1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "../fs/internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 #ifndef __GENKSYMS__
465 /*
466 * ANDROID ABI HACK
467 *
468 * See the big comment in the linux/io_uring.h file for details. This
469 * structure definition should NOT be used if __GENKSYMS__ is enabled,
470 * as a "fake" structure definition has already been read in the
471 * linux/io_uring.h file in order to preserve the Android kernel ABI.
472 */
473 struct io_uring_task {
474 /* submission side */
475 int cached_refs;
476 struct xarray xa;
477 struct wait_queue_head wait;
478 const struct io_ring_ctx *last;
479 struct io_wq *io_wq;
480 struct percpu_counter inflight;
481 atomic_t inflight_tracked;
482 atomic_t in_idle;
483
484 spinlock_t task_lock;
485 struct io_wq_work_list task_list;
486 struct callback_head task_work;
487 bool task_running;
488 };
489 #endif
490
491 /*
492 * First field must be the file pointer in all the
493 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
494 */
495 struct io_poll_iocb {
496 struct file *file;
497 struct wait_queue_head *head;
498 __poll_t events;
499 struct wait_queue_entry wait;
500 };
501
502 struct io_poll_update {
503 struct file *file;
504 u64 old_user_data;
505 u64 new_user_data;
506 __poll_t events;
507 bool update_events;
508 bool update_user_data;
509 };
510
511 struct io_close {
512 struct file *file;
513 int fd;
514 u32 file_slot;
515 };
516
517 struct io_timeout_data {
518 struct io_kiocb *req;
519 struct hrtimer timer;
520 struct timespec64 ts;
521 enum hrtimer_mode mode;
522 u32 flags;
523 };
524
525 struct io_accept {
526 struct file *file;
527 struct sockaddr __user *addr;
528 int __user *addr_len;
529 int flags;
530 u32 file_slot;
531 unsigned long nofile;
532 };
533
534 struct io_sync {
535 struct file *file;
536 loff_t len;
537 loff_t off;
538 int flags;
539 int mode;
540 };
541
542 struct io_cancel {
543 struct file *file;
544 u64 addr;
545 };
546
547 struct io_timeout {
548 struct file *file;
549 u32 off;
550 u32 target_seq;
551 struct list_head list;
552 /* head of the link, used by linked timeouts only */
553 struct io_kiocb *head;
554 /* for linked completions */
555 struct io_kiocb *prev;
556 };
557
558 struct io_timeout_rem {
559 struct file *file;
560 u64 addr;
561
562 /* timeout update */
563 struct timespec64 ts;
564 u32 flags;
565 bool ltimeout;
566 };
567
568 struct io_rw {
569 /* NOTE: kiocb has the file as the first member, so don't do it here */
570 struct kiocb kiocb;
571 u64 addr;
572 u64 len;
573 };
574
575 struct io_connect {
576 struct file *file;
577 struct sockaddr __user *addr;
578 int addr_len;
579 };
580
581 struct io_sr_msg {
582 struct file *file;
583 union {
584 struct compat_msghdr __user *umsg_compat;
585 struct user_msghdr __user *umsg;
586 void __user *buf;
587 };
588 int msg_flags;
589 int bgid;
590 size_t len;
591 struct io_buffer *kbuf;
592 };
593
594 struct io_open {
595 struct file *file;
596 int dfd;
597 u32 file_slot;
598 struct filename *filename;
599 struct open_how how;
600 unsigned long nofile;
601 };
602
603 struct io_rsrc_update {
604 struct file *file;
605 u64 arg;
606 u32 nr_args;
607 u32 offset;
608 };
609
610 struct io_fadvise {
611 struct file *file;
612 u64 offset;
613 u32 len;
614 u32 advice;
615 };
616
617 struct io_madvise {
618 struct file *file;
619 u64 addr;
620 u32 len;
621 u32 advice;
622 };
623
624 struct io_epoll {
625 struct file *file;
626 int epfd;
627 int op;
628 int fd;
629 struct epoll_event event;
630 };
631
632 struct io_splice {
633 struct file *file_out;
634 loff_t off_out;
635 loff_t off_in;
636 u64 len;
637 int splice_fd_in;
638 unsigned int flags;
639 };
640
641 struct io_provide_buf {
642 struct file *file;
643 __u64 addr;
644 __u32 len;
645 __u32 bgid;
646 __u16 nbufs;
647 __u16 bid;
648 };
649
650 struct io_statx {
651 struct file *file;
652 int dfd;
653 unsigned int mask;
654 unsigned int flags;
655 const char __user *filename;
656 struct statx __user *buffer;
657 };
658
659 struct io_shutdown {
660 struct file *file;
661 int how;
662 };
663
664 struct io_rename {
665 struct file *file;
666 int old_dfd;
667 int new_dfd;
668 struct filename *oldpath;
669 struct filename *newpath;
670 int flags;
671 };
672
673 struct io_unlink {
674 struct file *file;
675 int dfd;
676 int flags;
677 struct filename *filename;
678 };
679
680 struct io_mkdir {
681 struct file *file;
682 int dfd;
683 umode_t mode;
684 struct filename *filename;
685 };
686
687 struct io_symlink {
688 struct file *file;
689 int new_dfd;
690 struct filename *oldpath;
691 struct filename *newpath;
692 };
693
694 struct io_hardlink {
695 struct file *file;
696 int old_dfd;
697 int new_dfd;
698 struct filename *oldpath;
699 struct filename *newpath;
700 int flags;
701 };
702
703 struct io_completion {
704 struct file *file;
705 u32 cflags;
706 };
707
708 struct io_async_connect {
709 struct sockaddr_storage address;
710 };
711
712 struct io_async_msghdr {
713 struct iovec fast_iov[UIO_FASTIOV];
714 /* points to an allocated iov, if NULL we use fast_iov instead */
715 struct iovec *free_iov;
716 struct sockaddr __user *uaddr;
717 struct msghdr msg;
718 struct sockaddr_storage addr;
719 };
720
721 struct io_async_rw {
722 struct iovec fast_iov[UIO_FASTIOV];
723 const struct iovec *free_iovec;
724 struct iov_iter iter;
725 struct iov_iter_state iter_state;
726 size_t bytes_done;
727 struct wait_page_queue wpq;
728 };
729
730 enum {
731 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
732 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
733 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
734 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
735 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
736 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
737
738 /* first byte is taken by user flags, shift it to not overlap */
739 REQ_F_FAIL_BIT = 8,
740 REQ_F_INFLIGHT_BIT,
741 REQ_F_CUR_POS_BIT,
742 REQ_F_NOWAIT_BIT,
743 REQ_F_LINK_TIMEOUT_BIT,
744 REQ_F_NEED_CLEANUP_BIT,
745 REQ_F_POLLED_BIT,
746 REQ_F_BUFFER_SELECTED_BIT,
747 REQ_F_COMPLETE_INLINE_BIT,
748 REQ_F_REISSUE_BIT,
749 REQ_F_CREDS_BIT,
750 REQ_F_REFCOUNT_BIT,
751 REQ_F_ARM_LTIMEOUT_BIT,
752 /* keep async read/write and isreg together and in order */
753 REQ_F_NOWAIT_READ_BIT,
754 REQ_F_NOWAIT_WRITE_BIT,
755 REQ_F_ISREG_BIT,
756
757 /* not a real bit, just to check we're not overflowing the space */
758 __REQ_F_LAST_BIT,
759 };
760
761 enum {
762 /* ctx owns file */
763 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
764 /* drain existing IO first */
765 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
766 /* linked sqes */
767 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
768 /* doesn't sever on completion < 0 */
769 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
770 /* IOSQE_ASYNC */
771 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
772 /* IOSQE_BUFFER_SELECT */
773 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
774
775 /* fail rest of links */
776 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
777 /* on inflight list, should be cancelled and waited on exit reliably */
778 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
779 /* read/write uses file position */
780 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
781 /* must not punt to workers */
782 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
783 /* has or had linked timeout */
784 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
785 /* needs cleanup */
786 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
787 /* already went through poll handler */
788 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
789 /* buffer already selected */
790 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
791 /* completion is deferred through io_comp_state */
792 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
793 /* caller should reissue async */
794 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
795 /* supports async reads */
796 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
797 /* supports async writes */
798 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
799 /* regular file */
800 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
801 /* has creds assigned */
802 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
803 /* skip refcounting if not set */
804 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
805 /* there is a linked timeout that has to be armed */
806 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
807 };
808
809 struct async_poll {
810 struct io_poll_iocb poll;
811 struct io_poll_iocb *double_poll;
812 };
813
814 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
815
816 struct io_task_work {
817 union {
818 struct io_wq_work_node node;
819 struct llist_node fallback_node;
820 };
821 io_req_tw_func_t func;
822 };
823
824 enum {
825 IORING_RSRC_FILE = 0,
826 IORING_RSRC_BUFFER = 1,
827 };
828
829 /*
830 * NOTE! Each of the iocb union members has the file pointer
831 * as the first entry in their struct definition. So you can
832 * access the file pointer through any of the sub-structs,
833 * or directly as just 'ki_filp' in this struct.
834 */
835 struct io_kiocb {
836 union {
837 struct file *file;
838 struct io_rw rw;
839 struct io_poll_iocb poll;
840 struct io_poll_update poll_update;
841 struct io_accept accept;
842 struct io_sync sync;
843 struct io_cancel cancel;
844 struct io_timeout timeout;
845 struct io_timeout_rem timeout_rem;
846 struct io_connect connect;
847 struct io_sr_msg sr_msg;
848 struct io_open open;
849 struct io_close close;
850 struct io_rsrc_update rsrc_update;
851 struct io_fadvise fadvise;
852 struct io_madvise madvise;
853 struct io_epoll epoll;
854 struct io_splice splice;
855 struct io_provide_buf pbuf;
856 struct io_statx statx;
857 struct io_shutdown shutdown;
858 struct io_rename rename;
859 struct io_unlink unlink;
860 struct io_mkdir mkdir;
861 struct io_symlink symlink;
862 struct io_hardlink hardlink;
863 /* use only after cleaning per-op data, see io_clean_op() */
864 struct io_completion compl;
865 };
866
867 /* opcode allocated if it needs to store data for async defer */
868 void *async_data;
869 u8 opcode;
870 /* polled IO has completed */
871 u8 iopoll_completed;
872
873 u16 buf_index;
874 u32 result;
875
876 struct io_ring_ctx *ctx;
877 unsigned int flags;
878 atomic_t refs;
879 struct task_struct *task;
880 u64 user_data;
881
882 struct io_kiocb *link;
883 struct percpu_ref *fixed_rsrc_refs;
884
885 /* used with ctx->iopoll_list with reads/writes */
886 struct list_head inflight_entry;
887 struct io_task_work io_task_work;
888 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
889 struct hlist_node hash_node;
890 struct async_poll *apoll;
891 struct io_wq_work work;
892 const struct cred *creds;
893
894 /* store used ubuf, so we can prevent reloading */
895 struct io_mapped_ubuf *imu;
896 /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
897 struct io_buffer *kbuf;
898 atomic_t poll_refs;
899 };
900
901 struct io_tctx_node {
902 struct list_head ctx_node;
903 struct task_struct *task;
904 struct io_ring_ctx *ctx;
905 };
906
907 struct io_defer_entry {
908 struct list_head list;
909 struct io_kiocb *req;
910 u32 seq;
911 };
912
913 struct io_op_def {
914 /* needs req->file assigned */
915 unsigned needs_file : 1;
916 /* hash wq insertion if file is a regular file */
917 unsigned hash_reg_file : 1;
918 /* unbound wq insertion if file is a non-regular file */
919 unsigned unbound_nonreg_file : 1;
920 /* opcode is not supported by this kernel */
921 unsigned not_supported : 1;
922 /* set if opcode supports polled "wait" */
923 unsigned pollin : 1;
924 unsigned pollout : 1;
925 /* op supports buffer selection */
926 unsigned buffer_select : 1;
927 /* do prep async if is going to be punted */
928 unsigned needs_async_setup : 1;
929 /* should block plug */
930 unsigned plug : 1;
931 /* size of async data needed, if any */
932 unsigned short async_size;
933 };
934
935 static const struct io_op_def io_op_defs[] = {
936 [IORING_OP_NOP] = {},
937 [IORING_OP_READV] = {
938 .needs_file = 1,
939 .unbound_nonreg_file = 1,
940 .pollin = 1,
941 .buffer_select = 1,
942 .needs_async_setup = 1,
943 .plug = 1,
944 .async_size = sizeof(struct io_async_rw),
945 },
946 [IORING_OP_WRITEV] = {
947 .needs_file = 1,
948 .hash_reg_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollout = 1,
951 .needs_async_setup = 1,
952 .plug = 1,
953 .async_size = sizeof(struct io_async_rw),
954 },
955 [IORING_OP_FSYNC] = {
956 .needs_file = 1,
957 },
958 [IORING_OP_READ_FIXED] = {
959 .needs_file = 1,
960 .unbound_nonreg_file = 1,
961 .pollin = 1,
962 .plug = 1,
963 .async_size = sizeof(struct io_async_rw),
964 },
965 [IORING_OP_WRITE_FIXED] = {
966 .needs_file = 1,
967 .hash_reg_file = 1,
968 .unbound_nonreg_file = 1,
969 .pollout = 1,
970 .plug = 1,
971 .async_size = sizeof(struct io_async_rw),
972 },
973 [IORING_OP_POLL_ADD] = {
974 .needs_file = 1,
975 .unbound_nonreg_file = 1,
976 },
977 [IORING_OP_POLL_REMOVE] = {},
978 [IORING_OP_SYNC_FILE_RANGE] = {
979 .needs_file = 1,
980 },
981 [IORING_OP_SENDMSG] = {
982 .needs_file = 1,
983 .unbound_nonreg_file = 1,
984 .pollout = 1,
985 .needs_async_setup = 1,
986 .async_size = sizeof(struct io_async_msghdr),
987 },
988 [IORING_OP_RECVMSG] = {
989 .needs_file = 1,
990 .unbound_nonreg_file = 1,
991 .pollin = 1,
992 .buffer_select = 1,
993 .needs_async_setup = 1,
994 .async_size = sizeof(struct io_async_msghdr),
995 },
996 [IORING_OP_TIMEOUT] = {
997 .async_size = sizeof(struct io_timeout_data),
998 },
999 [IORING_OP_TIMEOUT_REMOVE] = {
1000 /* used by timeout updates' prep() */
1001 },
1002 [IORING_OP_ACCEPT] = {
1003 .needs_file = 1,
1004 .unbound_nonreg_file = 1,
1005 .pollin = 1,
1006 },
1007 [IORING_OP_ASYNC_CANCEL] = {},
1008 [IORING_OP_LINK_TIMEOUT] = {
1009 .async_size = sizeof(struct io_timeout_data),
1010 },
1011 [IORING_OP_CONNECT] = {
1012 .needs_file = 1,
1013 .unbound_nonreg_file = 1,
1014 .pollout = 1,
1015 .needs_async_setup = 1,
1016 .async_size = sizeof(struct io_async_connect),
1017 },
1018 [IORING_OP_FALLOCATE] = {
1019 .needs_file = 1,
1020 },
1021 [IORING_OP_OPENAT] = {},
1022 [IORING_OP_CLOSE] = {},
1023 [IORING_OP_FILES_UPDATE] = {},
1024 [IORING_OP_STATX] = {},
1025 [IORING_OP_READ] = {
1026 .needs_file = 1,
1027 .unbound_nonreg_file = 1,
1028 .pollin = 1,
1029 .buffer_select = 1,
1030 .plug = 1,
1031 .async_size = sizeof(struct io_async_rw),
1032 },
1033 [IORING_OP_WRITE] = {
1034 .needs_file = 1,
1035 .hash_reg_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 .plug = 1,
1039 .async_size = sizeof(struct io_async_rw),
1040 },
1041 [IORING_OP_FADVISE] = {
1042 .needs_file = 1,
1043 },
1044 [IORING_OP_MADVISE] = {},
1045 [IORING_OP_SEND] = {
1046 .needs_file = 1,
1047 .unbound_nonreg_file = 1,
1048 .pollout = 1,
1049 },
1050 [IORING_OP_RECV] = {
1051 .needs_file = 1,
1052 .unbound_nonreg_file = 1,
1053 .pollin = 1,
1054 .buffer_select = 1,
1055 },
1056 [IORING_OP_OPENAT2] = {
1057 },
1058 [IORING_OP_EPOLL_CTL] = {
1059 .unbound_nonreg_file = 1,
1060 },
1061 [IORING_OP_SPLICE] = {
1062 .needs_file = 1,
1063 .hash_reg_file = 1,
1064 .unbound_nonreg_file = 1,
1065 },
1066 [IORING_OP_PROVIDE_BUFFERS] = {},
1067 [IORING_OP_REMOVE_BUFFERS] = {},
1068 [IORING_OP_TEE] = {
1069 .needs_file = 1,
1070 .hash_reg_file = 1,
1071 .unbound_nonreg_file = 1,
1072 },
1073 [IORING_OP_SHUTDOWN] = {
1074 .needs_file = 1,
1075 },
1076 [IORING_OP_RENAMEAT] = {},
1077 [IORING_OP_UNLINKAT] = {},
1078 };
1079
1080 /* requests with any of those set should undergo io_disarm_next() */
1081 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1082
1083 static bool io_disarm_next(struct io_kiocb *req);
1084 static void io_uring_del_tctx_node(unsigned long index);
1085 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1086 struct task_struct *task,
1087 bool cancel_all);
1088 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1089
1090 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1091
1092 static void io_put_req(struct io_kiocb *req);
1093 static void io_put_req_deferred(struct io_kiocb *req);
1094 static void io_dismantle_req(struct io_kiocb *req);
1095 static void io_queue_linked_timeout(struct io_kiocb *req);
1096 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1097 struct io_uring_rsrc_update2 *up,
1098 unsigned nr_args);
1099 static void io_clean_op(struct io_kiocb *req);
1100 static struct file *io_file_get(struct io_ring_ctx *ctx,
1101 struct io_kiocb *req, int fd, bool fixed);
1102 static void __io_queue_sqe(struct io_kiocb *req);
1103 static void io_rsrc_put_work(struct work_struct *work);
1104
1105 static void io_req_task_queue(struct io_kiocb *req);
1106 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1107 static int io_req_prep_async(struct io_kiocb *req);
1108
1109 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1110 unsigned int issue_flags, u32 slot_index);
1111 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1112
1113 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1114
1115 static struct kmem_cache *req_cachep;
1116
1117 static const struct file_operations io_uring_fops;
1118
io_uring_get_socket(struct file * file)1119 struct sock *io_uring_get_socket(struct file *file)
1120 {
1121 #if defined(CONFIG_UNIX)
1122 if (file->f_op == &io_uring_fops) {
1123 struct io_ring_ctx *ctx = file->private_data;
1124
1125 return ctx->ring_sock->sk;
1126 }
1127 #endif
1128 return NULL;
1129 }
1130 EXPORT_SYMBOL(io_uring_get_socket);
1131
io_tw_lock(struct io_ring_ctx * ctx,bool * locked)1132 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1133 {
1134 if (!*locked) {
1135 mutex_lock(&ctx->uring_lock);
1136 *locked = true;
1137 }
1138 }
1139
1140 #define io_for_each_link(pos, head) \
1141 for (pos = (head); pos; pos = pos->link)
1142
1143 /*
1144 * Shamelessly stolen from the mm implementation of page reference checking,
1145 * see commit f958d7b528b1 for details.
1146 */
1147 #define req_ref_zero_or_close_to_overflow(req) \
1148 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1149
req_ref_inc_not_zero(struct io_kiocb * req)1150 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1151 {
1152 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1153 return atomic_inc_not_zero(&req->refs);
1154 }
1155
req_ref_put_and_test(struct io_kiocb * req)1156 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1157 {
1158 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1159 return true;
1160
1161 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1162 return atomic_dec_and_test(&req->refs);
1163 }
1164
req_ref_get(struct io_kiocb * req)1165 static inline void req_ref_get(struct io_kiocb *req)
1166 {
1167 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1168 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1169 atomic_inc(&req->refs);
1170 }
1171
__io_req_set_refcount(struct io_kiocb * req,int nr)1172 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1173 {
1174 if (!(req->flags & REQ_F_REFCOUNT)) {
1175 req->flags |= REQ_F_REFCOUNT;
1176 atomic_set(&req->refs, nr);
1177 }
1178 }
1179
io_req_set_refcount(struct io_kiocb * req)1180 static inline void io_req_set_refcount(struct io_kiocb *req)
1181 {
1182 __io_req_set_refcount(req, 1);
1183 }
1184
io_req_set_rsrc_node(struct io_kiocb * req)1185 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1186 {
1187 struct io_ring_ctx *ctx = req->ctx;
1188
1189 if (!req->fixed_rsrc_refs) {
1190 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1191 percpu_ref_get(req->fixed_rsrc_refs);
1192 }
1193 }
1194
io_refs_resurrect(struct percpu_ref * ref,struct completion * compl)1195 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1196 {
1197 bool got = percpu_ref_tryget(ref);
1198
1199 /* already at zero, wait for ->release() */
1200 if (!got)
1201 wait_for_completion(compl);
1202 percpu_ref_resurrect(ref);
1203 if (got)
1204 percpu_ref_put(ref);
1205 }
1206
io_match_task(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1207 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1208 bool cancel_all)
1209 __must_hold(&req->ctx->timeout_lock)
1210 {
1211 struct io_kiocb *req;
1212
1213 if (task && head->task != task)
1214 return false;
1215 if (cancel_all)
1216 return true;
1217
1218 io_for_each_link(req, head) {
1219 if (req->flags & REQ_F_INFLIGHT)
1220 return true;
1221 }
1222 return false;
1223 }
1224
io_match_linked(struct io_kiocb * head)1225 static bool io_match_linked(struct io_kiocb *head)
1226 {
1227 struct io_kiocb *req;
1228
1229 io_for_each_link(req, head) {
1230 if (req->flags & REQ_F_INFLIGHT)
1231 return true;
1232 }
1233 return false;
1234 }
1235
1236 /*
1237 * As io_match_task() but protected against racing with linked timeouts.
1238 * User must not hold timeout_lock.
1239 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1240 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1241 bool cancel_all)
1242 {
1243 bool matched;
1244
1245 if (task && head->task != task)
1246 return false;
1247 if (cancel_all)
1248 return true;
1249
1250 if (head->flags & REQ_F_LINK_TIMEOUT) {
1251 struct io_ring_ctx *ctx = head->ctx;
1252
1253 /* protect against races with linked timeouts */
1254 spin_lock_irq(&ctx->timeout_lock);
1255 matched = io_match_linked(head);
1256 spin_unlock_irq(&ctx->timeout_lock);
1257 } else {
1258 matched = io_match_linked(head);
1259 }
1260 return matched;
1261 }
1262
req_set_fail(struct io_kiocb * req)1263 static inline void req_set_fail(struct io_kiocb *req)
1264 {
1265 req->flags |= REQ_F_FAIL;
1266 }
1267
req_fail_link_node(struct io_kiocb * req,int res)1268 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1269 {
1270 req_set_fail(req);
1271 req->result = res;
1272 }
1273
io_ring_ctx_ref_free(struct percpu_ref * ref)1274 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1275 {
1276 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1277
1278 complete(&ctx->ref_comp);
1279 }
1280
io_is_timeout_noseq(struct io_kiocb * req)1281 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1282 {
1283 return !req->timeout.off;
1284 }
1285
io_fallback_req_func(struct work_struct * work)1286 static void io_fallback_req_func(struct work_struct *work)
1287 {
1288 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1289 fallback_work.work);
1290 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1291 struct io_kiocb *req, *tmp;
1292 bool locked = false;
1293
1294 percpu_ref_get(&ctx->refs);
1295 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1296 req->io_task_work.func(req, &locked);
1297
1298 if (locked) {
1299 if (ctx->submit_state.compl_nr)
1300 io_submit_flush_completions(ctx);
1301 mutex_unlock(&ctx->uring_lock);
1302 }
1303 percpu_ref_put(&ctx->refs);
1304
1305 }
1306
io_ring_ctx_alloc(struct io_uring_params * p)1307 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1308 {
1309 struct io_ring_ctx *ctx;
1310 int hash_bits;
1311
1312 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1313 if (!ctx)
1314 return NULL;
1315
1316 /*
1317 * Use 5 bits less than the max cq entries, that should give us around
1318 * 32 entries per hash list if totally full and uniformly spread.
1319 */
1320 hash_bits = ilog2(p->cq_entries);
1321 hash_bits -= 5;
1322 if (hash_bits <= 0)
1323 hash_bits = 1;
1324 ctx->cancel_hash_bits = hash_bits;
1325 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1326 GFP_KERNEL);
1327 if (!ctx->cancel_hash)
1328 goto err;
1329 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1330
1331 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1332 if (!ctx->dummy_ubuf)
1333 goto err;
1334 /* set invalid range, so io_import_fixed() fails meeting it */
1335 ctx->dummy_ubuf->ubuf = -1UL;
1336
1337 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1338 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1339 goto err;
1340
1341 ctx->flags = p->flags;
1342 init_waitqueue_head(&ctx->sqo_sq_wait);
1343 INIT_LIST_HEAD(&ctx->sqd_list);
1344 init_waitqueue_head(&ctx->poll_wait);
1345 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1346 init_completion(&ctx->ref_comp);
1347 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1349 mutex_init(&ctx->uring_lock);
1350 init_waitqueue_head(&ctx->cq_wait);
1351 spin_lock_init(&ctx->completion_lock);
1352 spin_lock_init(&ctx->timeout_lock);
1353 INIT_LIST_HEAD(&ctx->iopoll_list);
1354 INIT_LIST_HEAD(&ctx->defer_list);
1355 INIT_LIST_HEAD(&ctx->timeout_list);
1356 INIT_LIST_HEAD(&ctx->ltimeout_list);
1357 spin_lock_init(&ctx->rsrc_ref_lock);
1358 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1359 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1360 init_llist_head(&ctx->rsrc_put_llist);
1361 INIT_LIST_HEAD(&ctx->tctx_list);
1362 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1363 INIT_LIST_HEAD(&ctx->locked_free_list);
1364 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1365 return ctx;
1366 err:
1367 kfree(ctx->dummy_ubuf);
1368 kfree(ctx->cancel_hash);
1369 kfree(ctx);
1370 return NULL;
1371 }
1372
io_account_cq_overflow(struct io_ring_ctx * ctx)1373 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1374 {
1375 struct io_rings *r = ctx->rings;
1376
1377 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1378 ctx->cq_extra--;
1379 }
1380
req_need_defer(struct io_kiocb * req,u32 seq)1381 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1382 {
1383 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1384 struct io_ring_ctx *ctx = req->ctx;
1385
1386 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1387 }
1388
1389 return false;
1390 }
1391
1392 #define FFS_ASYNC_READ 0x1UL
1393 #define FFS_ASYNC_WRITE 0x2UL
1394 #ifdef CONFIG_64BIT
1395 #define FFS_ISREG 0x4UL
1396 #else
1397 #define FFS_ISREG 0x0UL
1398 #endif
1399 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1400
io_req_ffs_set(struct io_kiocb * req)1401 static inline bool io_req_ffs_set(struct io_kiocb *req)
1402 {
1403 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1404 }
1405
io_req_track_inflight(struct io_kiocb * req)1406 static void io_req_track_inflight(struct io_kiocb *req)
1407 {
1408 if (!(req->flags & REQ_F_INFLIGHT)) {
1409 req->flags |= REQ_F_INFLIGHT;
1410 atomic_inc(&req->task->io_uring->inflight_tracked);
1411 }
1412 }
1413
__io_prep_linked_timeout(struct io_kiocb * req)1414 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1415 {
1416 if (WARN_ON_ONCE(!req->link))
1417 return NULL;
1418
1419 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1420 req->flags |= REQ_F_LINK_TIMEOUT;
1421
1422 /* linked timeouts should have two refs once prep'ed */
1423 io_req_set_refcount(req);
1424 __io_req_set_refcount(req->link, 2);
1425 return req->link;
1426 }
1427
io_prep_linked_timeout(struct io_kiocb * req)1428 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1429 {
1430 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1431 return NULL;
1432 return __io_prep_linked_timeout(req);
1433 }
1434
io_prep_async_work(struct io_kiocb * req)1435 static void io_prep_async_work(struct io_kiocb *req)
1436 {
1437 const struct io_op_def *def = &io_op_defs[req->opcode];
1438 struct io_ring_ctx *ctx = req->ctx;
1439
1440 if (!(req->flags & REQ_F_CREDS)) {
1441 req->flags |= REQ_F_CREDS;
1442 req->creds = get_current_cred();
1443 }
1444
1445 req->work.list.next = NULL;
1446 req->work.flags = 0;
1447 if (req->flags & REQ_F_FORCE_ASYNC)
1448 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1449
1450 if (req->flags & REQ_F_ISREG) {
1451 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1452 io_wq_hash_work(&req->work, file_inode(req->file));
1453 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1454 if (def->unbound_nonreg_file)
1455 req->work.flags |= IO_WQ_WORK_UNBOUND;
1456 }
1457 }
1458
io_prep_async_link(struct io_kiocb * req)1459 static void io_prep_async_link(struct io_kiocb *req)
1460 {
1461 struct io_kiocb *cur;
1462
1463 if (req->flags & REQ_F_LINK_TIMEOUT) {
1464 struct io_ring_ctx *ctx = req->ctx;
1465
1466 spin_lock_irq(&ctx->timeout_lock);
1467 io_for_each_link(cur, req)
1468 io_prep_async_work(cur);
1469 spin_unlock_irq(&ctx->timeout_lock);
1470 } else {
1471 io_for_each_link(cur, req)
1472 io_prep_async_work(cur);
1473 }
1474 }
1475
io_queue_async_work(struct io_kiocb * req,bool * locked)1476 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1477 {
1478 struct io_ring_ctx *ctx = req->ctx;
1479 struct io_kiocb *link = io_prep_linked_timeout(req);
1480 struct io_uring_task *tctx = req->task->io_uring;
1481
1482 /* must not take the lock, NULL it as a precaution */
1483 locked = NULL;
1484
1485 BUG_ON(!tctx);
1486 BUG_ON(!tctx->io_wq);
1487
1488 /* init ->work of the whole link before punting */
1489 io_prep_async_link(req);
1490
1491 /*
1492 * Not expected to happen, but if we do have a bug where this _can_
1493 * happen, catch it here and ensure the request is marked as
1494 * canceled. That will make io-wq go through the usual work cancel
1495 * procedure rather than attempt to run this request (or create a new
1496 * worker for it).
1497 */
1498 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1499 req->work.flags |= IO_WQ_WORK_CANCEL;
1500
1501 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1502 &req->work, req->flags);
1503 io_wq_enqueue(tctx->io_wq, &req->work);
1504 if (link)
1505 io_queue_linked_timeout(link);
1506 }
1507
io_kill_timeout(struct io_kiocb * req,int status)1508 static void io_kill_timeout(struct io_kiocb *req, int status)
1509 __must_hold(&req->ctx->completion_lock)
1510 __must_hold(&req->ctx->timeout_lock)
1511 {
1512 struct io_timeout_data *io = req->async_data;
1513
1514 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1515 if (status)
1516 req_set_fail(req);
1517 atomic_set(&req->ctx->cq_timeouts,
1518 atomic_read(&req->ctx->cq_timeouts) + 1);
1519 list_del_init(&req->timeout.list);
1520 io_fill_cqe_req(req, status, 0);
1521 io_put_req_deferred(req);
1522 }
1523 }
1524
io_queue_deferred(struct io_ring_ctx * ctx)1525 static void io_queue_deferred(struct io_ring_ctx *ctx)
1526 {
1527 while (!list_empty(&ctx->defer_list)) {
1528 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1529 struct io_defer_entry, list);
1530
1531 if (req_need_defer(de->req, de->seq))
1532 break;
1533 list_del_init(&de->list);
1534 io_req_task_queue(de->req);
1535 kfree(de);
1536 }
1537 }
1538
io_flush_timeouts(struct io_ring_ctx * ctx)1539 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1540 __must_hold(&ctx->completion_lock)
1541 {
1542 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1543 struct io_kiocb *req, *tmp;
1544
1545 spin_lock_irq(&ctx->timeout_lock);
1546 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1547 u32 events_needed, events_got;
1548
1549 if (io_is_timeout_noseq(req))
1550 break;
1551
1552 /*
1553 * Since seq can easily wrap around over time, subtract
1554 * the last seq at which timeouts were flushed before comparing.
1555 * Assuming not more than 2^31-1 events have happened since,
1556 * these subtractions won't have wrapped, so we can check if
1557 * target is in [last_seq, current_seq] by comparing the two.
1558 */
1559 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1560 events_got = seq - ctx->cq_last_tm_flush;
1561 if (events_got < events_needed)
1562 break;
1563
1564 io_kill_timeout(req, 0);
1565 }
1566 ctx->cq_last_tm_flush = seq;
1567 spin_unlock_irq(&ctx->timeout_lock);
1568 }
1569
__io_commit_cqring_flush(struct io_ring_ctx * ctx)1570 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1571 {
1572 if (ctx->off_timeout_used)
1573 io_flush_timeouts(ctx);
1574 if (ctx->drain_active)
1575 io_queue_deferred(ctx);
1576 }
1577
io_commit_cqring(struct io_ring_ctx * ctx)1578 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1579 {
1580 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1581 __io_commit_cqring_flush(ctx);
1582 /* order cqe stores with ring update */
1583 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1584 }
1585
io_sqring_full(struct io_ring_ctx * ctx)1586 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1587 {
1588 struct io_rings *r = ctx->rings;
1589
1590 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1591 }
1592
__io_cqring_events(struct io_ring_ctx * ctx)1593 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1594 {
1595 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1596 }
1597
io_get_cqe(struct io_ring_ctx * ctx)1598 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1599 {
1600 struct io_rings *rings = ctx->rings;
1601 unsigned tail, mask = ctx->cq_entries - 1;
1602
1603 /*
1604 * writes to the cq entry need to come after reading head; the
1605 * control dependency is enough as we're using WRITE_ONCE to
1606 * fill the cq entry
1607 */
1608 if (__io_cqring_events(ctx) == ctx->cq_entries)
1609 return NULL;
1610
1611 tail = ctx->cached_cq_tail++;
1612 return &rings->cqes[tail & mask];
1613 }
1614
io_should_trigger_evfd(struct io_ring_ctx * ctx)1615 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1616 {
1617 if (likely(!ctx->cq_ev_fd))
1618 return false;
1619 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1620 return false;
1621 return !ctx->eventfd_async || io_wq_current_is_worker();
1622 }
1623
1624 /*
1625 * This should only get called when at least one event has been posted.
1626 * Some applications rely on the eventfd notification count only changing
1627 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1628 * 1:1 relationship between how many times this function is called (and
1629 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1630 */
io_cqring_ev_posted(struct io_ring_ctx * ctx)1631 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1632 {
1633 /*
1634 * wake_up_all() may seem excessive, but io_wake_function() and
1635 * io_should_wake() handle the termination of the loop and only
1636 * wake as many waiters as we need to.
1637 */
1638 if (wq_has_sleeper(&ctx->cq_wait))
1639 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1640 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1641 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1642 wake_up(&ctx->sq_data->wait);
1643 if (io_should_trigger_evfd(ctx))
1644 eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1645 if (waitqueue_active(&ctx->poll_wait))
1646 __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1647 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1648 }
1649
io_cqring_ev_posted_iopoll(struct io_ring_ctx * ctx)1650 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1651 {
1652 /* see waitqueue_active() comment */
1653 smp_mb();
1654
1655 if (ctx->flags & IORING_SETUP_SQPOLL) {
1656 if (waitqueue_active(&ctx->cq_wait))
1657 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
1658 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1659 }
1660 if (io_should_trigger_evfd(ctx))
1661 eventfd_signal_mask(ctx->cq_ev_fd, 1, EPOLL_URING_WAKE);
1662 if (waitqueue_active(&ctx->poll_wait))
1663 __wake_up(&ctx->poll_wait, TASK_INTERRUPTIBLE, 0,
1664 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
1665 }
1666
1667 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)1668 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1669 {
1670 bool all_flushed, posted;
1671
1672 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1673 return false;
1674
1675 posted = false;
1676 spin_lock(&ctx->completion_lock);
1677 while (!list_empty(&ctx->cq_overflow_list)) {
1678 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1679 struct io_overflow_cqe *ocqe;
1680
1681 if (!cqe && !force)
1682 break;
1683 ocqe = list_first_entry(&ctx->cq_overflow_list,
1684 struct io_overflow_cqe, list);
1685 if (cqe)
1686 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1687 else
1688 io_account_cq_overflow(ctx);
1689
1690 posted = true;
1691 list_del(&ocqe->list);
1692 kfree(ocqe);
1693 }
1694
1695 all_flushed = list_empty(&ctx->cq_overflow_list);
1696 if (all_flushed) {
1697 clear_bit(0, &ctx->check_cq_overflow);
1698 WRITE_ONCE(ctx->rings->sq_flags,
1699 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1700 }
1701
1702 if (posted)
1703 io_commit_cqring(ctx);
1704 spin_unlock(&ctx->completion_lock);
1705 if (posted)
1706 io_cqring_ev_posted(ctx);
1707 return all_flushed;
1708 }
1709
io_cqring_overflow_flush(struct io_ring_ctx * ctx)1710 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1711 {
1712 bool ret = true;
1713
1714 if (test_bit(0, &ctx->check_cq_overflow)) {
1715 /* iopoll syncs against uring_lock, not completion_lock */
1716 if (ctx->flags & IORING_SETUP_IOPOLL)
1717 mutex_lock(&ctx->uring_lock);
1718 ret = __io_cqring_overflow_flush(ctx, false);
1719 if (ctx->flags & IORING_SETUP_IOPOLL)
1720 mutex_unlock(&ctx->uring_lock);
1721 }
1722
1723 return ret;
1724 }
1725
1726 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task,int nr)1727 static inline void io_put_task(struct task_struct *task, int nr)
1728 {
1729 struct io_uring_task *tctx = task->io_uring;
1730
1731 if (likely(task == current)) {
1732 tctx->cached_refs += nr;
1733 } else {
1734 percpu_counter_sub(&tctx->inflight, nr);
1735 if (unlikely(atomic_read(&tctx->in_idle)))
1736 wake_up(&tctx->wait);
1737 put_task_struct_many(task, nr);
1738 }
1739 }
1740
io_task_refs_refill(struct io_uring_task * tctx)1741 static void io_task_refs_refill(struct io_uring_task *tctx)
1742 {
1743 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1744
1745 percpu_counter_add(&tctx->inflight, refill);
1746 refcount_add(refill, ¤t->usage);
1747 tctx->cached_refs += refill;
1748 }
1749
io_get_task_refs(int nr)1750 static inline void io_get_task_refs(int nr)
1751 {
1752 struct io_uring_task *tctx = current->io_uring;
1753
1754 tctx->cached_refs -= nr;
1755 if (unlikely(tctx->cached_refs < 0))
1756 io_task_refs_refill(tctx);
1757 }
1758
io_uring_drop_tctx_refs(struct task_struct * task)1759 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1760 {
1761 struct io_uring_task *tctx = task->io_uring;
1762 unsigned int refs = tctx->cached_refs;
1763
1764 if (refs) {
1765 tctx->cached_refs = 0;
1766 percpu_counter_sub(&tctx->inflight, refs);
1767 put_task_struct_many(task, refs);
1768 }
1769 }
1770
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1771 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1772 s32 res, u32 cflags)
1773 {
1774 struct io_overflow_cqe *ocqe;
1775
1776 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1777 if (!ocqe) {
1778 /*
1779 * If we're in ring overflow flush mode, or in task cancel mode,
1780 * or cannot allocate an overflow entry, then we need to drop it
1781 * on the floor.
1782 */
1783 io_account_cq_overflow(ctx);
1784 return false;
1785 }
1786 if (list_empty(&ctx->cq_overflow_list)) {
1787 set_bit(0, &ctx->check_cq_overflow);
1788 WRITE_ONCE(ctx->rings->sq_flags,
1789 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1790
1791 }
1792 ocqe->cqe.user_data = user_data;
1793 ocqe->cqe.res = res;
1794 ocqe->cqe.flags = cflags;
1795 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1796 return true;
1797 }
1798
__io_fill_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1799 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1800 s32 res, u32 cflags)
1801 {
1802 struct io_uring_cqe *cqe;
1803
1804 trace_io_uring_complete(ctx, user_data, res, cflags);
1805
1806 /*
1807 * If we can't get a cq entry, userspace overflowed the
1808 * submission (by quite a lot). Increment the overflow count in
1809 * the ring.
