xref: /OK3568_Linux_fs/kernel/include/linux/netdevice.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36 
37 #include <linux/ethtool.h>
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/android_kabi.h>
52 
53 struct netpoll_info;
54 struct device;
55 struct phy_device;
56 struct dsa_port;
57 struct ip_tunnel_parm;
58 struct macsec_context;
59 struct macsec_ops;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct udp_tunnel_nic_info;
70 struct udp_tunnel_nic;
71 struct bpf_prog;
72 struct xdp_buff;
73 
74 void synchronize_net(void);
75 void netdev_set_default_ethtool_ops(struct net_device *dev,
76 				    const struct ethtool_ops *ops);
77 
78 /* Backlog congestion levels */
79 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
80 #define NET_RX_DROP		1	/* packet dropped */
81 
82 #define MAX_NEST_DEV 8
83 
84 /*
85  * Transmit return codes: transmit return codes originate from three different
86  * namespaces:
87  *
88  * - qdisc return codes
89  * - driver transmit return codes
90  * - errno values
91  *
92  * Drivers are allowed to return any one of those in their hard_start_xmit()
93  * function. Real network devices commonly used with qdiscs should only return
94  * the driver transmit return codes though - when qdiscs are used, the actual
95  * transmission happens asynchronously, so the value is not propagated to
96  * higher layers. Virtual network devices transmit synchronously; in this case
97  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
98  * others are propagated to higher layers.
99  */
100 
101 /* qdisc ->enqueue() return codes. */
102 #define NET_XMIT_SUCCESS	0x00
103 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
104 #define NET_XMIT_CN		0x02	/* congestion notification	*/
105 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
106 
107 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
108  * indicates that the device will soon be dropping packets, or already drops
109  * some packets of the same priority; prompting us to send less aggressively. */
110 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
111 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
112 
113 /* Driver transmit return codes */
114 #define NETDEV_TX_MASK		0xf0
115 
116 enum netdev_tx {
117 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
118 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
119 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
120 };
121 typedef enum netdev_tx netdev_tx_t;
122 
123 /*
124  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
125  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
126  */
dev_xmit_complete(int rc)127 static inline bool dev_xmit_complete(int rc)
128 {
129 	/*
130 	 * Positive cases with an skb consumed by a driver:
131 	 * - successful transmission (rc == NETDEV_TX_OK)
132 	 * - error while transmitting (rc < 0)
133 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
134 	 */
135 	if (likely(rc < NET_XMIT_MASK))
136 		return true;
137 
138 	return false;
139 }
140 
141 /*
142  *	Compute the worst-case header length according to the protocols
143  *	used.
144  */
145 
146 #if defined(CONFIG_HYPERV_NET)
147 # define LL_MAX_HEADER 128
148 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
149 # if defined(CONFIG_MAC80211_MESH)
150 #  define LL_MAX_HEADER 128
151 # else
152 #  define LL_MAX_HEADER 96
153 # endif
154 #else
155 # define LL_MAX_HEADER 32
156 #endif
157 
158 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
159     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
160 #define MAX_HEADER LL_MAX_HEADER
161 #else
162 #define MAX_HEADER (LL_MAX_HEADER + 48)
163 #endif
164 
165 /*
166  *	Old network device statistics. Fields are native words
167  *	(unsigned long) so they can be read and written atomically.
168  */
169 
170 struct net_device_stats {
171 	unsigned long	rx_packets;
172 	unsigned long	tx_packets;
173 	unsigned long	rx_bytes;
174 	unsigned long	tx_bytes;
175 	unsigned long	rx_errors;
176 	unsigned long	tx_errors;
177 	unsigned long	rx_dropped;
178 	unsigned long	tx_dropped;
179 	unsigned long	multicast;
180 	unsigned long	collisions;
181 	unsigned long	rx_length_errors;
182 	unsigned long	rx_over_errors;
183 	unsigned long	rx_crc_errors;
184 	unsigned long	rx_frame_errors;
185 	unsigned long	rx_fifo_errors;
186 	unsigned long	rx_missed_errors;
187 	unsigned long	tx_aborted_errors;
188 	unsigned long	tx_carrier_errors;
189 	unsigned long	tx_fifo_errors;
190 	unsigned long	tx_heartbeat_errors;
191 	unsigned long	tx_window_errors;
192 	unsigned long	rx_compressed;
193 	unsigned long	tx_compressed;
194 };
195 
196 
197 #include <linux/cache.h>
198 #include <linux/skbuff.h>
199 
200 #ifdef CONFIG_RPS
201 #include <linux/static_key.h>
202 extern struct static_key_false rps_needed;
203 extern struct static_key_false rfs_needed;
204 #endif
205 
206 struct neighbour;
207 struct neigh_parms;
208 struct sk_buff;
209 
210 struct netdev_hw_addr {
211 	struct list_head	list;
212 	unsigned char		addr[MAX_ADDR_LEN];
213 	unsigned char		type;
214 #define NETDEV_HW_ADDR_T_LAN		1
215 #define NETDEV_HW_ADDR_T_SAN		2
216 #define NETDEV_HW_ADDR_T_UNICAST	3
217 #define NETDEV_HW_ADDR_T_MULTICAST	4
218 	bool			global_use;
219 	int			sync_cnt;
220 	int			refcount;
221 	int			synced;
222 	struct rcu_head		rcu_head;
223 };
224 
225 struct netdev_hw_addr_list {
226 	struct list_head	list;
227 	int			count;
228 };
229 
230 #define netdev_hw_addr_list_count(l) ((l)->count)
231 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
232 #define netdev_hw_addr_list_for_each(ha, l) \
233 	list_for_each_entry(ha, &(l)->list, list)
234 
235 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
236 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
237 #define netdev_for_each_uc_addr(ha, dev) \
238 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
239 
240 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
241 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
242 #define netdev_for_each_mc_addr(ha, dev) \
243 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
244 
245 struct hh_cache {
246 	unsigned int	hh_len;
247 	seqlock_t	hh_lock;
248 
249 	/* cached hardware header; allow for machine alignment needs.        */
250 #define HH_DATA_MOD	16
251 #define HH_DATA_OFF(__len) \
252 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
253 #define HH_DATA_ALIGN(__len) \
254 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
255 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
256 };
257 
258 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
259  * Alternative is:
260  *   dev->hard_header_len ? (dev->hard_header_len +
261  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
262  *
263  * We could use other alignment values, but we must maintain the
264  * relationship HH alignment <= LL alignment.
