xref: /OK3568_Linux_fs/kernel/include/math-emu/op-1.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /* Software floating-point emulation.
2*4882a593Smuzhiyun    Basic one-word fraction declaration and manipulation.
3*4882a593Smuzhiyun    Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
4*4882a593Smuzhiyun    This file is part of the GNU C Library.
5*4882a593Smuzhiyun    Contributed by Richard Henderson (rth@cygnus.com),
6*4882a593Smuzhiyun 		  Jakub Jelinek (jj@ultra.linux.cz),
7*4882a593Smuzhiyun 		  David S. Miller (davem@redhat.com) and
8*4882a593Smuzhiyun 		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
9*4882a593Smuzhiyun 
10*4882a593Smuzhiyun    The GNU C Library is free software; you can redistribute it and/or
11*4882a593Smuzhiyun    modify it under the terms of the GNU Library General Public License as
12*4882a593Smuzhiyun    published by the Free Software Foundation; either version 2 of the
13*4882a593Smuzhiyun    License, or (at your option) any later version.
14*4882a593Smuzhiyun 
15*4882a593Smuzhiyun    The GNU C Library is distributed in the hope that it will be useful,
16*4882a593Smuzhiyun    but WITHOUT ANY WARRANTY; without even the implied warranty of
17*4882a593Smuzhiyun    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18*4882a593Smuzhiyun    Library General Public License for more details.
19*4882a593Smuzhiyun 
20*4882a593Smuzhiyun    You should have received a copy of the GNU Library General Public
21*4882a593Smuzhiyun    License along with the GNU C Library; see the file COPYING.LIB.  If
22*4882a593Smuzhiyun    not, write to the Free Software Foundation, Inc.,
23*4882a593Smuzhiyun    59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
24*4882a593Smuzhiyun 
25*4882a593Smuzhiyun #ifndef    __MATH_EMU_OP_1_H__
26*4882a593Smuzhiyun #define    __MATH_EMU_OP_1_H__
27*4882a593Smuzhiyun 
28*4882a593Smuzhiyun #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f=0
29*4882a593Smuzhiyun #define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f)
30*4882a593Smuzhiyun #define _FP_FRAC_SET_1(X,I)	(X##_f = I)
31*4882a593Smuzhiyun #define _FP_FRAC_HIGH_1(X)	(X##_f)
32*4882a593Smuzhiyun #define _FP_FRAC_LOW_1(X)	(X##_f)
33*4882a593Smuzhiyun #define _FP_FRAC_WORD_1(X,w)	(X##_f)
34*4882a593Smuzhiyun 
35*4882a593Smuzhiyun #define _FP_FRAC_ADDI_1(X,I)	(X##_f += I)
36*4882a593Smuzhiyun #define _FP_FRAC_SLL_1(X,N)			\
37*4882a593Smuzhiyun   do {						\
38*4882a593Smuzhiyun     if (__builtin_constant_p(N) && (N) == 1)	\
39*4882a593Smuzhiyun       X##_f += X##_f;				\
40*4882a593Smuzhiyun     else					\
41*4882a593Smuzhiyun       X##_f <<= (N);				\
42*4882a593Smuzhiyun   } while (0)
43*4882a593Smuzhiyun #define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N)
44*4882a593Smuzhiyun 
45*4882a593Smuzhiyun /* Right shift with sticky-lsb.  */
46*4882a593Smuzhiyun #define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz)
47*4882a593Smuzhiyun 
48*4882a593Smuzhiyun #define __FP_FRAC_SRS_1(X,N,sz)						\
49*4882a593Smuzhiyun    (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\
50*4882a593Smuzhiyun 		     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
51*4882a593Smuzhiyun 
52*4882a593Smuzhiyun #define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f)
53*4882a593Smuzhiyun #define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f)
54*4882a593Smuzhiyun #define _FP_FRAC_DEC_1(X,Y)	(X##_f -= Y##_f)
55*4882a593Smuzhiyun #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f)
56*4882a593Smuzhiyun 
57*4882a593Smuzhiyun /* Predicates */
58*4882a593Smuzhiyun #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0)
59*4882a593Smuzhiyun #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
60*4882a593Smuzhiyun #define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs)
61*4882a593Smuzhiyun #define _FP_FRAC_CLEAR_OVERP_1(fs,X)	(X##_f &= ~_FP_OVERFLOW_##fs)
62*4882a593Smuzhiyun #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
63*4882a593Smuzhiyun #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
64*4882a593Smuzhiyun #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
65*4882a593Smuzhiyun 
66*4882a593Smuzhiyun #define _FP_ZEROFRAC_1		0
67*4882a593Smuzhiyun #define _FP_MINFRAC_1		1
68*4882a593Smuzhiyun #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE)0)
69*4882a593Smuzhiyun 
70*4882a593Smuzhiyun /*
71*4882a593Smuzhiyun  * Unpack the raw bits of a native fp value.  Do not classify or
72*4882a593Smuzhiyun  * normalize the data.