1810 */
1811 cqe = io_get_cqe(ctx);
1812 if (likely(cqe)) {
1813 WRITE_ONCE(cqe->user_data, user_data);
1814 WRITE_ONCE(cqe->res, res);
1815 WRITE_ONCE(cqe->flags, cflags);
1816 return true;
1817 }
1818 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1819 }
1820
io_fill_cqe_req(struct io_kiocb * req,s32 res,u32 cflags)1821 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1822 {
1823 __io_fill_cqe(req->ctx, req->user_data, res, cflags);
1824 }
1825
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)1826 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1827 s32 res, u32 cflags)
1828 {
1829 ctx->cq_extra++;
1830 return __io_fill_cqe(ctx, user_data, res, cflags);
1831 }
1832
io_req_complete_post(struct io_kiocb * req,s32 res,u32 cflags)1833 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1834 u32 cflags)
1835 {
1836 struct io_ring_ctx *ctx = req->ctx;
1837
1838 spin_lock(&ctx->completion_lock);
1839 __io_fill_cqe(ctx, req->user_data, res, cflags);
1840 /*
1841 * If we're the last reference to this request, add to our locked
1842 * free_list cache.
1843 */
1844 if (req_ref_put_and_test(req)) {
1845 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1846 if (req->flags & IO_DISARM_MASK)
1847 io_disarm_next(req);
1848 if (req->link) {
1849 io_req_task_queue(req->link);
1850 req->link = NULL;
1851 }
1852 }
1853 io_dismantle_req(req);
1854 io_put_task(req->task, 1);
1855 list_add(&req->inflight_entry, &ctx->locked_free_list);
1856 ctx->locked_free_nr++;
1857 } else {
1858 if (!percpu_ref_tryget(&ctx->refs))
1859 req = NULL;
1860 }
1861 io_commit_cqring(ctx);
1862 spin_unlock(&ctx->completion_lock);
1863
1864 if (req) {
1865 io_cqring_ev_posted(ctx);
1866 percpu_ref_put(&ctx->refs);
1867 }
1868 }
1869
io_req_needs_clean(struct io_kiocb * req)1870 static inline bool io_req_needs_clean(struct io_kiocb *req)
1871 {
1872 return req->flags & IO_REQ_CLEAN_FLAGS;
1873 }
1874
io_req_complete_state(struct io_kiocb * req,s32 res,u32 cflags)1875 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1876 u32 cflags)
1877 {
1878 if (io_req_needs_clean(req))
1879 io_clean_op(req);
1880 req->result = res;
1881 req->compl.cflags = cflags;
1882 req->flags |= REQ_F_COMPLETE_INLINE;
1883 }
1884
__io_req_complete(struct io_kiocb * req,unsigned issue_flags,s32 res,u32 cflags)1885 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1886 s32 res, u32 cflags)
1887 {
1888 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1889 io_req_complete_state(req, res, cflags);
1890 else
1891 io_req_complete_post(req, res, cflags);
1892 }
1893
io_req_complete(struct io_kiocb * req,s32 res)1894 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1895 {
1896 __io_req_complete(req, 0, res, 0);
1897 }
1898
io_req_complete_failed(struct io_kiocb * req,s32 res)1899 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1900 {
1901 req_set_fail(req);
1902 io_req_complete_post(req, res, 0);
1903 }
1904
io_req_complete_fail_submit(struct io_kiocb * req)1905 static void io_req_complete_fail_submit(struct io_kiocb *req)
1906 {
1907 /*
1908 * We don't submit, fail them all, for that replace hardlinks with
1909 * normal links. Extra REQ_F_LINK is tolerated.
1910 */
1911 req->flags &= ~REQ_F_HARDLINK;
1912 req->flags |= REQ_F_LINK;
1913 io_req_complete_failed(req, req->result);
1914 }
1915
1916 /*
1917 * Don't initialise the fields below on every allocation, but do that in
1918 * advance and keep them valid across allocations.
1919 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1920 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1921 {
1922 req->ctx = ctx;
1923 req->link = NULL;
1924 req->async_data = NULL;
1925 /* not necessary, but safer to zero */
1926 req->result = 0;
1927 }
1928
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1929 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1930 struct io_submit_state *state)
1931 {
1932 spin_lock(&ctx->completion_lock);
1933 list_splice_init(&ctx->locked_free_list, &state->free_list);
1934 ctx->locked_free_nr = 0;
1935 spin_unlock(&ctx->completion_lock);
1936 }
1937
1938 /* Returns true IFF there are requests in the cache */
io_flush_cached_reqs(struct io_ring_ctx * ctx)1939 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1940 {
1941 struct io_submit_state *state = &ctx->submit_state;
1942 int nr;
1943
1944 /*
1945 * If we have more than a batch's worth of requests in our IRQ side
1946 * locked cache, grab the lock and move them over to our submission
1947 * side cache.
1948 */
1949 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1950 io_flush_cached_locked_reqs(ctx, state);
1951
1952 nr = state->free_reqs;
1953 while (!list_empty(&state->free_list)) {
1954 struct io_kiocb *req = list_first_entry(&state->free_list,
1955 struct io_kiocb, inflight_entry);
1956
1957 list_del(&req->inflight_entry);
1958 state->reqs[nr++] = req;
1959 if (nr == ARRAY_SIZE(state->reqs))
1960 break;
1961 }
1962
1963 state->free_reqs = nr;
1964 return nr != 0;
1965 }
1966
1967 /*
1968 * A request might get retired back into the request caches even before opcode
1969 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1970 * Because of that, io_alloc_req() should be called only under ->uring_lock
1971 * and with extra caution to not get a request that is still worked on.
1972 */
io_alloc_req(struct io_ring_ctx * ctx)1973 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1974 __must_hold(&ctx->uring_lock)
1975 {
1976 struct io_submit_state *state = &ctx->submit_state;
1977 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1978 int ret, i;
1979
1980 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1981
1982 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1983 goto got_req;
1984
1985 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1986 state->reqs);
1987
1988 /*
1989 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1990 * retry single alloc to be on the safe side.
1991 */
1992 if (unlikely(ret <= 0)) {
1993 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1994 if (!state->reqs[0])
1995 return NULL;
1996 ret = 1;
1997 }
1998
1999 for (i = 0; i < ret; i++)
2000 io_preinit_req(state->reqs[i], ctx);
2001 state->free_reqs = ret;
2002 got_req:
2003 state->free_reqs--;
2004 return state->reqs[state->free_reqs];
2005 }
2006
io_put_file(struct file * file)2007 static inline void io_put_file(struct file *file)
2008 {
2009 if (file)
2010 fput(file);
2011 }
2012
io_dismantle_req(struct io_kiocb * req)2013 static void io_dismantle_req(struct io_kiocb *req)
2014 {
2015 unsigned int flags = req->flags;
2016
2017 if (io_req_needs_clean(req))
2018 io_clean_op(req);
2019 if (!(flags & REQ_F_FIXED_FILE))
2020 io_put_file(req->file);
2021 if (req->fixed_rsrc_refs)
2022 percpu_ref_put(req->fixed_rsrc_refs);
2023 if (req->async_data) {
2024 kfree(req->async_data);
2025 req->async_data = NULL;
2026 }
2027 }
2028
__io_free_req(struct io_kiocb * req)2029 static void __io_free_req(struct io_kiocb *req)
2030 {
2031 struct io_ring_ctx *ctx = req->ctx;
2032
2033 io_dismantle_req(req);
2034 io_put_task(req->task, 1);
2035
2036 spin_lock(&ctx->completion_lock);
2037 list_add(&req->inflight_entry, &ctx->locked_free_list);
2038 ctx->locked_free_nr++;
2039 spin_unlock(&ctx->completion_lock);
2040
2041 percpu_ref_put(&ctx->refs);
2042 }
2043
io_remove_next_linked(struct io_kiocb * req)2044 static inline void io_remove_next_linked(struct io_kiocb *req)
2045 {
2046 struct io_kiocb *nxt = req->link;
2047
2048 req->link = nxt->link;
2049 nxt->link = NULL;
2050 }
2051
io_kill_linked_timeout(struct io_kiocb * req)2052 static bool io_kill_linked_timeout(struct io_kiocb *req)
2053 __must_hold(&req->ctx->completion_lock)
2054 __must_hold(&req->ctx->timeout_lock)
2055 {
2056 struct io_kiocb *link = req->link;
2057
2058 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2059 struct io_timeout_data *io = link->async_data;
2060
2061 io_remove_next_linked(req);
2062 link->timeout.head = NULL;
2063 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2064 list_del(&link->timeout.list);
2065 io_fill_cqe_req(link, -ECANCELED, 0);
2066 io_put_req_deferred(link);
2067 return true;
2068 }
2069 }
2070 return false;
2071 }
2072
io_fail_links(struct io_kiocb * req)2073 static void io_fail_links(struct io_kiocb *req)
2074 __must_hold(&req->ctx->completion_lock)
2075 {
2076 struct io_kiocb *nxt, *link = req->link;
2077
2078 req->link = NULL;
2079 while (link) {
2080 long res = -ECANCELED;
2081
2082 if (link->flags & REQ_F_FAIL)
2083 res = link->result;
2084
2085 nxt = link->link;
2086 link->link = NULL;
2087
2088 trace_io_uring_fail_link(req, link);
2089 io_fill_cqe_req(link, res, 0);
2090 io_put_req_deferred(link);
2091 link = nxt;
2092 }
2093 }
2094
io_disarm_next(struct io_kiocb * req)2095 static bool io_disarm_next(struct io_kiocb *req)
2096 __must_hold(&req->ctx->completion_lock)
2097 {
2098 bool posted = false;
2099
2100 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2101 struct io_kiocb *link = req->link;
2102
2103 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2104 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2105 io_remove_next_linked(req);
2106 io_fill_cqe_req(link, -ECANCELED, 0);
2107 io_put_req_deferred(link);
2108 posted = true;
2109 }
2110 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2111 struct io_ring_ctx *ctx = req->ctx;
2112
2113 spin_lock_irq(&ctx->timeout_lock);
2114 posted = io_kill_linked_timeout(req);
2115 spin_unlock_irq(&ctx->timeout_lock);
2116 }
2117 if (unlikely((req->flags & REQ_F_FAIL) &&
2118 !(req->flags & REQ_F_HARDLINK))) {
2119 posted |= (req->link != NULL);
2120 io_fail_links(req);
2121 }
2122 return posted;
2123 }
2124
__io_req_find_next(struct io_kiocb * req)2125 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2126 {
2127 struct io_kiocb *nxt;
2128
2129 /*
2130 * If LINK is set, we have dependent requests in this chain. If we
2131 * didn't fail this request, queue the first one up, moving any other
2132 * dependencies to the next request. In case of failure, fail the rest
2133 * of the chain.
2134 */
2135 if (req->flags & IO_DISARM_MASK) {
2136 struct io_ring_ctx *ctx = req->ctx;
2137 bool posted;
2138
2139 spin_lock(&ctx->completion_lock);
2140 posted = io_disarm_next(req);
2141 if (posted)
2142 io_commit_cqring(req->ctx);
2143 spin_unlock(&ctx->completion_lock);
2144 if (posted)
2145 io_cqring_ev_posted(ctx);
2146 }
2147 nxt = req->link;
2148 req->link = NULL;
2149 return nxt;
2150 }
2151
io_req_find_next(struct io_kiocb * req)2152 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2153 {
2154 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2155 return NULL;
2156 return __io_req_find_next(req);
2157 }
2158
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)2159 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2160 {
2161 if (!ctx)
2162 return;
2163 if (*locked) {
2164 if (ctx->submit_state.compl_nr)
2165 io_submit_flush_completions(ctx);
2166 mutex_unlock(&ctx->uring_lock);
2167 *locked = false;
2168 }
2169 percpu_ref_put(&ctx->refs);
2170 }
2171
tctx_task_work(struct callback_head * cb)2172 static void tctx_task_work(struct callback_head *cb)
2173 {
2174 bool locked = false;
2175 struct io_ring_ctx *ctx = NULL;
2176 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2177 task_work);
2178
2179 while (1) {
2180 struct io_wq_work_node *node;
2181
2182 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2183 io_submit_flush_completions(ctx);
2184
2185 spin_lock_irq(&tctx->task_lock);
2186 node = tctx->task_list.first;
2187 INIT_WQ_LIST(&tctx->task_list);
2188 if (!node)
2189 tctx->task_running = false;
2190 spin_unlock_irq(&tctx->task_lock);
2191 if (!node)
2192 break;
2193
2194 do {
2195 struct io_wq_work_node *next = node->next;
2196 struct io_kiocb *req = container_of(node, struct io_kiocb,
2197 io_task_work.node);
2198
2199 if (req->ctx != ctx) {
2200 ctx_flush_and_put(ctx, &locked);
2201 ctx = req->ctx;
2202 /* if not contended, grab and improve batching */
2203 locked = mutex_trylock(&ctx->uring_lock);
2204 percpu_ref_get(&ctx->refs);
2205 }
2206 req->io_task_work.func(req, &locked);
2207 node = next;
2208 } while (node);
2209
2210 cond_resched();
2211 }
2212
2213 ctx_flush_and_put(ctx, &locked);
2214
2215 /* relaxed read is enough as only the task itself sets ->in_idle */
2216 if (unlikely(atomic_read(&tctx->in_idle)))
2217 io_uring_drop_tctx_refs(current);
2218 }
2219
io_req_task_work_add(struct io_kiocb * req)2220 static void io_req_task_work_add(struct io_kiocb *req)
2221 {
2222 struct task_struct *tsk = req->task;
2223 struct io_uring_task *tctx = tsk->io_uring;
2224 enum task_work_notify_mode notify;
2225 struct io_wq_work_node *node;
2226 unsigned long flags;
2227 bool running;
2228
2229 WARN_ON_ONCE(!tctx);
2230
2231 spin_lock_irqsave(&tctx->task_lock, flags);
2232 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2233 running = tctx->task_running;
2234 if (!running)
2235 tctx->task_running = true;
2236 spin_unlock_irqrestore(&tctx->task_lock, flags);
2237
2238 /* task_work already pending, we're done */
2239 if (running)
2240 return;
2241
2242 /*
2243 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2244 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2245 * processing task_work. There's no reliable way to tell if TWA_RESUME
2246 * will do the job.
2247 */
2248 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2249 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2250 wake_up_process(tsk);
2251 return;
2252 }
2253
2254 spin_lock_irqsave(&tctx->task_lock, flags);
2255 tctx->task_running = false;
2256 node = tctx->task_list.first;
2257 INIT_WQ_LIST(&tctx->task_list);
2258 spin_unlock_irqrestore(&tctx->task_lock, flags);
2259
2260 while (node) {
2261 req = container_of(node, struct io_kiocb, io_task_work.node);
2262 node = node->next;
2263 if (llist_add(&req->io_task_work.fallback_node,
2264 &req->ctx->fallback_llist))
2265 schedule_delayed_work(&req->ctx->fallback_work, 1);
2266 }
2267 }
2268
io_req_task_cancel(struct io_kiocb * req,bool * locked)2269 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2270 {
2271 struct io_ring_ctx *ctx = req->ctx;
2272
2273 /* not needed for normal modes, but SQPOLL depends on it */
2274 io_tw_lock(ctx, locked);
2275 io_req_complete_failed(req, req->result);
2276 }
2277
io_req_task_submit(struct io_kiocb * req,bool * locked)2278 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2279 {
2280 struct io_ring_ctx *ctx = req->ctx;
2281
2282 io_tw_lock(ctx, locked);
2283 /* req->task == current here, checking PF_EXITING is safe */
2284 if (likely(!(req->task->flags & PF_EXITING)))
2285 __io_queue_sqe(req);
2286 else
2287 io_req_complete_failed(req, -EFAULT);
2288 }
2289
io_req_task_queue_fail(struct io_kiocb * req,int ret)2290 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2291 {
2292 req->result = ret;
2293 req->io_task_work.func = io_req_task_cancel;
2294 io_req_task_work_add(req);
2295 }
2296
io_req_task_queue(struct io_kiocb * req)2297 static void io_req_task_queue(struct io_kiocb *req)
2298 {
2299 req->io_task_work.func = io_req_task_submit;
2300 io_req_task_work_add(req);
2301 }
2302
io_req_task_queue_reissue(struct io_kiocb * req)2303 static void io_req_task_queue_reissue(struct io_kiocb *req)
2304 {
2305 req->io_task_work.func = io_queue_async_work;
2306 io_req_task_work_add(req);
2307 }
2308
io_queue_next(struct io_kiocb * req)2309 static inline void io_queue_next(struct io_kiocb *req)
2310 {
2311 struct io_kiocb *nxt = io_req_find_next(req);
2312
2313 if (nxt)
2314 io_req_task_queue(nxt);
2315 }
2316
io_free_req(struct io_kiocb * req)2317 static void io_free_req(struct io_kiocb *req)
2318 {
2319 io_queue_next(req);
2320 __io_free_req(req);
2321 }
2322
io_free_req_work(struct io_kiocb * req,bool * locked)2323 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2324 {
2325 io_free_req(req);
2326 }
2327
2328 struct req_batch {
2329 struct task_struct *task;
2330 int task_refs;
2331 int ctx_refs;
2332 };
2333
io_init_req_batch(struct req_batch * rb)2334 static inline void io_init_req_batch(struct req_batch *rb)
2335 {
2336 rb->task_refs = 0;
2337 rb->ctx_refs = 0;
2338 rb->task = NULL;
2339 }
2340
io_req_free_batch_finish(struct io_ring_ctx * ctx,struct req_batch * rb)2341 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2342 struct req_batch *rb)
2343 {
2344 if (rb->ctx_refs)
2345 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2346 if (rb->task)
2347 io_put_task(rb->task, rb->task_refs);
2348 }
2349
io_req_free_batch(struct req_batch * rb,struct io_kiocb * req,struct io_submit_state * state)2350 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2351 struct io_submit_state *state)
2352 {
2353 io_queue_next(req);
2354 io_dismantle_req(req);
2355
2356 if (req->task != rb->task) {
2357 if (rb->task)
2358 io_put_task(rb->task, rb->task_refs);
2359 rb->task = req->task;
2360 rb->task_refs = 0;
2361 }
2362 rb->task_refs++;
2363 rb->ctx_refs++;
2364
2365 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2366 state->reqs[state->free_reqs++] = req;
2367 else
2368 list_add(&req->inflight_entry, &state->free_list);
2369 }
2370
io_submit_flush_completions(struct io_ring_ctx * ctx)2371 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2372 __must_hold(&ctx->uring_lock)
2373 {
2374 struct io_submit_state *state = &ctx->submit_state;
2375 int i, nr = state->compl_nr;
2376 struct req_batch rb;
2377
2378 spin_lock(&ctx->completion_lock);
2379 for (i = 0; i < nr; i++) {
2380 struct io_kiocb *req = state->compl_reqs[i];
2381
2382 __io_fill_cqe(ctx, req->user_data, req->result,
2383 req->compl.cflags);
2384 }
2385 io_commit_cqring(ctx);
2386 spin_unlock(&ctx->completion_lock);
2387 io_cqring_ev_posted(ctx);
2388
2389 io_init_req_batch(&rb);
2390 for (i = 0; i < nr; i++) {
2391 struct io_kiocb *req = state->compl_reqs[i];
2392
2393 if (req_ref_put_and_test(req))
2394 io_req_free_batch(&rb, req, &ctx->submit_state);
2395 }
2396
2397 io_req_free_batch_finish(ctx, &rb);
2398 state->compl_nr = 0;
2399 }
2400
2401 /*
2402 * Drop reference to request, return next in chain (if there is one) if this
2403 * was the last reference to this request.
2404 */
io_put_req_find_next(struct io_kiocb * req)2405 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2406 {
2407 struct io_kiocb *nxt = NULL;
2408
2409 if (req_ref_put_and_test(req)) {
2410 nxt = io_req_find_next(req);
2411 __io_free_req(req);
2412 }
2413 return nxt;
2414 }
2415
io_put_req(struct io_kiocb * req)2416 static inline void io_put_req(struct io_kiocb *req)
2417 {
2418 if (req_ref_put_and_test(req))
2419 io_free_req(req);
2420 }
2421
io_put_req_deferred(struct io_kiocb * req)2422 static inline void io_put_req_deferred(struct io_kiocb *req)
2423 {
2424 if (req_ref_put_and_test(req)) {
2425 req->io_task_work.func = io_free_req_work;
2426 io_req_task_work_add(req);
2427 }
2428 }
2429
io_cqring_events(struct io_ring_ctx * ctx)2430 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2431 {
2432 /* See comment at the top of this file */
2433 smp_rmb();
2434 return __io_cqring_events(ctx);
2435 }
2436
io_sqring_entries(struct io_ring_ctx * ctx)2437 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2438 {
2439 struct io_rings *rings = ctx->rings;
2440
2441 /* make sure SQ entry isn't read before tail */
2442 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2443 }
2444
io_put_kbuf(struct io_kiocb * req,struct io_buffer * kbuf)2445 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2446 {
2447 unsigned int cflags;
2448
2449 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2450 cflags |= IORING_CQE_F_BUFFER;
2451 req->flags &= ~REQ_F_BUFFER_SELECTED;
2452 kfree(kbuf);
2453 return cflags;
2454 }
2455
io_put_rw_kbuf(struct io_kiocb * req)2456 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2457 {
2458 struct io_buffer *kbuf;
2459
2460 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2461 return 0;
2462 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2463 return io_put_kbuf(req, kbuf);
2464 }
2465
io_run_task_work(void)2466 static inline bool io_run_task_work(void)
2467 {
2468 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2469 __set_current_state(TASK_RUNNING);
2470 tracehook_notify_signal();
2471 return true;
2472 }
2473
2474 return false;
2475 }
2476
2477 /*
2478 * Find and free completed poll iocbs
2479 */
io_iopoll_complete(struct io_ring_ctx * ctx,unsigned int * nr_events,struct list_head * done)2480 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2481 struct list_head *done)
2482 {
2483 struct req_batch rb;
2484 struct io_kiocb *req;
2485
2486 /* order with ->result store in io_complete_rw_iopoll() */
2487 smp_rmb();
2488
2489 io_init_req_batch(&rb);
2490 while (!list_empty(done)) {
2491 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2492 list_del(&req->inflight_entry);
2493
2494 io_fill_cqe_req(req, req->result, io_put_rw_kbuf(req));
2495 (*nr_events)++;
2496
2497 if (req_ref_put_and_test(req))
2498 io_req_free_batch(&rb, req, &ctx->submit_state);
2499 }
2500
2501 io_commit_cqring(ctx);
2502 io_cqring_ev_posted_iopoll(ctx);
2503 io_req_free_batch_finish(ctx, &rb);
2504 }
2505
io_do_iopoll(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)2506 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2507 long min)
2508 {
2509 struct io_kiocb *req, *tmp;
2510 LIST_HEAD(done);
2511 bool spin;
2512
2513 /*
2514 * Only spin for completions if we don't have multiple devices hanging
2515 * off our complete list, and we're under the requested amount.
2516 */
2517 spin = !ctx->poll_multi_queue && *nr_events < min;
2518
2519 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2520 struct kiocb *kiocb = &req->rw.kiocb;
2521 int ret;
2522
2523 /*
2524 * Move completed and retryable entries to our local lists.
2525 * If we find a request that requires polling, break out
2526 * and complete those lists first, if we have entries there.
2527 */
2528 if (READ_ONCE(req->iopoll_completed)) {
2529 list_move_tail(&req->inflight_entry, &done);
2530 continue;
2531 }
2532 if (!list_empty(&done))
2533 break;
2534
2535 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2536 if (unlikely(ret < 0))
2537 return ret;
2538 else if (ret)
2539 spin = false;
2540
2541 /* iopoll may have completed current req */
2542 if (READ_ONCE(req->iopoll_completed))
2543 list_move_tail(&req->inflight_entry, &done);
2544 }
2545
2546 if (!list_empty(&done))
2547 io_iopoll_complete(ctx, nr_events, &done);
2548
2549 return 0;
2550 }
2551
2552 /*
2553 * We can't just wait for polled events to come to us, we have to actively
2554 * find and complete them.
2555 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)2556 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2557 {
2558 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2559 return;
2560
2561 mutex_lock(&ctx->uring_lock);
2562 while (!list_empty(&ctx->iopoll_list)) {
2563 unsigned int nr_events = 0;
2564
2565 io_do_iopoll(ctx, &nr_events, 0);
2566
2567 /* let it sleep and repeat later if can't complete a request */
2568 if (nr_events == 0)
2569 break;
2570 /*
2571 * Ensure we allow local-to-the-cpu processing to take place,
2572 * in this case we need to ensure that we reap all events.
2573 * Also let task_work, etc. to progress by releasing the mutex
2574 */
2575 if (need_resched()) {
2576 mutex_unlock(&ctx->uring_lock);
2577 cond_resched();
2578 mutex_lock(&ctx->uring_lock);
2579 }
2580 }
2581 mutex_unlock(&ctx->uring_lock);
2582 }
2583
io_iopoll_check(struct io_ring_ctx * ctx,long min)2584 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2585 {
2586 unsigned int nr_events = 0;
2587 int ret = 0;
2588
2589 /*
2590 * We disallow the app entering submit/complete with polling, but we
2591 * still need to lock the ring to prevent racing with polled issue
2592 * that got punted to a workqueue.
2593 */
2594 mutex_lock(&ctx->uring_lock);
2595 /*
2596 * Don't enter poll loop if we already have events pending.
2597 * If we do, we can potentially be spinning for commands that
2598 * already triggered a CQE (eg in error).
2599 */
2600 if (test_bit(0, &ctx->check_cq_overflow))
2601 __io_cqring_overflow_flush(ctx, false);
2602 if (io_cqring_events(ctx))
2603 goto out;
2604 do {
2605 /*
2606 * If a submit got punted to a workqueue, we can have the
2607 * application entering polling for a command before it gets
2608 * issued. That app will hold the uring_lock for the duration
2609 * of the poll right here, so we need to take a breather every
2610 * now and then to ensure that the issue has a chance to add
2611 * the poll to the issued list. Otherwise we can spin here
2612 * forever, while the workqueue is stuck trying to acquire the
2613 * very same mutex.
2614 */
2615 if (list_empty(&ctx->iopoll_list)) {
2616 u32 tail = ctx->cached_cq_tail;
2617
2618 mutex_unlock(&ctx->uring_lock);
2619 io_run_task_work();
2620 mutex_lock(&ctx->uring_lock);
2621
2622 /* some requests don't go through iopoll_list */
2623 if (tail != ctx->cached_cq_tail ||
2624 list_empty(&ctx->iopoll_list))
2625 break;
2626 }
2627 ret = io_do_iopoll(ctx, &nr_events, min);
2628 } while (!ret && nr_events < min && !need_resched());
2629 out:
2630 mutex_unlock(&ctx->uring_lock);
2631 return ret;
2632 }
2633
kiocb_end_write(struct io_kiocb * req)2634 static void kiocb_end_write(struct io_kiocb *req)
2635 {
2636 /*
2637 * Tell lockdep we inherited freeze protection from submission
2638 * thread.
2639 */
2640 if (req->flags & REQ_F_ISREG) {
2641 struct super_block *sb = file_inode(req->file)->i_sb;
2642
2643 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2644 sb_end_write(sb);
2645 }
2646 }
2647
2648 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req)2649 static bool io_resubmit_prep(struct io_kiocb *req)
2650 {
2651 struct io_async_rw *rw = req->async_data;
2652
2653 if (!rw)
2654 return !io_req_prep_async(req);
2655 iov_iter_restore(&rw->iter, &rw->iter_state);
2656 return true;
2657 }
2658
io_rw_should_reissue(struct io_kiocb * req)2659 static bool io_rw_should_reissue(struct io_kiocb *req)
2660 {
2661 umode_t mode = file_inode(req->file)->i_mode;
2662 struct io_ring_ctx *ctx = req->ctx;
2663
2664 if (!S_ISBLK(mode) && !S_ISREG(mode))
2665 return false;
2666 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2667 !(ctx->flags & IORING_SETUP_IOPOLL)))
2668 return false;
2669 /*
2670 * If ref is dying, we might be running poll reap from the exit work.
2671 * Don't attempt to reissue from that path, just let it fail with
2672 * -EAGAIN.
2673 */
2674 if (percpu_ref_is_dying(&ctx->refs))
2675 return false;
2676 /*
2677 * Play it safe and assume not safe to re-import and reissue if we're
2678 * not in the original thread group (or in task context).
2679 */
2680 if (!same_thread_group(req->task, current) || !in_task())
2681 return false;
2682 return true;
2683 }
2684 #else
io_resubmit_prep(struct io_kiocb * req)2685 static bool io_resubmit_prep(struct io_kiocb *req)
2686 {
2687 return false;
2688 }
io_rw_should_reissue(struct io_kiocb * req)2689 static bool io_rw_should_reissue(struct io_kiocb *req)
2690 {
2691 return false;
2692 }
2693 #endif
2694
__io_complete_rw_common(struct io_kiocb * req,long res)2695 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2696 {
2697 if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
2698 kiocb_end_write(req);
2699 fsnotify_modify(req->file);
2700 } else {
2701 fsnotify_access(req->file);
2702 }
2703 if (res != req->result) {
2704 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2705 io_rw_should_reissue(req)) {
2706 req->flags |= REQ_F_REISSUE;
2707 return true;
2708 }
2709 req_set_fail(req);
2710 req->result = res;
2711 }
2712 return false;
2713 }
2714
io_fixup_rw_res(struct io_kiocb * req,unsigned res)2715 static inline int io_fixup_rw_res(struct io_kiocb *req, unsigned res)
2716 {
2717 struct io_async_rw *io = req->async_data;
2718
2719 /* add previously done IO, if any */
2720 if (io && io->bytes_done > 0) {
2721 if (res < 0)
2722 res = io->bytes_done;
2723 else
2724 res += io->bytes_done;
2725 }
2726 return res;
2727 }
2728
io_req_task_complete(struct io_kiocb * req,bool * locked)2729 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2730 {
2731 unsigned int cflags = io_put_rw_kbuf(req);
2732 int res = req->result;
2733
2734 if (*locked) {
2735 struct io_ring_ctx *ctx = req->ctx;
2736 struct io_submit_state *state = &ctx->submit_state;
2737
2738 io_req_complete_state(req, res, cflags);
2739 state->compl_reqs[state->compl_nr++] = req;
2740 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2741 io_submit_flush_completions(ctx);
2742 } else {
2743 io_req_complete_post(req, res, cflags);
2744 }
2745 }
2746
__io_complete_rw(struct io_kiocb * req,long res,long res2,unsigned int issue_flags)2747 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2748 unsigned int issue_flags)
2749 {
2750 if (__io_complete_rw_common(req, res))
2751 return;
2752 __io_req_complete(req, issue_flags, io_fixup_rw_res(req, res), io_put_rw_kbuf(req));
2753 }
2754
io_complete_rw(struct kiocb * kiocb,long res,long res2)2755 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2756 {
2757 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2758
2759 if (__io_complete_rw_common(req, res))
2760 return;
2761 req->result = io_fixup_rw_res(req, res);
2762 req->io_task_work.func = io_req_task_complete;
2763 io_req_task_work_add(req);
2764 }
2765
io_complete_rw_iopoll(struct kiocb * kiocb,long res,long res2)2766 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2767 {
2768 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2769
2770 if (kiocb->ki_flags & IOCB_WRITE)
2771 kiocb_end_write(req);
2772 if (unlikely(res != req->result)) {
2773 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2774 req->flags |= REQ_F_REISSUE;
2775 return;
2776 }
2777 }
2778
2779 WRITE_ONCE(req->result, res);
2780 /* order with io_iopoll_complete() checking ->result */
2781 smp_wmb();
2782 WRITE_ONCE(req->iopoll_completed, 1);
2783 }
2784
2785 /*
2786 * After the iocb has been issued, it's safe to be found on the poll list.
2787 * Adding the kiocb to the list AFTER submission ensures that we don't
2788 * find it from a io_do_iopoll() thread before the issuer is done
2789 * accessing the kiocb cookie.
2790 */
io_iopoll_req_issued(struct io_kiocb * req)2791 static void io_iopoll_req_issued(struct io_kiocb *req)
2792 {
2793 struct io_ring_ctx *ctx = req->ctx;
2794 const bool in_async = io_wq_current_is_worker();
2795
2796 /* workqueue context doesn't hold uring_lock, grab it now */
2797 if (unlikely(in_async))
2798 mutex_lock(&ctx->uring_lock);
2799
2800 /*
2801 * Track whether we have multiple files in our lists. This will impact
2802 * how we do polling eventually, not spinning if we're on potentially
2803 * different devices.
2804 */
2805 if (list_empty(&ctx->iopoll_list)) {
2806 ctx->poll_multi_queue = false;
2807 } else if (!ctx->poll_multi_queue) {
2808 struct io_kiocb *list_req;
2809 unsigned int queue_num0, queue_num1;
2810
2811 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2812 inflight_entry);
2813
2814 if (list_req->file != req->file) {
2815 ctx->poll_multi_queue = true;
2816 } else {
2817 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2818 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2819 if (queue_num0 != queue_num1)
2820 ctx->poll_multi_queue = true;
2821 }
2822 }
2823
2824 /*
2825 * For fast devices, IO may have already completed. If it has, add
2826 * it to the front so we find it first.
2827 */
2828 if (READ_ONCE(req->iopoll_completed))
2829 list_add(&req->inflight_entry, &ctx->iopoll_list);
2830 else
2831 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2832
2833 if (unlikely(in_async)) {
2834 /*
2835 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2836 * in sq thread task context or in io worker task context. If
2837 * current task context is sq thread, we don't need to check
2838 * whether should wake up sq thread.
2839 */
2840 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2841 wq_has_sleeper(&ctx->sq_data->wait))
2842 wake_up(&ctx->sq_data->wait);
2843
2844 mutex_unlock(&ctx->uring_lock);
2845 }
2846 }
2847
io_bdev_nowait(struct block_device * bdev)2848 static bool io_bdev_nowait(struct block_device *bdev)
2849 {
2850 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2851 }
2852
2853 /*
2854 * If we tracked the file through the SCM inflight mechanism, we could support
2855 * any file. For now, just ensure that anything potentially problematic is done
2856 * inline.
2857 */
__io_file_supports_nowait(struct file * file,int rw)2858 static bool __io_file_supports_nowait(struct file *file, int rw)
2859 {
2860 umode_t mode = file_inode(file)->i_mode;
2861
2862 if (S_ISBLK(mode)) {
2863 if (IS_ENABLED(CONFIG_BLOCK) &&
2864 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2865 return true;
2866 return false;
2867 }
2868 if (S_ISSOCK(mode))
2869 return true;
2870 if (S_ISREG(mode)) {
2871 if (IS_ENABLED(CONFIG_BLOCK) &&
2872 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2873 file->f_op != &io_uring_fops)
2874 return true;
2875 return false;
2876 }
2877
2878 /* any ->read/write should understand O_NONBLOCK */
2879 if (file->f_flags & O_NONBLOCK)
2880 return true;
2881
2882 if (!(file->f_mode & FMODE_NOWAIT))
2883 return false;
2884
2885 if (rw == READ)
2886 return file->f_op->read_iter != NULL;
2887
2888 return file->f_op->write_iter != NULL;
2889 }
2890
io_file_supports_nowait(struct io_kiocb * req,int rw)2891 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2892 {
2893 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2894 return true;
2895 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2896 return true;
2897
2898 return __io_file_supports_nowait(req->file, rw);
2899 }
2900
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int rw)2901 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2902 int rw)
2903 {
2904 struct io_ring_ctx *ctx = req->ctx;
2905 struct kiocb *kiocb = &req->rw.kiocb;
2906 struct file *file = req->file;
2907 unsigned ioprio;
2908 int ret;
2909
2910 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2911 req->flags |= REQ_F_ISREG;
2912
2913 kiocb->ki_pos = READ_ONCE(sqe->off);
2914 if (kiocb->ki_pos == -1) {
2915 if (!(file->f_mode & FMODE_STREAM)) {
2916 req->flags |= REQ_F_CUR_POS;
2917 kiocb->ki_pos = file->f_pos;
2918 } else {
2919 kiocb->ki_pos = 0;
2920 }
2921 }
2922 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2923 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2924 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2925 if (unlikely(ret))
2926 return ret;
2927
2928 /*
2929 * If the file is marked O_NONBLOCK, still allow retry for it if it
2930 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2931 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2932 */
2933 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2934 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2935 req->flags |= REQ_F_NOWAIT;
2936
2937 ioprio = READ_ONCE(sqe->ioprio);
2938 if (ioprio) {
2939 ret = ioprio_check_cap(ioprio);
2940 if (ret)
2941 return ret;
2942
2943 kiocb->ki_ioprio = ioprio;
2944 } else
2945 kiocb->ki_ioprio = get_current_ioprio();
2946
2947 if (ctx->flags & IORING_SETUP_IOPOLL) {
2948 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2949 !kiocb->ki_filp->f_op->iopoll)
2950 return -EOPNOTSUPP;
2951
2952 kiocb->ki_flags |= IOCB_HIPRI;
2953 kiocb->ki_complete = io_complete_rw_iopoll;
2954 req->iopoll_completed = 0;
2955 } else {
2956 if (kiocb->ki_flags & IOCB_HIPRI)
2957 return -EINVAL;
2958 kiocb->ki_complete = io_complete_rw;
2959 }
2960
2961 /* used for fixed read/write too - just read unconditionally */
2962 req->buf_index = READ_ONCE(sqe->buf_index);
2963 req->imu = NULL;
2964
2965 if (req->opcode == IORING_OP_READ_FIXED ||
2966 req->opcode == IORING_OP_WRITE_FIXED) {
2967 struct io_ring_ctx *ctx = req->ctx;
2968 u16 index;
2969
2970 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
2971 return -EFAULT;
2972 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
2973 req->imu = ctx->user_bufs[index];
2974 io_req_set_rsrc_node(req);
2975 }
2976
2977 req->rw.addr = READ_ONCE(sqe->addr);
2978 req->rw.len = READ_ONCE(sqe->len);
2979 return 0;
2980 }
2981
io_rw_done(struct kiocb * kiocb,ssize_t ret)2982 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2983 {
2984 switch (ret) {
2985 case -EIOCBQUEUED:
2986 break;
2987 case -ERESTARTSYS:
2988 case -ERESTARTNOINTR:
2989 case -ERESTARTNOHAND:
2990 case -ERESTART_RESTARTBLOCK:
2991 /*
2992 * We can't just restart the syscall, since previously
2993 * submitted sqes may already be in progress. Just fail this
2994 * IO with EINTR.
2995 */
2996 ret = -EINTR;
2997 fallthrough;
2998 default:
2999 kiocb->ki_complete(kiocb, ret, 0);
3000 }
3001 }
3002
kiocb_done(struct kiocb * kiocb,ssize_t ret,unsigned int issue_flags)3003 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3004 unsigned int issue_flags)
3005 {
3006 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3007
3008 if (req->flags & REQ_F_CUR_POS)
3009 req->file->f_pos = kiocb->ki_pos;
3010 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
3011 __io_complete_rw(req, ret, 0, issue_flags);
3012 else
3013 io_rw_done(kiocb, ret);
3014
3015 if (req->flags & REQ_F_REISSUE) {
3016 req->flags &= ~REQ_F_REISSUE;
3017 if (io_resubmit_prep(req)) {
3018 io_req_task_queue_reissue(req);
3019 } else {
3020 unsigned int cflags = io_put_rw_kbuf(req);
3021 struct io_ring_ctx *ctx = req->ctx;
3022
3023 ret = io_fixup_rw_res(req, ret);
3024 req_set_fail(req);
3025 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3026 mutex_lock(&ctx->uring_lock);
3027 __io_req_complete(req, issue_flags, ret, cflags);
3028 mutex_unlock(&ctx->uring_lock);
3029 } else {
3030 __io_req_complete(req, issue_flags, ret, cflags);
3031 }
3032 }
3033 }
3034 }
3035
__io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter,struct io_mapped_ubuf * imu)3036 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3037 struct io_mapped_ubuf *imu)
3038 {
3039 size_t len = req->rw.len;
3040 u64 buf_end, buf_addr = req->rw.addr;
3041 size_t offset;
3042
3043 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3044 return -EFAULT;
3045 /* not inside the mapped region */
3046 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3047 return -EFAULT;
3048
3049 /*
3050 * May not be a start of buffer, set size appropriately
3051 * and advance us to the beginning.
3052 */
3053 offset = buf_addr - imu->ubuf;
3054 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3055
3056 if (offset) {
3057 /*
3058 * Don't use iov_iter_advance() here, as it's really slow for
3059 * using the latter parts of a big fixed buffer - it iterates
3060 * over each segment manually. We can cheat a bit here, because
3061 * we know that:
3062 *
3063 * 1) it's a BVEC iter, we set it up
3064 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3065 * first and last bvec
3066 *
3067 * So just find our index, and adjust the iterator afterwards.