265  */
266 #define LL_RESERVED_SPACE(dev) \
267 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
268 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
269 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
270 
271 struct header_ops {
272 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
273 			   unsigned short type, const void *daddr,
274 			   const void *saddr, unsigned int len);
275 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
276 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
277 	void	(*cache_update)(struct hh_cache *hh,
278 				const struct net_device *dev,
279 				const unsigned char *haddr);
280 	bool	(*validate)(const char *ll_header, unsigned int len);
281 	__be16	(*parse_protocol)(const struct sk_buff *skb);
282 
283 	ANDROID_KABI_RESERVE(1);
284 	ANDROID_KABI_RESERVE(2);
285 };
286 
287 /* These flag bits are private to the generic network queueing
288  * layer; they may not be explicitly referenced by any other
289  * code.
290  */
291 
292 enum netdev_state_t {
293 	__LINK_STATE_START,
294 	__LINK_STATE_PRESENT,
295 	__LINK_STATE_NOCARRIER,
296 	__LINK_STATE_LINKWATCH_PENDING,
297 	__LINK_STATE_DORMANT,
298 	__LINK_STATE_TESTING,
299 };
300 
301 
302 /*
303  * This structure holds boot-time configured netdevice settings. They
304  * are then used in the device probing.
305  */
306 struct netdev_boot_setup {
307 	char name[IFNAMSIZ];
308 	struct ifmap map;
309 };
310 #define NETDEV_BOOT_SETUP_MAX 8
311 
312 int __init netdev_boot_setup(char *str);
313 
314 struct gro_list {
315 	struct list_head	list;
316 	int			count;
317 };
318 
319 /*
320  * size of gro hash buckets, must less than bit number of
321  * napi_struct::gro_bitmask
322  */
323 #define GRO_HASH_BUCKETS	8
324 
325 /*
326  * Structure for NAPI scheduling similar to tasklet but with weighting
327  */
328 struct napi_struct {
329 	/* The poll_list must only be managed by the entity which
330 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
331 	 * whoever atomically sets that bit can add this napi_struct
332 	 * to the per-CPU poll_list, and whoever clears that bit
333 	 * can remove from the list right before clearing the bit.
334 	 */
335 	struct list_head	poll_list;
336 
337 	unsigned long		state;
338 	int			weight;
339 	int			defer_hard_irqs_count;
340 	unsigned long		gro_bitmask;
341 	int			(*poll)(struct napi_struct *, int);
342 #ifdef CONFIG_NETPOLL
343 	int			poll_owner;
344 #endif
345 	struct net_device	*dev;
346 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
347 	struct sk_buff		*skb;
348 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
349 	int			rx_count; /* length of rx_list */
350 	struct hrtimer		timer;
351 	struct list_head	dev_list;
352 	struct hlist_node	napi_hash_node;
353 	unsigned int		napi_id;
354 
355 	ANDROID_KABI_RESERVE(1);
356 	ANDROID_KABI_RESERVE(2);
357 	ANDROID_KABI_RESERVE(3);
358 	ANDROID_KABI_RESERVE(4);
359 };
360 
361 enum {
362 	NAPI_STATE_SCHED,	/* Poll is scheduled */
363 	NAPI_STATE_MISSED,	/* reschedule a napi */
364 	NAPI_STATE_DISABLE,	/* Disable pending */
365 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
366 	NAPI_STATE_LISTED,	/* NAPI added to system lists */
367 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
368 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
369 };
370 
371 enum {
372 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
373 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
374 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
375 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
376 	NAPIF_STATE_LISTED	 = BIT(NAPI_STATE_LISTED),
377 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
378 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
379 };
380 
381 enum gro_result {
382 	GRO_MERGED,
383 	GRO_MERGED_FREE,
384 	GRO_HELD,
385 	GRO_NORMAL,
386 	GRO_DROP,
387 	GRO_CONSUMED,
388 };
389 typedef enum gro_result gro_result_t;
390 
391 /*
392  * enum rx_handler_result - Possible return values for rx_handlers.
393  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
394  * further.
395  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
396  * case skb->dev was changed by rx_handler.
397  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
398  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
399  *
400  * rx_handlers are functions called from inside __netif_receive_skb(), to do
401  * special processing of the skb, prior to delivery to protocol handlers.
402  *
403  * Currently, a net_device can only have a single rx_handler registered. Trying
404  * to register a second rx_handler will return -EBUSY.
405  *
406  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
407  * To unregister a rx_handler on a net_device, use
408  * netdev_rx_handler_unregister().
409  *
410  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
411  * do with the skb.
412  *
413  * If the rx_handler consumed the skb in some way, it should return
414  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
415  * the skb to be delivered in some other way.
416  *
417  * If the rx_handler changed skb->dev, to divert the skb to another
418  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
419  * new device will be called if it exists.
420  *
421  * If the rx_handler decides the skb should be ignored, it should return
422  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
423  * are registered on exact device (ptype->dev == skb->dev).
424  *
425  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
426  * delivered, it should return RX_HANDLER_PASS.
427  *
428  * A device without a registered rx_handler will behave as if rx_handler
429  * returned RX_HANDLER_PASS.
430  */
431 
432 enum rx_handler_result {
433 	RX_HANDLER_CONSUMED,
434 	RX_HANDLER_ANOTHER,
435 	RX_HANDLER_EXACT,
436 	RX_HANDLER_PASS,
437 };
438 typedef enum rx_handler_result rx_handler_result_t;
439 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
440 
441 void __napi_schedule(struct napi_struct *n);
442 void __napi_schedule_irqoff(struct napi_struct *n);
443 
napi_disable_pending(struct napi_struct * n)444 static inline bool napi_disable_pending(struct napi_struct *n)
445 {
446 	return test_bit(NAPI_STATE_DISABLE, &n->state);
447 }
448 
449 bool napi_schedule_prep(struct napi_struct *n);
450 
451 /**
452  *	napi_schedule - schedule NAPI poll
453  *	@n: NAPI context
454  *
455  * Schedule NAPI poll routine to be called if it is not already
456  * running.
