDS(bch)-1;
245*4882a593Smuzhiyun 	unsigned int i, mlen;
246*4882a593Smuzhiyun 	unsigned long m;
247*4882a593Smuzhiyun 	uint32_t w, r[BCH_ECC_MAX_WORDS];
248*4882a593Smuzhiyun 	const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
249*4882a593Smuzhiyun 	const uint32_t * const tab0 = bch->mod8_tab;
250*4882a593Smuzhiyun 	const uint32_t * const tab1 = tab0 + 256*(l+1);
251*4882a593Smuzhiyun 	const uint32_t * const tab2 = tab1 + 256*(l+1);
252*4882a593Smuzhiyun 	const uint32_t * const tab3 = tab2 + 256*(l+1);
253*4882a593Smuzhiyun 	const uint32_t *pdata, *p0, *p1, *p2, *p3;
254*4882a593Smuzhiyun 
255*4882a593Smuzhiyun 	if (WARN_ON(r_bytes > sizeof(r)))
256*4882a593Smuzhiyun 		return;
257*4882a593Smuzhiyun 
258*4882a593Smuzhiyun 	if (ecc) {
259*4882a593Smuzhiyun 		/* load ecc parity bytes into internal 32-bit buffer */
260*4882a593Smuzhiyun 		load_ecc8(bch, bch->ecc_buf, ecc);
261*4882a593Smuzhiyun 	} else {
262*4882a593Smuzhiyun 		memset(bch->ecc_buf, 0, r_bytes);
263*4882a593Smuzhiyun 	}
264*4882a593Smuzhiyun 
265*4882a593Smuzhiyun 	/* process first unaligned data bytes */
266*4882a593Smuzhiyun 	m = ((unsigned long)data) & 3;
267*4882a593Smuzhiyun 	if (m) {
268*4882a593Smuzhiyun 		mlen = (len < (4-m)) ? len : 4-m;
269*4882a593Smuzhiyun 		bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
270*4882a593Smuzhiyun 		data += mlen;
271*4882a593Smuzhiyun 		len  -= mlen;
272*4882a593Smuzhiyun 	}
273*4882a593Smuzhiyun 
274*4882a593Smuzhiyun 	/* process 32-bit aligned data words */
275*4882a593Smuzhiyun 	pdata = (uint32_t *)data;
276*4882a593Smuzhiyun 	mlen  = len/4;
277*4882a593Smuzhiyun 	data += 4*mlen;
278*4882a593Smuzhiyun 	len  -= 4*mlen;
279*4882a593Smuzhiyun 	memcpy(r, bch->ecc_buf, r_bytes);
280*4882a593Smuzhiyun 
281*4882a593Smuzhiyun 	/*
282*4882a593Smuzhiyun 	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
283*4882a593Smuzhiyun 	 *
284*4882a593Smuzhiyun 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
285*4882a593Smuzhiyun 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
286*4882a593Smuzhiyun 	 *                               tttttttt  mod g = r0 (precomputed)
287*4882a593Smuzhiyun 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
288*4882a593Smuzhiyun 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
289*4882a593Smuzhiyun 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
290*4882a593Smuzhiyun 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
291*4882a593Smuzhiyun 	 */
292*4882a593Smuzhiyun 	while (mlen--) {
293*4882a593Smuzhiyun 		/* input data is read in big-endian format */
294*4882a593Smuzhiyun 		w = cpu_to_be32(*pdata++);
295*4882a593Smuzhiyun 		if (bch->swap_bits)
296*4882a593Smuzhiyun 			w = (u32)swap_bits(bch, w) |
297*4882a593Smuzhiyun 			    ((u32)swap_bits(bch, w >> 8) << 8) |
298*4882a593Smuzhiyun 			    ((u32)swap_bits(bch, w >> 16) << 16) |
299*4882a593Smuzhiyun 			    ((u32)swap_bits(bch, w >> 24) << 24);
300*4882a593Smuzhiyun 		w ^= r[0];
301*4882a593Smuzhiyun 		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
302*4882a593Smuzhiyun 		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
303*4882a593Smuzhiyun 		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
304*4882a593Smuzhiyun 		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
305*4882a593Smuzhiyun 
306*4882a593Smuzhiyun 		for (i = 0; i < l; i++)
307*4882a593Smuzhiyun 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
308*4882a593Smuzhiyun 
309*4882a593Smuzhiyun 		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
310*4882a593Smuzhiyun 	}
311*4882a593Smuzhiyun 	memcpy(bch->ecc_buf, r, r_bytes);
312*4882a593Smuzhiyun 
313*4882a593Smuzhiyun 	/* process last unaligned bytes */
314*4882a593Smuzhiyun 	if (len)
315*4882a593Smuzhiyun 		bch_encode_unaligned(bch, data, len, bch->ecc_buf);
316*4882a593Smuzhiyun 
317*4882a593Smuzhiyun 	/* store ecc parity bytes into original parity buffer */
318*4882a593Smuzhiyun 	if (ecc)
319*4882a593Smuzhiyun 		store_ecc8(bch, ecc, bch->ecc_buf);
320*4882a593Smuzhiyun }
321*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(bch_encode);
322*4882a593Smuzhiyun 
modulo(struct bch_control * bch,unsigned int v)323*4882a593Smuzhiyun static inline int modulo(struct bch_control *bch, unsigned int v)
324*4882a593Smuzhiyun {
325*4882a593Smuzhiyun 	const unsigned int n = GF_N(bch);
326*4882a593Smuzhiyun 	while (v >= n) {
327*4882a593Smuzhiyun 		v -= n;
328*4882a593Smuzhiyun 		v = (v & n) + (v >> GF_M(bch));
329*4882a593Smuzhiyun 	}
330*4882a593Smuzhiyun 	return v;
331*4882a593Smuzhiyun }
332*4882a593Smuzhiyun 
333*4882a593Smuzhiyun /*
334*4882a593Smuzhiyun  * shorter and faster modulo function, only works when v < 2N.
335*4882a593Smuzhiyun  */
mod_s(struct bch_control * bch,unsigned int v)336*4882a593Smuzhiyun static inline int mod_s(struct bch_control *bch, unsigned int v)
337*4882a593Smuzhiyun {
338*4882a593Smuzhiyun 	const unsigned int n = GF_N(bch);
339*4882a593Smuzhiyun 	return (v < n) ? v : v-n;
340*4882a593Smuzhiyun }
341*4882a593Smuzhiyun 
deg(unsigned int poly)342*4882a593Smuzhiyun static inline int deg(unsigned int poly)
343*4882a593Smuzhiyun {
344*4882a593Smuzhiyun 	/* polynomial degree is the most-significant bit index */
345*4882a593Smuzhiyun 	return fls(poly)-1;
346*4882a593Smuzhiyun }
347*4882a593Smuzhiyun 
parity(unsigned int x)348*4882a593Smuzhiyun static inline int parity(unsigned int x)
349*4882a593Smuzhiyun {
350*4882a593Smuzhiyun 	/*
351*4882a593Smuzhiyun 	 * public domain code snippet, lifted from
352*4882a593Smuzhiyun 	 * http://www-graphics.stanford.edu/~seander/bithacks.html
353*4882a593Smuzhiyun 	 */
354*4882a593Smuzhiyun 	x ^= x >> 1;
355*4882a593Smuzhiyun 	x ^= x >> 2;
356*4882a593Smuzhiyun 	x = (x & 0x11111111U) * 0x11111111U;
357*4882a593Smuzhiyun 	return (x >> 28) & 1;
358*4882a593Smuzhiyun }
359*4882a593Smuzhiyun 
360*4882a593Smuzhiyun /* Galois field basic operations: multiply, divide, inverse, etc. */
361*4882a593Smuzhiyun 
gf_mul(struct bch_control * bch,unsigned int a,unsigned int b)362*4882a593Smuzhiyun static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
363*4882a593Smuzhiyun 				  unsigned int b)
364*4882a593Smuzhiyun {
365*4882a593Smuzhiyun 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
366*4882a593Smuzhiyun 					       bch->a_log_tab[b])] : 0;
367*4882a593Smuzhiyun }
368*4882a593Smuzhiyun 
gf_sqr(struct bch_control * bch,unsigned int a)369*4882a593Smuzhiyun static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
370*4882a593Smuzhiyun {
371*4882a593Smuzhiyun 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
372*4882a593Smuzhiyun }
373*4882a593Smuzhiyun 
gf_div(struct bch_control * bch,unsigned int a,unsigned int b)374*4882a593Smuzhiyun static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
375*4882a593Smuzhiyun 				  unsigned int b)
376*4882a593Smuzhiyun {
377*4882a593Smuzhiyun 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
378*4882a593Smuzhiyun 					GF_N(bch)-bch->a_log_tab[b])] : 0;
379*4882a593Smuzhiyun }
380*4882a593Smuzhiyun 
gf_inv(struct bch_control * bch,unsigned int a)381*4882a593Smuzhiyun static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
382*4882a593Smuzhiyun {
383*4882a593Smuzhiyun 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
384*4882a593Smuzhiyun }
385*4882a593Smuzhiyun 
a_pow(struct bch_control * bch,int i)386*4882a593Smuzhiyun static inline unsigned int a_pow(struct bch_control *bch, int i)
387*4882a593Smuzhiyun {
388*4882a593Smuzhiyun 	return bch->a_pow_tab[modulo(bch, i)];