3068 * If the offset is within the first bvec (or the whole first
3069 * bvec, just use iov_iter_advance(). This makes it easier
3070 * since we can just skip the first segment, which may not
3071 * be PAGE_SIZE aligned.
3072 */
3073 const struct bio_vec *bvec = imu->bvec;
3074
3075 if (offset <= bvec->bv_len) {
3076 iov_iter_advance(iter, offset);
3077 } else {
3078 unsigned long seg_skip;
3079
3080 /* skip first vec */
3081 offset -= bvec->bv_len;
3082 seg_skip = 1 + (offset >> PAGE_SHIFT);
3083
3084 iter->bvec = bvec + seg_skip;
3085 iter->nr_segs -= seg_skip;
3086 iter->count -= bvec->bv_len + offset;
3087 iter->iov_offset = offset & ~PAGE_MASK;
3088 }
3089 }
3090
3091 return 0;
3092 }
3093
io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter)3094 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3095 {
3096 if (WARN_ON_ONCE(!req->imu))
3097 return -EFAULT;
3098 return __io_import_fixed(req, rw, iter, req->imu);
3099 }
3100
io_ring_submit_unlock(struct io_ring_ctx * ctx,bool needs_lock)3101 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3102 {
3103 if (needs_lock)
3104 mutex_unlock(&ctx->uring_lock);
3105 }
3106
io_ring_submit_lock(struct io_ring_ctx * ctx,bool needs_lock)3107 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3108 {
3109 /*
3110 * "Normal" inline submissions always hold the uring_lock, since we
3111 * grab it from the system call. Same is true for the SQPOLL offload.
3112 * The only exception is when we've detached the request and issue it
3113 * from an async worker thread, grab the lock for that case.
3114 */
3115 if (needs_lock)
3116 mutex_lock(&ctx->uring_lock);
3117 }
3118
io_buffer_select(struct io_kiocb * req,size_t * len,int bgid,struct io_buffer * kbuf,bool needs_lock)3119 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3120 int bgid, struct io_buffer *kbuf,
3121 bool needs_lock)
3122 {
3123 struct io_buffer *head;
3124
3125 if (req->flags & REQ_F_BUFFER_SELECTED)
3126 return kbuf;
3127
3128 io_ring_submit_lock(req->ctx, needs_lock);
3129
3130 lockdep_assert_held(&req->ctx->uring_lock);
3131
3132 head = xa_load(&req->ctx->io_buffers, bgid);
3133 if (head) {
3134 if (!list_empty(&head->list)) {
3135 kbuf = list_last_entry(&head->list, struct io_buffer,
3136 list);
3137 list_del(&kbuf->list);
3138 } else {
3139 kbuf = head;
3140 xa_erase(&req->ctx->io_buffers, bgid);
3141 }
3142 if (*len > kbuf->len)
3143 *len = kbuf->len;
3144 } else {
3145 kbuf = ERR_PTR(-ENOBUFS);
3146 }
3147
3148 io_ring_submit_unlock(req->ctx, needs_lock);
3149
3150 return kbuf;
3151 }
3152
io_rw_buffer_select(struct io_kiocb * req,size_t * len,bool needs_lock)3153 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3154 bool needs_lock)
3155 {
3156 struct io_buffer *kbuf;
3157 u16 bgid;
3158
3159 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3160 bgid = req->buf_index;
3161 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3162 if (IS_ERR(kbuf))
3163 return kbuf;
3164 req->rw.addr = (u64) (unsigned long) kbuf;
3165 req->flags |= REQ_F_BUFFER_SELECTED;
3166 return u64_to_user_ptr(kbuf->addr);
3167 }
3168
3169 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3170 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3171 bool needs_lock)
3172 {
3173 struct compat_iovec __user *uiov;
3174 compat_ssize_t clen;
3175 void __user *buf;
3176 ssize_t len;
3177
3178 uiov = u64_to_user_ptr(req->rw.addr);
3179 if (!access_ok(uiov, sizeof(*uiov)))
3180 return -EFAULT;
3181 if (__get_user(clen, &uiov->iov_len))
3182 return -EFAULT;
3183 if (clen < 0)
3184 return -EINVAL;
3185
3186 len = clen;
3187 buf = io_rw_buffer_select(req, &len, needs_lock);
3188 if (IS_ERR(buf))
3189 return PTR_ERR(buf);
3190 iov[0].iov_base = buf;
3191 iov[0].iov_len = (compat_size_t) len;
3192 return 0;
3193 }
3194 #endif
3195
__io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3196 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3197 bool needs_lock)
3198 {
3199 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3200 void __user *buf;
3201 ssize_t len;
3202
3203 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3204 return -EFAULT;
3205
3206 len = iov[0].iov_len;
3207 if (len < 0)
3208 return -EINVAL;
3209 buf = io_rw_buffer_select(req, &len, needs_lock);
3210 if (IS_ERR(buf))
3211 return PTR_ERR(buf);
3212 iov[0].iov_base = buf;
3213 iov[0].iov_len = len;
3214 return 0;
3215 }
3216
io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3217 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3218 bool needs_lock)
3219 {
3220 if (req->flags & REQ_F_BUFFER_SELECTED) {
3221 struct io_buffer *kbuf;
3222
3223 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3224 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3225 iov[0].iov_len = kbuf->len;
3226 return 0;
3227 }
3228 if (req->rw.len != 1)
3229 return -EINVAL;
3230
3231 #ifdef CONFIG_COMPAT
3232 if (req->ctx->compat)
3233 return io_compat_import(req, iov, needs_lock);
3234 #endif
3235
3236 return __io_iov_buffer_select(req, iov, needs_lock);
3237 }
3238
io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct iov_iter * iter,bool needs_lock)3239 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3240 struct iov_iter *iter, bool needs_lock)
3241 {
3242 void __user *buf = u64_to_user_ptr(req->rw.addr);
3243 size_t sqe_len = req->rw.len;
3244 u8 opcode = req->opcode;
3245 ssize_t ret;
3246
3247 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3248 *iovec = NULL;
3249 return io_import_fixed(req, rw, iter);
3250 }
3251
3252 /* buffer index only valid with fixed read/write, or buffer select */
3253 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3254 return -EINVAL;
3255
3256 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3257 if (req->flags & REQ_F_BUFFER_SELECT) {
3258 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3259 if (IS_ERR(buf))
3260 return PTR_ERR(buf);
3261 req->rw.len = sqe_len;
3262 }
3263
3264 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3265 *iovec = NULL;
3266 return ret;
3267 }
3268
3269 if (req->flags & REQ_F_BUFFER_SELECT) {
3270 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3271 if (!ret)
3272 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3273 *iovec = NULL;
3274 return ret;
3275 }
3276
3277 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3278 req->ctx->compat);
3279 }
3280
io_kiocb_ppos(struct kiocb * kiocb)3281 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3282 {
3283 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3284 }
3285
3286 /*
3287 * For files that don't have ->read_iter() and ->write_iter(), handle them
3288 * by looping over ->read() or ->write() manually.
3289 */
loop_rw_iter(int rw,struct io_kiocb * req,struct iov_iter * iter)3290 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3291 {
3292 struct kiocb *kiocb = &req->rw.kiocb;
3293 struct file *file = req->file;
3294 ssize_t ret = 0;
3295
3296 /*
3297 * Don't support polled IO through this interface, and we can't
3298 * support non-blocking either. For the latter, this just causes
3299 * the kiocb to be handled from an async context.
3300 */
3301 if (kiocb->ki_flags & IOCB_HIPRI)
3302 return -EOPNOTSUPP;
3303 if (kiocb->ki_flags & IOCB_NOWAIT)
3304 return -EAGAIN;
3305
3306 while (iov_iter_count(iter)) {
3307 struct iovec iovec;
3308 ssize_t nr;
3309
3310 if (!iov_iter_is_bvec(iter)) {
3311 iovec = iov_iter_iovec(iter);
3312 } else {
3313 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3314 iovec.iov_len = req->rw.len;
3315 }
3316
3317 if (rw == READ) {
3318 nr = file->f_op->read(file, iovec.iov_base,
3319 iovec.iov_len, io_kiocb_ppos(kiocb));
3320 } else {
3321 nr = file->f_op->write(file, iovec.iov_base,
3322 iovec.iov_len, io_kiocb_ppos(kiocb));
3323 }
3324
3325 if (nr < 0) {
3326 if (!ret)
3327 ret = nr;
3328 break;
3329 }
3330 ret += nr;
3331 if (!iov_iter_is_bvec(iter)) {
3332 iov_iter_advance(iter, nr);
3333 } else {
3334 req->rw.addr += nr;
3335 req->rw.len -= nr;
3336 if (!req->rw.len)
3337 break;
3338 }
3339 if (nr != iovec.iov_len)
3340 break;
3341 }
3342
3343 return ret;
3344 }
3345
io_req_map_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter)3346 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3347 const struct iovec *fast_iov, struct iov_iter *iter)
3348 {
3349 struct io_async_rw *rw = req->async_data;
3350
3351 memcpy(&rw->iter, iter, sizeof(*iter));
3352 rw->free_iovec = iovec;
3353 rw->bytes_done = 0;
3354 /* can only be fixed buffers, no need to do anything */
3355 if (iov_iter_is_bvec(iter))
3356 return;
3357 if (!iovec) {
3358 unsigned iov_off = 0;
3359
3360 rw->iter.iov = rw->fast_iov;
3361 if (iter->iov != fast_iov) {
3362 iov_off = iter->iov - fast_iov;
3363 rw->iter.iov += iov_off;
3364 }
3365 if (rw->fast_iov != fast_iov)
3366 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3367 sizeof(struct iovec) * iter->nr_segs);
3368 } else {
3369 req->flags |= REQ_F_NEED_CLEANUP;
3370 }
3371 }
3372
io_alloc_async_data(struct io_kiocb * req)3373 static inline int io_alloc_async_data(struct io_kiocb *req)
3374 {
3375 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3376 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3377 return req->async_data == NULL;
3378 }
3379
io_setup_async_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter,bool force)3380 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3381 const struct iovec *fast_iov,
3382 struct iov_iter *iter, bool force)
3383 {
3384 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3385 return 0;
3386 if (!req->async_data) {
3387 struct io_async_rw *iorw;
3388
3389 if (io_alloc_async_data(req)) {
3390 kfree(iovec);
3391 return -ENOMEM;
3392 }
3393
3394 io_req_map_rw(req, iovec, fast_iov, iter);
3395 iorw = req->async_data;
3396 /* we've copied and mapped the iter, ensure state is saved */
3397 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3398 }
3399 return 0;
3400 }
3401
io_rw_prep_async(struct io_kiocb * req,int rw)3402 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3403 {
3404 struct io_async_rw *iorw = req->async_data;
3405 struct iovec *iov = iorw->fast_iov;
3406 int ret;
3407
3408 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3409 if (unlikely(ret < 0))
3410 return ret;
3411
3412 iorw->bytes_done = 0;
3413 iorw->free_iovec = iov;
3414 if (iov)
3415 req->flags |= REQ_F_NEED_CLEANUP;
3416 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3417 return 0;
3418 }
3419
io_read_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3420 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3421 {
3422 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3423 return -EBADF;
3424 return io_prep_rw(req, sqe, READ);
3425 }
3426
3427 /*
3428 * This is our waitqueue callback handler, registered through lock_page_async()
3429 * when we initially tried to do the IO with the iocb armed our waitqueue.
3430 * This gets called when the page is unlocked, and we generally expect that to
3431 * happen when the page IO is completed and the page is now uptodate. This will
3432 * queue a task_work based retry of the operation, attempting to copy the data
3433 * again. If the latter fails because the page was NOT uptodate, then we will
3434 * do a thread based blocking retry of the operation. That's the unexpected
3435 * slow path.
3436 */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)3437 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3438 int sync, void *arg)
3439 {
3440 struct wait_page_queue *wpq;
3441 struct io_kiocb *req = wait->private;
3442 struct wait_page_key *key = arg;
3443
3444 wpq = container_of(wait, struct wait_page_queue, wait);
3445
3446 if (!wake_page_match(wpq, key))
3447 return 0;
3448
3449 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3450 list_del_init(&wait->entry);
3451 io_req_task_queue(req);
3452 return 1;
3453 }
3454
3455 /*
3456 * This controls whether a given IO request should be armed for async page
3457 * based retry. If we return false here, the request is handed to the async
3458 * worker threads for retry. If we're doing buffered reads on a regular file,
3459 * we prepare a private wait_page_queue entry and retry the operation. This
3460 * will either succeed because the page is now uptodate and unlocked, or it
3461 * will register a callback when the page is unlocked at IO completion. Through
3462 * that callback, io_uring uses task_work to setup a retry of the operation.
3463 * That retry will attempt the buffered read again. The retry will generally
3464 * succeed, or in rare cases where it fails, we then fall back to using the
3465 * async worker threads for a blocking retry.
3466 */
io_rw_should_retry(struct io_kiocb * req)3467 static bool io_rw_should_retry(struct io_kiocb *req)
3468 {
3469 struct io_async_rw *rw = req->async_data;
3470 struct wait_page_queue *wait = &rw->wpq;
3471 struct kiocb *kiocb = &req->rw.kiocb;
3472
3473 /* never retry for NOWAIT, we just complete with -EAGAIN */
3474 if (req->flags & REQ_F_NOWAIT)
3475 return false;
3476
3477 /* Only for buffered IO */
3478 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3479 return false;
3480
3481 /*
3482 * just use poll if we can, and don't attempt if the fs doesn't
3483 * support callback based unlocks
3484 */
3485 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3486 return false;
3487
3488 wait->wait.func = io_async_buf_func;
3489 wait->wait.private = req;
3490 wait->wait.flags = 0;
3491 INIT_LIST_HEAD(&wait->wait.entry);
3492 kiocb->ki_flags |= IOCB_WAITQ;
3493 kiocb->ki_flags &= ~IOCB_NOWAIT;
3494 kiocb->ki_waitq = wait;
3495 return true;
3496 }
3497
io_iter_do_read(struct io_kiocb * req,struct iov_iter * iter)3498 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3499 {
3500 if (req->file->f_op->read_iter)
3501 return call_read_iter(req->file, &req->rw.kiocb, iter);
3502 else if (req->file->f_op->read)
3503 return loop_rw_iter(READ, req, iter);
3504 else
3505 return -EINVAL;
3506 }
3507
need_read_all(struct io_kiocb * req)3508 static bool need_read_all(struct io_kiocb *req)
3509 {
3510 return req->flags & REQ_F_ISREG ||
3511 S_ISBLK(file_inode(req->file)->i_mode);
3512 }
3513
io_read(struct io_kiocb * req,unsigned int issue_flags)3514 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3515 {
3516 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3517 struct kiocb *kiocb = &req->rw.kiocb;
3518 struct iov_iter __iter, *iter = &__iter;
3519 struct io_async_rw *rw = req->async_data;
3520 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3521 struct iov_iter_state __state, *state;
3522 ssize_t ret, ret2;
3523
3524 if (rw) {
3525 iter = &rw->iter;
3526 state = &rw->iter_state;
3527 /*
3528 * We come here from an earlier attempt, restore our state to
3529 * match in case it doesn't. It's cheap enough that we don't
3530 * need to make this conditional.
3531 */
3532 iov_iter_restore(iter, state);
3533 iovec = NULL;
3534 } else {
3535 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3536 if (ret < 0)
3537 return ret;
3538 state = &__state;
3539 iov_iter_save_state(iter, state);
3540 }
3541 req->result = iov_iter_count(iter);
3542
3543 /* Ensure we clear previously set non-block flag */
3544 if (!force_nonblock)
3545 kiocb->ki_flags &= ~IOCB_NOWAIT;
3546 else
3547 kiocb->ki_flags |= IOCB_NOWAIT;
3548
3549 /* If the file doesn't support async, just async punt */
3550 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3551 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3552 return ret ?: -EAGAIN;
3553 }
3554
3555 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3556 if (unlikely(ret)) {
3557 kfree(iovec);
3558 return ret;
3559 }
3560
3561 ret = io_iter_do_read(req, iter);
3562
3563 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3564 req->flags &= ~REQ_F_REISSUE;
3565 /* IOPOLL retry should happen for io-wq threads */
3566 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3567 goto done;
3568 /* no retry on NONBLOCK nor RWF_NOWAIT */
3569 if (req->flags & REQ_F_NOWAIT)
3570 goto done;
3571 ret = 0;
3572 } else if (ret == -EIOCBQUEUED) {
3573 goto out_free;
3574 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3575 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3576 /* read all, failed, already did sync or don't want to retry */
3577 goto done;
3578 }
3579
3580 /*
3581 * Don't depend on the iter state matching what was consumed, or being
3582 * untouched in case of error. Restore it and we'll advance it
3583 * manually if we need to.
3584 */
3585 iov_iter_restore(iter, state);
3586
3587 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3588 if (ret2)
3589 return ret2;
3590
3591 iovec = NULL;
3592 rw = req->async_data;
3593 /*
3594 * Now use our persistent iterator and state, if we aren't already.
3595 * We've restored and mapped the iter to match.
3596 */
3597 if (iter != &rw->iter) {
3598 iter = &rw->iter;
3599 state = &rw->iter_state;
3600 }
3601
3602 do {
3603 /*
3604 * We end up here because of a partial read, either from
3605 * above or inside this loop. Advance the iter by the bytes
3606 * that were consumed.
3607 */
3608 iov_iter_advance(iter, ret);
3609 if (!iov_iter_count(iter))
3610 break;
3611 rw->bytes_done += ret;
3612 iov_iter_save_state(iter, state);
3613
3614 /* if we can retry, do so with the callbacks armed */
3615 if (!io_rw_should_retry(req)) {
3616 kiocb->ki_flags &= ~IOCB_WAITQ;
3617 return -EAGAIN;
3618 }
3619
3620 req->result = iov_iter_count(iter);
3621 /*
3622 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3623 * we get -EIOCBQUEUED, then we'll get a notification when the
3624 * desired page gets unlocked. We can also get a partial read
3625 * here, and if we do, then just retry at the new offset.
3626 */
3627 ret = io_iter_do_read(req, iter);
3628 if (ret == -EIOCBQUEUED)
3629 return 0;
3630 /* we got some bytes, but not all. retry. */
3631 kiocb->ki_flags &= ~IOCB_WAITQ;
3632 iov_iter_restore(iter, state);
3633 } while (ret > 0);
3634 done:
3635 kiocb_done(kiocb, ret, issue_flags);
3636 out_free:
3637 /* it's faster to check here then delegate to kfree */
3638 if (iovec)
3639 kfree(iovec);
3640 return 0;
3641 }
3642
io_write_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3643 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3644 {
3645 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3646 return -EBADF;
3647 return io_prep_rw(req, sqe, WRITE);
3648 }
3649
io_write(struct io_kiocb * req,unsigned int issue_flags)3650 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3651 {
3652 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3653 struct kiocb *kiocb = &req->rw.kiocb;
3654 struct iov_iter __iter, *iter = &__iter;
3655 struct io_async_rw *rw = req->async_data;
3656 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3657 struct iov_iter_state __state, *state;
3658 ssize_t ret, ret2;
3659
3660 if (rw) {
3661 iter = &rw->iter;
3662 state = &rw->iter_state;
3663 iov_iter_restore(iter, state);
3664 iovec = NULL;
3665 } else {
3666 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3667 if (ret < 0)
3668 return ret;
3669 state = &__state;
3670 iov_iter_save_state(iter, state);
3671 }
3672 req->result = iov_iter_count(iter);
3673
3674 /* Ensure we clear previously set non-block flag */
3675 if (!force_nonblock)
3676 kiocb->ki_flags &= ~IOCB_NOWAIT;
3677 else
3678 kiocb->ki_flags |= IOCB_NOWAIT;
3679
3680 /* If the file doesn't support async, just async punt */
3681 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3682 goto copy_iov;
3683
3684 /* file path doesn't support NOWAIT for non-direct_IO */
3685 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3686 (req->flags & REQ_F_ISREG))
3687 goto copy_iov;
3688
3689 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3690 if (unlikely(ret))
3691 goto out_free;
3692
3693 /*
3694 * Open-code file_start_write here to grab freeze protection,
3695 * which will be released by another thread in
3696 * io_complete_rw(). Fool lockdep by telling it the lock got
3697 * released so that it doesn't complain about the held lock when
3698 * we return to userspace.
3699 */
3700 if (req->flags & REQ_F_ISREG) {
3701 sb_start_write(file_inode(req->file)->i_sb);
3702 __sb_writers_release(file_inode(req->file)->i_sb,
3703 SB_FREEZE_WRITE);
3704 }
3705 kiocb->ki_flags |= IOCB_WRITE;
3706
3707 if (req->file->f_op->write_iter)
3708 ret2 = call_write_iter(req->file, kiocb, iter);
3709 else if (req->file->f_op->write)
3710 ret2 = loop_rw_iter(WRITE, req, iter);
3711 else
3712 ret2 = -EINVAL;
3713
3714 if (req->flags & REQ_F_REISSUE) {
3715 req->flags &= ~REQ_F_REISSUE;
3716 ret2 = -EAGAIN;
3717 }
3718
3719 /*
3720 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3721 * retry them without IOCB_NOWAIT.
3722 */
3723 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3724 ret2 = -EAGAIN;
3725 /* no retry on NONBLOCK nor RWF_NOWAIT */
3726 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3727 goto done;
3728 if (!force_nonblock || ret2 != -EAGAIN) {
3729 /* IOPOLL retry should happen for io-wq threads */
3730 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3731 goto copy_iov;
3732 done:
3733 kiocb_done(kiocb, ret2, issue_flags);
3734 } else {
3735 copy_iov:
3736 iov_iter_restore(iter, state);
3737 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3738 if (!ret) {
3739 if (kiocb->ki_flags & IOCB_WRITE)
3740 kiocb_end_write(req);
3741 return -EAGAIN;
3742 }
3743 return ret;
3744 }
3745 out_free:
3746 /* it's reportedly faster than delegating the null check to kfree() */
3747 if (iovec)
3748 kfree(iovec);
3749 return ret;
3750 }
3751
io_renameat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3752 static int io_renameat_prep(struct io_kiocb *req,
3753 const struct io_uring_sqe *sqe)
3754 {
3755 struct io_rename *ren = &req->rename;
3756 const char __user *oldf, *newf;
3757
3758 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3759 return -EINVAL;
3760 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3761 return -EINVAL;
3762 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3763 return -EBADF;
3764
3765 ren->old_dfd = READ_ONCE(sqe->fd);
3766 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3767 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3768 ren->new_dfd = READ_ONCE(sqe->len);
3769 ren->flags = READ_ONCE(sqe->rename_flags);
3770
3771 ren->oldpath = getname(oldf);
3772 if (IS_ERR(ren->oldpath))
3773 return PTR_ERR(ren->oldpath);
3774
3775 ren->newpath = getname(newf);
3776 if (IS_ERR(ren->newpath)) {
3777 putname(ren->oldpath);
3778 return PTR_ERR(ren->newpath);
3779 }
3780
3781 req->flags |= REQ_F_NEED_CLEANUP;
3782 return 0;
3783 }
3784
io_renameat(struct io_kiocb * req,unsigned int issue_flags)3785 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3786 {
3787 struct io_rename *ren = &req->rename;
3788 int ret;
3789
3790 if (issue_flags & IO_URING_F_NONBLOCK)
3791 return -EAGAIN;
3792
3793 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3794 ren->newpath, ren->flags);
3795
3796 req->flags &= ~REQ_F_NEED_CLEANUP;
3797 if (ret < 0)
3798 req_set_fail(req);
3799 io_req_complete(req, ret);
3800 return 0;
3801 }
3802
io_unlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3803 static int io_unlinkat_prep(struct io_kiocb *req,
3804 const struct io_uring_sqe *sqe)
3805 {
3806 struct io_unlink *un = &req->unlink;
3807 const char __user *fname;
3808
3809 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3810 return -EINVAL;
3811 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3812 sqe->splice_fd_in)
3813 return -EINVAL;
3814 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3815 return -EBADF;
3816
3817 un->dfd = READ_ONCE(sqe->fd);
3818
3819 un->flags = READ_ONCE(sqe->unlink_flags);
3820 if (un->flags & ~AT_REMOVEDIR)
3821 return -EINVAL;
3822
3823 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3824 un->filename = getname(fname);
3825 if (IS_ERR(un->filename))
3826 return PTR_ERR(un->filename);
3827
3828 req->flags |= REQ_F_NEED_CLEANUP;
3829 return 0;
3830 }
3831
io_unlinkat(struct io_kiocb * req,unsigned int issue_flags)3832 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3833 {
3834 struct io_unlink *un = &req->unlink;
3835 int ret;
3836
3837 if (issue_flags & IO_URING_F_NONBLOCK)
3838 return -EAGAIN;
3839
3840 if (un->flags & AT_REMOVEDIR)
3841 ret = do_rmdir(un->dfd, un->filename);
3842 else
3843 ret = do_unlinkat(un->dfd, un->filename);
3844
3845 req->flags &= ~REQ_F_NEED_CLEANUP;
3846 if (ret < 0)
3847 req_set_fail(req);
3848 io_req_complete(req, ret);
3849 return 0;
3850 }
3851
io_shutdown_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3852 static int io_shutdown_prep(struct io_kiocb *req,
3853 const struct io_uring_sqe *sqe)
3854 {
3855 #if defined(CONFIG_NET)
3856 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3857 return -EINVAL;
3858 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3859 sqe->buf_index || sqe->splice_fd_in))
3860 return -EINVAL;
3861
3862 req->shutdown.how = READ_ONCE(sqe->len);
3863 return 0;
3864 #else
3865 return -EOPNOTSUPP;
3866 #endif
3867 }
3868
io_shutdown(struct io_kiocb * req,unsigned int issue_flags)3869 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3870 {
3871 #if defined(CONFIG_NET)
3872 struct socket *sock;
3873 int ret;
3874
3875 if (issue_flags & IO_URING_F_NONBLOCK)
3876 return -EAGAIN;
3877
3878 sock = sock_from_file(req->file, &ret);
3879 if (unlikely(!sock))
3880 return ret;
3881
3882 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3883 if (ret < 0)
3884 req_set_fail(req);
3885 io_req_complete(req, ret);
3886 return 0;
3887 #else
3888 return -EOPNOTSUPP;
3889 #endif
3890 }
3891
__io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3892 static int __io_splice_prep(struct io_kiocb *req,
3893 const struct io_uring_sqe *sqe)
3894 {
3895 struct io_splice *sp = &req->splice;
3896 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3897
3898 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3899 return -EINVAL;
3900
3901 sp->len = READ_ONCE(sqe->len);
3902 sp->flags = READ_ONCE(sqe->splice_flags);
3903 if (unlikely(sp->flags & ~valid_flags))
3904 return -EINVAL;
3905 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
3906 return 0;
3907 }
3908
io_tee_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3909 static int io_tee_prep(struct io_kiocb *req,
3910 const struct io_uring_sqe *sqe)
3911 {
3912 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3913 return -EINVAL;
3914 return __io_splice_prep(req, sqe);
3915 }
3916
io_tee(struct io_kiocb * req,unsigned int issue_flags)3917 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3918 {
3919 struct io_splice *sp = &req->splice;
3920 struct file *out = sp->file_out;
3921 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3922 struct file *in;
3923 long ret = 0;
3924
3925 if (issue_flags & IO_URING_F_NONBLOCK)
3926 return -EAGAIN;
3927
3928 in = io_file_get(req->ctx, req, sp->splice_fd_in,
3929 (sp->flags & SPLICE_F_FD_IN_FIXED));
3930 if (!in) {
3931 ret = -EBADF;
3932 goto done;
3933 }
3934
3935 if (sp->len)
3936 ret = do_tee(in, out, sp->len, flags);
3937
3938 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3939 io_put_file(in);
3940 done:
3941 if (ret != sp->len)
3942 req_set_fail(req);
3943 io_req_complete(req, ret);
3944 return 0;
3945 }
3946
io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3947 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3948 {
3949 struct io_splice *sp = &req->splice;
3950
3951 sp->off_in = READ_ONCE(sqe->splice_off_in);
3952 sp->off_out = READ_ONCE(sqe->off);
3953 return __io_splice_prep(req, sqe);
3954 }
3955
io_splice(struct io_kiocb * req,unsigned int issue_flags)3956 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3957 {
3958 struct io_splice *sp = &req->splice;
3959 struct file *out = sp->file_out;
3960 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3961 loff_t *poff_in, *poff_out;
3962 struct file *in;
3963 long ret = 0;
3964
3965 if (issue_flags & IO_URING_F_NONBLOCK)
3966 return -EAGAIN;
3967
3968 in = io_file_get(req->ctx, req, sp->splice_fd_in,
3969 (sp->flags & SPLICE_F_FD_IN_FIXED));
3970 if (!in) {
3971 ret = -EBADF;
3972 goto done;
3973 }
3974
3975 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3976 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3977
3978 if (sp->len)
3979 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3980
3981 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3982 io_put_file(in);
3983 done:
3984 if (ret != sp->len)
3985 req_set_fail(req);
3986 io_req_complete(req, ret);
3987 return 0;
3988 }
3989
3990 /*
3991 * IORING_OP_NOP just posts a completion event, nothing else.
3992 */
io_nop(struct io_kiocb * req,unsigned int issue_flags)3993 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3994 {
3995 struct io_ring_ctx *ctx = req->ctx;
3996
3997 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3998 return -EINVAL;
3999
4000 __io_req_complete(req, issue_flags, 0, 0);
4001 return 0;
4002 }
4003
io_fsync_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4004 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4005 {
4006 struct io_ring_ctx *ctx = req->ctx;
4007
4008 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4009 return -EINVAL;
4010 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4011 sqe->splice_fd_in))
4012 return -EINVAL;
4013
4014 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4015 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4016 return -EINVAL;
4017
4018 req->sync.off = READ_ONCE(sqe->off);
4019 req->sync.len = READ_ONCE(sqe->len);
4020 return 0;
4021 }
4022
io_fsync(struct io_kiocb * req,unsigned int issue_flags)4023 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4024 {
4025 loff_t end = req->sync.off + req->sync.len;
4026 int ret;
4027
4028 /* fsync always requires a blocking context */
4029 if (issue_flags & IO_URING_F_NONBLOCK)
4030 return -EAGAIN;
4031
4032 ret = vfs_fsync_range(req->file, req->sync.off,
4033 end > 0 ? end : LLONG_MAX,
4034 req->sync.flags & IORING_FSYNC_DATASYNC);
4035 if (ret < 0)
4036 req_set_fail(req);
4037 io_req_complete(req, ret);
4038 return 0;
4039 }
4040
io_fallocate_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4041 static int io_fallocate_prep(struct io_kiocb *req,
4042 const struct io_uring_sqe *sqe)
4043 {
4044 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4045 sqe->splice_fd_in)
4046 return -EINVAL;
4047 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4048 return -EINVAL;
4049
4050 req->sync.off = READ_ONCE(sqe->off);
4051 req->sync.len = READ_ONCE(sqe->addr);
4052 req->sync.mode = READ_ONCE(sqe->len);
4053 return 0;
4054 }
4055
io_fallocate(struct io_kiocb * req,unsigned int issue_flags)4056 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4057 {
4058 int ret;
4059
4060 /* fallocate always requiring blocking context */
4061 if (issue_flags & IO_URING_F_NONBLOCK)
4062 return -EAGAIN;
4063 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4064 req->sync.len);
4065 if (ret < 0)
4066 req_set_fail(req);
4067 else
4068 fsnotify_modify(req->file);
4069 io_req_complete(req, ret);
4070 return 0;
4071 }
4072
__io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4073 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4074 {
4075 const char __user *fname;
4076 int ret;
4077
4078 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4079 return -EINVAL;
4080 if (unlikely(sqe->ioprio || sqe->buf_index))
4081 return -EINVAL;
4082 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4083 return -EBADF;
4084
4085 /* open.how should be already initialised */
4086 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4087 req->open.how.flags |= O_LARGEFILE;
4088
4089 req->open.dfd = READ_ONCE(sqe->fd);
4090 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4091 req->open.filename = getname(fname);
4092 if (IS_ERR(req->open.filename)) {
4093 ret = PTR_ERR(req->open.filename);
4094 req->open.filename = NULL;
4095 return ret;
4096 }
4097
4098 req->open.file_slot = READ_ONCE(sqe->file_index);
4099 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4100 return -EINVAL;
4101
4102 req->open.nofile = rlimit(RLIMIT_NOFILE);
4103 req->flags |= REQ_F_NEED_CLEANUP;
4104 return 0;
4105 }
4106
io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4107 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4108 {
4109 u64 mode = READ_ONCE(sqe->len);
4110 u64 flags = READ_ONCE(sqe->open_flags);
4111
4112 req->open.how = build_open_how(flags, mode);
4113 return __io_openat_prep(req, sqe);
4114 }
4115
io_openat2_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4116 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4117 {
4118 struct open_how __user *how;
4119 size_t len;
4120 int ret;
4121
4122 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4123 len = READ_ONCE(sqe->len);
4124 if (len < OPEN_HOW_SIZE_VER0)
4125 return -EINVAL;
4126
4127 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4128 len);
4129 if (ret)
4130 return ret;
4131
4132 return __io_openat_prep(req, sqe);
4133 }
4134
io_openat2(struct io_kiocb * req,unsigned int issue_flags)4135 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4136 {
4137 struct open_flags op;
4138 struct file *file;
4139 bool resolve_nonblock, nonblock_set;
4140 bool fixed = !!req->open.file_slot;
4141 int ret;
4142
4143 ret = build_open_flags(&req->open.how, &op);
4144 if (ret)
4145 goto err;
4146 nonblock_set = op.open_flag & O_NONBLOCK;
4147 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4148 if (issue_flags & IO_URING_F_NONBLOCK) {
4149 /*
4150 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4151 * it'll always -EAGAIN
4152 */
4153 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4154 return -EAGAIN;
4155 op.lookup_flags |= LOOKUP_CACHED;
4156 op.open_flag |= O_NONBLOCK;
4157 }
4158
4159 if (!fixed) {
4160 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4161 if (ret < 0)
4162 goto err;
4163 }
4164
4165 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4166 if (IS_ERR(file)) {
4167 /*
4168 * We could hang on to this 'fd' on retrying, but seems like
4169 * marginal gain for something that is now known to be a slower
4170 * path. So just put it, and we'll get a new one when we retry.