457  */
napi_schedule(struct napi_struct * n)458 static inline void napi_schedule(struct napi_struct *n)
459 {
460 	if (napi_schedule_prep(n))
461 		__napi_schedule(n);
462 }
463 
464 /**
465  *	napi_schedule_irqoff - schedule NAPI poll
466  *	@n: NAPI context
467  *
468  * Variant of napi_schedule(), assuming hard irqs are masked.
469  */
napi_schedule_irqoff(struct napi_struct * n)470 static inline void napi_schedule_irqoff(struct napi_struct *n)
471 {
472 	if (napi_schedule_prep(n))
473 		__napi_schedule_irqoff(n);
474 }
475 
476 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)477 static inline bool napi_reschedule(struct napi_struct *napi)
478 {
479 	if (napi_schedule_prep(napi)) {
480 		__napi_schedule(napi);
481 		return true;
482 	}
483 	return false;
484 }
485 
486 bool napi_complete_done(struct napi_struct *n, int work_done);
487 /**
488  *	napi_complete - NAPI processing complete
489  *	@n: NAPI context
490  *
491  * Mark NAPI processing as complete.
492  * Consider using napi_complete_done() instead.
493  * Return false if device should avoid rearming interrupts.
494  */
napi_complete(struct napi_struct * n)495 static inline bool napi_complete(struct napi_struct *n)
496 {
497 	return napi_complete_done(n, 0);
498 }
499 
500 /**
501  *	napi_disable - prevent NAPI from scheduling
502  *	@n: NAPI context
503  *
504  * Stop NAPI from being scheduled on this context.
505  * Waits till any outstanding processing completes.
506  */
507 void napi_disable(struct napi_struct *n);
508 
509 /**
510  *	napi_enable - enable NAPI scheduling
511  *	@n: NAPI context
512  *
513  * Resume NAPI from being scheduled on this context.
514  * Must be paired with napi_disable.
515  */
napi_enable(struct napi_struct * n)516 static inline void napi_enable(struct napi_struct *n)
517 {
518 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
519 	smp_mb__before_atomic();
520 	clear_bit(NAPI_STATE_SCHED, &n->state);
521 	clear_bit(NAPI_STATE_NPSVC, &n->state);
522 }
523 
524 /**
525  *	napi_synchronize - wait until NAPI is not running
526  *	@n: NAPI context
527  *
528  * Wait until NAPI is done being scheduled on this context.
529  * Waits till any outstanding processing completes but
530  * does not disable future activations.
531  */
napi_synchronize(const struct napi_struct * n)532 static inline void napi_synchronize(const struct napi_struct *n)
533 {
534 	if (IS_ENABLED(CONFIG_SMP))
535 		while (test_bit(NAPI_STATE_SCHED, &n->state))
536 			msleep(1);
537 	else
538 		barrier();
539 }
540 
541 /**
542  *	napi_if_scheduled_mark_missed - if napi is running, set the
543  *	NAPIF_STATE_MISSED
544  *	@n: NAPI context
545  *
546  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
547  * NAPI is scheduled.
548  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)549 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
550 {
551 	unsigned long val, new;
552 
553 	do {
554 		val = READ_ONCE(n->state);
555 		if (val & NAPIF_STATE_DISABLE)
556 			return true;
557 
558 		if (!(val & NAPIF_STATE_SCHED))
559 			return false;
560 
561 		new = val | NAPIF_STATE_MISSED;
562 	} while (cmpxchg(&n->state, val, new) != val);
563 
564 	return true;
565 }
566 
567 enum netdev_queue_state_t {
568 	__QUEUE_STATE_DRV_XOFF,
569 	__QUEUE_STATE_STACK_XOFF,
570 	__QUEUE_STATE_FROZEN,
571 };
572 
573 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
574 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
575 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
576 
577 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
578 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
579 					QUEUE_STATE_FROZEN)
580 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
581 					QUEUE_STATE_FROZEN)
582 
583 /*
584  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
585  * netif_tx_* functions below are used to manipulate this flag.  The
586  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
587  * queue independently.  The netif_xmit_*stopped functions below are called
588  * to check if the queue has been stopped by the driver or stack (either
589  * of the XOFF bits are set in the state).  Drivers should not need to call
590  * netif_xmit*stopped functions, they should only be using netif_tx_*.
591  */
592 
593 struct netdev_queue {
594 /*
595  * read-mostly part
596  */
597 	struct net_device	*dev;
598 	struct Qdisc __rcu	*qdisc;
599 	struct Qdisc		*qdisc_sleeping;
600 #ifdef CONFIG_SYSFS
601 	struct kobject		kobj;
602 #endif
603 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
604 	int			numa_node;
605 #endif
606 	unsigned long		tx_maxrate;
607 	/*
608 	 * Number of TX timeouts for this queue
609 	 * (/sys/class/net/DEV/Q/trans_timeout)
610 	 */
611 	unsigned long		trans_timeout;
612 
613 	/* Subordinate device that the queue has been assigned to */
614 	struct net_device	*sb_dev;
615 #ifdef CONFIG_XDP_SOCKETS
616 	struct xsk_buff_pool    *pool;
617 #endif
618 /*
619  * write-mostly part
620  */
621 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
622 	int			xmit_lock_owner;
623 	/*
624 	 * Time (in jiffies) of last Tx
625 	 */
626 	unsigned long		trans_start;
627 
628 	unsigned long		state;
629 
630 #ifdef CONFIG_BQL
631 	struct dql		dql;
632 #endif
633 
634 	ANDROID_KABI_RESERVE(1);
635 	ANDROID_KABI_RESERVE(2);
636 	ANDROID_KABI_RESERVE(3);
637 	ANDROID_KABI_RESERVE(4);
638 } ____cacheline_aligned_in_smp;
639 
640 extern int sysctl_fb_tunnels_only_for_init_net;
641 extern int sysctl_devconf_inherit_init_net;
642 
643 /*
644  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
645  *                                     == 1 : For initns only
646  *                                     == 2 : For none.