73*4882a593Smuzhiyun  */
74*4882a593Smuzhiyun 
75*4882a593Smuzhiyun #define _FP_UNPACK_RAW_1(fs, X, val)				\
76*4882a593Smuzhiyun   do {								\
77*4882a593Smuzhiyun     union _FP_UNION_##fs _flo; _flo.flt = (val);		\
78*4882a593Smuzhiyun 								\
79*4882a593Smuzhiyun     X##_f = _flo.bits.frac;					\
80*4882a593Smuzhiyun     X##_e = _flo.bits.exp;					\
81*4882a593Smuzhiyun     X##_s = _flo.bits.sign;					\
82*4882a593Smuzhiyun   } while (0)
83*4882a593Smuzhiyun 
84*4882a593Smuzhiyun #define _FP_UNPACK_RAW_1_P(fs, X, val)				\
85*4882a593Smuzhiyun   do {								\
86*4882a593Smuzhiyun     union _FP_UNION_##fs *_flo =				\
87*4882a593Smuzhiyun       (union _FP_UNION_##fs *)(val);				\
88*4882a593Smuzhiyun 								\
89*4882a593Smuzhiyun     X##_f = _flo->bits.frac;					\
90*4882a593Smuzhiyun     X##_e = _flo->bits.exp;					\
91*4882a593Smuzhiyun     X##_s = _flo->bits.sign;					\
92*4882a593Smuzhiyun   } while (0)
93*4882a593Smuzhiyun 
94*4882a593Smuzhiyun /*
95*4882a593Smuzhiyun  * Repack the raw bits of a native fp value.
96*4882a593Smuzhiyun  */
97*4882a593Smuzhiyun 
98*4882a593Smuzhiyun #define _FP_PACK_RAW_1(fs, val, X)				\
99*4882a593Smuzhiyun   do {								\
100*4882a593Smuzhiyun     union _FP_UNION_##fs _flo;					\
101*4882a593Smuzhiyun 								\
102*4882a593Smuzhiyun     _flo.bits.frac = X##_f;					\
103*4882a593Smuzhiyun     _flo.bits.exp  = X##_e;					\
104*4882a593Smuzhiyun     _flo.bits.sign = X##_s;					\
105*4882a593Smuzhiyun 								\
106*4882a593Smuzhiyun     (val) = _flo.flt;						\
107*4882a593Smuzhiyun   } while (0)
108*4882a593Smuzhiyun 
109*4882a593Smuzhiyun #define _FP_PACK_RAW_1_P(fs, val, X)				\
110*4882a593Smuzhiyun   do {								\
111*4882a593Smuzhiyun     union _FP_UNION_##fs *_flo =				\
112*4882a593Smuzhiyun       (union _FP_UNION_##fs *)(val);				\
113*4882a593Smuzhiyun 								\
114*4882a593Smuzhiyun     _flo->bits.frac = X##_f;					\
115*4882a593Smuzhiyun     _flo->bits.exp  = X##_e;					\
116*4882a593Smuzhiyun     _flo->bits.sign = X##_s;					\
117*4882a593Smuzhiyun   } while (0)
118*4882a593Smuzhiyun 
119*4882a593Smuzhiyun 
120*4882a593Smuzhiyun /*
121*4882a593Smuzhiyun  * Multiplication algorithms:
122*4882a593Smuzhiyun  */
123*4882a593Smuzhiyun 
124*4882a593Smuzhiyun /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
125*4882a593Smuzhiyun    multiplication immediately.  */
126*4882a593Smuzhiyun 
127*4882a593Smuzhiyun #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\
128*4882a593Smuzhiyun   do {									\
129*4882a593Smuzhiyun     R##_f = X##_f * Y##_f;						\
130*4882a593Smuzhiyun     /* Normalize since we know where the msb of the multiplicands	\
131*4882a593Smuzhiyun        were (bit B), we know that the msb of the of the product is	\
132*4882a593Smuzhiyun        at either 2B or 2B-1.  */					\
133*4882a593Smuzhiyun     _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);			\
134*4882a593Smuzhiyun   } while (0)
135*4882a593Smuzhiyun 
136*4882a593Smuzhiyun /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
137*4882a593Smuzhiyun 
138*4882a593Smuzhiyun #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\