4171 */
4172 if (!fixed)
4173 put_unused_fd(ret);
4174
4175 ret = PTR_ERR(file);
4176 /* only retry if RESOLVE_CACHED wasn't already set by application */
4177 if (ret == -EAGAIN &&
4178 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4179 return -EAGAIN;
4180 goto err;
4181 }
4182
4183 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4184 file->f_flags &= ~O_NONBLOCK;
4185 fsnotify_open(file);
4186
4187 if (!fixed)
4188 fd_install(ret, file);
4189 else
4190 ret = io_install_fixed_file(req, file, issue_flags,
4191 req->open.file_slot - 1);
4192 err:
4193 putname(req->open.filename);
4194 req->flags &= ~REQ_F_NEED_CLEANUP;
4195 if (ret < 0)
4196 req_set_fail(req);
4197 __io_req_complete(req, issue_flags, ret, 0);
4198 return 0;
4199 }
4200
io_openat(struct io_kiocb * req,unsigned int issue_flags)4201 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4202 {
4203 return io_openat2(req, issue_flags);
4204 }
4205
io_remove_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4206 static int io_remove_buffers_prep(struct io_kiocb *req,
4207 const struct io_uring_sqe *sqe)
4208 {
4209 struct io_provide_buf *p = &req->pbuf;
4210 u64 tmp;
4211
4212 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4213 sqe->splice_fd_in)
4214 return -EINVAL;
4215
4216 tmp = READ_ONCE(sqe->fd);
4217 if (!tmp || tmp > USHRT_MAX)
4218 return -EINVAL;
4219
4220 memset(p, 0, sizeof(*p));
4221 p->nbufs = tmp;
4222 p->bgid = READ_ONCE(sqe->buf_group);
4223 return 0;
4224 }
4225
__io_remove_buffers(struct io_ring_ctx * ctx,struct io_buffer * buf,int bgid,unsigned nbufs)4226 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4227 int bgid, unsigned nbufs)
4228 {
4229 unsigned i = 0;
4230
4231 /* shouldn't happen */
4232 if (!nbufs)
4233 return 0;
4234
4235 /* the head kbuf is the list itself */
4236 while (!list_empty(&buf->list)) {
4237 struct io_buffer *nxt;
4238
4239 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4240 list_del(&nxt->list);
4241 kfree(nxt);
4242 if (++i == nbufs)
4243 return i;
4244 cond_resched();
4245 }
4246 i++;
4247 kfree(buf);
4248 xa_erase(&ctx->io_buffers, bgid);
4249
4250 return i;
4251 }
4252
io_remove_buffers(struct io_kiocb * req,unsigned int issue_flags)4253 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4254 {
4255 struct io_provide_buf *p = &req->pbuf;
4256 struct io_ring_ctx *ctx = req->ctx;
4257 struct io_buffer *head;
4258 int ret = 0;
4259 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4260
4261 io_ring_submit_lock(ctx, !force_nonblock);
4262
4263 lockdep_assert_held(&ctx->uring_lock);
4264
4265 ret = -ENOENT;
4266 head = xa_load(&ctx->io_buffers, p->bgid);
4267 if (head)
4268 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4269 if (ret < 0)
4270 req_set_fail(req);
4271
4272 /* complete before unlock, IOPOLL may need the lock */
4273 __io_req_complete(req, issue_flags, ret, 0);
4274 io_ring_submit_unlock(ctx, !force_nonblock);
4275 return 0;
4276 }
4277
io_provide_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4278 static int io_provide_buffers_prep(struct io_kiocb *req,
4279 const struct io_uring_sqe *sqe)
4280 {
4281 unsigned long size, tmp_check;
4282 struct io_provide_buf *p = &req->pbuf;
4283 u64 tmp;
4284
4285 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4286 return -EINVAL;
4287
4288 tmp = READ_ONCE(sqe->fd);
4289 if (!tmp || tmp > USHRT_MAX)
4290 return -E2BIG;
4291 p->nbufs = tmp;
4292 p->addr = READ_ONCE(sqe->addr);
4293 p->len = READ_ONCE(sqe->len);
4294
4295 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4296 &size))
4297 return -EOVERFLOW;
4298 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4299 return -EOVERFLOW;
4300
4301 size = (unsigned long)p->len * p->nbufs;
4302 if (!access_ok(u64_to_user_ptr(p->addr), size))
4303 return -EFAULT;
4304
4305 p->bgid = READ_ONCE(sqe->buf_group);
4306 tmp = READ_ONCE(sqe->off);
4307 if (tmp > USHRT_MAX)
4308 return -E2BIG;
4309 p->bid = tmp;
4310 return 0;
4311 }
4312
io_add_buffers(struct io_provide_buf * pbuf,struct io_buffer ** head)4313 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4314 {
4315 struct io_buffer *buf;
4316 u64 addr = pbuf->addr;
4317 int i, bid = pbuf->bid;
4318
4319 for (i = 0; i < pbuf->nbufs; i++) {
4320 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4321 if (!buf)
4322 break;
4323
4324 buf->addr = addr;
4325 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4326 buf->bid = bid;
4327 addr += pbuf->len;
4328 bid++;
4329 if (!*head) {
4330 INIT_LIST_HEAD(&buf->list);
4331 *head = buf;
4332 } else {
4333 list_add_tail(&buf->list, &(*head)->list);
4334 }
4335 cond_resched();
4336 }
4337
4338 return i ? i : -ENOMEM;
4339 }
4340
io_provide_buffers(struct io_kiocb * req,unsigned int issue_flags)4341 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4342 {
4343 struct io_provide_buf *p = &req->pbuf;
4344 struct io_ring_ctx *ctx = req->ctx;
4345 struct io_buffer *head, *list;
4346 int ret = 0;
4347 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4348
4349 io_ring_submit_lock(ctx, !force_nonblock);
4350
4351 lockdep_assert_held(&ctx->uring_lock);
4352
4353 list = head = xa_load(&ctx->io_buffers, p->bgid);
4354
4355 ret = io_add_buffers(p, &head);
4356 if (ret >= 0 && !list) {
4357 ret = xa_insert(&ctx->io_buffers, p->bgid, head,
4358 GFP_KERNEL_ACCOUNT);
4359 if (ret < 0)
4360 __io_remove_buffers(ctx, head, p->bgid, -1U);
4361 }
4362 if (ret < 0)
4363 req_set_fail(req);
4364 /* complete before unlock, IOPOLL may need the lock */
4365 __io_req_complete(req, issue_flags, ret, 0);
4366 io_ring_submit_unlock(ctx, !force_nonblock);
4367 return 0;
4368 }
4369
io_epoll_ctl_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4370 static int io_epoll_ctl_prep(struct io_kiocb *req,
4371 const struct io_uring_sqe *sqe)
4372 {
4373 #if defined(CONFIG_EPOLL)
4374 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4375 return -EINVAL;
4376 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4377 return -EINVAL;
4378
4379 req->epoll.epfd = READ_ONCE(sqe->fd);
4380 req->epoll.op = READ_ONCE(sqe->len);
4381 req->epoll.fd = READ_ONCE(sqe->off);
4382
4383 if (ep_op_has_event(req->epoll.op)) {
4384 struct epoll_event __user *ev;
4385
4386 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4387 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4388 return -EFAULT;
4389 }
4390
4391 return 0;
4392 #else
4393 return -EOPNOTSUPP;
4394 #endif
4395 }
4396
io_epoll_ctl(struct io_kiocb * req,unsigned int issue_flags)4397 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4398 {
4399 #if defined(CONFIG_EPOLL)
4400 struct io_epoll *ie = &req->epoll;
4401 int ret;
4402 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4403
4404 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4405 if (force_nonblock && ret == -EAGAIN)
4406 return -EAGAIN;
4407
4408 if (ret < 0)
4409 req_set_fail(req);
4410 __io_req_complete(req, issue_flags, ret, 0);
4411 return 0;
4412 #else
4413 return -EOPNOTSUPP;
4414 #endif
4415 }
4416
io_madvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4417 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4418 {
4419 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4420 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4421 return -EINVAL;
4422 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4423 return -EINVAL;
4424
4425 req->madvise.addr = READ_ONCE(sqe->addr);
4426 req->madvise.len = READ_ONCE(sqe->len);
4427 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4428 return 0;
4429 #else
4430 return -EOPNOTSUPP;
4431 #endif
4432 }
4433
io_madvise(struct io_kiocb * req,unsigned int issue_flags)4434 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4435 {
4436 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4437 struct io_madvise *ma = &req->madvise;
4438 int ret;
4439
4440 if (issue_flags & IO_URING_F_NONBLOCK)
4441 return -EAGAIN;
4442
4443 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4444 if (ret < 0)
4445 req_set_fail(req);
4446 io_req_complete(req, ret);
4447 return 0;
4448 #else
4449 return -EOPNOTSUPP;
4450 #endif
4451 }
4452
io_fadvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4453 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4454 {
4455 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4456 return -EINVAL;
4457 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4458 return -EINVAL;
4459
4460 req->fadvise.offset = READ_ONCE(sqe->off);
4461 req->fadvise.len = READ_ONCE(sqe->len);
4462 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4463 return 0;
4464 }
4465
io_fadvise(struct io_kiocb * req,unsigned int issue_flags)4466 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4467 {
4468 struct io_fadvise *fa = &req->fadvise;
4469 int ret;
4470
4471 if (issue_flags & IO_URING_F_NONBLOCK) {
4472 switch (fa->advice) {
4473 case POSIX_FADV_NORMAL:
4474 case POSIX_FADV_RANDOM:
4475 case POSIX_FADV_SEQUENTIAL:
4476 break;
4477 default:
4478 return -EAGAIN;
4479 }
4480 }
4481
4482 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4483 if (ret < 0)
4484 req_set_fail(req);
4485 __io_req_complete(req, issue_flags, ret, 0);
4486 return 0;
4487 }
4488
io_statx_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4489 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4490 {
4491 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4492 return -EINVAL;
4493 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4494 return -EINVAL;
4495 if (req->flags & REQ_F_FIXED_FILE)
4496 return -EBADF;
4497
4498 req->statx.dfd = READ_ONCE(sqe->fd);
4499 req->statx.mask = READ_ONCE(sqe->len);
4500 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4501 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4502 req->statx.flags = READ_ONCE(sqe->statx_flags);
4503
4504 return 0;
4505 }
4506
io_statx(struct io_kiocb * req,unsigned int issue_flags)4507 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4508 {
4509 struct io_statx *ctx = &req->statx;
4510 int ret;
4511
4512 if (issue_flags & IO_URING_F_NONBLOCK)
4513 return -EAGAIN;
4514
4515 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4516 ctx->buffer);
4517
4518 if (ret < 0)
4519 req_set_fail(req);
4520 io_req_complete(req, ret);
4521 return 0;
4522 }
4523
io_close_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4524 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4525 {
4526 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4527 return -EINVAL;
4528 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4529 sqe->rw_flags || sqe->buf_index)
4530 return -EINVAL;
4531 if (req->flags & REQ_F_FIXED_FILE)
4532 return -EBADF;
4533
4534 req->close.fd = READ_ONCE(sqe->fd);
4535 req->close.file_slot = READ_ONCE(sqe->file_index);
4536 if (req->close.file_slot && req->close.fd)
4537 return -EINVAL;
4538
4539 return 0;
4540 }
4541
io_close(struct io_kiocb * req,unsigned int issue_flags)4542 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4543 {
4544 struct files_struct *files = current->files;
4545 struct io_close *close = &req->close;
4546 struct fdtable *fdt;
4547 struct file *file = NULL;
4548 int ret = -EBADF;
4549
4550 if (req->close.file_slot) {
4551 ret = io_close_fixed(req, issue_flags);
4552 goto err;
4553 }
4554
4555 spin_lock(&files->file_lock);
4556 fdt = files_fdtable(files);
4557 if (close->fd >= fdt->max_fds) {
4558 spin_unlock(&files->file_lock);
4559 goto err;
4560 }
4561 file = fdt->fd[close->fd];
4562 if (!file || file->f_op == &io_uring_fops) {
4563 spin_unlock(&files->file_lock);
4564 file = NULL;
4565 goto err;
4566 }
4567
4568 /* if the file has a flush method, be safe and punt to async */
4569 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4570 spin_unlock(&files->file_lock);
4571 return -EAGAIN;
4572 }
4573
4574 ret = __close_fd_get_file(close->fd, &file);
4575 spin_unlock(&files->file_lock);
4576 if (ret < 0) {
4577 if (ret == -ENOENT)
4578 ret = -EBADF;
4579 goto err;
4580 }
4581
4582 /* No ->flush() or already async, safely close from here */
4583 ret = filp_close(file, current->files);
4584 err:
4585 if (ret < 0)
4586 req_set_fail(req);
4587 if (file)
4588 fput(file);
4589 __io_req_complete(req, issue_flags, ret, 0);
4590 return 0;
4591 }
4592
io_sfr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4593 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4594 {
4595 struct io_ring_ctx *ctx = req->ctx;
4596
4597 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4598 return -EINVAL;
4599 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4600 sqe->splice_fd_in))
4601 return -EINVAL;
4602
4603 req->sync.off = READ_ONCE(sqe->off);
4604 req->sync.len = READ_ONCE(sqe->len);
4605 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4606 return 0;
4607 }
4608
io_sync_file_range(struct io_kiocb * req,unsigned int issue_flags)4609 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4610 {
4611 int ret;
4612
4613 /* sync_file_range always requires a blocking context */
4614 if (issue_flags & IO_URING_F_NONBLOCK)
4615 return -EAGAIN;
4616
4617 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4618 req->sync.flags);
4619 if (ret < 0)
4620 req_set_fail(req);
4621 io_req_complete(req, ret);
4622 return 0;
4623 }
4624
4625 #if defined(CONFIG_NET)
io_setup_async_msg(struct io_kiocb * req,struct io_async_msghdr * kmsg)4626 static int io_setup_async_msg(struct io_kiocb *req,
4627 struct io_async_msghdr *kmsg)
4628 {
4629 struct io_async_msghdr *async_msg = req->async_data;
4630
4631 if (async_msg)
4632 return -EAGAIN;
4633 if (io_alloc_async_data(req)) {
4634 kfree(kmsg->free_iov);
4635 return -ENOMEM;
4636 }
4637 async_msg = req->async_data;
4638 req->flags |= REQ_F_NEED_CLEANUP;
4639 memcpy(async_msg, kmsg, sizeof(*kmsg));
4640 if (async_msg->msg.msg_name)
4641 async_msg->msg.msg_name = &async_msg->addr;
4642 /* if were using fast_iov, set it to the new one */
4643 if (!async_msg->free_iov)
4644 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4645
4646 return -EAGAIN;
4647 }
4648
io_sendmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4649 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4650 struct io_async_msghdr *iomsg)
4651 {
4652 iomsg->msg.msg_name = &iomsg->addr;
4653 iomsg->free_iov = iomsg->fast_iov;
4654 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4655 req->sr_msg.msg_flags, &iomsg->free_iov);
4656 }
4657
io_sendmsg_prep_async(struct io_kiocb * req)4658 static int io_sendmsg_prep_async(struct io_kiocb *req)
4659 {
4660 int ret;
4661
4662 ret = io_sendmsg_copy_hdr(req, req->async_data);
4663 if (!ret)
4664 req->flags |= REQ_F_NEED_CLEANUP;
4665 return ret;
4666 }
4667
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4668 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4669 {
4670 struct io_sr_msg *sr = &req->sr_msg;
4671
4672 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4673 return -EINVAL;
4674 if (unlikely(sqe->addr2 || sqe->file_index))
4675 return -EINVAL;
4676 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4677 return -EINVAL;
4678
4679 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4680 sr->len = READ_ONCE(sqe->len);
4681 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4682 if (sr->msg_flags & MSG_DONTWAIT)
4683 req->flags |= REQ_F_NOWAIT;
4684
4685 #ifdef CONFIG_COMPAT
4686 if (req->ctx->compat)
4687 sr->msg_flags |= MSG_CMSG_COMPAT;
4688 #endif
4689 return 0;
4690 }
4691
io_sendmsg(struct io_kiocb * req,unsigned int issue_flags)4692 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4693 {
4694 struct io_async_msghdr iomsg, *kmsg;
4695 struct socket *sock;
4696 unsigned flags;
4697 int min_ret = 0;
4698 int ret;
4699
4700 sock = sock_from_file(req->file, &ret);
4701 if (unlikely(!sock))
4702 return ret;
4703
4704 kmsg = req->async_data;
4705 if (!kmsg) {
4706 ret = io_sendmsg_copy_hdr(req, &iomsg);
4707 if (ret)
4708 return ret;
4709 kmsg = &iomsg;
4710 }
4711
4712 flags = req->sr_msg.msg_flags;
4713 if (issue_flags & IO_URING_F_NONBLOCK)
4714 flags |= MSG_DONTWAIT;
4715 if (flags & MSG_WAITALL)
4716 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4717
4718 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4719 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4720 return io_setup_async_msg(req, kmsg);
4721 if (ret == -ERESTARTSYS)
4722 ret = -EINTR;
4723
4724 /* fast path, check for non-NULL to avoid function call */
4725 if (kmsg->free_iov)
4726 kfree(kmsg->free_iov);
4727 req->flags &= ~REQ_F_NEED_CLEANUP;
4728 if (ret < min_ret)
4729 req_set_fail(req);
4730 __io_req_complete(req, issue_flags, ret, 0);
4731 return 0;
4732 }
4733
io_send(struct io_kiocb * req,unsigned int issue_flags)4734 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4735 {
4736 struct io_sr_msg *sr = &req->sr_msg;
4737 struct msghdr msg;
4738 struct iovec iov;
4739 struct socket *sock;
4740 unsigned flags;
4741 int min_ret = 0;
4742 int ret;
4743
4744 sock = sock_from_file(req->file, &ret);
4745 if (unlikely(!sock))
4746 return ret;
4747
4748 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4749 if (unlikely(ret))
4750 return ret;
4751
4752 msg.msg_name = NULL;
4753 msg.msg_control = NULL;
4754 msg.msg_controllen = 0;
4755 msg.msg_namelen = 0;
4756
4757 flags = req->sr_msg.msg_flags;
4758 if (issue_flags & IO_URING_F_NONBLOCK)
4759 flags |= MSG_DONTWAIT;
4760 if (flags & MSG_WAITALL)
4761 min_ret = iov_iter_count(&msg.msg_iter);
4762
4763 msg.msg_flags = flags;
4764 ret = sock_sendmsg(sock, &msg);
4765 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4766 return -EAGAIN;
4767 if (ret == -ERESTARTSYS)
4768 ret = -EINTR;
4769
4770 if (ret < min_ret)
4771 req_set_fail(req);
4772 __io_req_complete(req, issue_flags, ret, 0);
4773 return 0;
4774 }
4775
__io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4776 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4777 struct io_async_msghdr *iomsg)
4778 {
4779 struct io_sr_msg *sr = &req->sr_msg;
4780 struct iovec __user *uiov;
4781 size_t iov_len;
4782 int ret;
4783
4784 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4785 &iomsg->uaddr, &uiov, &iov_len);
4786 if (ret)
4787 return ret;
4788
4789 if (req->flags & REQ_F_BUFFER_SELECT) {
4790 if (iov_len > 1)
4791 return -EINVAL;
4792 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4793 return -EFAULT;
4794 sr->len = iomsg->fast_iov[0].iov_len;
4795 iomsg->free_iov = NULL;
4796 } else {
4797 iomsg->free_iov = iomsg->fast_iov;
4798 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4799 &iomsg->free_iov, &iomsg->msg.msg_iter,
4800 false);
4801 if (ret > 0)
4802 ret = 0;
4803 }
4804
4805 return ret;
4806 }
4807
4808 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4809 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4810 struct io_async_msghdr *iomsg)
4811 {
4812 struct io_sr_msg *sr = &req->sr_msg;
4813 struct compat_iovec __user *uiov;
4814 compat_uptr_t ptr;
4815 compat_size_t len;
4816 int ret;
4817
4818 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4819 &ptr, &len);
4820 if (ret)
4821 return ret;
4822
4823 uiov = compat_ptr(ptr);
4824 if (req->flags & REQ_F_BUFFER_SELECT) {
4825 compat_ssize_t clen;
4826
4827 if (len > 1)
4828 return -EINVAL;
4829 if (!access_ok(uiov, sizeof(*uiov)))
4830 return -EFAULT;
4831 if (__get_user(clen, &uiov->iov_len))
4832 return -EFAULT;
4833 if (clen < 0)
4834 return -EINVAL;
4835 sr->len = clen;
4836 iomsg->free_iov = NULL;
4837 } else {
4838 iomsg->free_iov = iomsg->fast_iov;
4839 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4840 UIO_FASTIOV, &iomsg->free_iov,
4841 &iomsg->msg.msg_iter, true);
4842 if (ret < 0)
4843 return ret;
4844 }
4845
4846 return 0;
4847 }
4848 #endif
4849
io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4850 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4851 struct io_async_msghdr *iomsg)
4852 {
4853 iomsg->msg.msg_name = &iomsg->addr;
4854
4855 #ifdef CONFIG_COMPAT
4856 if (req->ctx->compat)
4857 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4858 #endif
4859
4860 return __io_recvmsg_copy_hdr(req, iomsg);
4861 }
4862
io_recv_buffer_select(struct io_kiocb * req,bool needs_lock)4863 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4864 bool needs_lock)
4865 {
4866 struct io_sr_msg *sr = &req->sr_msg;
4867 struct io_buffer *kbuf;
4868
4869 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4870 if (IS_ERR(kbuf))
4871 return kbuf;
4872
4873 sr->kbuf = kbuf;
4874 req->flags |= REQ_F_BUFFER_SELECTED;
4875 return kbuf;
4876 }
4877
io_put_recv_kbuf(struct io_kiocb * req)4878 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4879 {
4880 return io_put_kbuf(req, req->sr_msg.kbuf);
4881 }
4882
io_recvmsg_prep_async(struct io_kiocb * req)4883 static int io_recvmsg_prep_async(struct io_kiocb *req)
4884 {
4885 int ret;
4886
4887 ret = io_recvmsg_copy_hdr(req, req->async_data);
4888 if (!ret)
4889 req->flags |= REQ_F_NEED_CLEANUP;
4890 return ret;
4891 }
4892
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4893 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4894 {
4895 struct io_sr_msg *sr = &req->sr_msg;
4896
4897 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4898 return -EINVAL;
4899 if (unlikely(sqe->addr2 || sqe->file_index))
4900 return -EINVAL;
4901 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4902 return -EINVAL;
4903
4904 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4905 sr->len = READ_ONCE(sqe->len);
4906 sr->bgid = READ_ONCE(sqe->buf_group);
4907 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4908 if (sr->msg_flags & MSG_DONTWAIT)
4909 req->flags |= REQ_F_NOWAIT;
4910
4911 #ifdef CONFIG_COMPAT
4912 if (req->ctx->compat)
4913 sr->msg_flags |= MSG_CMSG_COMPAT;
4914 #endif
4915 return 0;
4916 }
4917
io_recvmsg(struct io_kiocb * req,unsigned int issue_flags)4918 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4919 {
4920 struct io_async_msghdr iomsg, *kmsg;
4921 struct socket *sock;
4922 struct io_buffer *kbuf;
4923 unsigned flags;
4924 int min_ret = 0;
4925 int ret, cflags = 0;
4926 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4927
4928 sock = sock_from_file(req->file, &ret);
4929 if (unlikely(!sock))
4930 return ret;
4931
4932 kmsg = req->async_data;
4933 if (!kmsg) {
4934 ret = io_recvmsg_copy_hdr(req, &iomsg);
4935 if (ret)
4936 return ret;
4937 kmsg = &iomsg;
4938 }
4939
4940 if (req->flags & REQ_F_BUFFER_SELECT) {
4941 kbuf = io_recv_buffer_select(req, !force_nonblock);
4942 if (IS_ERR(kbuf))
4943 return PTR_ERR(kbuf);
4944 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4945 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4946 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4947 1, req->sr_msg.len);
4948 }
4949
4950 flags = req->sr_msg.msg_flags;
4951 if (force_nonblock)
4952 flags |= MSG_DONTWAIT;
4953 if (flags & MSG_WAITALL)
4954 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4955
4956 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4957 kmsg->uaddr, flags);
4958 if (force_nonblock && ret == -EAGAIN)
4959 return io_setup_async_msg(req, kmsg);
4960 if (ret == -ERESTARTSYS)
4961 ret = -EINTR;
4962
4963 if (req->flags & REQ_F_BUFFER_SELECTED)
4964 cflags = io_put_recv_kbuf(req);
4965 /* fast path, check for non-NULL to avoid function call */
4966 if (kmsg->free_iov)
4967 kfree(kmsg->free_iov);
4968 req->flags &= ~REQ_F_NEED_CLEANUP;
4969 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4970 req_set_fail(req);
4971 __io_req_complete(req, issue_flags, ret, cflags);
4972 return 0;
4973 }
4974
io_recv(struct io_kiocb * req,unsigned int issue_flags)4975 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4976 {
4977 struct io_buffer *kbuf;
4978 struct io_sr_msg *sr = &req->sr_msg;
4979 struct msghdr msg;
4980 void __user *buf = sr->buf;
4981 struct socket *sock;
4982 struct iovec iov;
4983 unsigned flags;
4984 int min_ret = 0;
4985 int ret, cflags = 0;
4986 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4987
4988 sock = sock_from_file(req->file, &ret);
4989 if (unlikely(!sock))
4990 return ret;
4991
4992 if (req->flags & REQ_F_BUFFER_SELECT) {
4993 kbuf = io_recv_buffer_select(req, !force_nonblock);
4994 if (IS_ERR(kbuf))
4995 return PTR_ERR(kbuf);
4996 buf = u64_to_user_ptr(kbuf->addr);
4997 }
4998
4999 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5000 if (unlikely(ret))
5001 goto out_free;
5002
5003 msg.msg_name = NULL;
5004 msg.msg_control = NULL;
5005 msg.msg_controllen = 0;
5006 msg.msg_namelen = 0;
5007 msg.msg_iocb = NULL;
5008 msg.msg_flags = 0;
5009
5010 flags = req->sr_msg.msg_flags;
5011 if (force_nonblock)
5012 flags |= MSG_DONTWAIT;
5013 if (flags & MSG_WAITALL)
5014 min_ret = iov_iter_count(&msg.msg_iter);
5015
5016 ret = sock_recvmsg(sock, &msg, flags);
5017 if (force_nonblock && ret == -EAGAIN)
5018 return -EAGAIN;
5019 if (ret == -ERESTARTSYS)
5020 ret = -EINTR;
5021 out_free:
5022 if (req->flags & REQ_F_BUFFER_SELECTED)
5023 cflags = io_put_recv_kbuf(req);
5024 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5025 req_set_fail(req);
5026 __io_req_complete(req, issue_flags, ret, cflags);
5027 return 0;
5028 }
5029
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5030 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5031 {
5032 struct io_accept *accept = &req->accept;
5033
5034 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5035 return -EINVAL;
5036 if (sqe->ioprio || sqe->len || sqe->buf_index)
5037 return -EINVAL;
5038
5039 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5040 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5041 accept->flags = READ_ONCE(sqe->accept_flags);
5042 accept->nofile = rlimit(RLIMIT_NOFILE);
5043
5044 accept->file_slot = READ_ONCE(sqe->file_index);
5045 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5046 return -EINVAL;
5047 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5048 return -EINVAL;
5049 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5050 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5051 return 0;
5052 }
5053
io_accept(struct io_kiocb * req,unsigned int issue_flags)5054 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5055 {
5056 struct io_accept *accept = &req->accept;
5057 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5058 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5059 bool fixed = !!accept->file_slot;
5060 struct file *file;
5061 int ret, fd;
5062
5063 if (req->file->f_flags & O_NONBLOCK)
5064 req->flags |= REQ_F_NOWAIT;
5065
5066 if (!fixed) {
5067 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5068 if (unlikely(fd < 0))
5069 return fd;
5070 }
5071 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5072 accept->flags);
5073
5074 if (IS_ERR(file)) {
5075 if (!fixed)
5076 put_unused_fd(fd);
5077 ret = PTR_ERR(file);
5078 if (ret == -EAGAIN && force_nonblock)
5079 return -EAGAIN;
5080 if (ret == -ERESTARTSYS)
5081 ret = -EINTR;
5082 req_set_fail(req);
5083 } else if (!fixed) {
5084 fd_install(fd, file);
5085 ret = fd;
5086 } else {
5087 ret = io_install_fixed_file(req, file, issue_flags,
5088 accept->file_slot - 1);
5089 }
5090 __io_req_complete(req, issue_flags, ret, 0);
5091 return 0;
5092 }
5093
io_connect_prep_async(struct io_kiocb * req)5094 static int io_connect_prep_async(struct io_kiocb *req)
5095 {
5096 struct io_async_connect *io = req->async_data;
5097 struct io_connect *conn = &req->connect;
5098
5099 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5100 }
5101
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5102 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5103 {
5104 struct io_connect *conn = &req->connect;
5105
5106 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5107 return -EINVAL;
5108 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5109 sqe->splice_fd_in)
5110 return -EINVAL;
5111
5112 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5113 conn->addr_len = READ_ONCE(sqe->addr2);
5114 return 0;
5115 }
5116
io_connect(struct io_kiocb * req,unsigned int issue_flags)5117 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5118 {
5119 struct io_async_connect __io, *io;
5120 unsigned file_flags;
5121 int ret;
5122 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5123
5124 if (req->async_data) {
5125 io = req->async_data;
5126 } else {
5127 ret = move_addr_to_kernel(req->connect.addr,
5128 req->connect.addr_len,
5129 &__io.address);
5130 if (ret)
5131 goto out;
5132 io = &__io;
5133 }
5134
5135 file_flags = force_nonblock ? O_NONBLOCK : 0;
5136
5137 ret = __sys_connect_file(req->file, &io->address,
5138 req->connect.addr_len, file_flags);
5139 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5140 if (req->async_data)
5141 return -EAGAIN;
5142 if (io_alloc_async_data(req)) {
5143 ret = -ENOMEM;
5144 goto out;
5145 }
5146 memcpy(req->async_data, &__io, sizeof(__io));
5147 return -EAGAIN;
5148 }
5149 if (ret == -ERESTARTSYS)
5150 ret = -EINTR;
5151 out:
5152 if (ret < 0)
5153 req_set_fail(req);
5154 __io_req_complete(req, issue_flags, ret, 0);
5155 return 0;
5156 }
5157 #else /* !CONFIG_NET */
5158 #define IO_NETOP_FN(op) \
5159 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5160 { \
5161 return -EOPNOTSUPP; \
5162 }
5163
5164 #define IO_NETOP_PREP(op) \
5165 IO_NETOP_FN(op) \
5166 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5167 { \
5168 return -EOPNOTSUPP; \
5169 } \
5170
5171 #define IO_NETOP_PREP_ASYNC(op) \
5172 IO_NETOP_PREP(op) \
5173 static int io_##op##_prep_async(struct io_kiocb *req) \
5174 { \
5175 return -EOPNOTSUPP; \
5176 }
5177
5178 IO_NETOP_PREP_ASYNC(sendmsg);
5179 IO_NETOP_PREP_ASYNC(recvmsg);
5180 IO_NETOP_PREP_ASYNC(connect);
5181 IO_NETOP_PREP(accept);
5182 IO_NETOP_FN(send);
5183 IO_NETOP_FN(recv);
5184 #endif /* CONFIG_NET */
5185
5186 struct io_poll_table {
5187 struct poll_table_struct pt;
5188 struct io_kiocb *req;
5189 int nr_entries;
5190 int error;
5191 };
5192
5193 #define IO_POLL_CANCEL_FLAG BIT(31)
5194 #define IO_POLL_RETRY_FLAG BIT(30)
5195 #define IO_POLL_REF_MASK GENMASK(29, 0)
5196
5197 /*
5198 * We usually have 1-2 refs taken, 128 is more than enough and we want to
5199 * maximise the margin between this amount and the moment when it overflows.
5200 */
5201 #define IO_POLL_REF_BIAS 128
5202
io_poll_get_ownership_slowpath(struct io_kiocb * req)5203 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req)
5204 {
5205 int v;
5206
5207 /*
5208 * poll_refs are already elevated and we don't have much hope for
5209 * grabbing the ownership. Instead of incrementing set a retry flag
5210 * to notify the loop that there might have been some change.
5211 */
5212 v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs);
5213 if (v & IO_POLL_REF_MASK)
5214 return false;
5215 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5216 }
5217
5218 /*
5219 * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5220 * bump it and acquire ownership. It's disallowed to modify requests while not
5221 * owning it, that prevents from races for enqueueing task_work's and b/w
5222 * arming poll and wakeups.
5223 */
io_poll_get_ownership(struct io_kiocb * req)5224 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5225 {
5226 if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS))
5227 return io_poll_get_ownership_slowpath(req);
5228 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5229 }
5230
io_poll_mark_cancelled(struct io_kiocb * req)5231 static void io_poll_mark_cancelled(struct io_kiocb *req)
5232 {
5233 atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5234 }
5235
io_poll_get_double(struct io_kiocb * req)5236 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5237 {
5238 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5239 if (req->opcode == IORING_OP_POLL_ADD)
5240 return req->async_data;
5241 return req->apoll->double_poll;
5242 }
5243
io_poll_get_single(struct io_kiocb * req)5244 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5245 {
5246 if (req->opcode == IORING_OP_POLL_ADD)
5247 return &req->poll;
5248 return &req->apoll->poll;
5249 }
5250
io_poll_req_insert(struct io_kiocb * req)5251 static void io_poll_req_insert(struct io_kiocb *req)
5252 {
5253 struct io_ring_ctx *ctx = req->ctx;
5254 struct hlist_head *list;
5255
5256 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5257 hlist_add_head(&req->hash_node, list);
5258 }
5259
io_init_poll_iocb(struct io_poll_iocb * poll,__poll_t events,wait_queue_func_t wake_func)5260 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5261 wait_queue_func_t wake_func)
5262 {
5263 poll->head = NULL;
5264 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5265 /* mask in events that we always want/need */
5266 poll->events = events | IO_POLL_UNMASK;
5267 INIT_LIST_HEAD(&poll->wait.entry);
5268 init_waitqueue_func_entry(&poll->wait, wake_func);
5269 }
5270
io_poll_remove_entry(struct io_poll_iocb * poll)5271 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5272 {
5273 struct wait_queue_head *head = smp_load_acquire(&poll->head);
5274
5275 if (head) {
5276 spin_lock_irq(&head->lock);
5277 list_del_init(&poll->wait.entry);
5278 poll->head = NULL;
5279 spin_unlock_irq(&head->lock);
5280 }
5281 }
5282
io_poll_remove_entries(struct io_kiocb * req)5283 static void io_poll_remove_entries(struct io_kiocb *req)
5284 {
5285 struct io_poll_iocb *poll = io_poll_get_single(req);
5286 struct io_poll_iocb *poll_double = io_poll_get_double(req);
5287
5288 /*
5289 * While we hold the waitqueue lock and the waitqueue is nonempty,
5290 * wake_up_pollfree() will wait for us. However, taking the waitqueue
5291 * lock in the first place can race with the waitqueue being freed.
5292 *
5293 * We solve this as eventpoll does: by taking advantage of the fact that
5294 * all users of wake_up_pollfree() will RCU-delay the actual free. If
5295 * we enter rcu_read_lock() and see that the pointer to the queue is
5296 * non-NULL, we can then lock it without the memory being freed out from
5297 * under us.
5298 *
5299 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5300 * case the caller deletes the entry from the queue, leaving it empty.
5301 * In that case, only RCU prevents the queue memory from being freed.
5302 */
5303 rcu_read_lock();
5304 io_poll_remove_entry(poll);
5305 if (poll_double)
5306 io_poll_remove_entry(poll_double);
5307 rcu_read_unlock();
5308 }
5309
5310 /*
5311 * All poll tw should go through this. Checks for poll events, manages
5312 * references, does rewait, etc.
5313 *
5314 * Returns a negative error on failure. >0 when no action require, which is
5315 * either spurious wakeup or multishot CQE is served. 0 when it's done with
5316 * the request, then the mask is stored in req->result.
5317 */
io_poll_check_events(struct io_kiocb * req)5318 static int io_poll_check_events(struct io_kiocb *req)
5319 {
5320 struct io_ring_ctx *ctx = req->ctx;
5321 struct io_poll_iocb *poll = io_poll_get_single(req);
5322 int v;
5323
5324 /* req->task == current here, checking PF_EXITING is safe */
5325 if (unlikely(req->task->flags & PF_EXITING))
5326 io_poll_mark_cancelled(req);
5327
5328 do {
5329 v = atomic_read(&req->poll_refs);
5330
5331 /* tw handler should be the owner, and so have some references */
5332 if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5333 return 0;
5334 if (v & IO_POLL_CANCEL_FLAG)
5335 return -ECANCELED;
5336 /*
5337 * cqe.res contains only events of the first wake up
5338 * and all others are be lost. Redo vfs_poll() to get
5339 * up to date state.
5340 */
5341 if ((v & IO_POLL_REF_MASK) != 1)
5342 req->result = 0;
5343 if (v & IO_POLL_RETRY_FLAG) {
5344 req->result = 0;
5345 /*
5346 * We won't find new events that came in between
5347 * vfs_poll and the ref put unless we clear the
5348 * flag in advance.
5349 */
5350 atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs);
5351 v &= ~IO_POLL_RETRY_FLAG;
5352 }
5353
5354 if (!req->result) {
5355 struct poll_table_struct pt = { ._key = poll->events };
5356
5357 req->result = vfs_poll(req->file, &pt) & poll->events;
5358 }
5359
5360 /* multishot, just fill an CQE and proceed */
5361 if (req->result && !(poll->events & EPOLLONESHOT)) {
5362 __poll_t mask = mangle_poll(req->result & poll->events);
5363 bool filled;
5364
5365 spin_lock(&ctx->completion_lock);
5366 filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5367 IORING_CQE_F_MORE);
5368 io_commit_cqring(ctx);
5369 spin_unlock(&ctx->completion_lock);
5370 if (unlikely(!filled))
5371 return -ECANCELED;
5372 io_cqring_ev_posted(ctx);
5373 } else if (req->result) {
5374 return 0;
5375 }
5376
5377 /* force the next iteration to vfs_poll() */
5378 req->result = 0;
5379
5380 /*
5381 * Release all references, retry if someone tried to restart
5382 * task_work while we were executing it.
5383 */
5384 } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) &
5385 IO_POLL_REF_MASK);
5386
5387 return 1;
5388 }
5389
io_poll_task_func(struct io_kiocb * req,bool * locked)5390 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5391 {
5392 struct io_ring_ctx *ctx = req->ctx;
5393 int ret;
5394
5395 ret = io_poll_check_events(req);
5396 if (ret > 0)
5397 return;
5398
5399 if (!ret) {
5400 req->result = mangle_poll(req->result & req->poll.events);
5401 } else {
5402 req->result = ret;
5403 req_set_fail(req);
5404 }
5405
5406 io_poll_remove_entries(req);
5407 spin_lock(&ctx->completion_lock);
5408 hash_del(&req->hash_node);
5409 spin_unlock(&ctx->completion_lock);
5410 io_req_complete_post(req, req->result, 0);
5411 }
5412
io_apoll_task_func(struct io_kiocb * req,bool * locked)5413 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5414 {
5415 struct io_ring_ctx *ctx = req->ctx;
5416 int ret;
5417
5418 ret = io_poll_check_events(req);
5419 if (ret > 0)
5420 return;
5421
5422 io_poll_remove_entries(req);
5423 spin_lock(&ctx->completion_lock);
5424 hash_del(&req->hash_node);
5425 spin_unlock(&ctx->completion_lock);
5426
5427 if (!ret)
5428 io_req_task_submit(req, locked);
5429 else
5430 io_req_complete_failed(req, ret);
5431 }
5432
__io_poll_execute(struct io_kiocb * req,int mask)5433 static void __io_poll_execute(struct io_kiocb *req, int mask)
5434 {
5435 req->result = mask;
5436 if (req->opcode == IORING_OP_POLL_ADD)
5437 req->io_task_work.func = io_poll_task_func;
5438 else
5439 req->io_task_work.func = io_apoll_task_func;
5440
5441 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5442 io_req_task_work_add(req);
5443 }
5444
io_poll_execute(struct io_kiocb * req,int res)5445 static inline void io_poll_execute(struct io_kiocb *req, int res)
5446 {
5447 if (io_poll_get_ownership(req))
5448 __io_poll_execute(req, res);
5449 }
5450
io_poll_cancel_req(struct io_kiocb * req)5451 static void io_poll_cancel_req(struct io_kiocb *req)
5452 {
5453 io_poll_mark_cancelled(req);
5454 /* kick tw, which should complete the request */
5455 io_poll_execute(req, 0);
5456 }
5457
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5458 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5459 void *key)
5460 {
5461 struct io_kiocb *req = wait->private;
5462 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5463 wait);
5464 __poll_t mask = key_to_poll(key);
5465
5466 if (unlikely(mask & POLLFREE)) {
5467 io_poll_mark_cancelled(req);
5468 /* we have to kick tw in case it's not already */
5469 io_poll_execute(req, 0);
5470
5471 /*
5472 * If the waitqueue is being freed early but someone is already
5473 * holds ownership over it, we have to tear down the request as
5474 * best we can. That means immediately removing the request from
5475 * its waitqueue and preventing all further accesses to the
5476 * waitqueue via the request.
5477 */
5478 list_del_init(&poll->wait.entry);
5479
5480 /*
5481 * Careful: this *must* be the last step, since as soon
5482 * as req->head is NULL'ed out, the request can be
5483 * completed and freed, since aio_poll_complete_work()
5484 * will no longer need to take the waitqueue lock.
5485 */
5486 smp_store_release(&poll->head, NULL);
5487 return 1;
5488 }
5489
5490 /* for instances that support it check for an event match first */
5491 if (mask && !(mask & poll->events))
5492 return 0;
5493
5494 if (io_poll_get_ownership(req)) {
5495 /*
5496 * If we trigger a multishot poll off our own wakeup path,
5497 * disable multishot as there is a circular dependency between
5498 * CQ posting and triggering the event.
5499 */
5500 if (mask & EPOLL_URING_WAKE)
5501 poll->events |= EPOLLONESHOT;
5502
5503 __io_poll_execute(req, mask);
5504 }
5505 return 1;
5506 }
5507
__io_queue_proc(struct io_poll_iocb * poll,struct io_poll_table * pt,struct wait_queue_head * head,struct io_poll_iocb ** poll_ptr)5508 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5509 struct wait_queue_head *head,
5510 struct io_poll_iocb **poll_ptr)
5511 {
5512 struct io_kiocb *req = pt->req;
5513
5514 /*
5515 * The file being polled uses multiple waitqueues for poll handling
5516 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5517 * if this happens.
5518 */
5519 if (unlikely(pt->nr_entries)) {
5520 struct io_poll_iocb *first = poll;
5521
5522 /* double add on the same waitqueue head, ignore */
5523 if (first->head == head)
5524 return;
5525 /* already have a 2nd entry, fail a third attempt */
5526 if (*poll_ptr) {
5527 if ((*poll_ptr)->head == head)
5528 return;
5529 pt->error = -EINVAL;
5530 return;
5531 }
5532
5533 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5534 if (!poll) {
5535 pt->error = -ENOMEM;
5536 return;
5537 }
5538 io_init_poll_iocb(poll, first->events, first->wait.func);
5539 *poll_ptr = poll;
5540 }
5541
5542 pt->nr_entries++;
5543 poll->head = head;
5544 poll->wait.private = req;
5545
5546 if (poll->events & EPOLLEXCLUSIVE)
5547 add_wait_queue_exclusive(head, &poll->wait);
5548 else
5549 add_wait_queue(head, &poll->wait);
5550 }
5551
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5552 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5553 struct poll_table_struct *p)
5554 {
5555 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5556
5557 __io_queue_proc(&pt->req->poll, pt, head,
5558 (struct io_poll_iocb **) &pt->req->async_data);
5559 }
5560
__io_arm_poll_handler(struct io_kiocb * req,struct io_poll_iocb * poll,struct io_poll_table * ipt,__poll_t mask)5561 static int __io_arm_poll_handler(struct io_kiocb *req,
5562 struct io_poll_iocb *poll,
5563 struct io_poll_table *ipt, __poll_t mask)
5564 {
5565 struct io_ring_ctx *ctx = req->ctx;
5566
5567 INIT_HLIST_NODE(&req->hash_node);
5568 io_init_poll_iocb(poll, mask, io_poll_wake);
5569 poll->file = req->file;
5570 poll->wait.private = req;
5571
5572 ipt->pt._key = mask;
5573 ipt->req = req;
5574 ipt->error = 0;
5575 ipt->nr_entries = 0;
5576
5577 /*
5578 * Take the ownership to delay any tw execution up until we're done
5579 * with poll arming. see io_poll_get_ownership().
5580 */
5581 atomic_set(&req->poll_refs, 1);
5582 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5583
5584 if (mask && (poll->events & EPOLLONESHOT)) {
5585 io_poll_remove_entries(req);
5586 /* no one else has access to the req, forget about the ref */
5587 return mask;
5588 }
5589 if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5590 io_poll_remove_entries(req);
5591 if (!ipt->error)
5592 ipt->error = -EINVAL;
5593 return 0;
5594 }
5595
5596 spin_lock(&ctx->completion_lock);
5597 io_poll_req_insert(req);
5598 spin_unlock(&ctx->completion_lock);
5599
5600 if (mask) {
5601 /* can't multishot if failed, just queue the event we've got */
5602 if (unlikely(ipt->error || !ipt->nr_entries)) {
5603 poll->events |= EPOLLONESHOT;
5604 ipt->error = 0;
5605 }
5606 __io_poll_execute(req, mask);
5607 return 0;
5608 }
5609
5610 /*
5611 * Try to release ownership. If we see a change of state, e.g.
5612 * poll was waken up, queue up a tw, it'll deal with it.