647  */
net_has_fallback_tunnels(const struct net * net)648 static inline bool net_has_fallback_tunnels(const struct net *net)
649 {
650 #if IS_ENABLED(CONFIG_SYSCTL)
651 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
652 
653 	return !fb_tunnels_only_for_init_net ||
654 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
655 #else
656 	return true;
657 #endif
658 }
659 
net_inherit_devconf(void)660 static inline int net_inherit_devconf(void)
661 {
662 #if IS_ENABLED(CONFIG_SYSCTL)
663 	return READ_ONCE(sysctl_devconf_inherit_init_net);
664 #else
665 	return 0;
666 #endif
667 }
668 
netdev_queue_numa_node_read(const struct netdev_queue * q)669 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
670 {
671 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
672 	return q->numa_node;
673 #else
674 	return NUMA_NO_NODE;
675 #endif
676 }
677 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)678 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
679 {
680 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
681 	q->numa_node = node;
682 #endif
683 }
684 
685 #ifdef CONFIG_RPS
686 /*
687  * This structure holds an RPS map which can be of variable length.  The
688  * map is an array of CPUs.
689  */
690 struct rps_map {
691 	unsigned int len;
692 	struct rcu_head rcu;
693 	u16 cpus[];
694 };
695 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
696 
697 /*
698  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
699  * tail pointer for that CPU's input queue at the time of last enqueue, and
700  * a hardware filter index.
701  */
702 struct rps_dev_flow {
703 	u16 cpu;
704 	u16 filter;
705 	unsigned int last_qtail;
706 };
707 #define RPS_NO_FILTER 0xffff
708 
709 /*
710  * The rps_dev_flow_table structure contains a table of flow mappings.
711  */
712 struct rps_dev_flow_table {
713 	unsigned int mask;
714 	struct rcu_head rcu;
715 	struct rps_dev_flow flows[];
716 };
717 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
718     ((_num) * sizeof(struct rps_dev_flow)))
719 
720 /*
721  * The rps_sock_flow_table contains mappings of flows to the last CPU
722  * on which they were processed by the application (set in recvmsg).
723  * Each entry is a 32bit value. Upper part is the high-order bits
724  * of flow hash, lower part is CPU number.
725  * rps_cpu_mask is used to partition the space, depending on number of
726  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
727  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
728  * meaning we use 32-6=26 bits for the hash.
729  */
730 struct rps_sock_flow_table {
731 	u32	mask;
732 
733 	u32	ents[] ____cacheline_aligned_in_smp;
734 };
735 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
736 
737 #define RPS_NO_CPU 0xffff
738 
739 extern u32 rps_cpu_mask;
740 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
741 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)742 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
743 					u32 hash)
744 {
745 	if (table && hash) {
746 		unsigned int index = hash & table->mask;
747 		u32 val = hash & ~rps_cpu_mask;
748 
749 		/* We only give a hint, preemption can change CPU under us */
750 		val |= raw_smp_processor_id();
751 
752 		if (table->ents[index] != val)
753 			table->ents[index] = val;
754 	}
755 }
756 
757 #ifdef CONFIG_RFS_ACCEL
758 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
759 			 u16 filter_id);
760 #endif
761 #endif /* CONFIG_RPS */
762 
763 /* This structure contains an instance of an RX queue. */
764 struct netdev_rx_queue {
765 #ifdef CONFIG_RPS
766 	struct rps_map __rcu		*rps_map;
767 	struct rps_dev_flow_table __rcu	*rps_flow_table;
768 #endif
769 	struct kobject			kobj;
770 	struct net_device		*dev;
771 	struct xdp_rxq_info		xdp_rxq;
772 #ifdef CONFIG_XDP_SOCKETS
773 	struct xsk_buff_pool            *pool;
774 #endif
775 
776 	ANDROID_KABI_RESERVE(1);
777 	ANDROID_KABI_RESERVE(2);
778 	ANDROID_KABI_RESERVE(3);
779 	ANDROID_KABI_RESERVE(4);
780 } ____cacheline_aligned_in_smp;
781 
782 /*
783  * RX queue sysfs structures and functions.
784  */
785 struct rx_queue_attribute {
786 	struct attribute attr;
787 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
788 	ssize_t (*store)(struct netdev_rx_queue *queue,
789 			 const char *buf, size_t len);
790 };
791 
792 #ifdef CONFIG_XPS
793 /*
794  * This structure holds an XPS map which can be of variable length.  The
795  * map is an array of queues.
796  */
797 struct xps_map {
798 	unsigned int len;
799 	unsigned int alloc_len;
800 	struct rcu_head rcu;
801 	u16 queues[];
802 };
803 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
804 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
805        - sizeof(struct xps_map)) / sizeof(u16))
806 
807 /*
808  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
809  */
810 struct xps_dev_maps {
811 	struct rcu_head rcu;
812 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
813 };
814 
815 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
816 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
817 
818 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
819 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
820 
821 #endif /* CONFIG_XPS */
822 
823 #define TC_MAX_QUEUE	16
824 #define TC_BITMASK	15
825 /* HW offloaded queuing disciplines txq count and offset maps */
826 struct netdev_tc_txq {
827 	u16 count;
828 	u16 offset;
829 };
830 
831 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
832 /*
833  * This structure is to hold information about the device
834  * configured to run FCoE protocol stack.
835  */
836 struct netdev_fcoe_hbainfo {
837 	char	manufacturer[64];
838 	char	serial_number[64];
839 	char	hardware_version[64];
840 	char	driver_version[64];
841 	char	optionrom_version[64];
842 	char	firmware_version[64];
843 	char	model[256];
844 	char	model_description[256];
845 };
846 #endif
847 
848 #define MAX_PHYS_ITEM_ID_LEN 32
849 
850 /* This structure holds a unique identifier to identify some
851  * physical item (port for example) used by a netdevice.
852  */
853 struct netdev_phys_item_id {
854 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
855 	unsigned char id_len;
856 };
857 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)858 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
859 					    struct netdev_phys_item_id *b)
860 {
861 	return a->id_len == b->id_len &&
862 	       memcmp(a->id, b->id, a->id_len) == 0;
863 }
864 
865 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
866 				       struct sk_buff *skb,
867 				       struct net_device *sb_dev);
868 
869 enum tc_setup_type {
870 	TC_SETUP_QDISC_MQPRIO,
871 	TC_SETUP_CLSU32,
872 	TC_SETUP_CLSFLOWER,
873 	TC_SETUP_CLSMATCHALL,
874 	TC_SETUP_CLSBPF,
875 	TC_SETUP_BLOCK,
876 	TC_SETUP_QDISC_CBS,
877 	TC_SETUP_QDISC_RED,
878 	TC_SETUP_QDISC_PRIO,
879 	TC_SETUP_QDISC_MQ,
880 	TC_SETUP_QDISC_ETF,
881 	TC_SETUP_ROOT_QDISC,
882 	TC_SETUP_QDISC_GRED,
883 	TC_SETUP_QDISC_TAPRIO,
884 	TC_SETUP_FT,
885 	TC_SETUP_QDISC_ETS,
886 	TC_SETUP_QDISC_TBF,
887 	TC_SETUP_QDISC_FIFO,
888 };
889 
890 /* These structures hold the attributes of bpf state that are being passed
891  * to the netdevice through the bpf op.