139*4882a593Smuzhiyun   do {									\
140*4882a593Smuzhiyun     _FP_W_TYPE _Z_f0, _Z_f1;						\
141*4882a593Smuzhiyun     doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\
142*4882a593Smuzhiyun     /* Normalize since we know where the msb of the multiplicands	\
143*4882a593Smuzhiyun        were (bit B), we know that the msb of the of the product is	\
144*4882a593Smuzhiyun        at either 2B or 2B-1.  */					\
145*4882a593Smuzhiyun     _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);			\
146*4882a593Smuzhiyun     R##_f = _Z_f0;							\
147*4882a593Smuzhiyun   } while (0)
148*4882a593Smuzhiyun 
149*4882a593Smuzhiyun /* Finally, a simple widening multiply algorithm.  What fun!  */
150*4882a593Smuzhiyun 
151*4882a593Smuzhiyun #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)				\
152*4882a593Smuzhiyun   do {									\
153*4882a593Smuzhiyun     _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\
154*4882a593Smuzhiyun 									\
155*4882a593Smuzhiyun     /* split the words in half */					\
156*4882a593Smuzhiyun     _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\
157*4882a593Smuzhiyun     _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
158*4882a593Smuzhiyun     _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\
159*4882a593Smuzhiyun     _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
160*4882a593Smuzhiyun 									\
161*4882a593Smuzhiyun     /* multiply the pieces */						\
162*4882a593Smuzhiyun     _z_f0 = _xl * _yl;							\
163*4882a593Smuzhiyun     _a_f0 = _xh * _yl;							\
164*4882a593Smuzhiyun     _a_f1 = _xl * _yh;							\
165*4882a593Smuzhiyun     _z_f1 = _xh * _yh;							\
166*4882a593Smuzhiyun 									\
167*4882a593Smuzhiyun     /* reassemble into two full words */				\
168*4882a593Smuzhiyun     if ((_a_f0 += _a_f1) < _a_f1)					\
169*4882a593Smuzhiyun       _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\
170*4882a593Smuzhiyun     _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\
171*4882a593Smuzhiyun     _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\
172*4882a593Smuzhiyun     _FP_FRAC_ADD_2(_z, _z, _a);						\
173*4882a593Smuzhiyun 									\
174*4882a593Smuzhiyun     /* normalize */							\
175*4882a593Smuzhiyun     _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);			\
176*4882a593Smuzhiyun     R##_f = _z_f0;							\
177*4882a593Smuzhiyun   } while (0)
178*4882a593Smuzhiyun 
179*4882a593Smuzhiyun 
180*4882a593Smuzhiyun /*
181*4882a593Smuzhiyun  * Division algorithms:
182*4882a593Smuzhiyun  */
183*4882a593Smuzhiyun 
184*4882a593Smuzhiyun /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
185*4882a593Smuzhiyun    division immediately.  Give this macro either _FP_DIV_HELP_imm for
186*4882a593Smuzhiyun    C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
187*4882a593Smuzhiyun    choose will depend on what the compiler does with divrem4.  */
188*4882a593Smuzhiyun 
189*4882a593Smuzhiyun #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\
190*4882a593Smuzhiyun   do {							\
191*4882a593Smuzhiyun     _FP_W_TYPE _q, _r;					\