5613 */
5614 if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1)
5615 __io_poll_execute(req, 0);
5616 return 0;
5617 }
5618
io_async_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5619 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5620 struct poll_table_struct *p)
5621 {
5622 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5623 struct async_poll *apoll = pt->req->apoll;
5624
5625 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5626 }
5627
5628 enum {
5629 IO_APOLL_OK,
5630 IO_APOLL_ABORTED,
5631 IO_APOLL_READY
5632 };
5633
io_arm_poll_handler(struct io_kiocb * req)5634 static int io_arm_poll_handler(struct io_kiocb *req)
5635 {
5636 const struct io_op_def *def = &io_op_defs[req->opcode];
5637 struct io_ring_ctx *ctx = req->ctx;
5638 struct async_poll *apoll;
5639 struct io_poll_table ipt;
5640 __poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5641 int ret;
5642
5643 if (!req->file || !file_can_poll(req->file))
5644 return IO_APOLL_ABORTED;
5645 if (req->flags & REQ_F_POLLED)
5646 return IO_APOLL_ABORTED;
5647 if (!def->pollin && !def->pollout)
5648 return IO_APOLL_ABORTED;
5649
5650 if (def->pollin) {
5651 mask |= POLLIN | POLLRDNORM;
5652
5653 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5654 if ((req->opcode == IORING_OP_RECVMSG) &&
5655 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5656 mask &= ~POLLIN;
5657 } else {
5658 mask |= POLLOUT | POLLWRNORM;
5659 }
5660
5661 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5662 if (unlikely(!apoll))
5663 return IO_APOLL_ABORTED;
5664 apoll->double_poll = NULL;
5665 req->apoll = apoll;
5666 req->flags |= REQ_F_POLLED;
5667 ipt.pt._qproc = io_async_queue_proc;
5668
5669 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5670 if (ret || ipt.error)
5671 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5672
5673 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5674 mask, apoll->poll.events);
5675 return IO_APOLL_OK;
5676 }
5677
5678 /*
5679 * Returns true if we found and killed one or more poll requests
5680 */
io_poll_remove_all(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)5681 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5682 bool cancel_all)
5683 {
5684 struct hlist_node *tmp;
5685 struct io_kiocb *req;
5686 bool found = false;
5687 int i;
5688
5689 spin_lock(&ctx->completion_lock);
5690 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5691 struct hlist_head *list;
5692
5693 list = &ctx->cancel_hash[i];
5694 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5695 if (io_match_task_safe(req, tsk, cancel_all)) {
5696 hlist_del_init(&req->hash_node);
5697 io_poll_cancel_req(req);
5698 found = true;
5699 }
5700 }
5701 }
5702 spin_unlock(&ctx->completion_lock);
5703 return found;
5704 }
5705
io_poll_find(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5706 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5707 bool poll_only)
5708 __must_hold(&ctx->completion_lock)
5709 {
5710 struct hlist_head *list;
5711 struct io_kiocb *req;
5712
5713 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5714 hlist_for_each_entry(req, list, hash_node) {
5715 if (sqe_addr != req->user_data)
5716 continue;
5717 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5718 continue;
5719 return req;
5720 }
5721 return NULL;
5722 }
5723
io_poll_disarm(struct io_kiocb * req)5724 static bool io_poll_disarm(struct io_kiocb *req)
5725 __must_hold(&ctx->completion_lock)
5726 {
5727 if (!io_poll_get_ownership(req))
5728 return false;
5729 io_poll_remove_entries(req);
5730 hash_del(&req->hash_node);
5731 return true;
5732 }
5733
io_poll_cancel(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5734 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5735 bool poll_only)
5736 __must_hold(&ctx->completion_lock)
5737 {
5738 struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
5739
5740 if (!req)
5741 return -ENOENT;
5742 io_poll_cancel_req(req);
5743 return 0;
5744 }
5745
io_poll_parse_events(const struct io_uring_sqe * sqe,unsigned int flags)5746 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5747 unsigned int flags)
5748 {
5749 u32 events;
5750
5751 events = READ_ONCE(sqe->poll32_events);
5752 #ifdef __BIG_ENDIAN
5753 events = swahw32(events);
5754 #endif
5755 if (!(flags & IORING_POLL_ADD_MULTI))
5756 events |= EPOLLONESHOT;
5757 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5758 }
5759
io_poll_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5760 static int io_poll_update_prep(struct io_kiocb *req,
5761 const struct io_uring_sqe *sqe)
5762 {
5763 struct io_poll_update *upd = &req->poll_update;
5764 u32 flags;
5765
5766 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5767 return -EINVAL;
5768 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5769 return -EINVAL;
5770 flags = READ_ONCE(sqe->len);
5771 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5772 IORING_POLL_ADD_MULTI))
5773 return -EINVAL;
5774 /* meaningless without update */
5775 if (flags == IORING_POLL_ADD_MULTI)
5776 return -EINVAL;
5777
5778 upd->old_user_data = READ_ONCE(sqe->addr);
5779 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5780 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5781
5782 upd->new_user_data = READ_ONCE(sqe->off);
5783 if (!upd->update_user_data && upd->new_user_data)
5784 return -EINVAL;
5785 if (upd->update_events)
5786 upd->events = io_poll_parse_events(sqe, flags);
5787 else if (sqe->poll32_events)
5788 return -EINVAL;
5789
5790 return 0;
5791 }
5792
io_poll_add_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5793 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5794 {
5795 struct io_poll_iocb *poll = &req->poll;
5796 u32 flags;
5797
5798 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5799 return -EINVAL;
5800 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5801 return -EINVAL;
5802 flags = READ_ONCE(sqe->len);
5803 if (flags & ~IORING_POLL_ADD_MULTI)
5804 return -EINVAL;
5805
5806 io_req_set_refcount(req);
5807 poll->events = io_poll_parse_events(sqe, flags);
5808 return 0;
5809 }
5810
io_poll_add(struct io_kiocb * req,unsigned int issue_flags)5811 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5812 {
5813 struct io_poll_iocb *poll = &req->poll;
5814 struct io_poll_table ipt;
5815 int ret;
5816
5817 ipt.pt._qproc = io_poll_queue_proc;
5818
5819 ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
5820 if (!ret && ipt.error)
5821 req_set_fail(req);
5822 ret = ret ?: ipt.error;
5823 if (ret)
5824 __io_req_complete(req, issue_flags, ret, 0);
5825 return 0;
5826 }
5827
io_poll_update(struct io_kiocb * req,unsigned int issue_flags)5828 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5829 {
5830 struct io_ring_ctx *ctx = req->ctx;
5831 struct io_kiocb *preq;
5832 int ret2, ret = 0;
5833
5834 spin_lock(&ctx->completion_lock);
5835 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5836 if (!preq || !io_poll_disarm(preq)) {
5837 spin_unlock(&ctx->completion_lock);
5838 ret = preq ? -EALREADY : -ENOENT;
5839 goto out;
5840 }
5841 spin_unlock(&ctx->completion_lock);
5842
5843 if (req->poll_update.update_events || req->poll_update.update_user_data) {
5844 /* only mask one event flags, keep behavior flags */
5845 if (req->poll_update.update_events) {
5846 preq->poll.events &= ~0xffff;
5847 preq->poll.events |= req->poll_update.events & 0xffff;
5848 preq->poll.events |= IO_POLL_UNMASK;
5849 }
5850 if (req->poll_update.update_user_data)
5851 preq->user_data = req->poll_update.new_user_data;
5852
5853 ret2 = io_poll_add(preq, issue_flags);
5854 /* successfully updated, don't complete poll request */
5855 if (!ret2)
5856 goto out;
5857 }
5858 req_set_fail(preq);
5859 io_req_complete(preq, -ECANCELED);
5860 out:
5861 if (ret < 0)
5862 req_set_fail(req);
5863 /* complete update request, we're done with it */
5864 io_req_complete(req, ret);
5865 return 0;
5866 }
5867
io_req_task_timeout(struct io_kiocb * req,bool * locked)5868 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5869 {
5870 req_set_fail(req);
5871 io_req_complete_post(req, -ETIME, 0);
5872 }
5873
io_timeout_fn(struct hrtimer * timer)5874 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5875 {
5876 struct io_timeout_data *data = container_of(timer,
5877 struct io_timeout_data, timer);
5878 struct io_kiocb *req = data->req;
5879 struct io_ring_ctx *ctx = req->ctx;
5880 unsigned long flags;
5881
5882 spin_lock_irqsave(&ctx->timeout_lock, flags);
5883 list_del_init(&req->timeout.list);
5884 atomic_set(&req->ctx->cq_timeouts,
5885 atomic_read(&req->ctx->cq_timeouts) + 1);
5886 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5887
5888 req->io_task_work.func = io_req_task_timeout;
5889 io_req_task_work_add(req);
5890 return HRTIMER_NORESTART;
5891 }
5892
io_timeout_extract(struct io_ring_ctx * ctx,__u64 user_data)5893 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5894 __u64 user_data)
5895 __must_hold(&ctx->timeout_lock)
5896 {
5897 struct io_timeout_data *io;
5898 struct io_kiocb *req;
5899 bool found = false;
5900
5901 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5902 found = user_data == req->user_data;
5903 if (found)
5904 break;
5905 }
5906 if (!found)
5907 return ERR_PTR(-ENOENT);
5908
5909 io = req->async_data;
5910 if (hrtimer_try_to_cancel(&io->timer) == -1)
5911 return ERR_PTR(-EALREADY);
5912 list_del_init(&req->timeout.list);
5913 return req;
5914 }
5915
io_timeout_cancel(struct io_ring_ctx * ctx,__u64 user_data)5916 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5917 __must_hold(&ctx->completion_lock)
5918 __must_hold(&ctx->timeout_lock)
5919 {
5920 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5921
5922 if (IS_ERR(req))
5923 return PTR_ERR(req);
5924
5925 req_set_fail(req);
5926 io_fill_cqe_req(req, -ECANCELED, 0);
5927 io_put_req_deferred(req);
5928 return 0;
5929 }
5930
io_timeout_get_clock(struct io_timeout_data * data)5931 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
5932 {
5933 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
5934 case IORING_TIMEOUT_BOOTTIME:
5935 return CLOCK_BOOTTIME;
5936 case IORING_TIMEOUT_REALTIME:
5937 return CLOCK_REALTIME;
5938 default:
5939 /* can't happen, vetted at prep time */
5940 WARN_ON_ONCE(1);
5941 fallthrough;
5942 case 0:
5943 return CLOCK_MONOTONIC;
5944 }
5945 }
5946
io_linked_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)5947 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5948 struct timespec64 *ts, enum hrtimer_mode mode)
5949 __must_hold(&ctx->timeout_lock)
5950 {
5951 struct io_timeout_data *io;
5952 struct io_kiocb *req;
5953 bool found = false;
5954
5955 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
5956 found = user_data == req->user_data;
5957 if (found)
5958 break;
5959 }
5960 if (!found)
5961 return -ENOENT;
5962
5963 io = req->async_data;
5964 if (hrtimer_try_to_cancel(&io->timer) == -1)
5965 return -EALREADY;
5966 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
5967 io->timer.function = io_link_timeout_fn;
5968 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
5969 return 0;
5970 }
5971
io_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)5972 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5973 struct timespec64 *ts, enum hrtimer_mode mode)
5974 __must_hold(&ctx->timeout_lock)
5975 {
5976 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5977 struct io_timeout_data *data;
5978
5979 if (IS_ERR(req))
5980 return PTR_ERR(req);
5981
5982 req->timeout.off = 0; /* noseq */
5983 data = req->async_data;
5984 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5985 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
5986 data->timer.function = io_timeout_fn;
5987 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5988 return 0;
5989 }
5990
io_timeout_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5991 static int io_timeout_remove_prep(struct io_kiocb *req,
5992 const struct io_uring_sqe *sqe)
5993 {
5994 struct io_timeout_rem *tr = &req->timeout_rem;
5995
5996 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5997 return -EINVAL;
5998 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5999 return -EINVAL;
6000 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6001 return -EINVAL;
6002
6003 tr->ltimeout = false;
6004 tr->addr = READ_ONCE(sqe->addr);
6005 tr->flags = READ_ONCE(sqe->timeout_flags);
6006 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6007 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6008 return -EINVAL;
6009 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6010 tr->ltimeout = true;
6011 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6012 return -EINVAL;
6013 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6014 return -EFAULT;
6015 } else if (tr->flags) {
6016 /* timeout removal doesn't support flags */
6017 return -EINVAL;
6018 }
6019
6020 return 0;
6021 }
6022
io_translate_timeout_mode(unsigned int flags)6023 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6024 {
6025 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6026 : HRTIMER_MODE_REL;
6027 }
6028
6029 /*
6030 * Remove or update an existing timeout command
6031 */
io_timeout_remove(struct io_kiocb * req,unsigned int issue_flags)6032 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6033 {
6034 struct io_timeout_rem *tr = &req->timeout_rem;
6035 struct io_ring_ctx *ctx = req->ctx;
6036 int ret;
6037
6038 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6039 spin_lock(&ctx->completion_lock);
6040 spin_lock_irq(&ctx->timeout_lock);
6041 ret = io_timeout_cancel(ctx, tr->addr);
6042 spin_unlock_irq(&ctx->timeout_lock);
6043 spin_unlock(&ctx->completion_lock);
6044 } else {
6045 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6046
6047 spin_lock_irq(&ctx->timeout_lock);
6048 if (tr->ltimeout)
6049 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6050 else
6051 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6052 spin_unlock_irq(&ctx->timeout_lock);
6053 }
6054
6055 if (ret < 0)
6056 req_set_fail(req);
6057 io_req_complete_post(req, ret, 0);
6058 return 0;
6059 }
6060
io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool is_timeout_link)6061 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6062 bool is_timeout_link)
6063 {
6064 struct io_timeout_data *data;
6065 unsigned flags;
6066 u32 off = READ_ONCE(sqe->off);
6067
6068 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6069 return -EINVAL;
6070 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6071 sqe->splice_fd_in)
6072 return -EINVAL;
6073 if (off && is_timeout_link)
6074 return -EINVAL;
6075 flags = READ_ONCE(sqe->timeout_flags);
6076 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6077 return -EINVAL;
6078 /* more than one clock specified is invalid, obviously */
6079 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6080 return -EINVAL;
6081
6082 INIT_LIST_HEAD(&req->timeout.list);
6083 req->timeout.off = off;
6084 if (unlikely(off && !req->ctx->off_timeout_used))
6085 req->ctx->off_timeout_used = true;
6086
6087 if (!req->async_data && io_alloc_async_data(req))
6088 return -ENOMEM;
6089
6090 data = req->async_data;
6091 data->req = req;
6092 data->flags = flags;
6093
6094 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6095 return -EFAULT;
6096
6097 INIT_LIST_HEAD(&req->timeout.list);
6098 data->mode = io_translate_timeout_mode(flags);
6099 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6100
6101 if (is_timeout_link) {
6102 struct io_submit_link *link = &req->ctx->submit_state.link;
6103
6104 if (!link->head)
6105 return -EINVAL;
6106 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6107 return -EINVAL;
6108 req->timeout.head = link->last;
6109 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6110 }
6111 return 0;
6112 }
6113
io_timeout(struct io_kiocb * req,unsigned int issue_flags)6114 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6115 {
6116 struct io_ring_ctx *ctx = req->ctx;
6117 struct io_timeout_data *data = req->async_data;
6118 struct list_head *entry;
6119 u32 tail, off = req->timeout.off;
6120
6121 spin_lock_irq(&ctx->timeout_lock);
6122
6123 /*
6124 * sqe->off holds how many events that need to occur for this
6125 * timeout event to be satisfied. If it isn't set, then this is
6126 * a pure timeout request, sequence isn't used.
6127 */
6128 if (io_is_timeout_noseq(req)) {
6129 entry = ctx->timeout_list.prev;
6130 goto add;
6131 }
6132
6133 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6134 req->timeout.target_seq = tail + off;
6135
6136 /* Update the last seq here in case io_flush_timeouts() hasn't.
6137 * This is safe because ->completion_lock is held, and submissions
6138 * and completions are never mixed in the same ->completion_lock section.
6139 */
6140 ctx->cq_last_tm_flush = tail;
6141
6142 /*
6143 * Insertion sort, ensuring the first entry in the list is always
6144 * the one we need first.
6145 */
6146 list_for_each_prev(entry, &ctx->timeout_list) {
6147 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6148 timeout.list);
6149
6150 if (io_is_timeout_noseq(nxt))
6151 continue;
6152 /* nxt.seq is behind @tail, otherwise would've been completed */
6153 if (off >= nxt->timeout.target_seq - tail)
6154 break;
6155 }
6156 add:
6157 list_add(&req->timeout.list, entry);
6158 data->timer.function = io_timeout_fn;
6159 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6160 spin_unlock_irq(&ctx->timeout_lock);
6161 return 0;
6162 }
6163
6164 struct io_cancel_data {
6165 struct io_ring_ctx *ctx;
6166 u64 user_data;
6167 };
6168
io_cancel_cb(struct io_wq_work * work,void * data)6169 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6170 {
6171 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6172 struct io_cancel_data *cd = data;
6173
6174 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6175 }
6176
io_async_cancel_one(struct io_uring_task * tctx,u64 user_data,struct io_ring_ctx * ctx)6177 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6178 struct io_ring_ctx *ctx)
6179 {
6180 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6181 enum io_wq_cancel cancel_ret;
6182 int ret = 0;
6183
6184 if (!tctx || !tctx->io_wq)
6185 return -ENOENT;
6186
6187 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6188 switch (cancel_ret) {
6189 case IO_WQ_CANCEL_OK:
6190 ret = 0;
6191 break;
6192 case IO_WQ_CANCEL_RUNNING:
6193 ret = -EALREADY;
6194 break;
6195 case IO_WQ_CANCEL_NOTFOUND:
6196 ret = -ENOENT;
6197 break;
6198 }
6199
6200 return ret;
6201 }
6202
io_try_cancel_userdata(struct io_kiocb * req,u64 sqe_addr)6203 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6204 {
6205 struct io_ring_ctx *ctx = req->ctx;
6206 int ret;
6207
6208 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6209
6210 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6211 if (ret != -ENOENT)
6212 return ret;
6213
6214 spin_lock(&ctx->completion_lock);
6215 spin_lock_irq(&ctx->timeout_lock);
6216 ret = io_timeout_cancel(ctx, sqe_addr);
6217 spin_unlock_irq(&ctx->timeout_lock);
6218 if (ret != -ENOENT)
6219 goto out;
6220 ret = io_poll_cancel(ctx, sqe_addr, false);
6221 out:
6222 spin_unlock(&ctx->completion_lock);
6223 return ret;
6224 }
6225
io_async_cancel_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6226 static int io_async_cancel_prep(struct io_kiocb *req,
6227 const struct io_uring_sqe *sqe)
6228 {
6229 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6230 return -EINVAL;
6231 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6232 return -EINVAL;
6233 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6234 sqe->splice_fd_in)
6235 return -EINVAL;
6236
6237 req->cancel.addr = READ_ONCE(sqe->addr);
6238 return 0;
6239 }
6240
io_async_cancel(struct io_kiocb * req,unsigned int issue_flags)6241 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6242 {
6243 struct io_ring_ctx *ctx = req->ctx;
6244 u64 sqe_addr = req->cancel.addr;
6245 struct io_tctx_node *node;
6246 int ret;
6247
6248 ret = io_try_cancel_userdata(req, sqe_addr);
6249 if (ret != -ENOENT)
6250 goto done;
6251
6252 /* slow path, try all io-wq's */
6253 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6254 ret = -ENOENT;
6255 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6256 struct io_uring_task *tctx = node->task->io_uring;
6257
6258 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6259 if (ret != -ENOENT)
6260 break;
6261 }
6262 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6263 done:
6264 if (ret < 0)
6265 req_set_fail(req);
6266 io_req_complete_post(req, ret, 0);
6267 return 0;
6268 }
6269
io_rsrc_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6270 static int io_rsrc_update_prep(struct io_kiocb *req,
6271 const struct io_uring_sqe *sqe)
6272 {
6273 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6274 return -EINVAL;
6275 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6276 return -EINVAL;
6277
6278 req->rsrc_update.offset = READ_ONCE(sqe->off);
6279 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6280 if (!req->rsrc_update.nr_args)
6281 return -EINVAL;
6282 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6283 return 0;
6284 }
6285
io_files_update(struct io_kiocb * req,unsigned int issue_flags)6286 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6287 {
6288 struct io_ring_ctx *ctx = req->ctx;
6289 struct io_uring_rsrc_update2 up;
6290 int ret;
6291
6292 up.offset = req->rsrc_update.offset;
6293 up.data = req->rsrc_update.arg;
6294 up.nr = 0;
6295 up.tags = 0;
6296 up.resv = 0;
6297 up.resv2 = 0;
6298
6299 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6300 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6301 &up, req->rsrc_update.nr_args);
6302 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6303
6304 if (ret < 0)
6305 req_set_fail(req);
6306 __io_req_complete(req, issue_flags, ret, 0);
6307 return 0;
6308 }
6309
io_req_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6310 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6311 {
6312 switch (req->opcode) {
6313 case IORING_OP_NOP:
6314 return 0;
6315 case IORING_OP_READV:
6316 case IORING_OP_READ_FIXED:
6317 case IORING_OP_READ:
6318 return io_read_prep(req, sqe);
6319 case IORING_OP_WRITEV:
6320 case IORING_OP_WRITE_FIXED:
6321 case IORING_OP_WRITE:
6322 return io_write_prep(req, sqe);
6323 case IORING_OP_POLL_ADD:
6324 return io_poll_add_prep(req, sqe);
6325 case IORING_OP_POLL_REMOVE:
6326 return io_poll_update_prep(req, sqe);
6327 case IORING_OP_FSYNC:
6328 return io_fsync_prep(req, sqe);
6329 case IORING_OP_SYNC_FILE_RANGE:
6330 return io_sfr_prep(req, sqe);
6331 case IORING_OP_SENDMSG:
6332 case IORING_OP_SEND:
6333 return io_sendmsg_prep(req, sqe);
6334 case IORING_OP_RECVMSG:
6335 case IORING_OP_RECV:
6336 return io_recvmsg_prep(req, sqe);
6337 case IORING_OP_CONNECT:
6338 return io_connect_prep(req, sqe);
6339 case IORING_OP_TIMEOUT:
6340 return io_timeout_prep(req, sqe, false);
6341 case IORING_OP_TIMEOUT_REMOVE:
6342 return io_timeout_remove_prep(req, sqe);
6343 case IORING_OP_ASYNC_CANCEL:
6344 return io_async_cancel_prep(req, sqe);
6345 case IORING_OP_LINK_TIMEOUT:
6346 return io_timeout_prep(req, sqe, true);
6347 case IORING_OP_ACCEPT:
6348 return io_accept_prep(req, sqe);
6349 case IORING_OP_FALLOCATE:
6350 return io_fallocate_prep(req, sqe);
6351 case IORING_OP_OPENAT:
6352 return io_openat_prep(req, sqe);
6353 case IORING_OP_CLOSE:
6354 return io_close_prep(req, sqe);
6355 case IORING_OP_FILES_UPDATE:
6356 return io_rsrc_update_prep(req, sqe);
6357 case IORING_OP_STATX:
6358 return io_statx_prep(req, sqe);
6359 case IORING_OP_FADVISE:
6360 return io_fadvise_prep(req, sqe);
6361 case IORING_OP_MADVISE:
6362 return io_madvise_prep(req, sqe);
6363 case IORING_OP_OPENAT2:
6364 return io_openat2_prep(req, sqe);
6365 case IORING_OP_EPOLL_CTL:
6366 return io_epoll_ctl_prep(req, sqe);
6367 case IORING_OP_SPLICE:
6368 return io_splice_prep(req, sqe);
6369 case IORING_OP_PROVIDE_BUFFERS:
6370 return io_provide_buffers_prep(req, sqe);
6371 case IORING_OP_REMOVE_BUFFERS:
6372 return io_remove_buffers_prep(req, sqe);
6373 case IORING_OP_TEE:
6374 return io_tee_prep(req, sqe);
6375 case IORING_OP_SHUTDOWN:
6376 return io_shutdown_prep(req, sqe);
6377 case IORING_OP_RENAMEAT:
6378 return io_renameat_prep(req, sqe);
6379 case IORING_OP_UNLINKAT:
6380 return io_unlinkat_prep(req, sqe);
6381 }
6382
6383 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6384 req->opcode);
6385 return -EINVAL;
6386 }
6387
io_req_prep_async(struct io_kiocb * req)6388 static int io_req_prep_async(struct io_kiocb *req)
6389 {
6390 if (!io_op_defs[req->opcode].needs_async_setup)
6391 return 0;
6392 if (WARN_ON_ONCE(req->async_data))
6393 return -EFAULT;
6394 if (io_alloc_async_data(req))
6395 return -EAGAIN;
6396
6397 switch (req->opcode) {
6398 case IORING_OP_READV:
6399 return io_rw_prep_async(req, READ);
6400 case IORING_OP_WRITEV:
6401 return io_rw_prep_async(req, WRITE);
6402 case IORING_OP_SENDMSG:
6403 return io_sendmsg_prep_async(req);
6404 case IORING_OP_RECVMSG:
6405 return io_recvmsg_prep_async(req);
6406 case IORING_OP_CONNECT:
6407 return io_connect_prep_async(req);
6408 }
6409 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6410 req->opcode);
6411 return -EFAULT;
6412 }
6413
io_get_sequence(struct io_kiocb * req)6414 static u32 io_get_sequence(struct io_kiocb *req)
6415 {
6416 u32 seq = req->ctx->cached_sq_head;
6417
6418 /* need original cached_sq_head, but it was increased for each req */
6419 io_for_each_link(req, req)
6420 seq--;
6421 return seq;
6422 }
6423
io_drain_req(struct io_kiocb * req)6424 static bool io_drain_req(struct io_kiocb *req)
6425 {
6426 struct io_kiocb *pos;
6427 struct io_ring_ctx *ctx = req->ctx;
6428 struct io_defer_entry *de;
6429 int ret;
6430 u32 seq;
6431
6432 if (req->flags & REQ_F_FAIL) {
6433 io_req_complete_fail_submit(req);
6434 return true;
6435 }
6436
6437 /*
6438 * If we need to drain a request in the middle of a link, drain the
6439 * head request and the next request/link after the current link.
6440 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6441 * maintained for every request of our link.
6442 */
6443 if (ctx->drain_next) {
6444 req->flags |= REQ_F_IO_DRAIN;
6445 ctx->drain_next = false;
6446 }
6447 /* not interested in head, start from the first linked */
6448 io_for_each_link(pos, req->link) {
6449 if (pos->flags & REQ_F_IO_DRAIN) {
6450 ctx->drain_next = true;
6451 req->flags |= REQ_F_IO_DRAIN;
6452 break;
6453 }
6454 }
6455
6456 /* Still need defer if there is pending req in defer list. */
6457 spin_lock(&ctx->completion_lock);
6458 if (likely(list_empty_careful(&ctx->defer_list) &&
6459 !(req->flags & REQ_F_IO_DRAIN))) {
6460 spin_unlock(&ctx->completion_lock);
6461 ctx->drain_active = false;
6462 return false;
6463 }
6464 spin_unlock(&ctx->completion_lock);
6465
6466 seq = io_get_sequence(req);
6467 /* Still a chance to pass the sequence check */
6468 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6469 return false;
6470
6471 ret = io_req_prep_async(req);
6472 if (ret)
6473 goto fail;
6474 io_prep_async_link(req);
6475 de = kmalloc(sizeof(*de), GFP_KERNEL);
6476 if (!de) {
6477 ret = -ENOMEM;
6478 fail:
6479 io_req_complete_failed(req, ret);
6480 return true;
6481 }
6482
6483 spin_lock(&ctx->completion_lock);
6484 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6485 spin_unlock(&ctx->completion_lock);
6486 kfree(de);
6487 io_queue_async_work(req, NULL);
6488 return true;
6489 }
6490
6491 trace_io_uring_defer(ctx, req, req->user_data);
6492 de->req = req;
6493 de->seq = seq;
6494 list_add_tail(&de->list, &ctx->defer_list);
6495 spin_unlock(&ctx->completion_lock);
6496 return true;
6497 }
6498
io_clean_op(struct io_kiocb * req)6499 static void io_clean_op(struct io_kiocb *req)
6500 {
6501 if (req->flags & REQ_F_BUFFER_SELECTED) {
6502 switch (req->opcode) {
6503 case IORING_OP_READV:
6504 case IORING_OP_READ_FIXED:
6505 case IORING_OP_READ:
6506 kfree((void *)(unsigned long)req->rw.addr);
6507 break;
6508 case IORING_OP_RECVMSG:
6509 case IORING_OP_RECV:
6510 kfree(req->sr_msg.kbuf);
6511 break;
6512 }
6513 }
6514
6515 if (req->flags & REQ_F_NEED_CLEANUP) {
6516 switch (req->opcode) {
6517 case IORING_OP_READV:
6518 case IORING_OP_READ_FIXED:
6519 case IORING_OP_READ:
6520 case IORING_OP_WRITEV:
6521 case IORING_OP_WRITE_FIXED:
6522 case IORING_OP_WRITE: {
6523 struct io_async_rw *io = req->async_data;
6524
6525 kfree(io->free_iovec);
6526 break;
6527 }
6528 case IORING_OP_RECVMSG:
6529 case IORING_OP_SENDMSG: {
6530 struct io_async_msghdr *io = req->async_data;
6531
6532 kfree(io->free_iov);
6533 break;
6534 }
6535 case IORING_OP_OPENAT:
6536 case IORING_OP_OPENAT2:
6537 if (req->open.filename)
6538 putname(req->open.filename);
6539 break;
6540 case IORING_OP_RENAMEAT:
6541 putname(req->rename.oldpath);
6542 putname(req->rename.newpath);
6543 break;
6544 case IORING_OP_UNLINKAT:
6545 putname(req->unlink.filename);
6546 break;
6547 }
6548 }
6549 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6550 kfree(req->apoll->double_poll);
6551 kfree(req->apoll);
6552 req->apoll = NULL;
6553 }
6554 if (req->flags & REQ_F_INFLIGHT) {
6555 struct io_uring_task *tctx = req->task->io_uring;
6556
6557 atomic_dec(&tctx->inflight_tracked);
6558 }
6559 if (req->flags & REQ_F_CREDS)
6560 put_cred(req->creds);
6561
6562 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6563 }
6564
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)6565 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6566 {
6567 struct io_ring_ctx *ctx = req->ctx;
6568 const struct cred *creds = NULL;
6569 int ret;
6570
6571 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6572 creds = override_creds(req->creds);
6573
6574 switch (req->opcode) {
6575 case IORING_OP_NOP:
6576 ret = io_nop(req, issue_flags);
6577 break;
6578 case IORING_OP_READV:
6579 case IORING_OP_READ_FIXED:
6580 case IORING_OP_READ:
6581 ret = io_read(req, issue_flags);
6582 break;
6583 case IORING_OP_WRITEV:
6584 case IORING_OP_WRITE_FIXED:
6585 case IORING_OP_WRITE:
6586 ret = io_write(req, issue_flags);
6587 break;
6588 case IORING_OP_FSYNC:
6589 ret = io_fsync(req, issue_flags);
6590 break;
6591 case IORING_OP_POLL_ADD:
6592 ret = io_poll_add(req, issue_flags);
6593 break;
6594 case IORING_OP_POLL_REMOVE:
6595 ret = io_poll_update(req, issue_flags);
6596 break;
6597 case IORING_OP_SYNC_FILE_RANGE:
6598 ret = io_sync_file_range(req, issue_flags);
6599 break;
6600 case IORING_OP_SENDMSG:
6601 ret = io_sendmsg(req, issue_flags);
6602 break;
6603 case IORING_OP_SEND:
6604 ret = io_send(req, issue_flags);
6605 break;
6606 case IORING_OP_RECVMSG:
6607 ret = io_recvmsg(req, issue_flags);
6608 break;
6609 case IORING_OP_RECV:
6610 ret = io_recv(req, issue_flags);
6611 break;
6612 case IORING_OP_TIMEOUT:
6613 ret = io_timeout(req, issue_flags);
6614 break;
6615 case IORING_OP_TIMEOUT_REMOVE:
6616 ret = io_timeout_remove(req, issue_flags);
6617 break;
6618 case IORING_OP_ACCEPT:
6619 ret = io_accept(req, issue_flags);
6620 break;
6621 case IORING_OP_CONNECT:
6622 ret = io_connect(req, issue_flags);
6623 break;
6624 case IORING_OP_ASYNC_CANCEL:
6625 ret = io_async_cancel(req, issue_flags);
6626 break;
6627 case IORING_OP_FALLOCATE:
6628 ret = io_fallocate(req, issue_flags);
6629 break;
6630 case IORING_OP_OPENAT:
6631 ret = io_openat(req, issue_flags);
6632 break;
6633 case IORING_OP_CLOSE:
6634 ret = io_close(req, issue_flags);
6635 break;
6636 case IORING_OP_FILES_UPDATE:
6637 ret = io_files_update(req, issue_flags);
6638 break;
6639 case IORING_OP_STATX:
6640 ret = io_statx(req, issue_flags);
6641 break;
6642 case IORING_OP_FADVISE:
6643 ret = io_fadvise(req, issue_flags);
6644 break;
6645 case IORING_OP_MADVISE:
6646 ret = io_madvise(req, issue_flags);
6647 break;
6648 case IORING_OP_OPENAT2:
6649 ret = io_openat2(req, issue_flags);
6650 break;
6651 case IORING_OP_EPOLL_CTL:
6652 ret = io_epoll_ctl(req, issue_flags);
6653 break;
6654 case IORING_OP_SPLICE:
6655 ret = io_splice(req, issue_flags);
6656 break;
6657 case IORING_OP_PROVIDE_BUFFERS:
6658 ret = io_provide_buffers(req, issue_flags);
6659 break;
6660 case IORING_OP_REMOVE_BUFFERS:
6661 ret = io_remove_buffers(req, issue_flags);
6662 break;
6663 case IORING_OP_TEE:
6664 ret = io_tee(req, issue_flags);
6665 break;
6666 case IORING_OP_SHUTDOWN:
6667 ret = io_shutdown(req, issue_flags);
6668 break;
6669 case IORING_OP_RENAMEAT:
6670 ret = io_renameat(req, issue_flags);
6671 break;
6672 case IORING_OP_UNLINKAT:
6673 ret = io_unlinkat(req, issue_flags);
6674 break;
6675 default:
6676 ret = -EINVAL;
6677 break;
6678 }
6679
6680 if (creds)
6681 revert_creds(creds);
6682 if (ret)
6683 return ret;
6684 /* If the op doesn't have a file, we're not polling for it */
6685 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6686 io_iopoll_req_issued(req);
6687
6688 return 0;
6689 }
6690
io_wq_free_work(struct io_wq_work * work)6691 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6692 {
6693 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6694
6695 req = io_put_req_find_next(req);
6696 return req ? &req->work : NULL;
6697 }
6698
io_wq_submit_work(struct io_wq_work * work)6699 static void io_wq_submit_work(struct io_wq_work *work)
6700 {
6701 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6702 struct io_kiocb *timeout;
6703 int ret = 0;
6704
6705 /* one will be dropped by ->io_free_work() after returning to io-wq */
6706 if (!(req->flags & REQ_F_REFCOUNT))
6707 __io_req_set_refcount(req, 2);
6708 else
6709 req_ref_get(req);
6710
6711 timeout = io_prep_linked_timeout(req);
6712 if (timeout)
6713 io_queue_linked_timeout(timeout);
6714
6715 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6716 if (work->flags & IO_WQ_WORK_CANCEL)
6717 ret = -ECANCELED;
6718
6719 if (!ret) {
6720 do {
6721 ret = io_issue_sqe(req, 0);
6722 /*
6723 * We can get EAGAIN for polled IO even though we're
6724 * forcing a sync submission from here, since we can't
6725 * wait for request slots on the block side.
6726 */
6727 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6728 break;
6729 cond_resched();
6730 } while (1);
6731 }
6732
6733 /* avoid locking problems by failing it from a clean context */
6734 if (ret)
6735 io_req_task_queue_fail(req, ret);
6736 }
6737
io_fixed_file_slot(struct io_file_table * table,unsigned i)6738 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6739 unsigned i)
6740 {
6741 return &table->files[i];
6742 }
6743
io_file_from_index(struct io_ring_ctx * ctx,int index)6744 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6745 int index)
6746 {
6747 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6748
6749 return (struct file *) (slot->file_ptr & FFS_MASK);
6750 }
6751
io_fixed_file_set(struct io_fixed_file * file_slot,struct file * file)6752 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6753 {
6754 unsigned long file_ptr = (unsigned long) file;
6755
6756 if (__io_file_supports_nowait(file, READ))
6757 file_ptr |= FFS_ASYNC_READ;
6758 if (__io_file_supports_nowait(file, WRITE))
6759 file_ptr |= FFS_ASYNC_WRITE;
6760 if (S_ISREG(file_inode(file)->i_mode))
6761 file_ptr |= FFS_ISREG;
6762 file_slot->file_ptr = file_ptr;
6763 }
6764
io_file_get_fixed(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd)6765 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6766 struct io_kiocb *req, int fd)
6767 {
6768 struct file *file;
6769 unsigned long file_ptr;
6770
6771 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6772 return NULL;
6773 fd = array_index_nospec(fd, ctx->nr_user_files);
6774 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6775 file = (struct file *) (file_ptr & FFS_MASK);
6776 file_ptr &= ~FFS_MASK;
6777 /* mask in overlapping REQ_F and FFS bits */
6778 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6779 io_req_set_rsrc_node(req);
6780 return file;
6781 }
6782
io_file_get_normal(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd)6783 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6784 struct io_kiocb *req, int fd)
6785 {
6786 struct file *file = fget(fd);
6787
6788 trace_io_uring_file_get(ctx, fd);
6789
6790 /* we don't allow fixed io_uring files */
6791 if (file && unlikely(file->f_op == &io_uring_fops))
6792 io_req_track_inflight(req);
6793 return file;
6794 }
6795
io_file_get(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,bool fixed)6796 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6797 struct io_kiocb *req, int fd, bool fixed)
6798 {
6799 if (fixed)
6800 return io_file_get_fixed(ctx, req, fd);
6801 else
6802 return io_file_get_normal(ctx, req, fd);
6803 }
6804
io_req_task_link_timeout(struct io_kiocb * req,bool * locked)6805 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6806 {
6807 struct io_kiocb *prev = req->timeout.prev;
6808 int ret = -ENOENT;
6809
6810 if (prev) {
6811 if (!(req->task->flags & PF_EXITING))
6812 ret = io_try_cancel_userdata(req, prev->user_data);
6813 io_req_complete_post(req, ret ?: -ETIME, 0);
6814 io_put_req(prev);
6815 } else {
6816 io_req_complete_post(req, -ETIME, 0);
6817 }
6818 }
6819
io_link_timeout_fn(struct hrtimer * timer)6820 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6821 {
6822 struct io_timeout_data *data = container_of(timer,
6823 struct io_timeout_data, timer);
6824 struct io_kiocb *prev, *req = data->req;
6825 struct io_ring_ctx *ctx = req->ctx;
6826 unsigned long flags;
6827
6828 spin_lock_irqsave(&ctx->timeout_lock, flags);
6829 prev = req->timeout.head;
6830 req->timeout.head = NULL;
6831
6832 /*
6833 * We don't expect the list to be empty, that will only happen if we
6834 * race with the completion of the linked work.
6835 */
6836 if (prev) {
6837 io_remove_next_linked(prev);
6838 if (!req_ref_inc_not_zero(prev))
6839 prev = NULL;
6840 }
6841 list_del(&req->timeout.list);
6842 req->timeout.prev = prev;
6843 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6844
6845 req->io_task_work.func = io_req_task_link_timeout;
6846 io_req_task_work_add(req);
6847 return HRTIMER_NORESTART;
6848 }
6849
io_queue_linked_timeout(struct io_kiocb * req)6850 static void io_queue_linked_timeout(struct io_kiocb *req)
6851 {
6852 struct io_ring_ctx *ctx = req->ctx;
6853
6854 spin_lock_irq(&ctx->timeout_lock);
6855 /*
6856 * If the back reference is NULL, then our linked request finished
6857 * before we got a chance to setup the timer
6858 */
6859 if (req->timeout.head) {
6860 struct io_timeout_data *data = req->async_data;
6861
6862 data->timer.function = io_link_timeout_fn;
6863 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6864 data->mode);
6865 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6866 }
6867 spin_unlock_irq(&ctx->timeout_lock);
6868 /* drop submission reference */
6869 io_put_req(req);
6870 }
6871
__io_queue_sqe(struct io_kiocb * req)6872 static void __io_queue_sqe(struct io_kiocb *req)
6873 __must_hold(&req->ctx->uring_lock)
6874 {
6875 struct io_kiocb *linked_timeout;
6876 int ret;
6877
6878 issue_sqe:
6879 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6880
6881 /*
6882 * We async punt it if the file wasn't marked NOWAIT, or if the file
6883 * doesn't support non-blocking read/write attempts
6884 */
6885 if (likely(!ret)) {
6886 if (req->flags & REQ_F_COMPLETE_INLINE) {
6887 struct io_ring_ctx *ctx = req->ctx;
6888 struct io_submit_state *state = &ctx->submit_state;
6889
6890 state->compl_reqs[state->compl_nr++] = req;
6891 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
6892 io_submit_flush_completions(ctx);
6893 return;
6894 }
6895
6896 linked_timeout = io_prep_linked_timeout(req);
6897 if (linked_timeout)
6898 io_queue_linked_timeout(linked_timeout);
6899 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6900 linked_timeout = io_prep_linked_timeout(req);
6901
6902 switch (io_arm_poll_handler(req)) {
6903 case IO_APOLL_READY:
6904 if (linked_timeout)
6905 io_queue_linked_timeout(linked_timeout);
6906 goto issue_sqe;
6907 case IO_APOLL_ABORTED:
6908 /*
6909 * Queued up for async execution, worker will release
6910 * submit reference when the iocb is actually submitted.