892  */
893 enum bpf_netdev_command {
894 	/* Set or clear a bpf program used in the earliest stages of packet
895 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
896 	 * is responsible for calling bpf_prog_put on any old progs that are
897 	 * stored. In case of error, the callee need not release the new prog
898 	 * reference, but on success it takes ownership and must bpf_prog_put
899 	 * when it is no longer used.
900 	 */
901 	XDP_SETUP_PROG,
902 	XDP_SETUP_PROG_HW,
903 	/* BPF program for offload callbacks, invoked at program load time. */
904 	BPF_OFFLOAD_MAP_ALLOC,
905 	BPF_OFFLOAD_MAP_FREE,
906 	XDP_SETUP_XSK_POOL,
907 };
908 
909 struct bpf_prog_offload_ops;
910 struct netlink_ext_ack;
911 struct xdp_umem;
912 struct xdp_dev_bulk_queue;
913 struct bpf_xdp_link;
914 
915 enum bpf_xdp_mode {
916 	XDP_MODE_SKB = 0,
917 	XDP_MODE_DRV = 1,
918 	XDP_MODE_HW = 2,
919 	__MAX_XDP_MODE
920 };
921 
922 struct bpf_xdp_entity {
923 	struct bpf_prog *prog;
924 	struct bpf_xdp_link *link;
925 };
926 
927 struct netdev_bpf {
928 	enum bpf_netdev_command command;
929 	union {
930 		/* XDP_SETUP_PROG */
931 		struct {
932 			u32 flags;
933 			struct bpf_prog *prog;
934 			struct netlink_ext_ack *extack;
935 		};
936 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
937 		struct {
938 			struct bpf_offloaded_map *offmap;
939 		};
940 		/* XDP_SETUP_XSK_POOL */
941 		struct {
942 			struct xsk_buff_pool *pool;
943 			u16 queue_id;
944 		} xsk;
945 	};
946 };
947 
948 /* Flags for ndo_xsk_wakeup. */
949 #define XDP_WAKEUP_RX (1 << 0)
950 #define XDP_WAKEUP_TX (1 << 1)
951 
952 #ifdef CONFIG_XFRM_OFFLOAD
953 struct xfrmdev_ops {
954 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
955 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
956 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
957 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
958 				       struct xfrm_state *x);
959 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
960 
961 	ANDROID_KABI_RESERVE(1);
962 	ANDROID_KABI_RESERVE(2);
963 	ANDROID_KABI_RESERVE(3);
964 	ANDROID_KABI_RESERVE(4);
965 };
966 #endif
967 
968 struct dev_ifalias {
969 	struct rcu_head rcuhead;
970 	char ifalias[];
971 };
972 
973 struct devlink;
974 struct tlsdev_ops;
975 
976 struct netdev_name_node {
977 	struct hlist_node hlist;
978 	struct list_head list;
979 	struct net_device *dev;
980 	const char *name;
981 };
982 
983 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
984 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
985 
986 struct netdev_net_notifier {
987 	struct list_head list;
988 	struct notifier_block *nb;
989 };
990 
991 /*
992  * This structure defines the management hooks for network devices.
993  * The following hooks can be defined; unless noted otherwise, they are
994  * optional and can be filled with a null pointer.
995  *
996  * int (*ndo_init)(struct net_device *dev);
997  *     This function is called once when a network device is registered.
998  *     The network device can use this for any late stage initialization
999  *     or semantic validation. It can fail with an error code which will
1000  *     be propagated back to register_netdev.
1001  *
1002  * void (*ndo_uninit)(struct net_device *dev);
1003  *     This function is called when device is unregistered or when registration
1004  *     fails. It is not called if init fails.
1005  *
1006  * int (*ndo_open)(struct net_device *dev);
1007  *     This function is called when a network device transitions to the up
1008  *     state.
1009  *
1010  * int (*ndo_stop)(struct net_device *dev);
1011  *     This function is called when a network device transitions to the down
1012  *     state.
1013  *
1014  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1015  *                               struct net_device *dev);
1016  *	Called when a packet needs to be transmitted.
1017  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1018  *	the queue before that can happen; it's for obsolete devices and weird
1019  *	corner cases, but the stack really does a non-trivial amount
1020  *	of useless work if you return NETDEV_TX_BUSY.
1021  *	Required; cannot be NULL.
1022  *
1023  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1024  *					   struct net_device *dev
1025  *					   netdev_features_t features);
1026  *	Called by core transmit path to determine if device is capable of
1027  *	performing offload operations on a given packet. This is to give
1028  *	the device an opportunity to implement any restrictions that cannot
1029  *	be otherwise expressed by feature flags. The check is called with
1030  *	the set of features that the stack has calculated and it returns
1031  *	those the driver believes to be appropriate.
1032  *
1033  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1034  *                         struct net_device *sb_dev);
1035  *	Called to decide which queue to use when device supports multiple
1036  *	transmit queues.
1037  *
1038  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1039  *	This function is called to allow device receiver to make
1040  *	changes to configuration when multicast or promiscuous is enabled.
1041  *
1042  * void (*ndo_set_rx_mode)(struct net_device *dev);
1043  *	This function is called device changes address list filtering.
1044  *	If driver handles unicast address filtering, it should set
1045  *	IFF_UNICAST_FLT in its priv_flags.
1046  *
1047  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1048  *	This function  is called when the Media Access Control address
1049  *	needs to be changed. If this interface is not defined, the
1050  *	MAC address can not be changed.
1051  *
1052  * int (*ndo_validate_addr)(struct net_device *dev);
1053  *	Test if Media Access Control address is valid for the device.