192*4882a593Smuzhiyun     X##_f <<= (X##_f < Y##_f				\
193*4882a593Smuzhiyun 	       ? R##_e--, _FP_WFRACBITS_##fs		\
194*4882a593Smuzhiyun 	       : _FP_WFRACBITS_##fs - 1);		\
195*4882a593Smuzhiyun     doit(_q, _r, X##_f, Y##_f);				\
196*4882a593Smuzhiyun     R##_f = _q | (_r != 0);				\
197*4882a593Smuzhiyun   } while (0)
198*4882a593Smuzhiyun 
199*4882a593Smuzhiyun /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
200*4882a593Smuzhiyun    that may be useful in this situation.  This first is for a primitive
201*4882a593Smuzhiyun    that requires normalization, the second for one that does not.  Look
202*4882a593Smuzhiyun    for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
203*4882a593Smuzhiyun 
204*4882a593Smuzhiyun #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
205*4882a593Smuzhiyun   do {									\
206*4882a593Smuzhiyun     _FP_W_TYPE _nh, _nl, _q, _r, _y;					\
207*4882a593Smuzhiyun 									\
208*4882a593Smuzhiyun     /* Normalize Y -- i.e. make the most significant bit set.  */	\
209*4882a593Smuzhiyun     _y = Y##_f << _FP_WFRACXBITS_##fs;					\
210*4882a593Smuzhiyun 									\
211*4882a593Smuzhiyun     /* Shift X op correspondingly high, that is, up one full word.  */	\
212*4882a593Smuzhiyun     if (X##_f < Y##_f)							\
213*4882a593Smuzhiyun       {									\
214*4882a593Smuzhiyun 	R##_e--;							\
215*4882a593Smuzhiyun 	_nl = 0;							\
216*4882a593Smuzhiyun 	_nh = X##_f;							\
217*4882a593Smuzhiyun       }									\
218*4882a593Smuzhiyun     else								\
219*4882a593Smuzhiyun       {									\
220*4882a593Smuzhiyun 	_nl = X##_f << (_FP_W_TYPE_SIZE - 1);				\
221*4882a593Smuzhiyun 	_nh = X##_f >> 1;						\
222*4882a593Smuzhiyun       }									\
223*4882a593Smuzhiyun     									\
224*4882a593Smuzhiyun     udiv_qrnnd(_q, _r, _nh, _nl, _y);					\
225*4882a593Smuzhiyun     R##_f = _q | (_r != 0);						\
226*4882a593Smuzhiyun   } while (0)
227*4882a593Smuzhiyun 
228*4882a593Smuzhiyun #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\
229*4882a593Smuzhiyun   do {							\
230*4882a593Smuzhiyun     _FP_W_TYPE _nh, _nl, _q, _r;			\
231*4882a593Smuzhiyun     if (X##_f < Y##_f)					\
232*4882a593Smuzhiyun       {							\
233*4882a593Smuzhiyun 	R##_e--;					\
234*4882a593Smuzhiyun 	_nl = X##_f << _FP_WFRACBITS_##fs;		\
235*4882a593Smuzhiyun 	_nh = X##_f >> _FP_WFRACXBITS_##fs;		\
236*4882a593Smuzhiyun       }							\
237*4882a593Smuzhiyun     else						\
238*4882a593Smuzhiyun       {							\
239*4882a593Smuzhiyun 	_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
240*4882a593Smuzhiyun 	_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
241*4882a593Smuzhiyun       }							\
242*4882a593Smuzhiyun     udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\
243*4882a593Smuzhiyun     R##_f = _q | (_r != 0);				\
244*4882a593Smuzhiyun   } while (0)
245*4882a593Smuzhiyun 
246*4882a593Smuzhiyun 
247*4882a593Smuzhiyun /*
248*4882a593Smuzhiyun  * Square root algorithms:
249*4882a593Smuzhiyun  * We have just one right now, maybe Newton approximation
250*4882a593Smuzhiyun  * should be added for those machines where division is fast.