6911 */
6912 io_queue_async_work(req, NULL);
6913 break;
6914 }
6915
6916 if (linked_timeout)
6917 io_queue_linked_timeout(linked_timeout);
6918 } else {
6919 io_req_complete_failed(req, ret);
6920 }
6921 }
6922
io_queue_sqe(struct io_kiocb * req)6923 static inline void io_queue_sqe(struct io_kiocb *req)
6924 __must_hold(&req->ctx->uring_lock)
6925 {
6926 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
6927 return;
6928
6929 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
6930 __io_queue_sqe(req);
6931 } else if (req->flags & REQ_F_FAIL) {
6932 io_req_complete_fail_submit(req);
6933 } else {
6934 int ret = io_req_prep_async(req);
6935
6936 if (unlikely(ret))
6937 io_req_complete_failed(req, ret);
6938 else
6939 io_queue_async_work(req, NULL);
6940 }
6941 }
6942
6943 /*
6944 * Check SQE restrictions (opcode and flags).
6945 *
6946 * Returns 'true' if SQE is allowed, 'false' otherwise.
6947 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)6948 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6949 struct io_kiocb *req,
6950 unsigned int sqe_flags)
6951 {
6952 if (likely(!ctx->restricted))
6953 return true;
6954
6955 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6956 return false;
6957
6958 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6959 ctx->restrictions.sqe_flags_required)
6960 return false;
6961
6962 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6963 ctx->restrictions.sqe_flags_required))
6964 return false;
6965
6966 return true;
6967 }
6968
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)6969 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6970 const struct io_uring_sqe *sqe)
6971 __must_hold(&ctx->uring_lock)
6972 {
6973 struct io_submit_state *state;
6974 unsigned int sqe_flags;
6975 int personality, ret = 0;
6976
6977 /* req is partially pre-initialised, see io_preinit_req() */
6978 req->opcode = READ_ONCE(sqe->opcode);
6979 /* same numerical values with corresponding REQ_F_*, safe to copy */
6980 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6981 req->user_data = READ_ONCE(sqe->user_data);
6982 req->file = NULL;
6983 req->fixed_rsrc_refs = NULL;
6984 req->task = current;
6985
6986 /* enforce forwards compatibility on users */
6987 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6988 return -EINVAL;
6989 if (unlikely(req->opcode >= IORING_OP_LAST))
6990 return -EINVAL;
6991 if (!io_check_restriction(ctx, req, sqe_flags))
6992 return -EACCES;
6993
6994 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6995 !io_op_defs[req->opcode].buffer_select)
6996 return -EOPNOTSUPP;
6997 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
6998 ctx->drain_active = true;
6999
7000 personality = READ_ONCE(sqe->personality);
7001 if (personality) {
7002 req->creds = xa_load(&ctx->personalities, personality);
7003 if (!req->creds)
7004 return -EINVAL;
7005 get_cred(req->creds);
7006 req->flags |= REQ_F_CREDS;
7007 }
7008 state = &ctx->submit_state;
7009
7010 /*
7011 * Plug now if we have more than 1 IO left after this, and the target
7012 * is potentially a read/write to block based storage.
7013 */
7014 if (!state->plug_started && state->ios_left > 1 &&
7015 io_op_defs[req->opcode].plug) {
7016 blk_start_plug(&state->plug);
7017 state->plug_started = true;
7018 }
7019
7020 if (io_op_defs[req->opcode].needs_file) {
7021 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7022 (sqe_flags & IOSQE_FIXED_FILE));
7023 if (unlikely(!req->file))
7024 ret = -EBADF;
7025 }
7026
7027 state->ios_left--;
7028 return ret;
7029 }
7030
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7031 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7032 const struct io_uring_sqe *sqe)
7033 __must_hold(&ctx->uring_lock)
7034 {
7035 struct io_submit_link *link = &ctx->submit_state.link;
7036 int ret;
7037
7038 ret = io_init_req(ctx, req, sqe);
7039 if (unlikely(ret)) {
7040 fail_req:
7041 /* fail even hard links since we don't submit */
7042 if (link->head) {
7043 /*
7044 * we can judge a link req is failed or cancelled by if
7045 * REQ_F_FAIL is set, but the head is an exception since
7046 * it may be set REQ_F_FAIL because of other req's failure
7047 * so let's leverage req->result to distinguish if a head
7048 * is set REQ_F_FAIL because of its failure or other req's
7049 * failure so that we can set the correct ret code for it.
7050 * init result here to avoid affecting the normal path.
7051 */
7052 if (!(link->head->flags & REQ_F_FAIL))
7053 req_fail_link_node(link->head, -ECANCELED);
7054 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7055 /*
7056 * the current req is a normal req, we should return
7057 * error and thus break the submittion loop.
7058 */
7059 io_req_complete_failed(req, ret);
7060 return ret;
7061 }
7062 req_fail_link_node(req, ret);
7063 } else {
7064 ret = io_req_prep(req, sqe);
7065 if (unlikely(ret))
7066 goto fail_req;
7067 }
7068
7069 /* don't need @sqe from now on */
7070 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7071 req->flags, true,
7072 ctx->flags & IORING_SETUP_SQPOLL);
7073
7074 /*
7075 * If we already have a head request, queue this one for async
7076 * submittal once the head completes. If we don't have a head but
7077 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7078 * submitted sync once the chain is complete. If none of those
7079 * conditions are true (normal request), then just queue it.
7080 */
7081 if (link->head) {
7082 struct io_kiocb *head = link->head;
7083
7084 if (!(req->flags & REQ_F_FAIL)) {
7085 ret = io_req_prep_async(req);
7086 if (unlikely(ret)) {
7087 req_fail_link_node(req, ret);
7088 if (!(head->flags & REQ_F_FAIL))
7089 req_fail_link_node(head, -ECANCELED);
7090 }
7091 }
7092 trace_io_uring_link(ctx, req, head);
7093 link->last->link = req;
7094 link->last = req;
7095
7096 /* last request of a link, enqueue the link */
7097 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7098 link->head = NULL;
7099 io_queue_sqe(head);
7100 }
7101 } else {
7102 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7103 link->head = req;
7104 link->last = req;
7105 } else {
7106 io_queue_sqe(req);
7107 }
7108 }
7109
7110 return 0;
7111 }
7112
7113 /*
7114 * Batched submission is done, ensure local IO is flushed out.
7115 */
io_submit_state_end(struct io_submit_state * state,struct io_ring_ctx * ctx)7116 static void io_submit_state_end(struct io_submit_state *state,
7117 struct io_ring_ctx *ctx)
7118 {
7119 if (state->link.head)
7120 io_queue_sqe(state->link.head);
7121 if (state->compl_nr)
7122 io_submit_flush_completions(ctx);
7123 if (state->plug_started)
7124 blk_finish_plug(&state->plug);
7125 }
7126
7127 /*
7128 * Start submission side cache.
7129 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)7130 static void io_submit_state_start(struct io_submit_state *state,
7131 unsigned int max_ios)
7132 {
7133 state->plug_started = false;
7134 state->ios_left = max_ios;
7135 /* set only head, no need to init link_last in advance */
7136 state->link.head = NULL;
7137 }
7138
io_commit_sqring(struct io_ring_ctx * ctx)7139 static void io_commit_sqring(struct io_ring_ctx *ctx)
7140 {
7141 struct io_rings *rings = ctx->rings;
7142
7143 /*
7144 * Ensure any loads from the SQEs are done at this point,
7145 * since once we write the new head, the application could
7146 * write new data to them.
7147 */
7148 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7149 }
7150
7151 /*
7152 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7153 * that is mapped by userspace. This means that care needs to be taken to
7154 * ensure that reads are stable, as we cannot rely on userspace always
7155 * being a good citizen. If members of the sqe are validated and then later
7156 * used, it's important that those reads are done through READ_ONCE() to
7157 * prevent a re-load down the line.
7158 */
io_get_sqe(struct io_ring_ctx * ctx)7159 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7160 {
7161 unsigned head, mask = ctx->sq_entries - 1;
7162 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7163
7164 /*
7165 * The cached sq head (or cq tail) serves two purposes:
7166 *
7167 * 1) allows us to batch the cost of updating the user visible
7168 * head updates.
7169 * 2) allows the kernel side to track the head on its own, even
7170 * though the application is the one updating it.
7171 */
7172 head = READ_ONCE(ctx->sq_array[sq_idx]);
7173 if (likely(head < ctx->sq_entries))
7174 return &ctx->sq_sqes[head];
7175
7176 /* drop invalid entries */
7177 ctx->cq_extra--;
7178 WRITE_ONCE(ctx->rings->sq_dropped,
7179 READ_ONCE(ctx->rings->sq_dropped) + 1);
7180 return NULL;
7181 }
7182
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)7183 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7184 __must_hold(&ctx->uring_lock)
7185 {
7186 int submitted = 0;
7187
7188 /* make sure SQ entry isn't read before tail */
7189 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7190 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7191 return -EAGAIN;
7192 io_get_task_refs(nr);
7193
7194 io_submit_state_start(&ctx->submit_state, nr);
7195 while (submitted < nr) {
7196 const struct io_uring_sqe *sqe;
7197 struct io_kiocb *req;
7198
7199 req = io_alloc_req(ctx);
7200 if (unlikely(!req)) {
7201 if (!submitted)
7202 submitted = -EAGAIN;
7203 break;
7204 }
7205 sqe = io_get_sqe(ctx);
7206 if (unlikely(!sqe)) {
7207 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7208 break;
7209 }
7210 /* will complete beyond this point, count as submitted */
7211 submitted++;
7212 if (io_submit_sqe(ctx, req, sqe))
7213 break;
7214 }
7215
7216 if (unlikely(submitted != nr)) {
7217 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7218 int unused = nr - ref_used;
7219
7220 current->io_uring->cached_refs += unused;
7221 percpu_ref_put_many(&ctx->refs, unused);
7222 }
7223
7224 io_submit_state_end(&ctx->submit_state, ctx);
7225 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7226 io_commit_sqring(ctx);
7227
7228 return submitted;
7229 }
7230
io_sqd_events_pending(struct io_sq_data * sqd)7231 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7232 {
7233 return READ_ONCE(sqd->state);
7234 }
7235
io_ring_set_wakeup_flag(struct io_ring_ctx * ctx)7236 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7237 {
7238 /* Tell userspace we may need a wakeup call */
7239 spin_lock(&ctx->completion_lock);
7240 WRITE_ONCE(ctx->rings->sq_flags,
7241 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7242 spin_unlock(&ctx->completion_lock);
7243 }
7244
io_ring_clear_wakeup_flag(struct io_ring_ctx * ctx)7245 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7246 {
7247 spin_lock(&ctx->completion_lock);
7248 WRITE_ONCE(ctx->rings->sq_flags,
7249 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7250 spin_unlock(&ctx->completion_lock);
7251 }
7252
__io_sq_thread(struct io_ring_ctx * ctx,bool cap_entries)7253 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7254 {
7255 unsigned int to_submit;
7256 int ret = 0;
7257
7258 to_submit = io_sqring_entries(ctx);
7259 /* if we're handling multiple rings, cap submit size for fairness */
7260 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7261 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7262
7263 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7264 unsigned nr_events = 0;
7265 const struct cred *creds = NULL;
7266
7267 if (ctx->sq_creds != current_cred())
7268 creds = override_creds(ctx->sq_creds);
7269
7270 mutex_lock(&ctx->uring_lock);
7271 if (!list_empty(&ctx->iopoll_list))
7272 io_do_iopoll(ctx, &nr_events, 0);
7273
7274 /*
7275 * Don't submit if refs are dying, good for io_uring_register(),
7276 * but also it is relied upon by io_ring_exit_work()
7277 */
7278 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7279 !(ctx->flags & IORING_SETUP_R_DISABLED))
7280 ret = io_submit_sqes(ctx, to_submit);
7281 mutex_unlock(&ctx->uring_lock);
7282
7283 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7284 wake_up(&ctx->sqo_sq_wait);
7285 if (creds)
7286 revert_creds(creds);
7287 }
7288
7289 return ret;
7290 }
7291
io_sqd_update_thread_idle(struct io_sq_data * sqd)7292 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7293 {
7294 struct io_ring_ctx *ctx;
7295 unsigned sq_thread_idle = 0;
7296
7297 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7298 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7299 sqd->sq_thread_idle = sq_thread_idle;
7300 }
7301
io_sqd_handle_event(struct io_sq_data * sqd)7302 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7303 {
7304 bool did_sig = false;
7305 struct ksignal ksig;
7306
7307 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7308 signal_pending(current)) {
7309 mutex_unlock(&sqd->lock);
7310 if (signal_pending(current))
7311 did_sig = get_signal(&ksig);
7312 cond_resched();
7313 mutex_lock(&sqd->lock);
7314 }
7315 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7316 }
7317
io_sq_thread(void * data)7318 static int io_sq_thread(void *data)
7319 {
7320 struct io_sq_data *sqd = data;
7321 struct io_ring_ctx *ctx;
7322 unsigned long timeout = 0;
7323 char buf[TASK_COMM_LEN];
7324 DEFINE_WAIT(wait);
7325
7326 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7327 set_task_comm(current, buf);
7328
7329 if (sqd->sq_cpu != -1)
7330 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7331 else
7332 set_cpus_allowed_ptr(current, cpu_online_mask);
7333 current->flags |= PF_NO_SETAFFINITY;
7334
7335 mutex_lock(&sqd->lock);
7336 while (1) {
7337 bool cap_entries, sqt_spin = false;
7338
7339 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7340 if (io_sqd_handle_event(sqd))
7341 break;
7342 timeout = jiffies + sqd->sq_thread_idle;
7343 }
7344
7345 cap_entries = !list_is_singular(&sqd->ctx_list);
7346 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7347 int ret = __io_sq_thread(ctx, cap_entries);
7348
7349 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7350 sqt_spin = true;
7351 }
7352 if (io_run_task_work())
7353 sqt_spin = true;
7354
7355 if (sqt_spin || !time_after(jiffies, timeout)) {
7356 cond_resched();
7357 if (sqt_spin)
7358 timeout = jiffies + sqd->sq_thread_idle;
7359 continue;
7360 }
7361
7362 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7363 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7364 bool needs_sched = true;
7365
7366 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7367 io_ring_set_wakeup_flag(ctx);
7368
7369 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7370 !list_empty_careful(&ctx->iopoll_list)) {
7371 needs_sched = false;
7372 break;
7373 }
7374 if (io_sqring_entries(ctx)) {
7375 needs_sched = false;
7376 break;
7377 }
7378 }
7379
7380 if (needs_sched) {
7381 mutex_unlock(&sqd->lock);
7382 schedule();
7383 mutex_lock(&sqd->lock);
7384 }
7385 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7386 io_ring_clear_wakeup_flag(ctx);
7387 }
7388
7389 finish_wait(&sqd->wait, &wait);
7390 timeout = jiffies + sqd->sq_thread_idle;
7391 }
7392
7393 io_uring_cancel_generic(true, sqd);
7394 sqd->thread = NULL;
7395 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7396 io_ring_set_wakeup_flag(ctx);
7397 io_run_task_work();
7398 mutex_unlock(&sqd->lock);
7399
7400 complete(&sqd->exited);
7401 do_exit(0);
7402 }
7403
7404 struct io_wait_queue {
7405 struct wait_queue_entry wq;
7406 struct io_ring_ctx *ctx;
7407 unsigned cq_tail;
7408 unsigned nr_timeouts;
7409 };
7410
io_should_wake(struct io_wait_queue * iowq)7411 static inline bool io_should_wake(struct io_wait_queue *iowq)
7412 {
7413 struct io_ring_ctx *ctx = iowq->ctx;
7414 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7415
7416 /*
7417 * Wake up if we have enough events, or if a timeout occurred since we
7418 * started waiting. For timeouts, we always want to return to userspace,
7419 * regardless of event count.
7420 */
7421 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7422 }
7423
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)7424 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7425 int wake_flags, void *key)
7426 {
7427 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7428 wq);
7429
7430 /*
7431 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7432 * the task, and the next invocation will do it.
7433 */
7434 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7435 return autoremove_wake_function(curr, mode, wake_flags, key);
7436 return -1;
7437 }
7438
io_run_task_work_sig(void)7439 static int io_run_task_work_sig(void)
7440 {
7441 if (io_run_task_work())
7442 return 1;
7443 if (!signal_pending(current))
7444 return 0;
7445 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7446 return -ERESTARTSYS;
7447 return -EINTR;
7448 }
7449
7450 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t timeout)7451 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7452 struct io_wait_queue *iowq,
7453 ktime_t timeout)
7454 {
7455 int ret;
7456
7457 /* make sure we run task_work before checking for signals */
7458 ret = io_run_task_work_sig();
7459 if (ret || io_should_wake(iowq))
7460 return ret;
7461 /* let the caller flush overflows, retry */
7462 if (test_bit(0, &ctx->check_cq_overflow))
7463 return 1;
7464
7465 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7466 return -ETIME;
7467 return 1;
7468 }
7469
7470 /*
7471 * Wait until events become available, if we don't already have some. The
7472 * application must reap them itself, as they reside on the shared cq ring.
7473 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)7474 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7475 const sigset_t __user *sig, size_t sigsz,
7476 struct __kernel_timespec __user *uts)
7477 {
7478 struct io_wait_queue iowq;
7479 struct io_rings *rings = ctx->rings;
7480 ktime_t timeout = KTIME_MAX;
7481 int ret;
7482
7483 do {
7484 io_cqring_overflow_flush(ctx);
7485 if (io_cqring_events(ctx) >= min_events)
7486 return 0;
7487 if (!io_run_task_work())
7488 break;
7489 } while (1);
7490
7491 if (uts) {
7492 struct timespec64 ts;
7493
7494 if (get_timespec64(&ts, uts))
7495 return -EFAULT;
7496 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7497 }
7498
7499 if (sig) {
7500 #ifdef CONFIG_COMPAT
7501 if (in_compat_syscall())
7502 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7503 sigsz);
7504 else
7505 #endif
7506 ret = set_user_sigmask(sig, sigsz);
7507
7508 if (ret)
7509 return ret;
7510 }
7511
7512 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7513 iowq.wq.private = current;
7514 INIT_LIST_HEAD(&iowq.wq.entry);
7515 iowq.ctx = ctx;
7516 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7517 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7518
7519 trace_io_uring_cqring_wait(ctx, min_events);
7520 do {
7521 /* if we can't even flush overflow, don't wait for more */
7522 if (!io_cqring_overflow_flush(ctx)) {
7523 ret = -EBUSY;
7524 break;
7525 }
7526 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7527 TASK_INTERRUPTIBLE);
7528 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7529 finish_wait(&ctx->cq_wait, &iowq.wq);
7530 cond_resched();
7531 } while (ret > 0);
7532
7533 restore_saved_sigmask_unless(ret == -EINTR);
7534
7535 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7536 }
7537
io_free_page_table(void ** table,size_t size)7538 static void io_free_page_table(void **table, size_t size)
7539 {
7540 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7541
7542 for (i = 0; i < nr_tables; i++)
7543 kfree(table[i]);
7544 kfree(table);
7545 }
7546
io_alloc_page_table(size_t size)7547 static void **io_alloc_page_table(size_t size)
7548 {
7549 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7550 size_t init_size = size;
7551 void **table;
7552
7553 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7554 if (!table)
7555 return NULL;
7556
7557 for (i = 0; i < nr_tables; i++) {
7558 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7559
7560 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7561 if (!table[i]) {
7562 io_free_page_table(table, init_size);
7563 return NULL;
7564 }
7565 size -= this_size;
7566 }
7567 return table;
7568 }
7569
io_rsrc_node_destroy(struct io_rsrc_node * ref_node)7570 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7571 {
7572 percpu_ref_exit(&ref_node->refs);
7573 kfree(ref_node);
7574 }
7575
io_rsrc_node_ref_zero(struct percpu_ref * ref)7576 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7577 {
7578 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7579 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7580 unsigned long flags;
7581 bool first_add = false;
7582 unsigned long delay = HZ;
7583
7584 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7585 node->done = true;
7586
7587 /* if we are mid-quiesce then do not delay */
7588 if (node->rsrc_data->quiesce)
7589 delay = 0;
7590
7591 while (!list_empty(&ctx->rsrc_ref_list)) {
7592 node = list_first_entry(&ctx->rsrc_ref_list,
7593 struct io_rsrc_node, node);
7594 /* recycle ref nodes in order */
7595 if (!node->done)
7596 break;
7597 list_del(&node->node);
7598 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7599 }
7600 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7601
7602 if (first_add)
7603 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7604 }
7605
io_rsrc_node_alloc(struct io_ring_ctx * ctx)7606 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7607 {
7608 struct io_rsrc_node *ref_node;
7609
7610 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7611 if (!ref_node)
7612 return NULL;
7613
7614 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7615 0, GFP_KERNEL)) {
7616 kfree(ref_node);
7617 return NULL;
7618 }
7619 INIT_LIST_HEAD(&ref_node->node);
7620 INIT_LIST_HEAD(&ref_node->rsrc_list);
7621 ref_node->done = false;
7622 return ref_node;
7623 }
7624
io_rsrc_node_switch(struct io_ring_ctx * ctx,struct io_rsrc_data * data_to_kill)7625 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7626 struct io_rsrc_data *data_to_kill)
7627 {
7628 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7629 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7630
7631 if (data_to_kill) {
7632 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7633
7634 rsrc_node->rsrc_data = data_to_kill;
7635 spin_lock_irq(&ctx->rsrc_ref_lock);
7636 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7637 spin_unlock_irq(&ctx->rsrc_ref_lock);
7638
7639 atomic_inc(&data_to_kill->refs);
7640 percpu_ref_kill(&rsrc_node->refs);
7641 ctx->rsrc_node = NULL;
7642 }
7643
7644 if (!ctx->rsrc_node) {
7645 ctx->rsrc_node = ctx->rsrc_backup_node;
7646 ctx->rsrc_backup_node = NULL;
7647 }
7648 }
7649
io_rsrc_node_switch_start(struct io_ring_ctx * ctx)7650 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7651 {
7652 if (ctx->rsrc_backup_node)
7653 return 0;
7654 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7655 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7656 }
7657
io_rsrc_ref_quiesce(struct io_rsrc_data * data,struct io_ring_ctx * ctx)7658 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7659 {
7660 int ret;
7661
7662 /* As we may drop ->uring_lock, other task may have started quiesce */
7663 if (data->quiesce)
7664 return -ENXIO;
7665
7666 data->quiesce = true;
7667 do {
7668 ret = io_rsrc_node_switch_start(ctx);
7669 if (ret)
7670 break;
7671 io_rsrc_node_switch(ctx, data);
7672
7673 /* kill initial ref, already quiesced if zero */
7674 if (atomic_dec_and_test(&data->refs))
7675 break;
7676 mutex_unlock(&ctx->uring_lock);
7677 flush_delayed_work(&ctx->rsrc_put_work);
7678 ret = wait_for_completion_interruptible(&data->done);
7679 if (!ret) {
7680 mutex_lock(&ctx->uring_lock);
7681 if (atomic_read(&data->refs) > 0) {
7682 /*
7683 * it has been revived by another thread while
7684 * we were unlocked
7685 */
7686 mutex_unlock(&ctx->uring_lock);
7687 } else {
7688 break;
7689 }
7690 }
7691
7692 atomic_inc(&data->refs);
7693 /* wait for all works potentially completing data->done */
7694 flush_delayed_work(&ctx->rsrc_put_work);
7695 reinit_completion(&data->done);
7696
7697 ret = io_run_task_work_sig();
7698 mutex_lock(&ctx->uring_lock);
7699 } while (ret >= 0);
7700 data->quiesce = false;
7701
7702 return ret;
7703 }
7704
io_get_tag_slot(struct io_rsrc_data * data,unsigned int idx)7705 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7706 {
7707 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7708 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7709
7710 return &data->tags[table_idx][off];
7711 }
7712
io_rsrc_data_free(struct io_rsrc_data * data)7713 static void io_rsrc_data_free(struct io_rsrc_data *data)
7714 {
7715 size_t size = data->nr * sizeof(data->tags[0][0]);
7716
7717 if (data->tags)
7718 io_free_page_table((void **)data->tags, size);
7719 kfree(data);
7720 }
7721
io_rsrc_data_alloc(struct io_ring_ctx * ctx,rsrc_put_fn * do_put,u64 __user * utags,unsigned nr,struct io_rsrc_data ** pdata)7722 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7723 u64 __user *utags, unsigned nr,
7724 struct io_rsrc_data **pdata)
7725 {
7726 struct io_rsrc_data *data;
7727 int ret = -ENOMEM;
7728 unsigned i;
7729
7730 data = kzalloc(sizeof(*data), GFP_KERNEL);
7731 if (!data)
7732 return -ENOMEM;
7733 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7734 if (!data->tags) {
7735 kfree(data);
7736 return -ENOMEM;
7737 }
7738
7739 data->nr = nr;
7740 data->ctx = ctx;
7741 data->do_put = do_put;
7742 if (utags) {
7743 ret = -EFAULT;
7744 for (i = 0; i < nr; i++) {
7745 u64 *tag_slot = io_get_tag_slot(data, i);
7746
7747 if (copy_from_user(tag_slot, &utags[i],
7748 sizeof(*tag_slot)))
7749 goto fail;
7750 }
7751 }
7752
7753 atomic_set(&data->refs, 1);
7754 init_completion(&data->done);
7755 *pdata = data;
7756 return 0;
7757 fail:
7758 io_rsrc_data_free(data);
7759 return ret;
7760 }
7761
io_alloc_file_tables(struct io_file_table * table,unsigned nr_files)7762 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7763 {
7764 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7765 GFP_KERNEL_ACCOUNT);
7766 return !!table->files;
7767 }
7768
io_free_file_tables(struct io_file_table * table)7769 static void io_free_file_tables(struct io_file_table *table)
7770 {
7771 kvfree(table->files);
7772 table->files = NULL;
7773 }
7774
__io_sqe_files_unregister(struct io_ring_ctx * ctx)7775 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7776 {
7777 #if defined(CONFIG_UNIX)
7778 if (ctx->ring_sock) {
7779 struct sock *sock = ctx->ring_sock->sk;
7780 struct sk_buff *skb;
7781
7782 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7783 kfree_skb(skb);
7784 }
7785 #else
7786 int i;
7787
7788 for (i = 0; i < ctx->nr_user_files; i++) {
7789 struct file *file;
7790
7791 file = io_file_from_index(ctx, i);
7792 if (file)
7793 fput(file);
7794 }
7795 #endif
7796 io_free_file_tables(&ctx->file_table);
7797 io_rsrc_data_free(ctx->file_data);
7798 ctx->file_data = NULL;
7799 ctx->nr_user_files = 0;
7800 }
7801
io_sqe_files_unregister(struct io_ring_ctx * ctx)7802 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7803 {
7804 unsigned nr = ctx->nr_user_files;
7805 int ret;
7806
7807 if (!ctx->file_data)
7808 return -ENXIO;
7809
7810 /*
7811 * Quiesce may unlock ->uring_lock, and while it's not held
7812 * prevent new requests using the table.
7813 */
7814 ctx->nr_user_files = 0;
7815 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7816 ctx->nr_user_files = nr;
7817 if (!ret)
7818 __io_sqe_files_unregister(ctx);
7819 return ret;
7820 }
7821
io_sq_thread_unpark(struct io_sq_data * sqd)7822 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7823 __releases(&sqd->lock)
7824 {
7825 WARN_ON_ONCE(sqd->thread == current);
7826
7827 /*
7828 * Do the dance but not conditional clear_bit() because it'd race with
7829 * other threads incrementing park_pending and setting the bit.
7830 */
7831 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7832 if (atomic_dec_return(&sqd->park_pending))
7833 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7834 mutex_unlock(&sqd->lock);
7835 }
7836
io_sq_thread_park(struct io_sq_data * sqd)7837 static void io_sq_thread_park(struct io_sq_data *sqd)
7838 __acquires(&sqd->lock)
7839 {
7840 WARN_ON_ONCE(sqd->thread == current);
7841
7842 atomic_inc(&sqd->park_pending);
7843 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7844 mutex_lock(&sqd->lock);
7845 if (sqd->thread)
7846 wake_up_process(sqd->thread);
7847 }
7848
io_sq_thread_stop(struct io_sq_data * sqd)7849 static void io_sq_thread_stop(struct io_sq_data *sqd)
7850 {
7851 WARN_ON_ONCE(sqd->thread == current);
7852 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7853
7854 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7855 mutex_lock(&sqd->lock);
7856 if (sqd->thread)
7857 wake_up_process(sqd->thread);
7858 mutex_unlock(&sqd->lock);
7859 wait_for_completion(&sqd->exited);
7860 }
7861
io_put_sq_data(struct io_sq_data * sqd)7862 static void io_put_sq_data(struct io_sq_data *sqd)
7863 {
7864 if (refcount_dec_and_test(&sqd->refs)) {
7865 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7866
7867 io_sq_thread_stop(sqd);
7868 kfree(sqd);
7869 }
7870 }
7871
io_sq_thread_finish(struct io_ring_ctx * ctx)7872 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7873 {
7874 struct io_sq_data *sqd = ctx->sq_data;
7875
7876 if (sqd) {
7877 io_sq_thread_park(sqd);
7878 list_del_init(&ctx->sqd_list);
7879 io_sqd_update_thread_idle(sqd);
7880 io_sq_thread_unpark(sqd);
7881
7882 io_put_sq_data(sqd);
7883 ctx->sq_data = NULL;
7884 }
7885 }
7886
io_attach_sq_data(struct io_uring_params * p)7887 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7888 {
7889 struct io_ring_ctx *ctx_attach;
7890 struct io_sq_data *sqd;
7891 struct fd f;
7892
7893 f = fdget(p->wq_fd);
7894 if (!f.file)
7895 return ERR_PTR(-ENXIO);
7896 if (f.file->f_op != &io_uring_fops) {
7897 fdput(f);
7898 return ERR_PTR(-EINVAL);
7899 }
7900
7901 ctx_attach = f.file->private_data;
7902 sqd = ctx_attach->sq_data;
7903 if (!sqd) {
7904 fdput(f);
7905 return ERR_PTR(-EINVAL);
7906 }
7907 if (sqd->task_tgid != current->tgid) {
7908 fdput(f);
7909 return ERR_PTR(-EPERM);
7910 }
7911
7912 refcount_inc(&sqd->refs);
7913 fdput(f);
7914 return sqd;
7915 }
7916
io_get_sq_data(struct io_uring_params * p,bool * attached)7917 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7918 bool *attached)
7919 {
7920 struct io_sq_data *sqd;
7921
7922 *attached = false;
7923 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7924 sqd = io_attach_sq_data(p);
7925 if (!IS_ERR(sqd)) {
7926 *attached = true;
7927 return sqd;
7928 }
7929 /* fall through for EPERM case, setup new sqd/task */
7930 if (PTR_ERR(sqd) != -EPERM)
7931 return sqd;
7932 }
7933
7934 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7935 if (!sqd)
7936 return ERR_PTR(-ENOMEM);
7937
7938 atomic_set(&sqd->park_pending, 0);
7939 refcount_set(&sqd->refs, 1);
7940 INIT_LIST_HEAD(&sqd->ctx_list);
7941 mutex_init(&sqd->lock);
7942 init_waitqueue_head(&sqd->wait);
7943 init_completion(&sqd->exited);
7944 return sqd;
7945 }
7946
7947 #if defined(CONFIG_UNIX)
7948 /*
7949 * Ensure the UNIX gc is aware of our file set, so we are certain that
7950 * the io_uring can be safely unregistered on process exit, even if we have
7951 * loops in the file referencing.
7952 */
__io_sqe_files_scm(struct io_ring_ctx * ctx,int nr,int offset)7953 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7954 {
7955 struct sock *sk = ctx->ring_sock->sk;
7956 struct scm_fp_list *fpl;
7957 struct sk_buff *skb;
7958 int i, nr_files;
7959
7960 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7961 if (!fpl)
7962 return -ENOMEM;
7963
7964 skb = alloc_skb(0, GFP_KERNEL);
7965 if (!skb) {
7966 kfree(fpl);
7967 return -ENOMEM;
7968 }
7969
7970 skb->sk = sk;
7971 skb->scm_io_uring = 1;
7972
7973 nr_files = 0;
7974 fpl->user = get_uid(current_user());
7975 for (i = 0; i < nr; i++) {
7976 struct file *file = io_file_from_index(ctx, i + offset);
7977
7978 if (!file)
7979 continue;
7980 fpl->fp[nr_files] = get_file(file);
7981 unix_inflight(fpl->user, fpl->fp[nr_files]);
7982 nr_files++;
7983 }
7984
7985 if (nr_files) {
7986 fpl->max = SCM_MAX_FD;
7987 fpl->count = nr_files;
7988 UNIXCB(skb).fp = fpl;
7989 skb->destructor = unix_destruct_scm;
7990 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7991 skb_queue_head(&sk->sk_receive_queue, skb);
7992
7993 for (i = 0; i < nr; i++) {
7994 struct file *file = io_file_from_index(ctx, i + offset);
7995
7996 if (file)
7997 fput(file);
7998 }
7999 } else {
8000 kfree_skb(skb);
8001 free_uid(fpl->user);
8002 kfree(fpl);
8003 }
8004
8005 return 0;
8006 }
8007
8008 /*
8009 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8010 * causes regular reference counting to break down. We rely on the UNIX
8011 * garbage collection to take care of this problem for us.
8012 */
io_sqe_files_scm(struct io_ring_ctx * ctx)8013 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8014 {
8015 unsigned left, total;
8016 int ret = 0;
8017
8018 total = 0;
8019 left = ctx->nr_user_files;
8020 while (left) {
8021 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8022
8023 ret = __io_sqe_files_scm(ctx, this_files, total);
8024 if (ret)
8025 break;
8026 left -= this_files;
8027 total += this_files;
8028 }
8029
8030 if (!ret)
8031 return 0;
8032
8033 while (total < ctx->nr_user_files) {
8034 struct file *file = io_file_from_index(ctx, total);
8035
8036 if (file)
8037 fput(file);
8038 total++;
8039 }
8040
8041 return ret;
8042 }
8043 #else
io_sqe_files_scm(struct io_ring_ctx * ctx)8044 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8045 {
8046 return 0;
8047 }
8048 #endif
8049
io_rsrc_file_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8050 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8051 {
8052 struct file *file = prsrc->file;
8053 #if defined(CONFIG_UNIX)
8054 struct sock *sock = ctx->ring_sock->sk;
8055 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8056 struct sk_buff *skb;
8057 int i;
8058
8059 __skb_queue_head_init(&list);
8060
8061 /*
8062 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8063 * remove this entry and rearrange the file array.
8064 */
8065 skb = skb_dequeue(head);
8066 while (skb) {
8067 struct scm_fp_list *fp;
8068
8069 fp = UNIXCB(skb).fp;
8070 for (i = 0; i < fp->count; i++) {
8071 int left;
8072
8073 if (fp->fp[i] != file)
8074 continue;
8075
8076 unix_notinflight(fp->user, fp->fp[i]);
8077 left = fp->count - 1 - i;
8078 if (left) {
8079 memmove(&fp->fp[i], &fp->fp[i + 1],
8080 left * sizeof(struct file *));
8081 }
8082 fp->count--;
8083 if (!fp->count) {
8084 kfree_skb(skb);
8085 skb = NULL;
8086 } else {
8087 __skb_queue_tail(&list, skb);
8088 }
8089 fput(file);
8090 file = NULL;
8091 break;
8092 }
8093
8094 if (!file)
8095 break;
8096
8097 __skb_queue_tail(&list, skb);
8098
8099 skb = skb_dequeue(head);
8100 }
8101
8102 if (skb_peek(&list)) {
8103 spin_lock_irq(&head->lock);
8104 while ((skb = __skb_dequeue(&list)) != NULL)
8105 __skb_queue_tail(head, skb);
8106 spin_unlock_irq(&head->lock);
8107 }
8108 #else
8109 fput(file);
8110 #endif
8111 }
8112
__io_rsrc_put_work(struct io_rsrc_node * ref_node)8113 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8114 {
8115 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8116 struct io_ring_ctx *ctx = rsrc_data->ctx;
8117 struct io_rsrc_put *prsrc, *tmp;
8118
8119 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8120 list_del(&prsrc->list);
8121
8122 if (prsrc->tag) {
8123 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8124
8125 io_ring_submit_lock(ctx, lock_ring);
8126 spin_lock(&ctx->completion_lock);
8127 io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8128 io_commit_cqring(ctx);
8129 spin_unlock(&ctx->completion_lock);
8130 io_cqring_ev_posted(ctx);
8131 io_ring_submit_unlock(ctx, lock_ring);
8132 }
8133
8134 rsrc_data->do_put(ctx, prsrc);
8135 kfree(prsrc);
8136 }
8137
8138 io_rsrc_node_destroy(ref_node);
8139 if (atomic_dec_and_test(&rsrc_data->refs))
8140 complete(&rsrc_data->done);
8141 }
8142
io_rsrc_put_work(struct work_struct * work)8143 static void io_rsrc_put_work(struct work_struct *work)
8144 {
8145 struct io_ring_ctx *ctx;
8146 struct llist_node *node;
8147
8148 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8149 node = llist_del_all(&ctx->rsrc_put_llist);
8150
8151 while (node) {
8152 struct io_rsrc_node *ref_node;
8153 struct llist_node *next = node->next;
8154
8155 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8156 __io_rsrc_put_work(ref_node);
8157 node = next;
8158 }
8159 }
8160
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args,u64 __user * tags)8161 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8162 unsigned nr_args, u64 __user *tags)
8163 {
8164 __s32 __user *fds = (__s32 __user *) arg;
8165 struct file *file;
8166 int fd, ret;
8167 unsigned i;
8168
8169 if (ctx->file_data)
8170 return -EBUSY;
8171 if (!nr_args)
8172 return -EINVAL;
8173 if (nr_args > IORING_MAX_FIXED_FILES)
8174 return -EMFILE;
8175 if (nr_args > rlimit(RLIMIT_NOFILE))
8176 return -EMFILE;
8177 ret = io_rsrc_node_switch_start(ctx);
8178 if (ret)
8179 return ret;
8180 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8181 &ctx->file_data);
8182 if (ret)
8183 return ret;
8184
8185 ret = -ENOMEM;
8186 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8187 goto out_free;
8188
8189 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8190 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8191 ret = -EFAULT;
8192 goto out_fput;
8193 }
8194 /* allow sparse sets */
8195 if (fd == -1) {
8196 ret = -EINVAL;
8197 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8198 goto out_fput;
8199 continue;
8200 }
8201
8202 file = fget(fd);
8203 ret = -EBADF;
8204 if (unlikely(!file))
8205 goto out_fput;
8206
8207 /*
8208 * Don't allow io_uring instances to be registered. If UNIX
8209 * isn't enabled, then this causes a reference cycle and this
8210 * instance can never get freed. If UNIX is enabled we'll
8211 * handle it just fine, but there's still no point in allowing
8212 * a ring fd as it doesn't support regular read/write anyway.
8213 */
8214 if (file->f_op == &io_uring_fops) {
8215 fput(file);
8216 goto out_fput;
8217 }
8218 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8219 }
8220
8221 ret = io_sqe_files_scm(ctx);
8222 if (ret) {
8223 __io_sqe_files_unregister(ctx);
8224 return ret;
8225 }
8226
8227 io_rsrc_node_switch(ctx, NULL);
8228 return ret;
8229 out_fput:
8230 for (i = 0; i < ctx->nr_user_files; i++) {
8231 file = io_file_from_index(ctx, i);
8232 if (file)
8233 fput(file);
8234 }
8235 io_free_file_tables(&ctx->file_table);
8236 ctx->nr_user_files = 0;
8237 out_free:
8238 io_rsrc_data_free(ctx->file_data);
8239 ctx->file_data = NULL;
8240 return ret;
8241 }
8242
io_sqe_file_register(struct io_ring_ctx * ctx,struct file * file,int index)8243 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8244 int index)
8245 {
8246 #if defined(CONFIG_UNIX)
8247 struct sock *sock = ctx->ring_sock->sk;
8248 struct sk_buff_head *head = &sock->sk_receive_queue;
8249 struct sk_buff *skb;
8250
8251 /*
8252 * See if we can merge this file into an existing skb SCM_RIGHTS
8253 * file set. If there's no room, fall back to allocating a new skb
8254 * and filling it in.