389*4882a593Smuzhiyun }
390*4882a593Smuzhiyun 
a_log(struct bch_control * bch,unsigned int x)391*4882a593Smuzhiyun static inline int a_log(struct bch_control *bch, unsigned int x)
392*4882a593Smuzhiyun {
393*4882a593Smuzhiyun 	return bch->a_log_tab[x];
394*4882a593Smuzhiyun }
395*4882a593Smuzhiyun 
a_ilog(struct bch_control * bch,unsigned int x)396*4882a593Smuzhiyun static inline int a_ilog(struct bch_control *bch, unsigned int x)
397*4882a593Smuzhiyun {
398*4882a593Smuzhiyun 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
399*4882a593Smuzhiyun }
400*4882a593Smuzhiyun 
401*4882a593Smuzhiyun /*
402*4882a593Smuzhiyun  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
403*4882a593Smuzhiyun  */
compute_syndromes(struct bch_control * bch,uint32_t * ecc,unsigned int * syn)404*4882a593Smuzhiyun static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
405*4882a593Smuzhiyun 			      unsigned int *syn)
406*4882a593Smuzhiyun {
407*4882a593Smuzhiyun 	int i, j, s;
408*4882a593Smuzhiyun 	unsigned int m;
409*4882a593Smuzhiyun 	uint32_t poly;
410*4882a593Smuzhiyun 	const int t = GF_T(bch);
411*4882a593Smuzhiyun 
412*4882a593Smuzhiyun 	s = bch->ecc_bits;
413*4882a593Smuzhiyun 
414*4882a593Smuzhiyun 	/* make sure extra bits in last ecc word are cleared */
415*4882a593Smuzhiyun 	m = ((unsigned int)s) & 31;
416*4882a593Smuzhiyun 	if (m)
417*4882a593Smuzhiyun 		ecc[s/32] &= ~((1u << (32-m))-1);
418*4882a593Smuzhiyun 	memset(syn, 0, 2*t*sizeof(*syn));
419*4882a593Smuzhiyun 
420*4882a593Smuzhiyun 	/* compute v(a^j) for j=1 .. 2t-1 */
421*4882a593Smuzhiyun 	do {
422*4882a593Smuzhiyun 		poly = *ecc++;
423*4882a593Smuzhiyun 		s -= 32;
424*4882a593Smuzhiyun 		while (poly) {
425*4882a593Smuzhiyun 			i = deg(poly);
426*4882a593Smuzhiyun 			for (j = 0; j < 2*t; j += 2)
427*4882a593Smuzhiyun 				syn[j] ^= a_pow(bch, (j+1)*(i+s));
428*4882a593Smuzhiyun 
429*4882a593Smuzhiyun 			poly ^= (1 << i);
430*4882a593Smuzhiyun 		}
431*4882a593Smuzhiyun 	} while (s > 0);
432*4882a593Smuzhiyun 
433*4882a593Smuzhiyun 	/* v(a^(2j)) = v(a^j)^2 */
434*4882a593Smuzhiyun 	for (j = 0; j < t; j++)
435*4882a593Smuzhiyun 		syn[2*j+1] = gf_sqr(bch, syn[j]);
436*4882a593Smuzhiyun }
437*4882a593Smuzhiyun 
gf_poly_copy(struct gf_poly * dst,struct gf_poly * src)438*4882a593Smuzhiyun static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
439*4882a593Smuzhiyun {
440*4882a593Smuzhiyun 	memcpy(dst, src, GF_POLY_SZ(src->deg));
441*4882a593Smuzhiyun }
442*4882a593Smuzhiyun 
compute_error_locator_polynomial(struct bch_control * bch,const unsigned int * syn)443*4882a593Smuzhiyun static int compute_error_locator_polynomial(struct bch_control *bch,
444*4882a593Smuzhiyun 					    const unsigned int *syn)
445*4882a593Smuzhiyun {
446*4882a593Smuzhiyun 	const unsigned int t = GF_T(bch);
447*4882a593Smuzhiyun 	const unsigned int n = GF_N(bch);
448*4882a593Smuzhiyun 	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
449*4882a593Smuzhiyun 	struct gf_poly *elp = bch->elp;
450*4882a593Smuzhiyun 	struct gf_poly *pelp = bch->poly_2t[0];
451*4882a593Smuzhiyun 	struct gf_poly *elp_copy = bch->poly_2t[1];
452*4882a593Smuzhiyun 	int k, pp = -1;
453*4882a593Smuzhiyun 
454*4882a593Smuzhiyun 	memset(pelp, 0, GF_POLY_SZ(2*t));
455*4882a593Smuzhiyun 	memset(elp, 0, GF_POLY_SZ(2*t));
456*4882a593Smuzhiyun 
457*4882a593Smuzhiyun 	pelp->deg = 0;
458*4882a593Smuzhiyun 	pelp->c[0] = 1;
459*4882a593Smuzhiyun 	elp->deg = 0;
460*4882a593Smuzhiyun 	elp->c[0] = 1;
461*4882a593Smuzhiyun 
462*4882a593Smuzhiyun 	/* use simplified binary Berlekamp-Massey algorithm */
463*4882a593Smuzhiyun 	for (i = 0; (i < t) && (elp->deg <= t); i++) {
464*4882a593Smuzhiyun 		if (d) {
465*4882a593Smuzhiyun 			k = 2*i-pp;
466*4882a593Smuzhiyun 			gf_poly_copy(elp_copy, elp);
467*4882a593Smuzhiyun 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
468*4882a593Smuzhiyun 			tmp = a_log(bch, d)+n-a_log(bch, pd);
469*4882a593Smuzhiyun 			for (j = 0; j <= pelp->deg; j++) {
470*4882a593Smuzhiyun 				if (pelp->c[j]) {
471*4882a593Smuzhiyun 					l = a_log(bch, pelp->c[j]);
472*4882a593Smuzhiyun 					elp->c[j+k] ^= a_pow(bch, tmp+l);
473*4882a593Smuzhiyun 				}
474*4882a593Smuzhiyun 			}
475*4882a593Smuzhiyun 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
476*4882a593Smuzhiyun 			tmp = pelp->deg+k;
477*4882a593Smuzhiyun 			if (tmp > elp->deg) {
478*4882a593Smuzhiyun 				elp->deg = tmp;
479*4882a593Smuzhiyun 				gf_poly_copy(pelp, elp_copy);
480*4882a593Smuzhiyun 				pd = d;
481*4882a593Smuzhiyun 				pp = 2*i;
482*4882a593Smuzhiyun 			}
483*4882a593Smuzhiyun 		}
484*4882a593Smuzhiyun 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
485*4882a593Smuzhiyun 		if (i < t-1) {
486*4882a593Smuzhiyun 			d = syn[2*i+2];
487*4882a593Smuzhiyun 			for (j = 1; j <= elp->deg; j++)
488*4882a593Smuzhiyun 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
489*4882a593Smuzhiyun 		}
490*4882a593Smuzhiyun 	}
491*4882a593Smuzhiyun 	dbg("elp=%s\n", gf_poly_str(elp));
492*4882a593Smuzhiyun 	return (elp->deg > t) ? -1 : (int)elp->deg;
493*4882a593Smuzhiyun }
494*4882a593Smuzhiyun 
495*4882a593Smuzhiyun /*
496*4882a593Smuzhiyun  * solve a m x m linear system in GF(2) with an expected number of solutions,
497*4882a593Smuzhiyun  * and return the number of found solutions
498*4882a593Smuzhiyun  */
solve_linear_system(struct bch_control * bch,unsigned int * rows,unsigned int * sol,int nsol)499*4882a593Smuzhiyun static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
500*4882a593Smuzhiyun 			       unsigned int *sol, int nsol)
501*4882a593Smuzhiyun {
502*4882a593Smuzhiyun 	const int m = GF_M(bch);
503*4882a593Smuzhiyun 	unsigned int tmp, mask;
504*4882a593Smuzhiyun 	int rem, c, r, p, k, param[BCH_MAX_M];
505*4882a593Smuzhiyun 
506*4882a593Smuzhiyun 	k = 0;
507*4882a593Smuzhiyun 	mask = 1 << m;
508*4882a593Smuzhiyun 
509*4882a593Smuzhiyun 	/* Gaussian elimination */
510*4882a593Smuzhiyun 	for (c = 0; c < m; c++) {
511*4882a593Smuzhiyun 		rem = 0;
512*4882a593Smuzhiyun 		p = c-k;
513*4882a593Smuzhiyun 		/* find suitable row for elimination */
514*4882a593Smuzhiyun 		for (r = p; r < m; r++) {
515*4882a593Smuzhiyun 			if (rows[r] & mask) {
516*4882a593Smuzhiyun 				if (r != p) {
517*4882a593Smuzhiyun 					tmp = rows[r];
518*4882a593Smuzhiyun 					rows[r] = rows[p];
519*4882a593Smuzhiyun 					rows[p] = tmp;
520*4882a593Smuzhiyun 				}
521*4882a593Smuzhiyun 				rem = r+1;
522*4882a593Smuzhiyun 				break;
523*4882a593Smuzhiyun 			}
524*4882a593Smuzhiyun 		}
525*4882a593Smuzhiyun 		if (rem) {
526*4882a593Smuzhiyun 			/* perform elimination on remaining rows */
527*4882a593Smuzhiyun 			tmp = rows[p];
528*4882a593Smuzhiyun 			for (r = rem; r < m; r++) {
529*4882a593Smuzhiyun 				if (rows[r] & mask)
530*4882a593Smuzhiyun 					rows[r] ^= tmp;
531*4882a593Smuzhiyun 			}
532*4882a593Smuzhiyun 		} else {
533*4882a593Smuzhiyun 			/* elimination not needed, store defective row index */
534*4882a593Smuzhiyun 			param[k++] = c;
535*4882a593Smuzhiyun 		}
536*4882a593Smuzhiyun 		mask >>= 1;
537*4882a593Smuzhiyun 	}
538*4882a593Smuzhiyun 	/* rewrite system, inserting fake parameter rows */
539*4882a593Smuzhiyun 	if (k > 0) {
540*4882a593Smuzhiyun 		p = k;
541*4882a593Smuzhiyun 		for (r = m-1; r >= 0; r--) {
542*4882a593Smuzhiyun 			if ((r > m-1-k) && rows[r])
543*4882a593Smuzhiyun 				/* system has no solution */
544*4882a593Smuzhiyun 				return 0;
545*4882a593Smuzhiyun 
546*4882a593Smuzhiyun 			rows[r] = (p && (r == param[p-1])) ?