1054  *
1055  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1056  *	Called when a user requests an ioctl which can't be handled by
1057  *	the generic interface code. If not defined ioctls return
1058  *	not supported error code.
1059  *
1060  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1061  *	Used to set network devices bus interface parameters. This interface
1062  *	is retained for legacy reasons; new devices should use the bus
1063  *	interface (PCI) for low level management.
1064  *
1065  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1066  *	Called when a user wants to change the Maximum Transfer Unit
1067  *	of a device.
1068  *
1069  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1070  *	Callback used when the transmitter has not made any progress
1071  *	for dev->watchdog ticks.
1072  *
1073  * void (*ndo_get_stats64)(struct net_device *dev,
1074  *                         struct rtnl_link_stats64 *storage);
1075  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1076  *	Called when a user wants to get the network device usage
1077  *	statistics. Drivers must do one of the following:
1078  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1079  *	   rtnl_link_stats64 structure passed by the caller.
1080  *	2. Define @ndo_get_stats to update a net_device_stats structure
1081  *	   (which should normally be dev->stats) and return a pointer to
1082  *	   it. The structure may be changed asynchronously only if each
1083  *	   field is written atomically.
1084  *	3. Update dev->stats asynchronously and atomically, and define
1085  *	   neither operation.
1086  *
1087  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1088  *	Return true if this device supports offload stats of this attr_id.
1089  *
1090  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1091  *	void *attr_data)
1092  *	Get statistics for offload operations by attr_id. Write it into the
1093  *	attr_data pointer.
1094  *
1095  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1096  *	If device supports VLAN filtering this function is called when a
1097  *	VLAN id is registered.
1098  *
1099  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1100  *	If device supports VLAN filtering this function is called when a
1101  *	VLAN id is unregistered.
1102  *
1103  * void (*ndo_poll_controller)(struct net_device *dev);
1104  *
1105  *	SR-IOV management functions.
1106  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1107  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1108  *			  u8 qos, __be16 proto);
1109  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1110  *			  int max_tx_rate);
1111  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1112  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1113  * int (*ndo_get_vf_config)(struct net_device *dev,
1114  *			    int vf, struct ifla_vf_info *ivf);
1115  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1116  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1117  *			  struct nlattr *port[]);
1118  *
1119  *      Enable or disable the VF ability to query its RSS Redirection Table and
1120  *      Hash Key. This is needed since on some devices VF share this information
1121  *      with PF and querying it may introduce a theoretical security risk.
1122  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1123  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1124  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1125  *		       void *type_data);
1126  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1127  *	This is always called from the stack with the rtnl lock held and netif
1128  *	tx queues stopped. This allows the netdevice to perform queue
1129  *	management safely.
1130  *
1131  *	Fiber Channel over Ethernet (FCoE) offload functions.
1132  * int (*ndo_fcoe_enable)(struct net_device *dev);
1133  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1134  *	so the underlying device can perform whatever needed configuration or
1135  *	initialization to support acceleration of FCoE traffic.
1136  *
1137  * int (*ndo_fcoe_disable)(struct net_device *dev);
1138  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1139  *	so the underlying device can perform whatever needed clean-ups to
1140  *	stop supporting acceleration of FCoE traffic.
1141  *
1142  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1143  *			     struct scatterlist *sgl, unsigned int sgc);
1144  *	Called when the FCoE Initiator wants to initialize an I/O that
1145  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1146  *	perform necessary setup and returns 1 to indicate the device is set up
1147  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1148  *
1149  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1150  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1151  *	indicated by the FC exchange id 'xid', so the underlying device can
1152  *	clean up and reuse resources for later DDP requests.
1153  *
1154  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1155  *			      struct scatterlist *sgl, unsigned int sgc);
1156  *	Called when the FCoE Target wants to initialize an I/O that
1157  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1158  *	perform necessary setup and returns 1 to indicate the device is set up
1159  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1160  *
1161  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1162  *			       struct netdev_fcoe_hbainfo *hbainfo);
1163  *	Called when the FCoE Protocol stack wants information on the underlying
1164  *	device. This information is utilized by the FCoE protocol stack to
1165  *	register attributes with Fiber Channel management service as per the
1166  *	FC-GS Fabric Device Management Information(FDMI) specification.
1167  *
1168  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1169  *	Called when the underlying device wants to override default World Wide
1170  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1171  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1172  *	protocol stack to use.
1173  *
1174  *	RFS acceleration.
1175  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1176  *			    u16 rxq_index, u32 flow_id);
1177  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1178  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1179  *	Return the filter ID on success, or a negative error code.
1180  *
1181  *	Slave management functions (for bridge, bonding, etc).
1182  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1183  *	Called to make another netdev an underling.
1184  *
1185  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1186  *	Called to release previously enslaved netdev.
1187  *
1188  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1189  *					    struct sk_buff *skb,
1190  *					    bool all_slaves);
1191  *	Get the xmit slave of master device. If all_slaves is true, function
1192  *	assume all the slaves can transmit.
1193  *
1194  *      Feature/offload setting functions.
1195  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1196  *		netdev_features_t features);
1197  *	Adjusts the requested feature flags according to device-specific
1198  *	constraints, and returns the resulting flags. Must not modify
1199  *	the device state.
1200  *
1201  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1202  *	Called to update device configuration to new features. Passed
1203  *	feature set might be less than what was returned by ndo_fix_features()).
1204  *	Must return >0 or -errno if it changed dev->features itself.
1205  *
1206  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1207  *		      struct net_device *dev,
1208  *		      const unsigned char *addr, u16 vid, u16 flags,
1209  *		      struct netlink_ext_ack *extack);
1210  *	Adds an FDB entry to dev for addr.
1211  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1212  *		      struct net_device *dev,
1213  *		      const unsigned char *addr, u16 vid)
1214  *	Deletes the FDB entry from dev coresponding to addr.
1215  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1216  *		       struct net_device *dev, struct net_device *filter_dev,
1217  *		       int *idx)
1218  *	Used to add FDB entries to dump requests. Implementers should add
1219  *	entries to skb and update idx with the number of entries.