8255 */
8256 spin_lock_irq(&head->lock);
8257 skb = skb_peek(head);
8258 if (skb) {
8259 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8260
8261 if (fpl->count < SCM_MAX_FD) {
8262 __skb_unlink(skb, head);
8263 spin_unlock_irq(&head->lock);
8264 fpl->fp[fpl->count] = get_file(file);
8265 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8266 fpl->count++;
8267 spin_lock_irq(&head->lock);
8268 __skb_queue_head(head, skb);
8269 } else {
8270 skb = NULL;
8271 }
8272 }
8273 spin_unlock_irq(&head->lock);
8274
8275 if (skb) {
8276 fput(file);
8277 return 0;
8278 }
8279
8280 return __io_sqe_files_scm(ctx, 1, index);
8281 #else
8282 return 0;
8283 #endif
8284 }
8285
io_queue_rsrc_removal(struct io_rsrc_data * data,unsigned idx,struct io_rsrc_node * node,void * rsrc)8286 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8287 struct io_rsrc_node *node, void *rsrc)
8288 {
8289 u64 *tag_slot = io_get_tag_slot(data, idx);
8290 struct io_rsrc_put *prsrc;
8291
8292 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8293 if (!prsrc)
8294 return -ENOMEM;
8295
8296 prsrc->tag = *tag_slot;
8297 *tag_slot = 0;
8298 prsrc->rsrc = rsrc;
8299 list_add(&prsrc->list, &node->rsrc_list);
8300 return 0;
8301 }
8302
io_install_fixed_file(struct io_kiocb * req,struct file * file,unsigned int issue_flags,u32 slot_index)8303 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8304 unsigned int issue_flags, u32 slot_index)
8305 {
8306 struct io_ring_ctx *ctx = req->ctx;
8307 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8308 bool needs_switch = false;
8309 struct io_fixed_file *file_slot;
8310 int ret = -EBADF;
8311
8312 io_ring_submit_lock(ctx, !force_nonblock);
8313 if (file->f_op == &io_uring_fops)
8314 goto err;
8315 ret = -ENXIO;
8316 if (!ctx->file_data)
8317 goto err;
8318 ret = -EINVAL;
8319 if (slot_index >= ctx->nr_user_files)
8320 goto err;
8321
8322 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8323 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8324
8325 if (file_slot->file_ptr) {
8326 struct file *old_file;
8327
8328 ret = io_rsrc_node_switch_start(ctx);
8329 if (ret)
8330 goto err;
8331
8332 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8333 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8334 ctx->rsrc_node, old_file);
8335 if (ret)
8336 goto err;
8337 file_slot->file_ptr = 0;
8338 needs_switch = true;
8339 }
8340
8341 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8342 io_fixed_file_set(file_slot, file);
8343 ret = io_sqe_file_register(ctx, file, slot_index);
8344 if (ret) {
8345 file_slot->file_ptr = 0;
8346 goto err;
8347 }
8348
8349 ret = 0;
8350 err:
8351 if (needs_switch)
8352 io_rsrc_node_switch(ctx, ctx->file_data);
8353 io_ring_submit_unlock(ctx, !force_nonblock);
8354 if (ret)
8355 fput(file);
8356 return ret;
8357 }
8358
io_close_fixed(struct io_kiocb * req,unsigned int issue_flags)8359 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8360 {
8361 unsigned int offset = req->close.file_slot - 1;
8362 struct io_ring_ctx *ctx = req->ctx;
8363 struct io_fixed_file *file_slot;
8364 struct file *file;
8365 int ret;
8366
8367 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8368 ret = -ENXIO;
8369 if (unlikely(!ctx->file_data))
8370 goto out;
8371 ret = -EINVAL;
8372 if (offset >= ctx->nr_user_files)
8373 goto out;
8374 ret = io_rsrc_node_switch_start(ctx);
8375 if (ret)
8376 goto out;
8377
8378 offset = array_index_nospec(offset, ctx->nr_user_files);
8379 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8380 ret = -EBADF;
8381 if (!file_slot->file_ptr)
8382 goto out;
8383
8384 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8385 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8386 if (ret)
8387 goto out;
8388
8389 file_slot->file_ptr = 0;
8390 io_rsrc_node_switch(ctx, ctx->file_data);
8391 ret = 0;
8392 out:
8393 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8394 return ret;
8395 }
8396
__io_sqe_files_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned nr_args)8397 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8398 struct io_uring_rsrc_update2 *up,
8399 unsigned nr_args)
8400 {
8401 u64 __user *tags = u64_to_user_ptr(up->tags);
8402 __s32 __user *fds = u64_to_user_ptr(up->data);
8403 struct io_rsrc_data *data = ctx->file_data;
8404 struct io_fixed_file *file_slot;
8405 struct file *file;
8406 int fd, i, err = 0;
8407 unsigned int done;
8408 bool needs_switch = false;
8409
8410 if (!ctx->file_data)
8411 return -ENXIO;
8412 if (up->offset + nr_args > ctx->nr_user_files)
8413 return -EINVAL;
8414
8415 for (done = 0; done < nr_args; done++) {
8416 u64 tag = 0;
8417
8418 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8419 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8420 err = -EFAULT;
8421 break;
8422 }
8423 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8424 err = -EINVAL;
8425 break;
8426 }
8427 if (fd == IORING_REGISTER_FILES_SKIP)
8428 continue;
8429
8430 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8431 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8432
8433 if (file_slot->file_ptr) {
8434 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8435 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8436 if (err)
8437 break;
8438 file_slot->file_ptr = 0;
8439 needs_switch = true;
8440 }
8441 if (fd != -1) {
8442 file = fget(fd);
8443 if (!file) {
8444 err = -EBADF;
8445 break;
8446 }
8447 /*
8448 * Don't allow io_uring instances to be registered. If
8449 * UNIX isn't enabled, then this causes a reference
8450 * cycle and this instance can never get freed. If UNIX
8451 * is enabled we'll handle it just fine, but there's
8452 * still no point in allowing a ring fd as it doesn't
8453 * support regular read/write anyway.
8454 */
8455 if (file->f_op == &io_uring_fops) {
8456 fput(file);
8457 err = -EBADF;
8458 break;
8459 }
8460 *io_get_tag_slot(data, i) = tag;
8461 io_fixed_file_set(file_slot, file);
8462 err = io_sqe_file_register(ctx, file, i);
8463 if (err) {
8464 file_slot->file_ptr = 0;
8465 fput(file);
8466 break;
8467 }
8468 }
8469 }
8470
8471 if (needs_switch)
8472 io_rsrc_node_switch(ctx, data);
8473 return done ? done : err;
8474 }
8475
io_init_wq_offload(struct io_ring_ctx * ctx,struct task_struct * task)8476 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8477 struct task_struct *task)
8478 {
8479 struct io_wq_hash *hash;
8480 struct io_wq_data data;
8481 unsigned int concurrency;
8482
8483 mutex_lock(&ctx->uring_lock);
8484 hash = ctx->hash_map;
8485 if (!hash) {
8486 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8487 if (!hash) {
8488 mutex_unlock(&ctx->uring_lock);
8489 return ERR_PTR(-ENOMEM);
8490 }
8491 refcount_set(&hash->refs, 1);
8492 init_waitqueue_head(&hash->wait);
8493 ctx->hash_map = hash;
8494 }
8495 mutex_unlock(&ctx->uring_lock);
8496
8497 data.hash = hash;
8498 data.task = task;
8499 data.free_work = io_wq_free_work;
8500 data.do_work = io_wq_submit_work;
8501
8502 /* Do QD, or 4 * CPUS, whatever is smallest */
8503 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8504
8505 return io_wq_create(concurrency, &data);
8506 }
8507
io_uring_alloc_task_context(struct task_struct * task,struct io_ring_ctx * ctx)8508 static int io_uring_alloc_task_context(struct task_struct *task,
8509 struct io_ring_ctx *ctx)
8510 {
8511 struct io_uring_task *tctx;
8512 int ret;
8513
8514 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8515 if (unlikely(!tctx))
8516 return -ENOMEM;
8517
8518 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8519 if (unlikely(ret)) {
8520 kfree(tctx);
8521 return ret;
8522 }
8523
8524 tctx->io_wq = io_init_wq_offload(ctx, task);
8525 if (IS_ERR(tctx->io_wq)) {
8526 ret = PTR_ERR(tctx->io_wq);
8527 percpu_counter_destroy(&tctx->inflight);
8528 kfree(tctx);
8529 return ret;
8530 }
8531
8532 xa_init(&tctx->xa);
8533 init_waitqueue_head(&tctx->wait);
8534 atomic_set(&tctx->in_idle, 0);
8535 atomic_set(&tctx->inflight_tracked, 0);
8536 task->io_uring = tctx;
8537 spin_lock_init(&tctx->task_lock);
8538 INIT_WQ_LIST(&tctx->task_list);
8539 init_task_work(&tctx->task_work, tctx_task_work);
8540 return 0;
8541 }
8542
__io_uring_free(struct task_struct * tsk)8543 void __io_uring_free(struct task_struct *tsk)
8544 {
8545 struct io_uring_task *tctx = tsk->io_uring;
8546
8547 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8548 WARN_ON_ONCE(tctx->io_wq);
8549 WARN_ON_ONCE(tctx->cached_refs);
8550
8551 percpu_counter_destroy(&tctx->inflight);
8552 kfree(tctx);
8553 tsk->io_uring = NULL;
8554 }
8555
io_sq_offload_create(struct io_ring_ctx * ctx,struct io_uring_params * p)8556 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8557 struct io_uring_params *p)
8558 {
8559 int ret;
8560
8561 /* Retain compatibility with failing for an invalid attach attempt */
8562 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8563 IORING_SETUP_ATTACH_WQ) {
8564 struct fd f;
8565
8566 f = fdget(p->wq_fd);
8567 if (!f.file)
8568 return -ENXIO;
8569 if (f.file->f_op != &io_uring_fops) {
8570 fdput(f);
8571 return -EINVAL;
8572 }
8573 fdput(f);
8574 }
8575 if (ctx->flags & IORING_SETUP_SQPOLL) {
8576 struct task_struct *tsk;
8577 struct io_sq_data *sqd;
8578 bool attached;
8579
8580 sqd = io_get_sq_data(p, &attached);
8581 if (IS_ERR(sqd)) {
8582 ret = PTR_ERR(sqd);
8583 goto err;
8584 }
8585
8586 ctx->sq_creds = get_current_cred();
8587 ctx->sq_data = sqd;
8588 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8589 if (!ctx->sq_thread_idle)
8590 ctx->sq_thread_idle = HZ;
8591
8592 io_sq_thread_park(sqd);
8593 list_add(&ctx->sqd_list, &sqd->ctx_list);
8594 io_sqd_update_thread_idle(sqd);
8595 /* don't attach to a dying SQPOLL thread, would be racy */
8596 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8597 io_sq_thread_unpark(sqd);
8598
8599 if (ret < 0)
8600 goto err;
8601 if (attached)
8602 return 0;
8603
8604 if (p->flags & IORING_SETUP_SQ_AFF) {
8605 int cpu = p->sq_thread_cpu;
8606
8607 ret = -EINVAL;
8608 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8609 goto err_sqpoll;
8610 sqd->sq_cpu = cpu;
8611 } else {
8612 sqd->sq_cpu = -1;
8613 }
8614
8615 sqd->task_pid = current->pid;
8616 sqd->task_tgid = current->tgid;
8617 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8618 if (IS_ERR(tsk)) {
8619 ret = PTR_ERR(tsk);
8620 goto err_sqpoll;
8621 }
8622
8623 sqd->thread = tsk;
8624 ret = io_uring_alloc_task_context(tsk, ctx);
8625 wake_up_new_task(tsk);
8626 if (ret)
8627 goto err;
8628 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8629 /* Can't have SQ_AFF without SQPOLL */
8630 ret = -EINVAL;
8631 goto err;
8632 }
8633
8634 return 0;
8635 err_sqpoll:
8636 complete(&ctx->sq_data->exited);
8637 err:
8638 io_sq_thread_finish(ctx);
8639 return ret;
8640 }
8641
__io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)8642 static inline void __io_unaccount_mem(struct user_struct *user,
8643 unsigned long nr_pages)
8644 {
8645 atomic_long_sub(nr_pages, &user->locked_vm);
8646 }
8647
__io_account_mem(struct user_struct * user,unsigned long nr_pages)8648 static inline int __io_account_mem(struct user_struct *user,
8649 unsigned long nr_pages)
8650 {
8651 unsigned long page_limit, cur_pages, new_pages;
8652
8653 /* Don't allow more pages than we can safely lock */
8654 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8655
8656 do {
8657 cur_pages = atomic_long_read(&user->locked_vm);
8658 new_pages = cur_pages + nr_pages;
8659 if (new_pages > page_limit)
8660 return -ENOMEM;
8661 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8662 new_pages) != cur_pages);
8663
8664 return 0;
8665 }
8666
io_unaccount_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8667 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8668 {
8669 if (ctx->user)
8670 __io_unaccount_mem(ctx->user, nr_pages);
8671
8672 if (ctx->mm_account)
8673 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8674 }
8675
io_account_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8676 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8677 {
8678 int ret;
8679
8680 if (ctx->user) {
8681 ret = __io_account_mem(ctx->user, nr_pages);
8682 if (ret)
8683 return ret;
8684 }
8685
8686 if (ctx->mm_account)
8687 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8688
8689 return 0;
8690 }
8691
io_mem_free(void * ptr)8692 static void io_mem_free(void *ptr)
8693 {
8694 struct page *page;
8695
8696 if (!ptr)
8697 return;
8698
8699 page = virt_to_head_page(ptr);
8700 if (put_page_testzero(page))
8701 free_compound_page(page);
8702 }
8703
io_mem_alloc(size_t size)8704 static void *io_mem_alloc(size_t size)
8705 {
8706 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8707
8708 return (void *) __get_free_pages(gfp, get_order(size));
8709 }
8710
rings_size(unsigned sq_entries,unsigned cq_entries,size_t * sq_offset)8711 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8712 size_t *sq_offset)
8713 {
8714 struct io_rings *rings;
8715 size_t off, sq_array_size;
8716
8717 off = struct_size(rings, cqes, cq_entries);
8718 if (off == SIZE_MAX)
8719 return SIZE_MAX;
8720
8721 #ifdef CONFIG_SMP
8722 off = ALIGN(off, SMP_CACHE_BYTES);
8723 if (off == 0)
8724 return SIZE_MAX;
8725 #endif
8726
8727 if (sq_offset)
8728 *sq_offset = off;
8729
8730 sq_array_size = array_size(sizeof(u32), sq_entries);
8731 if (sq_array_size == SIZE_MAX)
8732 return SIZE_MAX;
8733
8734 if (check_add_overflow(off, sq_array_size, &off))
8735 return SIZE_MAX;
8736
8737 return off;
8738 }
8739
io_buffer_unmap(struct io_ring_ctx * ctx,struct io_mapped_ubuf ** slot)8740 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8741 {
8742 struct io_mapped_ubuf *imu = *slot;
8743 unsigned int i;
8744
8745 if (imu != ctx->dummy_ubuf) {
8746 for (i = 0; i < imu->nr_bvecs; i++)
8747 unpin_user_page(imu->bvec[i].bv_page);
8748 if (imu->acct_pages)
8749 io_unaccount_mem(ctx, imu->acct_pages);
8750 kvfree(imu);
8751 }
8752 *slot = NULL;
8753 }
8754
io_rsrc_buf_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8755 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8756 {
8757 io_buffer_unmap(ctx, &prsrc->buf);
8758 prsrc->buf = NULL;
8759 }
8760
__io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8761 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8762 {
8763 unsigned int i;
8764
8765 for (i = 0; i < ctx->nr_user_bufs; i++)
8766 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8767 kfree(ctx->user_bufs);
8768 io_rsrc_data_free(ctx->buf_data);
8769 ctx->user_bufs = NULL;
8770 ctx->buf_data = NULL;
8771 ctx->nr_user_bufs = 0;
8772 }
8773
io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8774 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8775 {
8776 unsigned nr = ctx->nr_user_bufs;
8777 int ret;
8778
8779 if (!ctx->buf_data)
8780 return -ENXIO;
8781
8782 /*
8783 * Quiesce may unlock ->uring_lock, and while it's not held
8784 * prevent new requests using the table.
8785 */
8786 ctx->nr_user_bufs = 0;
8787 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8788 ctx->nr_user_bufs = nr;
8789 if (!ret)
8790 __io_sqe_buffers_unregister(ctx);
8791 return ret;
8792 }
8793
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)8794 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8795 void __user *arg, unsigned index)
8796 {
8797 struct iovec __user *src;
8798
8799 #ifdef CONFIG_COMPAT
8800 if (ctx->compat) {
8801 struct compat_iovec __user *ciovs;
8802 struct compat_iovec ciov;
8803
8804 ciovs = (struct compat_iovec __user *) arg;
8805 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8806 return -EFAULT;
8807
8808 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8809 dst->iov_len = ciov.iov_len;
8810 return 0;
8811 }
8812 #endif
8813 src = (struct iovec __user *) arg;
8814 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8815 return -EFAULT;
8816 return 0;
8817 }
8818
8819 /*
8820 * Not super efficient, but this is just a registration time. And we do cache
8821 * the last compound head, so generally we'll only do a full search if we don't
8822 * match that one.
8823 *
8824 * We check if the given compound head page has already been accounted, to
8825 * avoid double accounting it. This allows us to account the full size of the
8826 * page, not just the constituent pages of a huge page.
8827 */
headpage_already_acct(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct page * hpage)8828 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8829 int nr_pages, struct page *hpage)
8830 {
8831 int i, j;
8832
8833 /* check current page array */
8834 for (i = 0; i < nr_pages; i++) {
8835 if (!PageCompound(pages[i]))
8836 continue;
8837 if (compound_head(pages[i]) == hpage)
8838 return true;
8839 }
8840
8841 /* check previously registered pages */
8842 for (i = 0; i < ctx->nr_user_bufs; i++) {
8843 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8844
8845 for (j = 0; j < imu->nr_bvecs; j++) {
8846 if (!PageCompound(imu->bvec[j].bv_page))
8847 continue;
8848 if (compound_head(imu->bvec[j].bv_page) == hpage)
8849 return true;
8850 }
8851 }
8852
8853 return false;
8854 }
8855
io_buffer_account_pin(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct io_mapped_ubuf * imu,struct page ** last_hpage)8856 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8857 int nr_pages, struct io_mapped_ubuf *imu,
8858 struct page **last_hpage)
8859 {
8860 int i, ret;
8861
8862 imu->acct_pages = 0;
8863 for (i = 0; i < nr_pages; i++) {
8864 if (!PageCompound(pages[i])) {
8865 imu->acct_pages++;
8866 } else {
8867 struct page *hpage;
8868
8869 hpage = compound_head(pages[i]);
8870 if (hpage == *last_hpage)
8871 continue;
8872 *last_hpage = hpage;
8873 if (headpage_already_acct(ctx, pages, i, hpage))
8874 continue;
8875 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8876 }
8877 }
8878
8879 if (!imu->acct_pages)
8880 return 0;
8881
8882 ret = io_account_mem(ctx, imu->acct_pages);
8883 if (ret)
8884 imu->acct_pages = 0;
8885 return ret;
8886 }
8887
io_sqe_buffer_register(struct io_ring_ctx * ctx,struct iovec * iov,struct io_mapped_ubuf ** pimu,struct page ** last_hpage)8888 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8889 struct io_mapped_ubuf **pimu,
8890 struct page **last_hpage)
8891 {
8892 struct io_mapped_ubuf *imu = NULL;
8893 struct vm_area_struct **vmas = NULL;
8894 struct page **pages = NULL;
8895 unsigned long off, start, end, ubuf;
8896 size_t size;
8897 int ret, pret, nr_pages, i;
8898
8899 if (!iov->iov_base) {
8900 *pimu = ctx->dummy_ubuf;
8901 return 0;
8902 }
8903
8904 ubuf = (unsigned long) iov->iov_base;
8905 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8906 start = ubuf >> PAGE_SHIFT;
8907 nr_pages = end - start;
8908
8909 *pimu = NULL;
8910 ret = -ENOMEM;
8911
8912 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8913 if (!pages)
8914 goto done;
8915
8916 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8917 GFP_KERNEL);
8918 if (!vmas)
8919 goto done;
8920
8921 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8922 if (!imu)
8923 goto done;
8924
8925 ret = 0;
8926 mmap_read_lock(current->mm);
8927 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8928 pages, vmas);
8929 if (pret == nr_pages) {
8930 /* don't support file backed memory */
8931 for (i = 0; i < nr_pages; i++) {
8932 struct vm_area_struct *vma = vmas[i];
8933
8934 if (vma_is_shmem(vma))
8935 continue;
8936 if (vma->vm_file &&
8937 !is_file_hugepages(vma->vm_file)) {
8938 ret = -EOPNOTSUPP;
8939 break;
8940 }
8941 }
8942 } else {
8943 ret = pret < 0 ? pret : -EFAULT;
8944 }
8945 mmap_read_unlock(current->mm);
8946 if (ret) {
8947 /*
8948 * if we did partial map, or found file backed vmas,
8949 * release any pages we did get
8950 */
8951 if (pret > 0)
8952 unpin_user_pages(pages, pret);
8953 goto done;
8954 }
8955
8956 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8957 if (ret) {
8958 unpin_user_pages(pages, pret);
8959 goto done;
8960 }
8961
8962 off = ubuf & ~PAGE_MASK;
8963 size = iov->iov_len;
8964 for (i = 0; i < nr_pages; i++) {
8965 size_t vec_len;
8966
8967 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8968 imu->bvec[i].bv_page = pages[i];
8969 imu->bvec[i].bv_len = vec_len;
8970 imu->bvec[i].bv_offset = off;
8971 off = 0;
8972 size -= vec_len;
8973 }
8974 /* store original address for later verification */
8975 imu->ubuf = ubuf;
8976 imu->ubuf_end = ubuf + iov->iov_len;
8977 imu->nr_bvecs = nr_pages;
8978 *pimu = imu;
8979 ret = 0;
8980 done:
8981 if (ret)
8982 kvfree(imu);
8983 kvfree(pages);
8984 kvfree(vmas);
8985 return ret;
8986 }
8987
io_buffers_map_alloc(struct io_ring_ctx * ctx,unsigned int nr_args)8988 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8989 {
8990 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8991 return ctx->user_bufs ? 0 : -ENOMEM;
8992 }
8993
io_buffer_validate(struct iovec * iov)8994 static int io_buffer_validate(struct iovec *iov)
8995 {
8996 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8997
8998 /*
8999 * Don't impose further limits on the size and buffer
9000 * constraints here, we'll -EINVAL later when IO is
9001 * submitted if they are wrong.
9002 */
9003 if (!iov->iov_base)
9004 return iov->iov_len ? -EFAULT : 0;
9005 if (!iov->iov_len)
9006 return -EFAULT;
9007
9008 /* arbitrary limit, but we need something */
9009 if (iov->iov_len > SZ_1G)
9010 return -EFAULT;
9011
9012 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9013 return -EOVERFLOW;
9014
9015 return 0;
9016 }
9017
io_sqe_buffers_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args,u64 __user * tags)9018 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9019 unsigned int nr_args, u64 __user *tags)
9020 {
9021 struct page *last_hpage = NULL;
9022 struct io_rsrc_data *data;
9023 int i, ret;
9024 struct iovec iov;
9025
9026 if (ctx->user_bufs)
9027 return -EBUSY;
9028 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9029 return -EINVAL;
9030 ret = io_rsrc_node_switch_start(ctx);
9031 if (ret)
9032 return ret;
9033 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9034 if (ret)
9035 return ret;
9036 ret = io_buffers_map_alloc(ctx, nr_args);
9037 if (ret) {
9038 io_rsrc_data_free(data);
9039 return ret;
9040 }
9041
9042 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9043 ret = io_copy_iov(ctx, &iov, arg, i);
9044 if (ret)
9045 break;
9046 ret = io_buffer_validate(&iov);
9047 if (ret)
9048 break;
9049 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9050 ret = -EINVAL;
9051 break;
9052 }
9053
9054 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9055 &last_hpage);
9056 if (ret)
9057 break;
9058 }
9059
9060 WARN_ON_ONCE(ctx->buf_data);
9061
9062 ctx->buf_data = data;
9063 if (ret)
9064 __io_sqe_buffers_unregister(ctx);
9065 else
9066 io_rsrc_node_switch(ctx, NULL);
9067 return ret;
9068 }
9069
__io_sqe_buffers_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned int nr_args)9070 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9071 struct io_uring_rsrc_update2 *up,
9072 unsigned int nr_args)
9073 {
9074 u64 __user *tags = u64_to_user_ptr(up->tags);
9075 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9076 struct page *last_hpage = NULL;
9077 bool needs_switch = false;
9078 __u32 done;
9079 int i, err;
9080
9081 if (!ctx->buf_data)
9082 return -ENXIO;
9083 if (up->offset + nr_args > ctx->nr_user_bufs)
9084 return -EINVAL;
9085
9086 for (done = 0; done < nr_args; done++) {
9087 struct io_mapped_ubuf *imu;
9088 int offset = up->offset + done;
9089 u64 tag = 0;
9090
9091 err = io_copy_iov(ctx, &iov, iovs, done);
9092 if (err)
9093 break;
9094 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9095 err = -EFAULT;
9096 break;
9097 }
9098 err = io_buffer_validate(&iov);
9099 if (err)
9100 break;
9101 if (!iov.iov_base && tag) {
9102 err = -EINVAL;
9103 break;
9104 }
9105 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9106 if (err)
9107 break;
9108
9109 i = array_index_nospec(offset, ctx->nr_user_bufs);
9110 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9111 err = io_queue_rsrc_removal(ctx->buf_data, i,
9112 ctx->rsrc_node, ctx->user_bufs[i]);
9113 if (unlikely(err)) {
9114 io_buffer_unmap(ctx, &imu);
9115 break;
9116 }
9117 ctx->user_bufs[i] = NULL;
9118 needs_switch = true;
9119 }
9120
9121 ctx->user_bufs[i] = imu;
9122 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9123 }
9124
9125 if (needs_switch)
9126 io_rsrc_node_switch(ctx, ctx->buf_data);
9127 return done ? done : err;
9128 }
9129
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg)9130 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9131 {
9132 __s32 __user *fds = arg;
9133 int fd;
9134
9135 if (ctx->cq_ev_fd)
9136 return -EBUSY;
9137
9138 if (copy_from_user(&fd, fds, sizeof(*fds)))
9139 return -EFAULT;
9140
9141 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9142 if (IS_ERR(ctx->cq_ev_fd)) {
9143 int ret = PTR_ERR(ctx->cq_ev_fd);
9144
9145 ctx->cq_ev_fd = NULL;
9146 return ret;
9147 }
9148
9149 return 0;
9150 }
9151
io_eventfd_unregister(struct io_ring_ctx * ctx)9152 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9153 {
9154 if (ctx->cq_ev_fd) {
9155 eventfd_ctx_put(ctx->cq_ev_fd);
9156 ctx->cq_ev_fd = NULL;
9157 return 0;
9158 }
9159
9160 return -ENXIO;
9161 }
9162
io_destroy_buffers(struct io_ring_ctx * ctx)9163 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9164 {
9165 struct io_buffer *buf;
9166 unsigned long index;
9167
9168 xa_for_each(&ctx->io_buffers, index, buf)
9169 __io_remove_buffers(ctx, buf, index, -1U);
9170 }
9171
io_req_cache_free(struct list_head * list)9172 static void io_req_cache_free(struct list_head *list)
9173 {
9174 struct io_kiocb *req, *nxt;
9175
9176 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9177 list_del(&req->inflight_entry);
9178 kmem_cache_free(req_cachep, req);
9179 }
9180 }
9181
io_req_caches_free(struct io_ring_ctx * ctx)9182 static void io_req_caches_free(struct io_ring_ctx *ctx)
9183 {
9184 struct io_submit_state *state = &ctx->submit_state;
9185
9186 mutex_lock(&ctx->uring_lock);
9187
9188 if (state->free_reqs) {
9189 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9190 state->free_reqs = 0;
9191 }
9192
9193 io_flush_cached_locked_reqs(ctx, state);
9194 io_req_cache_free(&state->free_list);
9195 mutex_unlock(&ctx->uring_lock);
9196 }
9197
io_wait_rsrc_data(struct io_rsrc_data * data)9198 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9199 {
9200 if (data && !atomic_dec_and_test(&data->refs))
9201 wait_for_completion(&data->done);
9202 }
9203
io_ring_ctx_free(struct io_ring_ctx * ctx)9204 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9205 {
9206 io_sq_thread_finish(ctx);
9207
9208 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9209 io_wait_rsrc_data(ctx->buf_data);
9210 io_wait_rsrc_data(ctx->file_data);
9211
9212 mutex_lock(&ctx->uring_lock);
9213 if (ctx->buf_data)
9214 __io_sqe_buffers_unregister(ctx);
9215 if (ctx->file_data)
9216 __io_sqe_files_unregister(ctx);
9217 if (ctx->rings)
9218 __io_cqring_overflow_flush(ctx, true);
9219 mutex_unlock(&ctx->uring_lock);
9220 io_eventfd_unregister(ctx);
9221 io_destroy_buffers(ctx);
9222 if (ctx->sq_creds)
9223 put_cred(ctx->sq_creds);
9224
9225 /* there are no registered resources left, nobody uses it */
9226 if (ctx->rsrc_node)
9227 io_rsrc_node_destroy(ctx->rsrc_node);
9228 if (ctx->rsrc_backup_node)
9229 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9230 flush_delayed_work(&ctx->rsrc_put_work);
9231
9232 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9233 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9234
9235 #if defined(CONFIG_UNIX)
9236 if (ctx->ring_sock) {
9237 ctx->ring_sock->file = NULL; /* so that iput() is called */
9238 sock_release(ctx->ring_sock);
9239 }
9240 #endif
9241 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9242
9243 if (ctx->mm_account) {
9244 mmdrop(ctx->mm_account);
9245 ctx->mm_account = NULL;
9246 }
9247
9248 io_mem_free(ctx->rings);
9249 io_mem_free(ctx->sq_sqes);
9250
9251 percpu_ref_exit(&ctx->refs);
9252 free_uid(ctx->user);
9253 io_req_caches_free(ctx);
9254 if (ctx->hash_map)
9255 io_wq_put_hash(ctx->hash_map);
9256 kfree(ctx->cancel_hash);
9257 kfree(ctx->dummy_ubuf);
9258 kfree(ctx);
9259 }
9260
io_uring_poll(struct file * file,poll_table * wait)9261 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9262 {
9263 struct io_ring_ctx *ctx = file->private_data;
9264 __poll_t mask = 0;
9265
9266 poll_wait(file, &ctx->poll_wait, wait);
9267 /*
9268 * synchronizes with barrier from wq_has_sleeper call in
9269 * io_commit_cqring
9270 */
9271 smp_rmb();
9272 if (!io_sqring_full(ctx))
9273 mask |= EPOLLOUT | EPOLLWRNORM;
9274
9275 /*
9276 * Don't flush cqring overflow list here, just do a simple check.
9277 * Otherwise there could possible be ABBA deadlock:
9278 * CPU0 CPU1
9279 * ---- ----
9280 * lock(&ctx->uring_lock);
9281 * lock(&ep->mtx);
9282 * lock(&ctx->uring_lock);
9283 * lock(&ep->mtx);
9284 *
9285 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9286 * pushs them to do the flush.
9287 */
9288 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9289 mask |= EPOLLIN | EPOLLRDNORM;
9290
9291 return mask;
9292 }
9293
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)9294 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9295 {
9296 const struct cred *creds;
9297
9298 creds = xa_erase(&ctx->personalities, id);
9299 if (creds) {
9300 put_cred(creds);
9301 return 0;
9302 }
9303
9304 return -EINVAL;
9305 }
9306
9307 struct io_tctx_exit {
9308 struct callback_head task_work;
9309 struct completion completion;
9310 struct io_ring_ctx *ctx;
9311 };
9312
io_tctx_exit_cb(struct callback_head * cb)9313 static void io_tctx_exit_cb(struct callback_head *cb)
9314 {
9315 struct io_uring_task *tctx = current->io_uring;
9316 struct io_tctx_exit *work;
9317
9318 work = container_of(cb, struct io_tctx_exit, task_work);
9319 /*
9320 * When @in_idle, we're in cancellation and it's racy to remove the
9321 * node. It'll be removed by the end of cancellation, just ignore it.
9322 * tctx can be NULL if the queueing of this task_work raced with
9323 * work cancelation off the exec path.
9324 */
9325 if (tctx && !atomic_read(&tctx->in_idle))
9326 io_uring_del_tctx_node((unsigned long)work->ctx);
9327 complete(&work->completion);
9328 }
9329
io_cancel_ctx_cb(struct io_wq_work * work,void * data)9330 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9331 {
9332 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9333
9334 return req->ctx == data;
9335 }
9336
io_ring_exit_work(struct work_struct * work)9337 static void io_ring_exit_work(struct work_struct *work)
9338 {
9339 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9340 unsigned long timeout = jiffies + HZ * 60 * 5;
9341 unsigned long interval = HZ / 20;
9342 struct io_tctx_exit exit;
9343 struct io_tctx_node *node;
9344 int ret;
9345
9346 /*
9347 * If we're doing polled IO and end up having requests being
9348 * submitted async (out-of-line), then completions can come in while
9349 * we're waiting for refs to drop. We need to reap these manually,
9350 * as nobody else will be looking for them.
9351 */
9352 do {
9353 io_uring_try_cancel_requests(ctx, NULL, true);
9354 if (ctx->sq_data) {
9355 struct io_sq_data *sqd = ctx->sq_data;
9356 struct task_struct *tsk;
9357
9358 io_sq_thread_park(sqd);
9359 tsk = sqd->thread;
9360 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9361 io_wq_cancel_cb(tsk->io_uring->io_wq,
9362 io_cancel_ctx_cb, ctx, true);
9363 io_sq_thread_unpark(sqd);
9364 }
9365
9366 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9367 /* there is little hope left, don't run it too often */
9368 interval = HZ * 60;
9369 }
9370 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9371
9372 init_completion(&exit.completion);
9373 init_task_work(&exit.task_work, io_tctx_exit_cb);
9374 exit.ctx = ctx;
9375 /*
9376 * Some may use context even when all refs and requests have been put,
9377 * and they are free to do so while still holding uring_lock or
9378 * completion_lock, see io_req_task_submit(). Apart from other work,
9379 * this lock/unlock section also waits them to finish.
9380 */
9381 mutex_lock(&ctx->uring_lock);
9382 while (!list_empty(&ctx->tctx_list)) {
9383 WARN_ON_ONCE(time_after(jiffies, timeout));
9384
9385 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9386 ctx_node);
9387 /* don't spin on a single task if cancellation failed */
9388 list_rotate_left(&ctx->tctx_list);
9389 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9390 if (WARN_ON_ONCE(ret))
9391 continue;
9392 wake_up_process(node->task);
9393
9394 mutex_unlock(&ctx->uring_lock);
9395 wait_for_completion(&exit.completion);
9396 mutex_lock(&ctx->uring_lock);
9397 }
9398 mutex_unlock(&ctx->uring_lock);
9399 spin_lock(&ctx->completion_lock);
9400 spin_unlock(&ctx->completion_lock);
9401
9402 io_ring_ctx_free(ctx);
9403 }
9404
9405 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)9406 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9407 bool cancel_all)
9408 {
9409 struct io_kiocb *req, *tmp;
9410 int canceled = 0;
9411
9412 spin_lock(&ctx->completion_lock);
9413 spin_lock_irq(&ctx->timeout_lock);
9414 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9415 if (io_match_task(req, tsk, cancel_all)) {
9416 io_kill_timeout(req, -ECANCELED);
9417 canceled++;
9418 }
9419 }
9420 spin_unlock_irq(&ctx->timeout_lock);
9421 if (canceled != 0)
9422 io_commit_cqring(ctx);
9423 spin_unlock(&ctx->completion_lock);
9424 if (canceled != 0)
9425 io_cqring_ev_posted(ctx);
9426 return canceled != 0;
9427 }
9428
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)9429 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9430 {
9431 unsigned long index;
9432 struct creds *creds;
9433
9434 mutex_lock(&ctx->uring_lock);
9435 percpu_ref_kill(&ctx->refs);
9436 if (ctx->rings)
9437 __io_cqring_overflow_flush(ctx, true);
9438 xa_for_each(&ctx->personalities, index, creds)
9439 io_unregister_personality(ctx, index);
9440 mutex_unlock(&ctx->uring_lock);
9441
9442 io_kill_timeouts(ctx, NULL, true);
9443 io_poll_remove_all(ctx, NULL, true);
9444
9445 /* if we failed setting up the ctx, we might not have any rings */
9446 io_iopoll_try_reap_events(ctx);
9447
9448 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9449 /*
9450 * Use system_unbound_wq to avoid spawning tons of event kworkers
9451 * if we're exiting a ton of rings at the same time. It just adds
9452 * noise and overhead, there's no discernable change in runtime
9453 * over using system_wq.
9454 */
9455 queue_work(system_unbound_wq, &ctx->exit_work);
9456 }
9457
io_uring_release(struct inode * inode,struct file * file)9458 static int io_uring_release(struct inode *inode, struct file *file)
9459 {
9460 struct io_ring_ctx *ctx = file->private_data;
9461
9462 file->private_data = NULL;
9463 io_ring_ctx_wait_and_kill(ctx);
9464 return 0;
9465 }
9466
9467 struct io_task_cancel {
9468 struct task_struct *task;
9469 bool all;
9470 };
9471
io_cancel_task_cb(struct io_wq_work * work,void * data)9472 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9473 {
9474 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9475 struct io_task_cancel *cancel = data;
9476
9477 return io_match_task_safe(req, cancel->task, cancel->all);
9478 }
9479
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9480 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9481 struct task_struct *task, bool cancel_all)
9482 {
9483 struct io_defer_entry *de;
9484 LIST_HEAD(list);
9485
9486 spin_lock(&ctx->completion_lock);
9487 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9488 if (io_match_task_safe(de->req, task, cancel_all)) {
9489 list_cut_position(&list, &ctx->defer_list, &de->list);
9490 break;
9491 }
9492 }
9493 spin_unlock(&ctx->completion_lock);
9494 if (list_empty(&list))
9495 return false;
9496
9497 while (!list_empty(&list)) {
9498 de = list_first_entry(&list, struct io_defer_entry, list);
9499 list_del_init(&de->list);
9500 io_req_complete_failed(de->req, -ECANCELED);
9501 kfree(de);
9502 }
9503 return true;
9504 }
9505
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)9506 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9507 {
9508 struct io_tctx_node *node;
9509 enum io_wq_cancel cret;
9510 bool ret = false;
9511
9512 mutex_lock(&ctx->uring_lock);
9513 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9514 struct io_uring_task *tctx = node->task->io_uring;
9515
9516 /*
9517 * io_wq will stay alive while we hold uring_lock, because it's
9518 * killed after ctx nodes, which requires to take the lock.
9519 */
9520 if (!tctx || !tctx->io_wq)
9521 continue;
9522 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9523 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9524 }
9525 mutex_unlock(&ctx->uring_lock);
9526
9527 return ret;
9528 }
9529
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9530 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9531 struct task_struct *task,
9532 bool cancel_all)
9533 {
9534 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9535 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9536
9537 while (1) {
9538 enum io_wq_cancel cret;
9539 bool ret = false;
9540
9541 if (!task) {
9542 ret |= io_uring_try_cancel_iowq(ctx);
9543 } else if (tctx && tctx->io_wq) {
9544 /*
9545 * Cancels requests of all rings, not only @ctx, but
9546 * it's fine as the task is in exit/exec.