547*4882a593Smuzhiyun 				p--, 1u << (m-r) : rows[r-p];
548*4882a593Smuzhiyun 		}
549*4882a593Smuzhiyun 	}
550*4882a593Smuzhiyun 
551*4882a593Smuzhiyun 	if (nsol != (1 << k))
552*4882a593Smuzhiyun 		/* unexpected number of solutions */
553*4882a593Smuzhiyun 		return 0;
554*4882a593Smuzhiyun 
555*4882a593Smuzhiyun 	for (p = 0; p < nsol; p++) {
556*4882a593Smuzhiyun 		/* set parameters for p-th solution */
557*4882a593Smuzhiyun 		for (c = 0; c < k; c++)
558*4882a593Smuzhiyun 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
559*4882a593Smuzhiyun 
560*4882a593Smuzhiyun 		/* compute unique solution */
561*4882a593Smuzhiyun 		tmp = 0;
562*4882a593Smuzhiyun 		for (r = m-1; r >= 0; r--) {
563*4882a593Smuzhiyun 			mask = rows[r] & (tmp|1);
564*4882a593Smuzhiyun 			tmp |= parity(mask) << (m-r);
565*4882a593Smuzhiyun 		}
566*4882a593Smuzhiyun 		sol[p] = tmp >> 1;
567*4882a593Smuzhiyun 	}
568*4882a593Smuzhiyun 	return nsol;
569*4882a593Smuzhiyun }
570*4882a593Smuzhiyun 
571*4882a593Smuzhiyun /*
572*4882a593Smuzhiyun  * this function builds and solves a linear system for finding roots of a degree
573*4882a593Smuzhiyun  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
574*4882a593Smuzhiyun  */
find_affine4_roots(struct bch_control * bch,unsigned int a,unsigned int b,unsigned int c,unsigned int * roots)575*4882a593Smuzhiyun static int find_affine4_roots(struct bch_control *bch, unsigned int a,
576*4882a593Smuzhiyun 			      unsigned int b, unsigned int c,
577*4882a593Smuzhiyun 			      unsigned int *roots)
578*4882a593Smuzhiyun {
579*4882a593Smuzhiyun 	int i, j, k;
580*4882a593Smuzhiyun 	const int m = GF_M(bch);
581*4882a593Smuzhiyun 	unsigned int mask = 0xff, t, rows[16] = {0,};
582*4882a593Smuzhiyun 
583*4882a593Smuzhiyun 	j = a_log(bch, b);
584*4882a593Smuzhiyun 	k = a_log(bch, a);
585*4882a593Smuzhiyun 	rows[0] = c;
586*4882a593Smuzhiyun 
587*4882a593Smuzhiyun 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
588*4882a593Smuzhiyun 	for (i = 0; i < m; i++) {
589*4882a593Smuzhiyun 		rows[i+1] = bch->a_pow_tab[4*i]^
590*4882a593Smuzhiyun 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
591*4882a593Smuzhiyun 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
592*4882a593Smuzhiyun 		j++;
593*4882a593Smuzhiyun 		k += 2;
594*4882a593Smuzhiyun 	}
595*4882a593Smuzhiyun 	/*
596*4882a593Smuzhiyun 	 * transpose 16x16 matrix before passing it to linear solver
597*4882a593Smuzhiyun 	 * warning: this code assumes m < 16
598*4882a593Smuzhiyun 	 */
599*4882a593Smuzhiyun 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
600*4882a593Smuzhiyun 		for (k = 0; k < 16; k = (k+j+1) & ~j) {
601*4882a593Smuzhiyun 			t = ((rows[k] >> j)^rows[k+j]) & mask;
602*4882a593Smuzhiyun 			rows[k] ^= (t << j);
603*4882a593Smuzhiyun 			rows[k+j] ^= t;
604*4882a593Smuzhiyun 		}
605*4882a593Smuzhiyun 	}
606*4882a593Smuzhiyun 	return solve_linear_system(bch, rows, roots, 4);
607*4882a593Smuzhiyun }
608*4882a593Smuzhiyun 
609*4882a593Smuzhiyun /*
610*4882a593Smuzhiyun  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
611*4882a593Smuzhiyun  */
find_poly_deg1_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)612*4882a593Smuzhiyun static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
613*4882a593Smuzhiyun 				unsigned int *roots)
614*4882a593Smuzhiyun {
615*4882a593Smuzhiyun 	int n = 0;
616*4882a593Smuzhiyun 
617*4882a593Smuzhiyun 	if (poly->c[0])
618*4882a593Smuzhiyun 		/* poly[X] = bX+c with c!=0, root=c/b */
619*4882a593Smuzhiyun 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
620*4882a593Smuzhiyun 				   bch->a_log_tab[poly->c[1]]);
621*4882a593Smuzhiyun 	return n;
622*4882a593Smuzhiyun }
623*4882a593Smuzhiyun 
624*4882a593Smuzhiyun /*
625*4882a593Smuzhiyun  * compute roots of a degree 2 polynomial over GF(2^m)
626*4882a593Smuzhiyun  */
find_poly_deg2_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)627*4882a593Smuzhiyun static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
628*4882a593Smuzhiyun 				unsigned int *roots)
629*4882a593Smuzhiyun {
630*4882a593Smuzhiyun 	int n = 0, i, l0, l1, l2;
631*4882a593Smuzhiyun 	unsigned int u, v, r;
632*4882a593Smuzhiyun 
633*4882a593Smuzhiyun 	if (poly->c[0] && poly->c[1]) {
634*4882a593Smuzhiyun 
635*4882a593Smuzhiyun 		l0 = bch->a_log_tab[poly->c[0]];
636*4882a593Smuzhiyun 		l1 = bch->a_log_tab[poly->c[1]];
637*4882a593Smuzhiyun 		l2 = bch->a_log_tab[poly->c[2]];
638*4882a593Smuzhiyun 
639*4882a593Smuzhiyun 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
640*4882a593Smuzhiyun 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
641*4882a593Smuzhiyun 		/*
642*4882a593Smuzhiyun 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
643*4882a593Smuzhiyun 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
644*4882a593Smuzhiyun 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
645*4882a593Smuzhiyun 		 * i.e. r and r+1 are roots iff Tr(u)=0
646*4882a593Smuzhiyun 		 */
647*4882a593Smuzhiyun 		r = 0;
648*4882a593Smuzhiyun 		v = u;
649*4882a593Smuzhiyun 		while (v) {
650*4882a593Smuzhiyun 			i = deg(v);
651*4882a593Smuzhiyun 			r ^= bch->xi_tab[i];
652*4882a593Smuzhiyun 			v ^= (1 << i);
653*4882a593Smuzhiyun 		}
654*4882a593Smuzhiyun 		/* verify root */
655*4882a593Smuzhiyun 		if ((gf_sqr(bch, r)^r) == u) {
656*4882a593Smuzhiyun 			/* reverse z=a/bX transformation and compute log(1/r) */
657*4882a593Smuzhiyun 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
658*4882a593Smuzhiyun 					    bch->a_log_tab[r]+l2);
659*4882a593Smuzhiyun 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
660*4882a593Smuzhiyun 					    bch->a_log_tab[r^1]+l2);
661*4882a593Smuzhiyun 		}
662*4882a593Smuzhiyun 	}
663*4882a593Smuzhiyun 	return n;
664*4882a593Smuzhiyun }
665*4882a593Smuzhiyun 
666*4882a593Smuzhiyun /*
667*4882a593Smuzhiyun  * compute roots of a degree 3 polynomial over GF(2^m)
668*4882a593Smuzhiyun  */
find_poly_deg3_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)669*4882a593Smuzhiyun static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
670*4882a593Smuzhiyun 				unsigned int *roots)
671*4882a593Smuzhiyun {
672*4882a593Smuzhiyun 	int i, n = 0;
673*4882a593Smuzhiyun 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
674*4882a593Smuzhiyun 
675*4882a593Smuzhiyun 	if (poly->c[0]) {
676*4882a593Smuzhiyun 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
677*4882a593Smuzhiyun 		e3 = poly->c[3];
678*4882a593Smuzhiyun 		c2 = gf_div(bch, poly->c[0], e3);
679*4882a593Smuzhiyun 		b2 = gf_div(bch, poly->c[1], e3);
680*4882a593Smuzhiyun 		a2 = gf_div(bch, poly->c[2], e3);
681*4882a593Smuzhiyun 
682*4882a593Smuzhiyun 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
683*4882a593Smuzhiyun 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
684*4882a593Smuzhiyun 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
685*4882a593Smuzhiyun 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
686*4882a593Smuzhiyun 
687*4882a593Smuzhiyun 		/* find the 4 roots of this affine polynomial */
688*4882a593Smuzhiyun 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
689*4882a593Smuzhiyun 			/* remove a2 from final list of roots */
690*4882a593Smuzhiyun 			for (i = 0; i < 4; i++) {
691*4882a593Smuzhiyun 				if (tmp[i] != a2)
692*4882a593Smuzhiyun 					roots[n++] = a_ilog(bch, tmp[i]);
693*4882a593Smuzhiyun 			}
694*4882a593Smuzhiyun 		}
695*4882a593Smuzhiyun 	}
696*4882a593Smuzhiyun 	return n;
697*4882a593Smuzhiyun }
698*4882a593Smuzhiyun 
699*4882a593Smuzhiyun /*
700*4882a593Smuzhiyun  * compute roots of a degree 4 polynomial over GF(2^m)
701*4882a593Smuzhiyun  */
find_poly_deg4_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)702*4882a593Smuzhiyun static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
703*4882a593Smuzhiyun 				unsigned int *roots)
704*4882a593Smuzhiyun {
705*4882a593Smuzhiyun 	int i, l, n = 0;