1220  *
1221  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1222  *			     u16 flags, struct netlink_ext_ack *extack)
1223  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1224  *			     struct net_device *dev, u32 filter_mask,
1225  *			     int nlflags)
1226  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1227  *			     u16 flags);
1228  *
1229  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1230  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1231  *	which do not represent real hardware may define this to allow their
1232  *	userspace components to manage their virtual carrier state. Devices
1233  *	that determine carrier state from physical hardware properties (eg
1234  *	network cables) or protocol-dependent mechanisms (eg
1235  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1236  *
1237  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1238  *			       struct netdev_phys_item_id *ppid);
1239  *	Called to get ID of physical port of this device. If driver does
1240  *	not implement this, it is assumed that the hw is not able to have
1241  *	multiple net devices on single physical port.
1242  *
1243  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1244  *				 struct netdev_phys_item_id *ppid)
1245  *	Called to get the parent ID of the physical port of this device.
1246  *
1247  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1248  *			      struct udp_tunnel_info *ti);
1249  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1250  *	address family that a UDP tunnel is listnening to. It is called only
1251  *	when a new port starts listening. The operation is protected by the
1252  *	RTNL.
1253  *
1254  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1255  *			      struct udp_tunnel_info *ti);
1256  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1257  *	address family that the UDP tunnel is not listening to anymore. The
1258  *	operation is protected by the RTNL.
1259  *
1260  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1261  *				 struct net_device *dev)
1262  *	Called by upper layer devices to accelerate switching or other
1263  *	station functionality into hardware. 'pdev is the lowerdev
1264  *	to use for the offload and 'dev' is the net device that will
1265  *	back the offload. Returns a pointer to the private structure
1266  *	the upper layer will maintain.
1267  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1268  *	Called by upper layer device to delete the station created
1269  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1270  *	the station and priv is the structure returned by the add
1271  *	operation.
1272  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1273  *			     int queue_index, u32 maxrate);
1274  *	Called when a user wants to set a max-rate limitation of specific
1275  *	TX queue.
1276  * int (*ndo_get_iflink)(const struct net_device *dev);
1277  *	Called to get the iflink value of this device.
1278  * void (*ndo_change_proto_down)(struct net_device *dev,
1279  *				 bool proto_down);
1280  *	This function is used to pass protocol port error state information
1281  *	to the switch driver. The switch driver can react to the proto_down
1282  *      by doing a phys down on the associated switch port.
1283  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1284  *	This function is used to get egress tunnel information for given skb.
1285  *	This is useful for retrieving outer tunnel header parameters while
1286  *	sampling packet.
1287  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1288  *	This function is used to specify the headroom that the skb must
1289  *	consider when allocation skb during packet reception. Setting
1290  *	appropriate rx headroom value allows avoiding skb head copy on
1291  *	forward. Setting a negative value resets the rx headroom to the
1292  *	default value.
1293  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1294  *	This function is used to set or query state related to XDP on the
1295  *	netdevice and manage BPF offload. See definition of
1296  *	enum bpf_netdev_command for details.
1297  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1298  *			u32 flags);
1299  *	This function is used to submit @n XDP packets for transmit on a
1300  *	netdevice. Returns number of frames successfully transmitted, frames
1301  *	that got dropped are freed/returned via xdp_return_frame().
1302  *	Returns negative number, means general error invoking ndo, meaning
1303  *	no frames were xmit'ed and core-caller will free all frames.
1304  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1305  *      This function is used to wake up the softirq, ksoftirqd or kthread
1306  *	responsible for sending and/or receiving packets on a specific
1307  *	queue id bound to an AF_XDP socket. The flags field specifies if
1308  *	only RX, only Tx, or both should be woken up using the flags
1309  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1310  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1311  *	Get devlink port instance associated with a given netdev.
1312  *	Called with a reference on the netdevice and devlink locks only,
1313  *	rtnl_lock is not held.
1314  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1315  *			 int cmd);
1316  *	Add, change, delete or get information on an IPv4 tunnel.
1317  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1318  *	If a device is paired with a peer device, return the peer instance.
1319  *	The caller must be under RCU read context.
1320  */
1321 struct net_device_ops {
1322 	int			(*ndo_init)(struct net_device *dev);
1323 	void			(*ndo_uninit)(struct net_device *dev);
1324 	int			(*ndo_open)(struct net_device *dev);
1325 	int			(*ndo_stop)(struct net_device *dev);
1326 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1327 						  struct net_device *dev);
1328 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1329 						      struct net_device *dev,
1330 						      netdev_features_t features);
1331 	u16			(*ndo_select_queue)(struct net_device *dev,
1332 						    struct sk_buff *skb,
1333 						    struct net_device *sb_dev);
1334 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1335 						       int flags);
1336 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1337 	int			(*ndo_set_mac_address)(struct net_device *dev,
1338 						       void *addr);
1339 	int			(*ndo_validate_addr)(struct net_device *dev);
1340 	int			(*ndo_do_ioctl)(struct net_device *dev,
1341 					        struct ifreq *ifr, int cmd);
1342 	int			(*ndo_set_config)(struct net_device *dev,
1343 					          struct ifmap *map);
1344 	int			(*ndo_change_mtu)(struct net_device *dev,
1345 						  int new_mtu);
1346 	int			(*ndo_neigh_setup)(struct net_device *dev,
1347 						   struct neigh_parms *);
1348 	void			(*ndo_tx_timeout) (struct net_device *dev,
1349 						   unsigned int txqueue);
1350 
1351 	void			(*ndo_get_stats64)(struct net_device *dev,
1352 						   struct rtnl_link_stats64 *storage);
1353 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1354 	int			(*ndo_get_offload_stats)(int attr_id,
1355 							 const struct net_device *dev,
1356 							 void *attr_data);
1357 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1358 
1359 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1360 						       __be16 proto, u16 vid);
1361 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1362 						        __be16 proto, u16 vid);
1363 #ifdef CONFIG_NET_POLL_CONTROLLER
1364 	void                    (*ndo_poll_controller)(struct net_device *dev);
1365 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1366 						     struct netpoll_info *info);
1367 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1368 #endif
1369 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1370 						  int queue, u8 *mac);