9547 */
9548 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9549 &cancel, true);
9550 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9551 }
9552
9553 /* SQPOLL thread does its own polling */
9554 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9555 (ctx->sq_data && ctx->sq_data->thread == current)) {
9556 while (!list_empty_careful(&ctx->iopoll_list)) {
9557 io_iopoll_try_reap_events(ctx);
9558 ret = true;
9559 }
9560 }
9561
9562 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9563 ret |= io_poll_remove_all(ctx, task, cancel_all);
9564 ret |= io_kill_timeouts(ctx, task, cancel_all);
9565 if (task)
9566 ret |= io_run_task_work();
9567 if (!ret)
9568 break;
9569 cond_resched();
9570 }
9571 }
9572
__io_uring_add_tctx_node(struct io_ring_ctx * ctx)9573 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9574 {
9575 struct io_uring_task *tctx = current->io_uring;
9576 struct io_tctx_node *node;
9577 int ret;
9578
9579 if (unlikely(!tctx)) {
9580 ret = io_uring_alloc_task_context(current, ctx);
9581 if (unlikely(ret))
9582 return ret;
9583
9584 tctx = current->io_uring;
9585 if (ctx->iowq_limits_set) {
9586 unsigned int limits[2] = { ctx->iowq_limits[0],
9587 ctx->iowq_limits[1], };
9588
9589 ret = io_wq_max_workers(tctx->io_wq, limits);
9590 if (ret)
9591 return ret;
9592 }
9593 }
9594 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9595 node = kmalloc(sizeof(*node), GFP_KERNEL);
9596 if (!node)
9597 return -ENOMEM;
9598 node->ctx = ctx;
9599 node->task = current;
9600
9601 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9602 node, GFP_KERNEL));
9603 if (ret) {
9604 kfree(node);
9605 return ret;
9606 }
9607
9608 mutex_lock(&ctx->uring_lock);
9609 list_add(&node->ctx_node, &ctx->tctx_list);
9610 mutex_unlock(&ctx->uring_lock);
9611 }
9612 tctx->last = ctx;
9613 return 0;
9614 }
9615
9616 /*
9617 * Note that this task has used io_uring. We use it for cancelation purposes.
9618 */
io_uring_add_tctx_node(struct io_ring_ctx * ctx)9619 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9620 {
9621 struct io_uring_task *tctx = current->io_uring;
9622
9623 if (likely(tctx && tctx->last == ctx))
9624 return 0;
9625 return __io_uring_add_tctx_node(ctx);
9626 }
9627
9628 /*
9629 * Remove this io_uring_file -> task mapping.
9630 */
io_uring_del_tctx_node(unsigned long index)9631 static void io_uring_del_tctx_node(unsigned long index)
9632 {
9633 struct io_uring_task *tctx = current->io_uring;
9634 struct io_tctx_node *node;
9635
9636 if (!tctx)
9637 return;
9638 node = xa_erase(&tctx->xa, index);
9639 if (!node)
9640 return;
9641
9642 WARN_ON_ONCE(current != node->task);
9643 WARN_ON_ONCE(list_empty(&node->ctx_node));
9644
9645 mutex_lock(&node->ctx->uring_lock);
9646 list_del(&node->ctx_node);
9647 mutex_unlock(&node->ctx->uring_lock);
9648
9649 if (tctx->last == node->ctx)
9650 tctx->last = NULL;
9651 kfree(node);
9652 }
9653
io_uring_clean_tctx(struct io_uring_task * tctx)9654 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9655 {
9656 struct io_wq *wq = tctx->io_wq;
9657 struct io_tctx_node *node;
9658 unsigned long index;
9659
9660 xa_for_each(&tctx->xa, index, node) {
9661 io_uring_del_tctx_node(index);
9662 cond_resched();
9663 }
9664 if (wq) {
9665 /*
9666 * Must be after io_uring_del_task_file() (removes nodes under
9667 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9668 */
9669 io_wq_put_and_exit(wq);
9670 tctx->io_wq = NULL;
9671 }
9672 }
9673
tctx_inflight(struct io_uring_task * tctx,bool tracked)9674 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9675 {
9676 if (tracked)
9677 return atomic_read(&tctx->inflight_tracked);
9678 return percpu_counter_sum(&tctx->inflight);
9679 }
9680
9681 /*
9682 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9683 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9684 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)9685 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9686 {
9687 struct io_uring_task *tctx = current->io_uring;
9688 struct io_ring_ctx *ctx;
9689 s64 inflight;
9690 DEFINE_WAIT(wait);
9691
9692 WARN_ON_ONCE(sqd && sqd->thread != current);
9693
9694 if (!current->io_uring)
9695 return;
9696 if (tctx->io_wq)
9697 io_wq_exit_start(tctx->io_wq);
9698
9699 atomic_inc(&tctx->in_idle);
9700 do {
9701 io_uring_drop_tctx_refs(current);
9702 /* read completions before cancelations */
9703 inflight = tctx_inflight(tctx, !cancel_all);
9704 if (!inflight)
9705 break;
9706
9707 if (!sqd) {
9708 struct io_tctx_node *node;
9709 unsigned long index;
9710
9711 xa_for_each(&tctx->xa, index, node) {
9712 /* sqpoll task will cancel all its requests */
9713 if (node->ctx->sq_data)
9714 continue;
9715 io_uring_try_cancel_requests(node->ctx, current,
9716 cancel_all);
9717 }
9718 } else {
9719 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9720 io_uring_try_cancel_requests(ctx, current,
9721 cancel_all);
9722 }
9723
9724 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9725 io_run_task_work();
9726 io_uring_drop_tctx_refs(current);
9727
9728 /*
9729 * If we've seen completions, retry without waiting. This
9730 * avoids a race where a completion comes in before we did
9731 * prepare_to_wait().
9732 */
9733 if (inflight == tctx_inflight(tctx, !cancel_all))
9734 schedule();
9735 finish_wait(&tctx->wait, &wait);
9736 } while (1);
9737
9738 io_uring_clean_tctx(tctx);
9739 if (cancel_all) {
9740 /*
9741 * We shouldn't run task_works after cancel, so just leave
9742 * ->in_idle set for normal exit.
9743 */
9744 atomic_dec(&tctx->in_idle);
9745 /* for exec all current's requests should be gone, kill tctx */
9746 __io_uring_free(current);
9747 }
9748 }
9749
__io_uring_cancel(bool cancel_all)9750 void __io_uring_cancel(bool cancel_all)
9751 {
9752 io_uring_cancel_generic(cancel_all, NULL);
9753 }
9754
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)9755 static void *io_uring_validate_mmap_request(struct file *file,
9756 loff_t pgoff, size_t sz)
9757 {
9758 struct io_ring_ctx *ctx = file->private_data;
9759 loff_t offset = pgoff << PAGE_SHIFT;
9760 struct page *page;
9761 void *ptr;
9762
9763 switch (offset) {
9764 case IORING_OFF_SQ_RING:
9765 case IORING_OFF_CQ_RING:
9766 ptr = ctx->rings;
9767 break;
9768 case IORING_OFF_SQES:
9769 ptr = ctx->sq_sqes;
9770 break;
9771 default:
9772 return ERR_PTR(-EINVAL);
9773 }
9774
9775 page = virt_to_head_page(ptr);
9776 if (sz > page_size(page))
9777 return ERR_PTR(-EINVAL);
9778
9779 return ptr;
9780 }
9781
9782 #ifdef CONFIG_MMU
9783
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9784 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9785 {
9786 size_t sz = vma->vm_end - vma->vm_start;
9787 unsigned long pfn;
9788 void *ptr;
9789
9790 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9791 if (IS_ERR(ptr))
9792 return PTR_ERR(ptr);
9793
9794 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9795 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9796 }
9797
9798 #else /* !CONFIG_MMU */
9799
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9800 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9801 {
9802 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9803 }
9804
io_uring_nommu_mmap_capabilities(struct file * file)9805 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9806 {
9807 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9808 }
9809
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)9810 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9811 unsigned long addr, unsigned long len,
9812 unsigned long pgoff, unsigned long flags)
9813 {
9814 void *ptr;
9815
9816 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9817 if (IS_ERR(ptr))
9818 return PTR_ERR(ptr);
9819
9820 return (unsigned long) ptr;
9821 }
9822
9823 #endif /* !CONFIG_MMU */
9824
io_sqpoll_wait_sq(struct io_ring_ctx * ctx)9825 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9826 {
9827 DEFINE_WAIT(wait);
9828
9829 do {
9830 if (!io_sqring_full(ctx))
9831 break;
9832 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9833
9834 if (!io_sqring_full(ctx))
9835 break;
9836 schedule();
9837 } while (!signal_pending(current));
9838
9839 finish_wait(&ctx->sqo_sq_wait, &wait);
9840 return 0;
9841 }
9842
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)9843 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9844 struct __kernel_timespec __user **ts,
9845 const sigset_t __user **sig)
9846 {
9847 struct io_uring_getevents_arg arg;
9848
9849 /*
9850 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9851 * is just a pointer to the sigset_t.
9852 */
9853 if (!(flags & IORING_ENTER_EXT_ARG)) {
9854 *sig = (const sigset_t __user *) argp;
9855 *ts = NULL;
9856 return 0;
9857 }
9858
9859 /*
9860 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9861 * timespec and sigset_t pointers if good.
9862 */
9863 if (*argsz != sizeof(arg))
9864 return -EINVAL;
9865 if (copy_from_user(&arg, argp, sizeof(arg)))
9866 return -EFAULT;
9867 if (arg.pad)
9868 return -EINVAL;
9869 *sig = u64_to_user_ptr(arg.sigmask);
9870 *argsz = arg.sigmask_sz;
9871 *ts = u64_to_user_ptr(arg.ts);
9872 return 0;
9873 }
9874
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)9875 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9876 u32, min_complete, u32, flags, const void __user *, argp,
9877 size_t, argsz)
9878 {
9879 struct io_ring_ctx *ctx;
9880 int submitted = 0;
9881 struct fd f;
9882 long ret;
9883
9884 io_run_task_work();
9885
9886 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9887 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9888 return -EINVAL;
9889
9890 f = fdget(fd);
9891 if (unlikely(!f.file))
9892 return -EBADF;
9893
9894 ret = -EOPNOTSUPP;
9895 if (unlikely(f.file->f_op != &io_uring_fops))
9896 goto out_fput;
9897
9898 ret = -ENXIO;
9899 ctx = f.file->private_data;
9900 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9901 goto out_fput;
9902
9903 ret = -EBADFD;
9904 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9905 goto out;
9906
9907 /*
9908 * For SQ polling, the thread will do all submissions and completions.
9909 * Just return the requested submit count, and wake the thread if
9910 * we were asked to.
9911 */
9912 ret = 0;
9913 if (ctx->flags & IORING_SETUP_SQPOLL) {
9914 io_cqring_overflow_flush(ctx);
9915
9916 if (unlikely(ctx->sq_data->thread == NULL)) {
9917 ret = -EOWNERDEAD;
9918 goto out;
9919 }
9920 if (flags & IORING_ENTER_SQ_WAKEUP)
9921 wake_up(&ctx->sq_data->wait);
9922 if (flags & IORING_ENTER_SQ_WAIT) {
9923 ret = io_sqpoll_wait_sq(ctx);
9924 if (ret)
9925 goto out;
9926 }
9927 submitted = to_submit;
9928 } else if (to_submit) {
9929 ret = io_uring_add_tctx_node(ctx);
9930 if (unlikely(ret))
9931 goto out;
9932 mutex_lock(&ctx->uring_lock);
9933 submitted = io_submit_sqes(ctx, to_submit);
9934 mutex_unlock(&ctx->uring_lock);
9935
9936 if (submitted != to_submit)
9937 goto out;
9938 }
9939 if (flags & IORING_ENTER_GETEVENTS) {
9940 const sigset_t __user *sig;
9941 struct __kernel_timespec __user *ts;
9942
9943 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9944 if (unlikely(ret))
9945 goto out;
9946
9947 min_complete = min(min_complete, ctx->cq_entries);
9948
9949 /*
9950 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9951 * space applications don't need to do io completion events
9952 * polling again, they can rely on io_sq_thread to do polling
9953 * work, which can reduce cpu usage and uring_lock contention.
9954 */
9955 if (ctx->flags & IORING_SETUP_IOPOLL &&
9956 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9957 ret = io_iopoll_check(ctx, min_complete);
9958 } else {
9959 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9960 }
9961 }
9962
9963 out:
9964 percpu_ref_put(&ctx->refs);
9965 out_fput:
9966 fdput(f);
9967 return submitted ? submitted : ret;
9968 }
9969
9970 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file * m,unsigned int id,const struct cred * cred)9971 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9972 const struct cred *cred)
9973 {
9974 struct user_namespace *uns = seq_user_ns(m);
9975 struct group_info *gi;
9976 kernel_cap_t cap;
9977 unsigned __capi;
9978 int g;
9979
9980 seq_printf(m, "%5d\n", id);
9981 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9982 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9983 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9984 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9985 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9986 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9987 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9988 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9989 seq_puts(m, "\n\tGroups:\t");
9990 gi = cred->group_info;
9991 for (g = 0; g < gi->ngroups; g++) {
9992 seq_put_decimal_ull(m, g ? " " : "",
9993 from_kgid_munged(uns, gi->gid[g]));
9994 }
9995 seq_puts(m, "\n\tCapEff:\t");
9996 cap = cred->cap_effective;
9997 CAP_FOR_EACH_U32(__capi)
9998 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9999 seq_putc(m, '\n');
10000 return 0;
10001 }
10002
__io_uring_show_fdinfo(struct io_ring_ctx * ctx,struct seq_file * m)10003 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10004 {
10005 struct io_sq_data *sq = NULL;
10006 bool has_lock;
10007 int i;
10008
10009 /*
10010 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10011 * since fdinfo case grabs it in the opposite direction of normal use
10012 * cases. If we fail to get the lock, we just don't iterate any
10013 * structures that could be going away outside the io_uring mutex.
10014 */
10015 has_lock = mutex_trylock(&ctx->uring_lock);
10016
10017 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10018 sq = ctx->sq_data;
10019 if (!sq->thread)
10020 sq = NULL;
10021 }
10022
10023 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10024 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10025 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10026 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10027 struct file *f = io_file_from_index(ctx, i);
10028
10029 if (f)
10030 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10031 else
10032 seq_printf(m, "%5u: <none>\n", i);
10033 }
10034 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10035 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10036 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10037 unsigned int len = buf->ubuf_end - buf->ubuf;
10038
10039 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10040 }
10041 if (has_lock && !xa_empty(&ctx->personalities)) {
10042 unsigned long index;
10043 const struct cred *cred;
10044
10045 seq_printf(m, "Personalities:\n");
10046 xa_for_each(&ctx->personalities, index, cred)
10047 io_uring_show_cred(m, index, cred);
10048 }
10049 seq_printf(m, "PollList:\n");
10050 spin_lock(&ctx->completion_lock);
10051 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10052 struct hlist_head *list = &ctx->cancel_hash[i];
10053 struct io_kiocb *req;
10054
10055 hlist_for_each_entry(req, list, hash_node)
10056 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10057 req->task->task_works != NULL);
10058 }
10059 spin_unlock(&ctx->completion_lock);
10060 if (has_lock)
10061 mutex_unlock(&ctx->uring_lock);
10062 }
10063
io_uring_show_fdinfo(struct seq_file * m,struct file * f)10064 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10065 {
10066 struct io_ring_ctx *ctx = f->private_data;
10067
10068 if (percpu_ref_tryget(&ctx->refs)) {
10069 __io_uring_show_fdinfo(ctx, m);
10070 percpu_ref_put(&ctx->refs);
10071 }
10072 }
10073 #endif
10074
10075 static const struct file_operations io_uring_fops = {
10076 .release = io_uring_release,
10077 .mmap = io_uring_mmap,
10078 #ifndef CONFIG_MMU
10079 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10080 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10081 #endif
10082 .poll = io_uring_poll,
10083 #ifdef CONFIG_PROC_FS
10084 .show_fdinfo = io_uring_show_fdinfo,
10085 #endif
10086 };
10087
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)10088 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10089 struct io_uring_params *p)
10090 {
10091 struct io_rings *rings;
10092 size_t size, sq_array_offset;
10093
10094 /* make sure these are sane, as we already accounted them */
10095 ctx->sq_entries = p->sq_entries;
10096 ctx->cq_entries = p->cq_entries;
10097
10098 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10099 if (size == SIZE_MAX)
10100 return -EOVERFLOW;
10101
10102 rings = io_mem_alloc(size);
10103 if (!rings)
10104 return -ENOMEM;
10105
10106 ctx->rings = rings;
10107 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10108 rings->sq_ring_mask = p->sq_entries - 1;
10109 rings->cq_ring_mask = p->cq_entries - 1;
10110 rings->sq_ring_entries = p->sq_entries;
10111 rings->cq_ring_entries = p->cq_entries;
10112
10113 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10114 if (size == SIZE_MAX) {
10115 io_mem_free(ctx->rings);
10116 ctx->rings = NULL;
10117 return -EOVERFLOW;
10118 }
10119
10120 ctx->sq_sqes = io_mem_alloc(size);
10121 if (!ctx->sq_sqes) {
10122 io_mem_free(ctx->rings);
10123 ctx->rings = NULL;
10124 return -ENOMEM;
10125 }
10126
10127 return 0;
10128 }
10129
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)10130 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10131 {
10132 int ret, fd;
10133
10134 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10135 if (fd < 0)
10136 return fd;
10137
10138 ret = io_uring_add_tctx_node(ctx);
10139 if (ret) {
10140 put_unused_fd(fd);
10141 return ret;
10142 }
10143 fd_install(fd, file);
10144 return fd;
10145 }
10146
10147 /*
10148 * Allocate an anonymous fd, this is what constitutes the application
10149 * visible backing of an io_uring instance. The application mmaps this
10150 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10151 * we have to tie this fd to a socket for file garbage collection purposes.
10152 */
io_uring_get_file(struct io_ring_ctx * ctx)10153 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10154 {
10155 struct file *file;
10156 #if defined(CONFIG_UNIX)
10157 int ret;
10158
10159 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10160 &ctx->ring_sock);
10161 if (ret)
10162 return ERR_PTR(ret);
10163 #endif
10164
10165 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10166 O_RDWR | O_CLOEXEC);
10167 #if defined(CONFIG_UNIX)
10168 if (IS_ERR(file)) {
10169 sock_release(ctx->ring_sock);
10170 ctx->ring_sock = NULL;
10171 } else {
10172 ctx->ring_sock->file = file;
10173 }
10174 #endif
10175 return file;
10176 }
10177
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)10178 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10179 struct io_uring_params __user *params)
10180 {
10181 struct io_ring_ctx *ctx;
10182 struct file *file;
10183 int ret;
10184
10185 if (!entries)
10186 return -EINVAL;
10187 if (entries > IORING_MAX_ENTRIES) {
10188 if (!(p->flags & IORING_SETUP_CLAMP))
10189 return -EINVAL;
10190 entries = IORING_MAX_ENTRIES;
10191 }
10192
10193 /*
10194 * Use twice as many entries for the CQ ring. It's possible for the
10195 * application to drive a higher depth than the size of the SQ ring,
10196 * since the sqes are only used at submission time. This allows for
10197 * some flexibility in overcommitting a bit. If the application has
10198 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10199 * of CQ ring entries manually.
10200 */
10201 p->sq_entries = roundup_pow_of_two(entries);
10202 if (p->flags & IORING_SETUP_CQSIZE) {
10203 /*
10204 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10205 * to a power-of-two, if it isn't already. We do NOT impose
10206 * any cq vs sq ring sizing.
10207 */
10208 if (!p->cq_entries)
10209 return -EINVAL;
10210 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10211 if (!(p->flags & IORING_SETUP_CLAMP))
10212 return -EINVAL;
10213 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10214 }
10215 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10216 if (p->cq_entries < p->sq_entries)
10217 return -EINVAL;
10218 } else {
10219 p->cq_entries = 2 * p->sq_entries;
10220 }
10221
10222 ctx = io_ring_ctx_alloc(p);
10223 if (!ctx)
10224 return -ENOMEM;
10225 ctx->compat = in_compat_syscall();
10226 if (!capable(CAP_IPC_LOCK))
10227 ctx->user = get_uid(current_user());
10228
10229 /*
10230 * This is just grabbed for accounting purposes. When a process exits,
10231 * the mm is exited and dropped before the files, hence we need to hang
10232 * on to this mm purely for the purposes of being able to unaccount
10233 * memory (locked/pinned vm). It's not used for anything else.
10234 */
10235 mmgrab(current->mm);
10236 ctx->mm_account = current->mm;
10237
10238 ret = io_allocate_scq_urings(ctx, p);
10239 if (ret)
10240 goto err;
10241
10242 ret = io_sq_offload_create(ctx, p);
10243 if (ret)
10244 goto err;
10245 /* always set a rsrc node */
10246 ret = io_rsrc_node_switch_start(ctx);
10247 if (ret)
10248 goto err;
10249 io_rsrc_node_switch(ctx, NULL);
10250
10251 memset(&p->sq_off, 0, sizeof(p->sq_off));
10252 p->sq_off.head = offsetof(struct io_rings, sq.head);
10253 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10254 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10255 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10256 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10257 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10258 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10259
10260 memset(&p->cq_off, 0, sizeof(p->cq_off));
10261 p->cq_off.head = offsetof(struct io_rings, cq.head);
10262 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10263 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10264 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10265 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10266 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10267 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10268
10269 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10270 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10271 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10272 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10273 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10274 IORING_FEAT_RSRC_TAGS;
10275
10276 if (copy_to_user(params, p, sizeof(*p))) {
10277 ret = -EFAULT;
10278 goto err;
10279 }
10280
10281 file = io_uring_get_file(ctx);
10282 if (IS_ERR(file)) {
10283 ret = PTR_ERR(file);
10284 goto err;
10285 }
10286
10287 /*
10288 * Install ring fd as the very last thing, so we don't risk someone
10289 * having closed it before we finish setup
10290 */
10291 ret = io_uring_install_fd(ctx, file);
10292 if (ret < 0) {
10293 /* fput will clean it up */
10294 fput(file);
10295 return ret;
10296 }
10297
10298 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10299 return ret;
10300 err:
10301 io_ring_ctx_wait_and_kill(ctx);
10302 return ret;
10303 }
10304
10305 /*
10306 * Sets up an aio uring context, and returns the fd. Applications asks for a
10307 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10308 * params structure passed in.
10309 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)10310 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10311 {
10312 struct io_uring_params p;
10313 int i;
10314
10315 if (copy_from_user(&p, params, sizeof(p)))
10316 return -EFAULT;
10317 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10318 if (p.resv[i])
10319 return -EINVAL;
10320 }
10321
10322 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10323 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10324 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10325 IORING_SETUP_R_DISABLED))
10326 return -EINVAL;
10327
10328 return io_uring_create(entries, &p, params);
10329 }
10330
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)10331 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10332 struct io_uring_params __user *, params)
10333 {
10334 return io_uring_setup(entries, params);
10335 }
10336
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10337 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10338 {
10339 struct io_uring_probe *p;
10340 size_t size;
10341 int i, ret;
10342
10343 size = struct_size(p, ops, nr_args);
10344 if (size == SIZE_MAX)
10345 return -EOVERFLOW;
10346 p = kzalloc(size, GFP_KERNEL);
10347 if (!p)
10348 return -ENOMEM;
10349
10350 ret = -EFAULT;
10351 if (copy_from_user(p, arg, size))
10352 goto out;
10353 ret = -EINVAL;
10354 if (memchr_inv(p, 0, size))
10355 goto out;
10356
10357 p->last_op = IORING_OP_LAST - 1;
10358 if (nr_args > IORING_OP_LAST)
10359 nr_args = IORING_OP_LAST;
10360
10361 for (i = 0; i < nr_args; i++) {
10362 p->ops[i].op = i;
10363 if (!io_op_defs[i].not_supported)
10364 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10365 }
10366 p->ops_len = i;
10367
10368 ret = 0;
10369 if (copy_to_user(arg, p, size))
10370 ret = -EFAULT;
10371 out:
10372 kfree(p);
10373 return ret;
10374 }
10375
io_register_personality(struct io_ring_ctx * ctx)10376 static int io_register_personality(struct io_ring_ctx *ctx)
10377 {
10378 const struct cred *creds;
10379 u32 id;
10380 int ret;
10381
10382 creds = get_current_cred();
10383
10384 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10385 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10386 if (ret < 0) {
10387 put_cred(creds);
10388 return ret;
10389 }
10390 return id;
10391 }
10392
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)10393 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10394 unsigned int nr_args)
10395 {
10396 struct io_uring_restriction *res;
10397 size_t size;
10398 int i, ret;
10399
10400 /* Restrictions allowed only if rings started disabled */
10401 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10402 return -EBADFD;
10403
10404 /* We allow only a single restrictions registration */
10405 if (ctx->restrictions.registered)
10406 return -EBUSY;
10407
10408 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10409 return -EINVAL;
10410
10411 size = array_size(nr_args, sizeof(*res));
10412 if (size == SIZE_MAX)
10413 return -EOVERFLOW;
10414
10415 res = memdup_user(arg, size);
10416 if (IS_ERR(res))
10417 return PTR_ERR(res);
10418
10419 ret = 0;
10420
10421 for (i = 0; i < nr_args; i++) {
10422 switch (res[i].opcode) {
10423 case IORING_RESTRICTION_REGISTER_OP:
10424 if (res[i].register_op >= IORING_REGISTER_LAST) {
10425 ret = -EINVAL;
10426 goto out;
10427 }
10428
10429 __set_bit(res[i].register_op,
10430 ctx->restrictions.register_op);
10431 break;
10432 case IORING_RESTRICTION_SQE_OP:
10433 if (res[i].sqe_op >= IORING_OP_LAST) {
10434 ret = -EINVAL;
10435 goto out;
10436 }
10437
10438 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10439 break;
10440 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10441 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10442 break;
10443 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10444 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10445 break;
10446 default:
10447 ret = -EINVAL;
10448 goto out;
10449 }
10450 }
10451
10452 out:
10453 /* Reset all restrictions if an error happened */
10454 if (ret != 0)
10455 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10456 else
10457 ctx->restrictions.registered = true;
10458
10459 kfree(res);
10460 return ret;
10461 }
10462
io_register_enable_rings(struct io_ring_ctx * ctx)10463 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10464 {
10465 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10466 return -EBADFD;
10467
10468 if (ctx->restrictions.registered)
10469 ctx->restricted = 1;
10470
10471 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10472 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10473 wake_up(&ctx->sq_data->wait);
10474 return 0;
10475 }
10476
__io_register_rsrc_update(struct io_ring_ctx * ctx,unsigned type,struct io_uring_rsrc_update2 * up,unsigned nr_args)10477 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10478 struct io_uring_rsrc_update2 *up,
10479 unsigned nr_args)
10480 {
10481 __u32 tmp;
10482 int err;
10483
10484 if (check_add_overflow(up->offset, nr_args, &tmp))
10485 return -EOVERFLOW;
10486 err = io_rsrc_node_switch_start(ctx);
10487 if (err)
10488 return err;
10489
10490 switch (type) {
10491 case IORING_RSRC_FILE:
10492 return __io_sqe_files_update(ctx, up, nr_args);
10493 case IORING_RSRC_BUFFER:
10494 return __io_sqe_buffers_update(ctx, up, nr_args);
10495 }
10496 return -EINVAL;
10497 }
10498
io_register_files_update(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10499 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10500 unsigned nr_args)
10501 {
10502 struct io_uring_rsrc_update2 up;
10503
10504 if (!nr_args)
10505 return -EINVAL;
10506 memset(&up, 0, sizeof(up));
10507 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10508 return -EFAULT;
10509 if (up.resv || up.resv2)
10510 return -EINVAL;
10511 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10512 }
10513
io_register_rsrc_update(struct io_ring_ctx * ctx,void __user * arg,unsigned size,unsigned type)10514 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10515 unsigned size, unsigned type)
10516 {
10517 struct io_uring_rsrc_update2 up;
10518
10519 if (size != sizeof(up))
10520 return -EINVAL;
10521 if (copy_from_user(&up, arg, sizeof(up)))
10522 return -EFAULT;
10523 if (!up.nr || up.resv || up.resv2)
10524 return -EINVAL;
10525 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10526 }
10527
io_register_rsrc(struct io_ring_ctx * ctx,void __user * arg,unsigned int size,unsigned int type)10528 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10529 unsigned int size, unsigned int type)
10530 {
10531 struct io_uring_rsrc_register rr;
10532
10533 /* keep it extendible */
10534 if (size != sizeof(rr))
10535 return -EINVAL;
10536
10537 memset(&rr, 0, sizeof(rr));
10538 if (copy_from_user(&rr, arg, size))
10539 return -EFAULT;
10540 if (!rr.nr || rr.resv || rr.resv2)
10541 return -EINVAL;
10542
10543 switch (type) {
10544 case IORING_RSRC_FILE:
10545 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10546 rr.nr, u64_to_user_ptr(rr.tags));
10547 case IORING_RSRC_BUFFER:
10548 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10549 rr.nr, u64_to_user_ptr(rr.tags));
10550 }
10551 return -EINVAL;
10552 }
10553
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)10554 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10555 unsigned len)
10556 {
10557 struct io_uring_task *tctx = current->io_uring;
10558 cpumask_var_t new_mask;
10559 int ret;
10560
10561 if (!tctx || !tctx->io_wq)
10562 return -EINVAL;
10563
10564 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10565 return -ENOMEM;
10566
10567 cpumask_clear(new_mask);
10568 if (len > cpumask_size())
10569 len = cpumask_size();
10570
10571 #ifdef CONFIG_COMPAT
10572 if (in_compat_syscall()) {
10573 ret = compat_get_bitmap(cpumask_bits(new_mask),
10574 (const compat_ulong_t __user *)arg,
10575 len * 8 /* CHAR_BIT */);
10576 } else {
10577 ret = copy_from_user(new_mask, arg, len);
10578 }
10579 #else
10580 ret = copy_from_user(new_mask, arg, len);
10581 #endif
10582
10583 if (ret) {
10584 free_cpumask_var(new_mask);
10585 return -EFAULT;
10586 }
10587
10588 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10589 free_cpumask_var(new_mask);
10590 return ret;
10591 }
10592
io_unregister_iowq_aff(struct io_ring_ctx * ctx)10593 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10594 {
10595 struct io_uring_task *tctx = current->io_uring;
10596
10597 if (!tctx || !tctx->io_wq)
10598 return -EINVAL;
10599
10600 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10601 }
10602
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)10603 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10604 void __user *arg)
10605 __must_hold(&ctx->uring_lock)
10606 {
10607 struct io_tctx_node *node;
10608 struct io_uring_task *tctx = NULL;
10609 struct io_sq_data *sqd = NULL;
10610 __u32 new_count[2];
10611 int i, ret;
10612
10613 if (copy_from_user(new_count, arg, sizeof(new_count)))
10614 return -EFAULT;
10615 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10616 if (new_count[i] > INT_MAX)
10617 return -EINVAL;
10618
10619 if (ctx->flags & IORING_SETUP_SQPOLL) {
10620 sqd = ctx->sq_data;
10621 if (sqd) {
10622 /*
10623 * Observe the correct sqd->lock -> ctx->uring_lock
10624 * ordering. Fine to drop uring_lock here, we hold
10625 * a ref to the ctx.
10626 */
10627 refcount_inc(&sqd->refs);
10628 mutex_unlock(&ctx->uring_lock);
10629 mutex_lock(&sqd->lock);
10630 mutex_lock(&ctx->uring_lock);
10631 if (sqd->thread)
10632 tctx = sqd->thread->io_uring;
10633 }
10634 } else {
10635 tctx = current->io_uring;
10636 }
10637
10638 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10639
10640 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10641 if (new_count[i])
10642 ctx->iowq_limits[i] = new_count[i];
10643 ctx->iowq_limits_set = true;
10644
10645 ret = -EINVAL;
10646 if (tctx && tctx->io_wq) {
10647 ret = io_wq_max_workers(tctx->io_wq, new_count);
10648 if (ret)
10649 goto err;
10650 } else {
10651 memset(new_count, 0, sizeof(new_count));
10652 }
10653
10654 if (sqd) {
10655 mutex_unlock(&sqd->lock);
10656 io_put_sq_data(sqd);
10657 }
10658
10659 if (copy_to_user(arg, new_count, sizeof(new_count)))
10660 return -EFAULT;
10661
10662 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10663 if (sqd)
10664 return 0;
10665
10666 /* now propagate the restriction to all registered users */
10667 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10668 struct io_uring_task *tctx = node->task->io_uring;
10669
10670 if (WARN_ON_ONCE(!tctx->io_wq))
10671 continue;
10672
10673 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10674 new_count[i] = ctx->iowq_limits[i];
10675 /* ignore errors, it always returns zero anyway */
10676 (void)io_wq_max_workers(tctx->io_wq, new_count);
10677 }
10678 return 0;
10679 err:
10680 if (sqd) {
10681 mutex_unlock(&sqd->lock);
10682 io_put_sq_data(sqd);
10683 }
10684 return ret;
10685 }
10686
io_register_op_must_quiesce(int op)10687 static bool io_register_op_must_quiesce(int op)
10688 {
10689 switch (op) {
10690 case IORING_REGISTER_BUFFERS:
10691 case IORING_UNREGISTER_BUFFERS:
10692 case IORING_REGISTER_FILES:
10693 case IORING_UNREGISTER_FILES:
10694 case IORING_REGISTER_FILES_UPDATE:
10695 case IORING_REGISTER_PROBE:
10696 case IORING_REGISTER_PERSONALITY:
10697 case IORING_UNREGISTER_PERSONALITY:
10698 case IORING_REGISTER_FILES2:
10699 case IORING_REGISTER_FILES_UPDATE2:
10700 case IORING_REGISTER_BUFFERS2:
10701 case IORING_REGISTER_BUFFERS_UPDATE:
10702 case IORING_REGISTER_IOWQ_AFF:
10703 case IORING_UNREGISTER_IOWQ_AFF:
10704 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10705 return false;
10706 default:
10707 return true;
10708 }
10709 }
10710
io_ctx_quiesce(struct io_ring_ctx * ctx)10711 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10712 {
10713 long ret;
10714
10715 percpu_ref_kill(&ctx->refs);
10716
10717 /*
10718 * Drop uring mutex before waiting for references to exit. If another
10719 * thread is currently inside io_uring_enter() it might need to grab the
10720 * uring_lock to make progress. If we hold it here across the drain
10721 * wait, then we can deadlock. It's safe to drop the mutex here, since
10722 * no new references will come in after we've killed the percpu ref.
10723 */
10724 mutex_unlock(&ctx->uring_lock);
10725 do {
10726 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10727 if (!ret)
10728 break;
10729 ret = io_run_task_work_sig();
10730 } while (ret >= 0);
10731 mutex_lock(&ctx->uring_lock);
10732
10733 if (ret)
10734 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10735 return ret;
10736 }
10737
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)10738 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10739 void __user *arg, unsigned nr_args)
10740 __releases(ctx->uring_lock)
10741 __acquires(ctx->uring_lock)
10742 {
10743 int ret;
10744
10745 /*
10746 * We're inside the ring mutex, if the ref is already dying, then
10747 * someone else killed the ctx or is already going through
10748 * io_uring_register().
10749 */
10750 if (percpu_ref_is_dying(&ctx->refs))
10751 return -ENXIO;
10752
10753 if (ctx->restricted) {
10754 if (opcode >= IORING_REGISTER_LAST)
10755 return -EINVAL;
10756 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10757 if (!test_bit(opcode, ctx->restrictions.register_op))
10758 return -EACCES;
10759 }
10760
10761 if (io_register_op_must_quiesce(opcode)) {
10762 ret = io_ctx_quiesce(ctx);
10763 if (ret)
10764 return ret;
10765 }
10766
10767 switch (opcode) {
10768 case IORING_REGISTER_BUFFERS:
10769 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10770 break;
10771 case IORING_UNREGISTER_BUFFERS:
10772 ret = -EINVAL;
10773 if (arg || nr_args)
10774 break;
10775 ret = io_sqe_buffers_unregister(ctx);
10776 break;
10777 case IORING_REGISTER_FILES:
10778 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10779 break;
10780 case IORING_UNREGISTER_FILES:
10781 ret = -EINVAL;
10782 if (arg || nr_args)
10783 break;
10784 ret = io_sqe_files_unregister(ctx);
10785 break;
10786 case IORING_REGISTER_FILES_UPDATE:
10787 ret = io_register_files_update(ctx, arg, nr_args);
10788 break;
10789 case IORING_REGISTER_EVENTFD:
10790 case IORING_REGISTER_EVENTFD_ASYNC:
10791 ret = -EINVAL;
10792 if (nr_args != 1)
10793 break;
10794 ret = io_eventfd_register(ctx, arg);
10795 if (ret)
10796 break;
10797 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10798 ctx->eventfd_async = 1;
10799 else
10800 ctx->eventfd_async = 0;
10801 break;
10802 case IORING_UNREGISTER_EVENTFD:
10803 ret = -EINVAL;
10804 if (arg || nr_args)
10805 break;
10806 ret = io_eventfd_unregister(ctx);
10807 break;
10808 case IORING_REGISTER_PROBE:
10809 ret = -EINVAL;
10810 if (!arg || nr_args > 256)
10811 break;
10812 ret = io_probe(ctx, arg, nr_args);
10813 break;
10814 case IORING_REGISTER_PERSONALITY:
10815 ret = -EINVAL;
10816 if (arg || nr_args)
10817 break;
10818 ret = io_register_personality(ctx);
10819 break;
10820 case IORING_UNREGISTER_PERSONALITY:
10821 ret = -EINVAL;
10822 if (arg)
10823 break;
10824 ret = io_unregister_personality(ctx, nr_args);
10825 break;
10826 case IORING_REGISTER_ENABLE_RINGS:
10827 ret = -EINVAL;
10828 if (arg || nr_args)
10829 break;
10830 ret = io_register_enable_rings(ctx);
10831 break;
10832 case IORING_REGISTER_RESTRICTIONS:
10833 ret = io_register_restrictions(ctx, arg, nr_args);
10834 break;
10835 case IORING_REGISTER_FILES2:
10836 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10837 break;
10838 case IORING_REGISTER_FILES_UPDATE2:
10839 ret = io_register_rsrc_update(ctx, arg, nr_args,
10840 IORING_RSRC_FILE);
10841 break;
10842 case IORING_REGISTER_BUFFERS2:
10843 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10844 break;
10845 case IORING_REGISTER_BUFFERS_UPDATE:
10846 ret = io_register_rsrc_update(ctx, arg, nr_args,
10847 IORING_RSRC_BUFFER);
10848 break;
10849 case IORING_REGISTER_IOWQ_AFF:
10850 ret = -EINVAL;
10851 if (!arg || !nr_args)
10852 break;
10853 ret = io_register_iowq_aff(ctx, arg, nr_args);
10854 break;
10855 case IORING_UNREGISTER_IOWQ_AFF:
10856 ret = -EINVAL;
10857 if (arg || nr_args)
10858 break;
10859 ret = io_unregister_iowq_aff(ctx);
10860 break;
10861 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10862 ret = -EINVAL;
10863 if (!arg || nr_args != 2)
10864 break;
10865 ret = io_register_iowq_max_workers(ctx, arg);
10866 break;
10867 default:
10868 ret = -EINVAL;
10869 break;
10870 }
10871
10872 if (io_register_op_must_quiesce(opcode)) {
10873 /* bring the ctx back to life */
10874 percpu_ref_reinit(&ctx->refs);
10875 reinit_completion(&ctx->ref_comp);
10876 }
10877 return ret;
10878 }
10879
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)10880 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10881 void __user *, arg, unsigned int, nr_args)
10882 {
10883 struct io_ring_ctx *ctx;
10884 long ret = -EBADF;
10885 struct fd f;
10886
10887 f = fdget(fd);
10888 if (!f.file)
10889 return -EBADF;
10890
10891 ret = -EOPNOTSUPP;
10892 if (f.file->f_op != &io_uring_fops)
10893 goto out_fput;
10894
10895 ctx = f.file->private_data;
10896
10897 io_run_task_work();
10898
10899 mutex_lock(&ctx->uring_lock);
10900 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10901 mutex_unlock(&ctx->uring_lock);
10902 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10903 ctx->cq_ev_fd != NULL, ret);
10904 out_fput:
10905 fdput(f);
10906 return ret;
10907 }
10908
io_uring_init(void)10909 static int __init io_uring_init(void)
10910 {
10911 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10912 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10913 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10914 } while (0)
10915
10916 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10917 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10918 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10919 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10920 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10921 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10922 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10923 BUILD_BUG_SQE_ELEM(8, __u64, off);
10924 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10925 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10926 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10927 BUILD_BUG_SQE_ELEM(24, __u32, len);
10928 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10929 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10930 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10931 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10932 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10933 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10934 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10935 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10936 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10937 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10938 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10939 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10940 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10941 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10942 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10943 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10944 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10945 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
10946 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10947 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10948 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
10949
10950 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10951 sizeof(struct io_uring_rsrc_update));
10952 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10953 sizeof(struct io_uring_rsrc_update2));
10954
10955 /* ->buf_index is u16 */
10956 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
10957
10958 /* should fit into one byte */
10959 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
10960
10961 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10962 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
10963
10964 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10965 SLAB_ACCOUNT);
10966 return 0;
10967 };
10968 __initcall(io_uring_init);
10969