706*4882a593Smuzhiyun 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
707*4882a593Smuzhiyun 
708*4882a593Smuzhiyun 	if (poly->c[0] == 0)
709*4882a593Smuzhiyun 		return 0;
710*4882a593Smuzhiyun 
711*4882a593Smuzhiyun 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
712*4882a593Smuzhiyun 	e4 = poly->c[4];
713*4882a593Smuzhiyun 	d = gf_div(bch, poly->c[0], e4);
714*4882a593Smuzhiyun 	c = gf_div(bch, poly->c[1], e4);
715*4882a593Smuzhiyun 	b = gf_div(bch, poly->c[2], e4);
716*4882a593Smuzhiyun 	a = gf_div(bch, poly->c[3], e4);
717*4882a593Smuzhiyun 
718*4882a593Smuzhiyun 	/* use Y=1/X transformation to get an affine polynomial */
719*4882a593Smuzhiyun 	if (a) {
720*4882a593Smuzhiyun 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
721*4882a593Smuzhiyun 		if (c) {
722*4882a593Smuzhiyun 			/* compute e such that e^2 = c/a */
723*4882a593Smuzhiyun 			f = gf_div(bch, c, a);
724*4882a593Smuzhiyun 			l = a_log(bch, f);
725*4882a593Smuzhiyun 			l += (l & 1) ? GF_N(bch) : 0;
726*4882a593Smuzhiyun 			e = a_pow(bch, l/2);
727*4882a593Smuzhiyun 			/*
728*4882a593Smuzhiyun 			 * use transformation z=X+e:
729*4882a593Smuzhiyun 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
730*4882a593Smuzhiyun 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
731*4882a593Smuzhiyun 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
732*4882a593Smuzhiyun 			 * z^4 + az^3 +     b'z^2 + d'
733*4882a593Smuzhiyun 			 */
734*4882a593Smuzhiyun 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
735*4882a593Smuzhiyun 			b = gf_mul(bch, a, e)^b;
736*4882a593Smuzhiyun 		}
737*4882a593Smuzhiyun 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
738*4882a593Smuzhiyun 		if (d == 0)
739*4882a593Smuzhiyun 			/* assume all roots have multiplicity 1 */
740*4882a593Smuzhiyun 			return 0;
741*4882a593Smuzhiyun 
742*4882a593Smuzhiyun 		c2 = gf_inv(bch, d);
743*4882a593Smuzhiyun 		b2 = gf_div(bch, a, d);
744*4882a593Smuzhiyun 		a2 = gf_div(bch, b, d);
745*4882a593Smuzhiyun 	} else {
746*4882a593Smuzhiyun 		/* polynomial is already affine */
747*4882a593Smuzhiyun 		c2 = d;
748*4882a593Smuzhiyun 		b2 = c;
749*4882a593Smuzhiyun 		a2 = b;
750*4882a593Smuzhiyun 	}
751*4882a593Smuzhiyun 	/* find the 4 roots of this affine polynomial */
752*4882a593Smuzhiyun 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
753*4882a593Smuzhiyun 		for (i = 0; i < 4; i++) {
754*4882a593Smuzhiyun 			/* post-process roots (reverse transformations) */
755*4882a593Smuzhiyun 			f = a ? gf_inv(bch, roots[i]) : roots[i];
756*4882a593Smuzhiyun 			roots[i] = a_ilog(bch, f^e);
757*4882a593Smuzhiyun 		}
758*4882a593Smuzhiyun 		n = 4;
759*4882a593Smuzhiyun 	}
760*4882a593Smuzhiyun 	return n;
761*4882a593Smuzhiyun }
762*4882a593Smuzhiyun 
763*4882a593Smuzhiyun /*
764*4882a593Smuzhiyun  * build monic, log-based representation of a polynomial
765*4882a593Smuzhiyun  */
gf_poly_logrep(struct bch_control * bch,const struct gf_poly * a,int * rep)766*4882a593Smuzhiyun static void gf_poly_logrep(struct bch_control *bch,
767*4882a593Smuzhiyun 			   const struct gf_poly *a, int *rep)
768*4882a593Smuzhiyun {
769*4882a593Smuzhiyun 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
770*4882a593Smuzhiyun 
771*4882a593Smuzhiyun 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
772*4882a593Smuzhiyun 	for (i = 0; i < d; i++)
773*4882a593Smuzhiyun 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
774*4882a593Smuzhiyun }
775*4882a593Smuzhiyun 
776*4882a593Smuzhiyun /*
777*4882a593Smuzhiyun  * compute polynomial Euclidean division remainder in GF(2^m)[X]
778*4882a593Smuzhiyun  */
gf_poly_mod(struct bch_control * bch,struct gf_poly * a,const struct gf_poly * b,int * rep)779*4882a593Smuzhiyun static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
780*4882a593Smuzhiyun 			const struct gf_poly *b, int *rep)
781*4882a593Smuzhiyun {
782*4882a593Smuzhiyun 	int la, p, m;
783*4882a593Smuzhiyun 	unsigned int i, j, *c = a->c;
784*4882a593Smuzhiyun 	const unsigned int d = b->deg;
785*4882a593Smuzhiyun 
786*4882a593Smuzhiyun 	if (a->deg < d)
787*4882a593Smuzhiyun 		return;
788*4882a593Smuzhiyun 
789*4882a593Smuzhiyun 	/* reuse or compute log representation of denominator */
790*4882a593Smuzhiyun 	if (!rep) {
791*4882a593Smuzhiyun 		rep = bch->cache;
792*4882a593Smuzhiyun 		gf_poly_logrep(bch, b, rep);
793*4882a593Smuzhiyun 	}
794*4882a593Smuzhiyun 
795*4882a593Smuzhiyun 	for (j = a->deg; j >= d; j--) {
796*4882a593Smuzhiyun 		if (c[j]) {
797*4882a593Smuzhiyun 			la = a_log(bch, c[j]);
798*4882a593Smuzhiyun 			p = j-d;
799*4882a593Smuzhiyun 			for (i = 0; i < d; i++, p++) {
800*4882a593Smuzhiyun 				m = rep[i];
801*4882a593Smuzhiyun 				if (m >= 0)
802*4882a593Smuzhiyun 					c[p] ^= bch->a_pow_tab[mod_s(bch,
803*4882a593Smuzhiyun 								     m+la)];
804*4882a593Smuzhiyun 			}
805*4882a593Smuzhiyun 		}
806*4882a593Smuzhiyun 	}
807*4882a593Smuzhiyun 	a->deg = d-1;
808*4882a593Smuzhiyun 	while (!c[a->deg] && a->deg)
809*4882a593Smuzhiyun 		a->deg--;
810*4882a593Smuzhiyun }
811*4882a593Smuzhiyun 
812*4882a593Smuzhiyun /*
813*4882a593Smuzhiyun  * compute polynomial Euclidean division quotient in GF(2^m)[X]
814*4882a593Smuzhiyun  */
gf_poly_div(struct bch_control * bch,struct gf_poly * a,const struct gf_poly * b,struct gf_poly * q)815*4882a593Smuzhiyun static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
816*4882a593Smuzhiyun 			const struct gf_poly *b, struct gf_poly *q)
817*4882a593Smuzhiyun {
818*4882a593Smuzhiyun 	if (a->deg >= b->deg) {
819*4882a593Smuzhiyun 		q->deg = a->deg-b->deg;
820*4882a593Smuzhiyun 		/* compute a mod b (modifies a) */
821*4882a593Smuzhiyun 		gf_poly_mod(bch, a, b, NULL);
822*4882a593Smuzhiyun 		/* quotient is stored in upper part of polynomial a */
823*4882a593Smuzhiyun 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
824*4882a593Smuzhiyun 	} else {
825*4882a593Smuzhiyun 		q->deg = 0;
826*4882a593Smuzhiyun 		q->c[0] = 0;
827*4882a593Smuzhiyun 	}
828*4882a593Smuzhiyun }
829*4882a593Smuzhiyun 
830*4882a593Smuzhiyun /*
831*4882a593Smuzhiyun  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
832*4882a593Smuzhiyun  */
gf_poly_gcd(struct bch_control * bch,struct gf_poly * a,struct gf_poly * b)833*4882a593Smuzhiyun static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
834*4882a593Smuzhiyun 				   struct gf_poly *b)
835*4882a593Smuzhiyun {
836*4882a593Smuzhiyun 	struct gf_poly *tmp;
837*4882a593Smuzhiyun 
838*4882a593Smuzhiyun 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
839*4882a593Smuzhiyun 
840*4882a593Smuzhiyun 	if (a->deg < b->deg) {
841*4882a593Smuzhiyun 		tmp = b;
842*4882a593Smuzhiyun 		b = a;
843*4882a593Smuzhiyun 		a = tmp;
844*4882a593Smuzhiyun 	}
845*4882a593Smuzhiyun 
846*4882a593Smuzhiyun 	while (b->deg > 0) {
847*4882a593Smuzhiyun 		gf_poly_mod(bch, a, b, NULL);
848*4882a593Smuzhiyun 		tmp = b;
849*4882a593Smuzhiyun 		b = a;
850*4882a593Smuzhiyun 		a = tmp;
851*4882a593Smuzhiyun 	}
852*4882a593Smuzhiyun 
853*4882a593Smuzhiyun 	dbg("%s\n", gf_poly_str(a));
854*4882a593Smuzhiyun 
855*4882a593Smuzhiyun 	return a;
856*4882a593Smuzhiyun }
857*4882a593Smuzhiyun 
858*4882a593Smuzhiyun /*
859*4882a593Smuzhiyun  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
860*4882a593Smuzhiyun  * This is used in Berlekamp Trace algorithm for splitting polynomials
861*4882a593Smuzhiyun  */
compute_trace_bk_mod(struct bch_control * bch,int k,const struct gf_poly * f,struct gf_poly * z,struct gf_poly * out)862*4882a593Smuzhiyun static void compute_trace_bk_mod(struct bch_control *bch, int k,
863*4882a593Smuzhiyun 				 const struct gf_poly *f, struct gf_poly *z,
864*4882a593Smuzhiyun 				 struct gf_poly *out)
865*4882a593Smuzhiyun {
866*4882a593Smuzhiyun 	const int m = GF_M(bch);
867*4882a593Smuzhiyun 	int i, j;
868*4882a593Smuzhiyun 
869*4882a593Smuzhiyun 	/* z contains z^2j mod f */