251*4882a593Smuzhiyun  */
252*4882a593Smuzhiyun 
253*4882a593Smuzhiyun #define _FP_SQRT_MEAT_1(R, S, T, X, q)			\
254*4882a593Smuzhiyun   do {							\
255*4882a593Smuzhiyun     while (q != _FP_WORK_ROUND)				\
256*4882a593Smuzhiyun       {							\
257*4882a593Smuzhiyun         T##_f = S##_f + q;				\
258*4882a593Smuzhiyun         if (T##_f <= X##_f)				\
259*4882a593Smuzhiyun           {						\
260*4882a593Smuzhiyun             S##_f = T##_f + q;				\
261*4882a593Smuzhiyun             X##_f -= T##_f;				\
262*4882a593Smuzhiyun             R##_f += q;					\
263*4882a593Smuzhiyun           }						\
264*4882a593Smuzhiyun         _FP_FRAC_SLL_1(X, 1);				\
265*4882a593Smuzhiyun         q >>= 1;					\
266*4882a593Smuzhiyun       }							\
267*4882a593Smuzhiyun     if (X##_f)						\
268*4882a593Smuzhiyun       {							\
269*4882a593Smuzhiyun 	if (S##_f < X##_f)				\
270*4882a593Smuzhiyun 	  R##_f |= _FP_WORK_ROUND;			\
271*4882a593Smuzhiyun 	R##_f |= _FP_WORK_STICKY;			\
272*4882a593Smuzhiyun       }							\
273*4882a593Smuzhiyun   } while (0)
274*4882a593Smuzhiyun 
275*4882a593Smuzhiyun /*
276*4882a593Smuzhiyun  * Assembly/disassembly for converting to/from integral types.
277*4882a593Smuzhiyun  * No shifting or overflow handled here.
278*4882a593Smuzhiyun  */
279*4882a593Smuzhiyun 
280*4882a593Smuzhiyun #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f)
281*4882a593Smuzhiyun #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r)
282*4882a593Smuzhiyun 
283*4882a593Smuzhiyun 
284*4882a593Smuzhiyun /*
285*4882a593Smuzhiyun  * Convert FP values between word sizes
286*4882a593Smuzhiyun  */
287*4882a593Smuzhiyun 
288*4882a593Smuzhiyun #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\
289*4882a593Smuzhiyun   do {									\
290*4882a593Smuzhiyun     D##_f = S##_f;							\
291*4882a593Smuzhiyun     if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\
292*4882a593Smuzhiyun       {									\
293*4882a593Smuzhiyun 	if (S##_c != FP_CLS_NAN)					\
294*4882a593Smuzhiyun 	  _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\
295*4882a593Smuzhiyun 			 _FP_WFRACBITS_##sfs);				\
296*4882a593Smuzhiyun 	else								\
297*4882a593Smuzhiyun 	  _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs));	\
298*4882a593Smuzhiyun       }									\
299*4882a593Smuzhiyun     else								\
300*4882a593Smuzhiyun       D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\
301*4882a593Smuzhiyun   } while (0)
302*4882a593Smuzhiyun 
303*4882a593Smuzhiyun #endif /* __MATH_EMU_OP_1_H__ */
304