870*4882a593Smuzhiyun 	z->deg = 1;
871*4882a593Smuzhiyun 	z->c[0] = 0;
872*4882a593Smuzhiyun 	z->c[1] = bch->a_pow_tab[k];
873*4882a593Smuzhiyun 
874*4882a593Smuzhiyun 	out->deg = 0;
875*4882a593Smuzhiyun 	memset(out, 0, GF_POLY_SZ(f->deg));
876*4882a593Smuzhiyun 
877*4882a593Smuzhiyun 	/* compute f log representation only once */
878*4882a593Smuzhiyun 	gf_poly_logrep(bch, f, bch->cache);
879*4882a593Smuzhiyun 
880*4882a593Smuzhiyun 	for (i = 0; i < m; i++) {
881*4882a593Smuzhiyun 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
882*4882a593Smuzhiyun 		for (j = z->deg; j >= 0; j--) {
883*4882a593Smuzhiyun 			out->c[j] ^= z->c[j];
884*4882a593Smuzhiyun 			z->c[2*j] = gf_sqr(bch, z->c[j]);
885*4882a593Smuzhiyun 			z->c[2*j+1] = 0;
886*4882a593Smuzhiyun 		}
887*4882a593Smuzhiyun 		if (z->deg > out->deg)
888*4882a593Smuzhiyun 			out->deg = z->deg;
889*4882a593Smuzhiyun 
890*4882a593Smuzhiyun 		if (i < m-1) {
891*4882a593Smuzhiyun 			z->deg *= 2;
892*4882a593Smuzhiyun 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
893*4882a593Smuzhiyun 			gf_poly_mod(bch, z, f, bch->cache);
894*4882a593Smuzhiyun 		}
895*4882a593Smuzhiyun 	}
896*4882a593Smuzhiyun 	while (!out->c[out->deg] && out->deg)
897*4882a593Smuzhiyun 		out->deg--;
898*4882a593Smuzhiyun 
899*4882a593Smuzhiyun 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
900*4882a593Smuzhiyun }
901*4882a593Smuzhiyun 
902*4882a593Smuzhiyun /*
903*4882a593Smuzhiyun  * factor a polynomial using Berlekamp Trace algorithm (BTA)
904*4882a593Smuzhiyun  */
factor_polynomial(struct bch_control * bch,int k,struct gf_poly * f,struct gf_poly ** g,struct gf_poly ** h)905*4882a593Smuzhiyun static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
906*4882a593Smuzhiyun 			      struct gf_poly **g, struct gf_poly **h)
907*4882a593Smuzhiyun {
908*4882a593Smuzhiyun 	struct gf_poly *f2 = bch->poly_2t[0];
909*4882a593Smuzhiyun 	struct gf_poly *q  = bch->poly_2t[1];
910*4882a593Smuzhiyun 	struct gf_poly *tk = bch->poly_2t[2];
911*4882a593Smuzhiyun 	struct gf_poly *z  = bch->poly_2t[3];
912*4882a593Smuzhiyun 	struct gf_poly *gcd;
913*4882a593Smuzhiyun 
914*4882a593Smuzhiyun 	dbg("factoring %s...\n", gf_poly_str(f));
915*4882a593Smuzhiyun 
916*4882a593Smuzhiyun 	*g = f;
917*4882a593Smuzhiyun 	*h = NULL;
918*4882a593Smuzhiyun 
919*4882a593Smuzhiyun 	/* tk = Tr(a^k.X) mod f */
920*4882a593Smuzhiyun 	compute_trace_bk_mod(bch, k, f, z, tk);
921*4882a593Smuzhiyun 
922*4882a593Smuzhiyun 	if (tk->deg > 0) {
923*4882a593Smuzhiyun 		/* compute g = gcd(f, tk) (destructive operation) */
924*4882a593Smuzhiyun 		gf_poly_copy(f2, f);
925*4882a593Smuzhiyun 		gcd = gf_poly_gcd(bch, f2, tk);
926*4882a593Smuzhiyun 		if (gcd->deg < f->deg) {
927*4882a593Smuzhiyun 			/* compute h=f/gcd(f,tk); this will modify f and q */
928*4882a593Smuzhiyun 			gf_poly_div(bch, f, gcd, q);
929*4882a593Smuzhiyun 			/* store g and h in-place (clobbering f) */
930*4882a593Smuzhiyun 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
931*4882a593Smuzhiyun 			gf_poly_copy(*g, gcd);
932*4882a593Smuzhiyun 			gf_poly_copy(*h, q);
933*4882a593Smuzhiyun 		}
934*4882a593Smuzhiyun 	}
935*4882a593Smuzhiyun }
936*4882a593Smuzhiyun 
937*4882a593Smuzhiyun /*
938*4882a593Smuzhiyun  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
939*4882a593Smuzhiyun  * file for details
940*4882a593Smuzhiyun  */
find_poly_roots(struct bch_control * bch,unsigned int k,struct gf_poly * poly,unsigned int * roots)941*4882a593Smuzhiyun static int find_poly_roots(struct bch_control *bch, unsigned int k,
942*4882a593Smuzhiyun 			   struct gf_poly *poly, unsigned int *roots)
943*4882a593Smuzhiyun {
944*4882a593Smuzhiyun 	int cnt;
945*4882a593Smuzhiyun 	struct gf_poly *f1, *f2;
946*4882a593Smuzhiyun 
947*4882a593Smuzhiyun 	switch (poly->deg) {
948*4882a593Smuzhiyun 		/* handle low degree polynomials with ad hoc techniques */
949*4882a593Smuzhiyun 	case 1:
950*4882a593Smuzhiyun 		cnt = find_poly_deg1_roots(bch, poly, roots);
951*4882a593Smuzhiyun 		break;
952*4882a593Smuzhiyun 	case 2:
953*4882a593Smuzhiyun 		cnt = find_poly_deg2_roots(bch, poly, roots);
954*4882a593Smuzhiyun 		break;
955*4882a593Smuzhiyun 	case 3:
956*4882a593Smuzhiyun 		cnt = find_poly_deg3_roots(bch, poly, roots);
957*4882a593Smuzhiyun 		break;
958*4882a593Smuzhiyun 	case 4:
959*4882a593Smuzhiyun 		cnt = find_poly_deg4_roots(bch, poly, roots);
960*4882a593Smuzhiyun 		break;
961*4882a593Smuzhiyun 	default:
962*4882a593Smuzhiyun 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
963*4882a593Smuzhiyun 		cnt = 0;
964*4882a593Smuzhiyun 		if (poly->deg && (k <= GF_M(bch))) {
965*4882a593Smuzhiyun 			factor_polynomial(bch, k, poly, &f1, &f2);
966*4882a593Smuzhiyun 			if (f1)
967*4882a593Smuzhiyun 				cnt += find_poly_roots(bch, k+1, f1, roots);
968*4882a593Smuzhiyun 			if (f2)
969*4882a593Smuzhiyun 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
970*4882a593Smuzhiyun 		}
971*4882a593Smuzhiyun 		break;
972*4882a593Smuzhiyun 	}
973*4882a593Smuzhiyun 	return cnt;
974*4882a593Smuzhiyun }
975*4882a593Smuzhiyun 
976*4882a593Smuzhiyun #if defined(USE_CHIEN_SEARCH)
977*4882a593Smuzhiyun /*
978*4882a593Smuzhiyun  * exhaustive root search (Chien) implementation - not used, included only for
979*4882a593Smuzhiyun  * reference/comparison tests
980*4882a593Smuzhiyun  */
chien_search(struct bch_control * bch,unsigned int len,struct gf_poly * p,unsigned int * roots)981*4882a593Smuzhiyun static int chien_search(struct bch_control *bch, unsigned int len,
982*4882a593Smuzhiyun 			struct gf_poly *p, unsigned int *roots)
983*4882a593Smuzhiyun {
984*4882a593Smuzhiyun 	int m;
985*4882a593Smuzhiyun 	unsigned int i, j, syn, syn0, count = 0;
986*4882a593Smuzhiyun 	const unsigned int k = 8*len+bch->ecc_bits;
987*4882a593Smuzhiyun 
988*4882a593Smuzhiyun 	/* use a log-based representation of polynomial */
989*4882a593Smuzhiyun 	gf_poly_logrep(bch, p, bch->cache);
990*4882a593Smuzhiyun 	bch->cache[p->deg] = 0;
991*4882a593Smuzhiyun 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
992*4882a593Smuzhiyun 
993*4882a593Smuzhiyun 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
994*4882a593Smuzhiyun 		/* compute elp(a^i) */
995*4882a593Smuzhiyun 		for (j = 1, syn = syn0; j <= p->deg; j++) {
996*4882a593Smuzhiyun 			m = bch->cache[j];
997*4882a593Smuzhiyun 			if (m >= 0)
998*4882a593Smuzhiyun 				syn ^= a_pow(bch, m+j*i);
999*4882a593Smuzhiyun 		}
1000*4882a593Smuzhiyun 		if (syn == 0) {
1001*4882a593Smuzhiyun 			roots[count++] = GF_N(bch)-i;
1002*4882a593Smuzhiyun 			if (count == p->deg)
1003*4882a593Smuzhiyun 				break;
1004*4882a593Smuzhiyun 		}
1005*4882a593Smuzhiyun 	}
1006*4882a593Smuzhiyun 	return (count == p->deg) ? count : 0;
1007*4882a593Smuzhiyun }
1008*4882a593Smuzhiyun #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
1009*4882a593Smuzhiyun #endif /* USE_CHIEN_SEARCH */
1010*4882a593Smuzhiyun 
1011*4882a593Smuzhiyun /**
1012*4882a593Smuzhiyun  * bch_decode - decode received codeword and find bit error locations
1013*4882a593Smuzhiyun  * @bch:      BCH control structure
1014*4882a593Smuzhiyun  * @data:     received data, ignored if @calc_ecc is provided
1015*4882a593Smuzhiyun  * @len:      data length in bytes, must always be provided
1016*4882a593Smuzhiyun  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
1017*4882a593Smuzhiyun  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
1018*4882a593Smuzhiyun  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
1019*4882a593Smuzhiyun  * @errloc:   output array of error locations
1020*4882a593Smuzhiyun  *
1021*4882a593Smuzhiyun  * Returns:
1022*4882a593Smuzhiyun  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
1023*4882a593Smuzhiyun  *  invalid parameters were provided
1024*4882a593Smuzhiyun  *
1025*4882a593Smuzhiyun  * Depending on the available hw BCH support and the need to compute @calc_ecc
1026*4882a593Smuzhiyun  * separately (using bch_encode()), this function should be called with one of
1027*4882a593Smuzhiyun  * the following parameter configurations -
1028*4882a593Smuzhiyun  *
1029*4882a593Smuzhiyun  * by providing @data and @recv_ecc only:
1030*4882a593Smuzhiyun  *   bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
1031*4882a593Smuzhiyun  *
1032*4882a593Smuzhiyun  * by providing @recv_ecc and @calc_ecc:
1033*4882a593Smuzhiyun  *   bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1034*4882a593Smuzhiyun  *
1035*4882a593Smuzhiyun  * by providing ecc = recv_ecc XOR calc_ecc:
1036*4882a593Smuzhiyun  *   bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1037*4882a593Smuzhiyun  *
1038*4882a593Smuzhiyun  * by providing syndrome results @syn:
1039*4882a593Smuzhiyun  *   bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1040*4882a593Smuzhiyun  *
1041*4882a593Smuzhiyun  * Once bch_decode() has successfully returned with a positive value, error
1042*4882a593Smuzhiyun  * locations returned in array @errloc should be interpreted as follows -
1043*4882a593Smuzhiyun  *
1044*4882a593Smuzhiyun  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1045*4882a593Smuzhiyun  * data correction)
1046*4882a593Smuzhiyun  *
1047*4882a593Smuzhiyun  * if (errloc[n] < 8*len), then n-th error is located in data and can be
1048*4882a593Smuzhiyun  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1049*4882a593Smuzhiyun  *
1050*4882a593Smuzhiyun  * Note that this function does not perform any data correction by itself, it
1051*4882a593Smuzhiyun  * merely indicates error locations.
1052*4882a593Smuzhiyun  */
bch_decode(struct bch_control * bch,const uint8_t * data,unsigned int len,const uint8_t * recv_ecc,const uint8_t * calc_ecc,const unsigned int * syn,unsigned int * errloc)1053*4882a593Smuzhiyun int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
1054*4882a593Smuzhiyun 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1055*4882a593Smuzhiyun 	       const unsigned int *syn, unsigned int *errloc)
1056*4882a593Smuzhiyun {
1057*4882a593Smuzhiyun 	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1058*4882a593Smuzhiyun 	unsigned int nbits;
1059*4882a593Smuzhiyun 	int i, err, nroots;
1060*4882a593Smuzhiyun 	uint32_t sum;
1061*4882a593Smuzhiyun 
1062*4882a593Smuzhiyun 	/* sanity check: make sure data length can be handled */
1063*4882a593Smuzhiyun 	if (8*len > (bch->n-bch->ecc_bits))
1064*4882a593Smuzhiyun 		return -EINVAL;
1065*4882a593Smuzhiyun 
1066*4882a593Smuzhiyun 	/* if caller does not provide syndromes, compute them */
1067*4882a593Smuzhiyun 	if (!syn) {
1068*4882a593Smuzhiyun 		if (!calc_ecc) {
1069*4882a593Smuzhiyun 			/* compute received data ecc into an internal buffer */
1070*4882a593Smuzhiyun 			if (!data || !recv_ecc)
1071*4882a593Smuzhiyun 				return -EINVAL;
1072*4882a593Smuzhiyun 			bch_encode(bch, data, len, NULL);
1073*4882a593Smuzhiyun 		} else {
1074*4882a593Smuzhiyun 			/* load provided calculated ecc */
1075*4882a593Smuzhiyun 			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1076*4882a593Smuzhiyun 		}
1077*4882a593Smuzhiyun 		/* load received ecc or assume it was XORed in calc_ecc */
1078*4882a593Smuzhiyun 		if (recv_ecc) {
1079*4882a593Smuzhiyun 			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1080*4882a593Smuzhiyun 			/* XOR received and calculated ecc */
1081*4882a593Smuzhiyun 			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1082*4882a593Smuzhiyun 				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1083*4882a593Smuzhiyun 				sum |= bch->ecc_buf[i];
1084*4882a593Smuzhiyun 			}
1085*4882a593Smuzhiyun 			if (!sum)
1086*4882a593Smuzhiyun 				/* no error found */
1087*4882a593Smuzhiyun 				return 0;
1088*4882a593Smuzhiyun 		}
1089*4882a593Smuzhiyun 		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1090*4882a593Smuzhiyun 		syn = bch->syn;
1091*4882a593Smuzhiyun 	}
1092*4882a593Smuzhiyun 
1093*4882a593Smuzhiyun 	err = compute_error_locator_polynomial(bch, syn);
1094*4882a593Smuzhiyun 	if (err > 0) {
1095*4882a593Smuzhiyun 		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1096*4882a593Smuzhiyun 		if (err != nroots)
1097*4882a593Smuzhiyun 			err = -1;
1098*4882a593Smuzhiyun 	}
1099*4882a593Smuzhiyun 	if (err > 0) {
1100*4882a593Smuzhiyun 		/* post-process raw error locations for easier correction */
1101*4882a593Smuzhiyun 		nbits = (len*8)+bch->ecc_bits;
1102*4882a593Smuzhiyun 		for (i = 0; i < err; i++) {
1103*4882a593Smuzhiyun 			if (errloc[i] >= nbits) {
1104*4882a593Smuzhiyun 				err = -1;
1105*4882a593Smuzhiyun 				break;
1106*4882a593Smuzhiyun 			}
1107*4882a593Smuzhiyun 			errloc[i] = nbits-1-errloc[i];
1108*4882a593Smuzhiyun 			if (!bch->swap_bits)
1109*4882a593Smuzhiyun 				errloc[i] = (errloc[i] & ~7) |
1110*4882a593Smuzhiyun 					    (7-(errloc[i] & 7));
1111*4882a593Smuzhiyun 		}
1112*4882a593Smuzhiyun 	}
1113*4882a593Smuzhiyun 	return (err >= 0) ? err : -EBADMSG;
1114*4882a593Smuzhiyun }
1115*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(bch_decode);
1116*4882a593Smuzhiyun 
1117*4882a593Smuzhiyun /*
1118*4882a593Smuzhiyun  * generate Galois field lookup tables
1119*4882a593Smuzhiyun  */
build_gf_tables(struct bch_control * bch,unsigned int poly)1120*4882a593Smuzhiyun static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1121*4882a593Smuzhiyun {
1122*4882a593Smuzhiyun 	unsigned int i, x = 1;
1123*4882a593Smuzhiyun 	const unsigned int k = 1 << deg(poly);
1124*4882a593Smuzhiyun 
1125*4882a593Smuzhiyun 	/* primitive polynomial must be of degree m */
1126*4882a593Smuzhiyun 	if (k != (1u << GF_M(bch)))
1127*4882a593Smuzhiyun 		return -1;
1128*4882a593Smuzhiyun 
1129*4882a593Smuzhiyun 	for (i = 0; i < GF_N(bch); i++) {
1130*4882a593Smuzhiyun 		bch->a_pow_tab[i] = x;
1131*4882a593Smuzhiyun 		bch->a_log_tab[x] = i;
1132*4882a593Smuzhiyun 		if (i && (x == 1))
1133*4882a593Smuzhiyun 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1134*4882a593Smuzhiyun 			return -1;
1135*4882a593Smuzhiyun 		x <<= 1;
1136*4882a593Smuzhiyun 		if (x & k)
1137*4882a593Smuzhiyun 			x ^= poly;
1138*4882a593Smuzhiyun 	}
1139*4882a593Smuzhiyun 	bch->a_pow_tab[GF_N(bch)] = 1;
1140*4882a593Smuzhiyun 	bch->a_log_tab[0] = 0;
1141*4882a593Smuzhiyun 
1142*4882a593Smuzhiyun 	return 0;
1143*4882a593Smuzhiyun }
1144*4882a593Smuzhiyun 
1145*4882a593Smuzhiyun /*
1146*4882a593Smuzhiyun  * compute generator polynomial remainder tables for fast encoding
1147*4882a593Smuzhiyun  */
build_mod8_tables(struct bch_control * bch,const uint32_t * g)1148*4882a593Smuzhiyun static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1149*4882a593Smuzhiyun {
1150*4882a593Smuzhiyun 	int i, j, b, d;
1151*4882a593Smuzhiyun 	uint32_t data, hi, lo, *tab;
1152*4882a593Smuzhiyun 	const int l = BCH_ECC_WORDS(bch);
1153*4882a593Smuzhiyun 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1154*4882a593Smuzhiyun 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1155*4882a593Smuzhiyun 
1156*4882a593Smuzhiyun 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1157*4882a593Smuzhiyun 
1158*4882a593Smuzhiyun 	for (i = 0; i < 256; i++) {
1159*4882a593Smuzhiyun 		/* p(X)=i is a small polynomial of weight <= 8 */
1160*4882a593Smuzhiyun 		for (b = 0; b < 4; b++) {
1161*4882a593Smuzhiyun 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1162*4882a593Smuzhiyun 			tab = bch->mod8_tab + (b*256+i)*l;
1163*4882a593Smuzhiyun 			data = i << (8*b);
1164*4882a593Smuzhiyun 			while (data) {
1165*4882a593Smuzhiyun 				d = deg(data);
1166*4882a593Smuzhiyun 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1167*4882a593Smuzhiyun 				data ^= g[0] >> (31-d);
1168*4882a593Smuzhiyun 				for (j = 0; j < ecclen; j++) {
1169*4882a593Smuzhiyun 					hi = (d < 31) ? g[j] << (d+1) : 0;
1170*4882a593Smuzhiyun 					lo = (j+1 < plen) ?
1171*4882a593Smuzhiyun 						g[j+1] >> (31-d) : 0;
1172*4882a593Smuzhiyun 					tab[j] ^= hi|lo;
1173*4882a593Smuzhiyun 				}
1174*4882a593Smuzhiyun 			}
1175*4882a593Smuzhiyun 		}
1176*4882a593Smuzhiyun 	}
1177*4882a593Smuzhiyun }
1178*4882a593Smuzhiyun 
1179*4882a593Smuzhiyun /*
1180*4882a593Smuzhiyun  * build a base for factoring degree 2 polynomials
1181*4882a593Smuzhiyun  */
build_deg2_base(struct bch_control * bch)1182*4882a593Smuzhiyun static int build_deg2_base(struct bch_control *bch)
1183*4882a593Smuzhiyun {
1184*4882a593Smuzhiyun 	const int m = GF_M(bch);
1185*4882a593Smuzhiyun 	int i, j, r;
1186*4882a593Smuzhiyun 	unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
1187*4882a593Smuzhiyun 
1188*4882a593Smuzhiyun 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1189*4882a593Smuzhiyun 	for (i = 0; i < m; i++) {
1190*4882a593Smuzhiyun 		for (j = 0, sum = 0; j < m; j++)
1191*4882a593Smuzhiyun 			sum ^= a_pow(bch, i*(1 << j));
1192*4882a593Smuzhiyun 
1193*4882a593Smuzhiyun 		if (sum) {
1194*4882a593Smuzhiyun 			ak = bch->a_pow_tab[i];
1195*4882a593Smuzhiyun 			break;
1196*4882a593Smuzhiyun 		}
1197*4882a593Smuzhiyun 	}
1198*4882a593Smuzhiyun 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1199*4882a593Smuzhiyun 	remaining = m;
1200*4882a593Smuzhiyun 	memset(xi, 0, sizeof(xi));
1201*4882a593Smuzhiyun 
1202*4882a593Smuzhiyun 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1203*4882a593Smuzhiyun 		y = gf_sqr(bch, x)^x;
1204*4882a593Smuzhiyun 		for (i = 0; i < 2; i++) {
1205*4882a593Smuzhiyun 			r = a_log(bch, y);
1206*4882a593Smuzhiyun 			if (y && (r < m) && !xi[r]) {
1207*4882a593Smuzhiyun 				bch->xi_tab[r] = x;
1208*4882a593Smuzhiyun 				xi[r] = 1;
1209*4882a593Smuzhiyun 				remaining--;
1210*4882a593Smuzhiyun 				dbg("x%d = %x\n", r, x);
1211*4882a593Smuzhiyun 				break;
1212*4882a593Smuzhiyun 			}
1213*4882a593Smuzhiyun 			y ^= ak;
1214*4882a593Smuzhiyun 		}
1215*4882a593Smuzhiyun 	}
1216*4882a593Smuzhiyun 	/* should not happen but check anyway */
1217*4882a593Smuzhiyun 	return remaining ? -1 : 0;
1218*4882a593Smuzhiyun }
1219*4882a593Smuzhiyun 
bch_alloc(size_t size,int * err)1220*4882a593Smuzhiyun static void *bch_alloc(size_t size, int *err)
1221*4882a593Smuzhiyun {
1222*4882a593Smuzhiyun 	void *ptr;
1223*4882a593Smuzhiyun 
1224*4882a593Smuzhiyun 	ptr = kmalloc(size, GFP_KERNEL);
1225*4882a593Smuzhiyun 	if (ptr == NULL)
1226*4882a593Smuzhiyun 		*err = 1;
1227*4882a593Smuzhiyun 	return ptr;
1228*4882a593Smuzhiyun }
1229*4882a593Smuzhiyun 
1230*4882a593Smuzhiyun /*
1231*4882a593Smuzhiyun  * compute generator polynomial for given (m,t) parameters.
1232*4882a593Smuzhiyun  */
compute_generator_polynomial(struct bch_control * bch)1233*4882a593Smuzhiyun static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1234*4882a593Smuzhiyun {
1235*4882a593Smuzhiyun 	const unsigned int m = GF_M(bch);
1236*4882a593Smuzhiyun 	const unsigned int t = GF_T(bch);
1237*4882a593Smuzhiyun 	int n, err = 0;
1238*4882a593Smuzhiyun 	unsigned int i, j, nbits, r, word, *roots;
1239*4882a593Smuzhiyun 	struct gf_poly *g;
1240*4882a593Smuzhiyun 	uint32_t *genpoly;
1241*4882a593Smuzhiyun 
1242*4882a593Smuzhiyun 	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1243*4882a593Smuzhiyun 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1244*4882a593Smuzhiyun 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1245*4882a593Smuzhiyun 
1246*4882a593Smuzhiyun 	if (err) {
1247*4882a593Smuzhiyun 		kfree(genpoly);
1248*4882a593Smuzhiyun 		genpoly = NULL;
1249*4882a593Smuzhiyun 		goto finish;
1250*4882a593Smuzhiyun 	}
1251*4882a593Smuzhiyun 
1252*4882a593Smuzhiyun 	/* enumerate all roots of g(X) */
1253*4882a593Smuzhiyun 	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1254*4882a593Smuzhiyun 	for (i = 0; i < t; i++) {
1255*4882a593Smuzhiyun 		for (j = 0, r = 2*i+1; j < m; j++) {
1256*4882a593Smuzhiyun 			roots[r] = 1;
1257*4882a593Smuzhiyun 			r = mod_s(bch, 2*r);
1258*4882a593Smuzhiyun 		}
1259*4882a593Smuzhiyun 	}
1260*4882a593Smuzhiyun 	/* build generator polynomial g(X) */
1261*4882a593Smuzhiyun 	g->deg = 0;
1262*4882a593Smuzhiyun 	g->c[0] = 1;
1263*4882a593Smuzhiyun 	for (i = 0; i < GF_N(bch); i++) {
1264*4882a593Smuzhiyun 		if (roots[i]) {
1265*4882a593Smuzhiyun 			/* multiply g(X) by (X+root) */
1266*4882a593Smuzhiyun 			r = bch->a_pow_tab[i];
1267*4882a593Smuzhiyun 			g->c[g->deg+1] = 1;
1268*4882a593Smuzhiyun 			for (j = g->deg; j > 0; j--)
1269*4882a593Smuzhiyun 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1270*4882a593Smuzhiyun 
1271*4882a593Smuzhiyun 			g->c[0] = gf_mul(bch, g->c[0], r);
1272*4882a593Smuzhiyun 			g->deg++;
1273*4882a593Smuzhiyun 		}
1274*4882a593Smuzhiyun 	}
1275*4882a593Smuzhiyun 	/* store left-justified binary representation of g(X) */
1276*4882a593Smuzhiyun 	n = g->deg+1;
1277*4882a593Smuzhiyun 	i = 0;
1278*4882a593Smuzhiyun 
1279*4882a593Smuzhiyun 	while (n > 0) {
1280*4882a593Smuzhiyun 		nbits = (n > 32) ? 32 : n;
1281*4882a593Smuzhiyun 		for (j = 0, word = 0; j < nbits; j++) {
1282*4882a593Smuzhiyun 			if (g->c[n-1-j])
1283*4882a593Smuzhiyun 				word |= 1u << (31-j);
1284*4882a593Smuzhiyun 		}
1285*4882a593Smuzhiyun 		genpoly[i++] = word;
1286*4882a593Smuzhiyun 		n -= nbits;
1287*4882a593Smuzhiyun 	}
1288*4882a593Smuzhiyun 	bch->ecc_bits = g->deg;
1289*4882a593Smuzhiyun 
1290*4882a593Smuzhiyun finish:
1291*4882a593Smuzhiyun 	kfree(g);
1292*4882a593Smuzhiyun 	kfree(roots);
1293*4882a593Smuzhiyun 
1294*4882a593Smuzhiyun 	return genpoly;
1295*4882a593Smuzhiyun }
1296*4882a593Smuzhiyun 
1297*4882a593Smuzhiyun /**
1298*4882a593Smuzhiyun  * bch_init - initialize a BCH encoder/decoder
1299*4882a593Smuzhiyun  * @m:          Galois field order, should be in the range 5-15
1300*4882a593Smuzhiyun  * @t:          maximum error correction capability, in bits
1301*4882a593Smuzhiyun  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1302*4882a593Smuzhiyun  * @swap_bits:  swap bits within data and syndrome bytes
1303*4882a593Smuzhiyun  *
1304*4882a593Smuzhiyun  * Returns:
1305*4882a593Smuzhiyun  *  a newly allocated BCH control structure if successful, NULL otherwise
1306*4882a593Smuzhiyun  *
1307*4882a593Smuzhiyun  * This initialization can take some time, as lookup tables are built for fast
1308*4882a593Smuzhiyun  * encoding/decoding; make sure not to call this function from a time critical
1309*4882a593Smuzhiyun  * path. Usually, bch_init() should be called on module/driver init and
1310*4882a593Smuzhiyun  * bch_free() should be called to release memory on exit.
1311*4882a593Smuzhiyun  *
1312*4882a593Smuzhiyun  * You may provide your own primitive polynomial of degree @m in argument
1313*4882a593Smuzhiyun  * @prim_poly, or let bch_init() use its default polynomial.
1314*4882a593Smuzhiyun  *
1315*4882a593Smuzhiyun  * Once bch_init() has successfully returned a pointer to a newly allocated
1316*4882a593Smuzhiyun  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1317*4882a593Smuzhiyun  * the structure.
1318*4882a593Smuzhiyun  */
bch_init(int m,int t,unsigned int prim_poly,bool swap_bits)1319*4882a593Smuzhiyun struct bch_control *bch_init(int m, int t, unsigned int prim_poly,
1320*4882a593Smuzhiyun 			     bool swap_bits)
1321*4882a593Smuzhiyun {
1322*4882a593Smuzhiyun 	int err = 0;
1323*4882a593Smuzhiyun 	unsigned int i, words;
1324*4882a593Smuzhiyun 	uint32_t *genpoly;
1325*4882a593Smuzhiyun 	struct bch_control *bch = NULL;
1326*4882a593Smuzhiyun 
1327*4882a593Smuzhiyun 	const int min_m = 5;
1328*4882a593Smuzhiyun 
1329*4882a593Smuzhiyun 	/* default primitive polynomials */
1330*4882a593Smuzhiyun 	static const unsigned int prim_poly_tab[] = {
1331*4882a593Smuzhiyun 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1332*4882a593Smuzhiyun 		0x402b, 0x8003,
1333*4882a593Smuzhiyun 	};
1334*4882a593Smuzhiyun 
1335*4882a593Smuzhiyun #if defined(CONFIG_BCH_CONST_PARAMS)
1336*4882a593Smuzhiyun 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1337*4882a593Smuzhiyun 		printk(KERN_ERR "bch encoder/decoder was configured to support "
1338*4882a593Smuzhiyun 		       "parameters m=%d, t=%d only!\n",
1339*4882a593Smuzhiyun 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1340*4882a593Smuzhiyun 		goto fail;
1341*4882a593Smuzhiyun 	}
1342*4882a593Smuzhiyun #endif
1343*4882a593Smuzhiyun 	if ((m < min_m) || (m > BCH_MAX_M))
1344*4882a593Smuzhiyun 		/*
1345*4882a593Smuzhiyun 		 * values of m greater than 15 are not currently supported;
1346*4882a593Smuzhiyun 		 * supporting m > 15 would require changing table base type
1347*4882a593Smuzhiyun 		 * (uint16_t) and a small patch in matrix transposition
1348*4882a593Smuzhiyun 		 */
1349*4882a593Smuzhiyun 		goto fail;
1350*4882a593Smuzhiyun 
1351*4882a593Smuzhiyun 	if (t > BCH_MAX_T)
1352*4882a593Smuzhiyun 		/*
1353*4882a593Smuzhiyun 		 * we can support larger than 64 bits if necessary, at the
1354*4882a593Smuzhiyun 		 * cost of higher stack usage.
1355*4882a593Smuzhiyun 		 */
1356*4882a593Smuzhiyun 		goto fail;
1357*4882a593Smuzhiyun 
1358*4882a593Smuzhiyun 	/* sanity checks */
1359*4882a593Smuzhiyun 	if ((t < 1) || (m*t >= ((1 << m)-1)))
1360*4882a593Smuzhiyun 		/* invalid t value */
1361*4882a593Smuzhiyun 		goto fail;
1362*4882a593Smuzhiyun 
1363*4882a593Smuzhiyun 	/* select a primitive polynomial for generating GF(2^m) */
1364*4882a593Smuzhiyun 	if (prim_poly == 0)
1365*4882a593Smuzhiyun 		prim_poly = prim_poly_tab[m-min_m];
1366*4882a593Smuzhiyun 
1367*4882a593Smuzhiyun 	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1368*4882a593Smuzhiyun 	if (bch == NULL)
1369*4882a593Smuzhiyun 		goto fail;
1370*4882a593Smuzhiyun 
1371*4882a593Smuzhiyun 	bch->m = m;
1372*4882a593Smuzhiyun 	bch->t = t;
1373*4882a593Smuzhiyun 	bch->n = (1 << m)-1;
1374*4882a593Smuzhiyun 	words  = DIV_ROUND_UP(m*t, 32);
1375*4882a593Smuzhiyun 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1376*4882a593Smuzhiyun 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1377*4882a593Smuzhiyun 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1378*4882a593Smuzhiyun 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1379*4882a593Smuzhiyun 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1380*4882a593Smuzhiyun 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1381*4882a593Smuzhiyun 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1382*4882a593Smuzhiyun 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1383*4882a593Smuzhiyun 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1384*4882a593Smuzhiyun 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1385*4882a593Smuzhiyun 	bch->swap_bits = swap_bits;
1386*4882a593Smuzhiyun 
1387*4882a593Smuzhiyun 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1388*4882a593Smuzhiyun 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1389*4882a593Smuzhiyun 
1390*4882a593Smuzhiyun 	if (err)
1391*4882a593Smuzhiyun 		goto fail;
1392*4882a593Smuzhiyun 
1393*4882a593Smuzhiyun 	err = build_gf_tables(bch, prim_poly);
1394*4882a593Smuzhiyun 	if (err)
1395*4882a593Smuzhiyun 		goto fail;
1396*4882a593Smuzhiyun 
1397*4882a593Smuzhiyun 	/* use generator polynomial for computing encoding tables */
1398*4882a593Smuzhiyun 	genpoly = compute_generator_polynomial(bch);
1399*4882a593Smuzhiyun 	if (genpoly == NULL)
1400*4882a593Smuzhiyun 		goto fail;
1401*4882a593Smuzhiyun 
1402*4882a593Smuzhiyun 	build_mod8_tables(bch, genpoly);
1403*4882a593Smuzhiyun 	kfree(genpoly);
1404*4882a593Smuzhiyun 
1405*4882a593Smuzhiyun 	err = build_deg2_base(bch);
1406*4882a593Smuzhiyun 	if (err)
1407*4882a593Smuzhiyun 		goto fail;
1408*4882a593Smuzhiyun 
1409*4882a593Smuzhiyun 	return bch;
1410*4882a593Smuzhiyun 
1411*4882a593Smuzhiyun fail:
1412*4882a593Smuzhiyun 	bch_free(bch);
1413*4882a593Smuzhiyun 	return NULL;
1414*4882a593Smuzhiyun }
1415*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(bch_init);
1416*4882a593Smuzhiyun 
1417*4882a593Smuzhiyun /**
1418*4882a593Smuzhiyun  *  bch_free - free the BCH control structure
1419*4882a593Smuzhiyun  *  @bch:    BCH control structure to release
1420*4882a593Smuzhiyun  */
bch_free(struct bch_control * bch)1421*4882a593Smuzhiyun void bch_free(struct bch_control *bch)
1422*4882a593Smuzhiyun {
1423*4882a593Smuzhiyun 	unsigned int i;
1424*4882a593Smuzhiyun 
1425*4882a593Smuzhiyun 	if (bch) {
1426*4882a593Smuzhiyun 		kfree(bch->a_pow_tab);
1427*4882a593Smuzhiyun 		kfree(bch->a_log_tab);
1428*4882a593Smuzhiyun 		kfree(bch->mod8_tab);
1429*4882a593Smuzhiyun 		kfree(bch->ecc_buf);
1430*4882a593Smuzhiyun 		kfree(bch->ecc_buf2);
1431*4882a593Smuzhiyun 		kfree(bch->xi_tab);
1432*4882a593Smuzhiyun 		kfree(bch->syn);
1433*4882a593Smuzhiyun 		kfree(bch->cache);
1434*4882a593Smuzhiyun 		kfree(bch->elp);
1435*4882a593Smuzhiyun 
1436*4882a593Smuzhiyun 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1437*4882a593Smuzhiyun 			kfree(bch->poly_2t[i]);
1438*4882a593Smuzhiyun 
1439*4882a593Smuzhiyun 		kfree(bch);
1440*4882a593Smuzhiyun 	}
1441*4882a593Smuzhiyun }
1442*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(bch_free);
1443*4882a593Smuzhiyun 
1444*4882a593Smuzhiyun MODULE_LICENSE("GPL");
1445*4882a593Smuzhiyun MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1446*4882a593Smuzhiyun MODULE_DESCRIPTION("Binary BCH encoder/decoder");
1447