1371 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1372 						   int queue, u16 vlan,
1373 						   u8 qos, __be16 proto);
1374 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1375 						   int vf, int min_tx_rate,
1376 						   int max_tx_rate);
1377 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1378 						       int vf, bool setting);
1379 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1380 						    int vf, bool setting);
1381 	int			(*ndo_get_vf_config)(struct net_device *dev,
1382 						     int vf,
1383 						     struct ifla_vf_info *ivf);
1384 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1385 							 int vf, int link_state);
1386 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1387 						    int vf,
1388 						    struct ifla_vf_stats
1389 						    *vf_stats);
1390 	int			(*ndo_set_vf_port)(struct net_device *dev,
1391 						   int vf,
1392 						   struct nlattr *port[]);
1393 	int			(*ndo_get_vf_port)(struct net_device *dev,
1394 						   int vf, struct sk_buff *skb);
1395 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1396 						   int vf,
1397 						   struct ifla_vf_guid *node_guid,
1398 						   struct ifla_vf_guid *port_guid);
1399 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1400 						   int vf, u64 guid,
1401 						   int guid_type);
1402 	int			(*ndo_set_vf_rss_query_en)(
1403 						   struct net_device *dev,
1404 						   int vf, bool setting);
1405 	int			(*ndo_setup_tc)(struct net_device *dev,
1406 						enum tc_setup_type type,
1407 						void *type_data);
1408 #if IS_ENABLED(CONFIG_FCOE)
1409 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1410 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1411 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1412 						      u16 xid,
1413 						      struct scatterlist *sgl,
1414 						      unsigned int sgc);
1415 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1416 						     u16 xid);
1417 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1418 						       u16 xid,
1419 						       struct scatterlist *sgl,
1420 						       unsigned int sgc);
1421 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1422 							struct netdev_fcoe_hbainfo *hbainfo);
1423 #endif
1424 
1425 #if IS_ENABLED(CONFIG_LIBFCOE)
1426 #define NETDEV_FCOE_WWNN 0
1427 #define NETDEV_FCOE_WWPN 1
1428 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1429 						    u64 *wwn, int type);
1430 #endif
1431 
1432 #ifdef CONFIG_RFS_ACCEL
1433 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1434 						     const struct sk_buff *skb,
1435 						     u16 rxq_index,
1436 						     u32 flow_id);
1437 #endif
1438 	int			(*ndo_add_slave)(struct net_device *dev,
1439 						 struct net_device *slave_dev,
1440 						 struct netlink_ext_ack *extack);
1441 	int			(*ndo_del_slave)(struct net_device *dev,
1442 						 struct net_device *slave_dev);
1443 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1444 						      struct sk_buff *skb,
1445 						      bool all_slaves);
1446 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1447 						    netdev_features_t features);
1448 	int			(*ndo_set_features)(struct net_device *dev,
1449 						    netdev_features_t features);
1450 	int			(*ndo_neigh_construct)(struct net_device *dev,
1451 						       struct neighbour *n);
1452 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1453 						     struct neighbour *n);
1454 
1455 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1456 					       struct nlattr *tb[],
1457 					       struct net_device *dev,
1458 					       const unsigned char *addr,
1459 					       u16 vid,
1460 					       u16 flags,
1461 					       struct netlink_ext_ack *extack);
1462 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1463 					       struct nlattr *tb[],
1464 					       struct net_device *dev,
1465 					       const unsigned char *addr,
1466 					       u16 vid);
1467 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1468 						struct netlink_callback *cb,
1469 						struct net_device *dev,
1470 						struct net_device *filter_dev,
1471 						int *idx);
1472 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1473 					       struct nlattr *tb[],
1474 					       struct net_device *dev,
1475 					       const unsigned char *addr,
1476 					       u16 vid, u32 portid, u32 seq,
1477 					       struct netlink_ext_ack *extack);
1478 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1479 						      struct nlmsghdr *nlh,
1480 						      u16 flags,
1481 						      struct netlink_ext_ack *extack);
1482 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1483 						      u32 pid, u32 seq,
1484 						      struct net_device *dev,
1485 						      u32 filter_mask,
1486 						      int nlflags);
1487 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1488 						      struct nlmsghdr *nlh,
1489 						      u16 flags);
1490 	int			(*ndo_change_carrier)(struct net_device *dev,
1491 						      bool new_carrier);
1492 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1493 							struct netdev_phys_item_id *ppid);
1494 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1495 							  struct netdev_phys_item_id *ppid);
1496 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1497 							  char *name, size_t len);
1498 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1499 						      struct udp_tunnel_info *ti);
1500 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1501 						      struct udp_tunnel_info *ti);
1502 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1503 							struct net_device *dev);
1504 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1505 							void *priv);
1506 
1507 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1508 						      int queue_index,
1509 						      u32 maxrate);
1510 	int			(*ndo_get_iflink)(const struct net_device *dev);
1511 	int			(*ndo_change_proto_down)(struct net_device *dev,
1512 							 bool proto_down);
1513 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1514 						       struct sk_buff *skb);
1515 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1516 						       int needed_headroom);
1517 	int			(*ndo_bpf)(struct net_device *dev,
1518 					   struct netdev_bpf *bpf);
1519 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1520 						struct xdp_frame **xdp,
1521 						u32 flags);
1522 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1523 						  u32 queue_id, u32 flags);
1524 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1525 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1526 						  struct ip_tunnel_parm *p, int cmd);
1527 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1528 
1529 	ANDROID_KABI_RESERVE(1);
1530 	ANDROID_KABI_RESERVE(2);
1531 	ANDROID_KABI_RESERVE(3);
1532 	ANDROID_KABI_RESERVE(4);
1533 	ANDROID_KABI_RESERVE(5);
1534 	ANDROID_KABI_RESERVE(6);
1535 	ANDROID_KABI_RESERVE(7);
1536 	ANDROID_KABI_RESERVE(8);
1537 };
1538 
1539 /**
1540  * enum net_device_priv_flags - &struct net_device priv_flags
1541  *
1542  * These are the &struct net_device, they are only set internally
1543  * by drivers and used in the kernel. These flags are invisible to
1544  * userspace; this means that the order of these flags can change
1545  * during any kernel release.
1546  *
1547  * You should have a pretty good reason to be extending these flags.
1548  *
1549  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1550  * @IFF_EBRIDGE: Ethernet bridging device
1551  * @IFF_BONDING: bonding master or slave
1552  * @IFF_ISATAP: ISATAP interface (RFC4214)
1553  * @IFF_WAN_HDLC: WAN HDLC device
1554  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1555  *	release skb->dst
1556  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1557  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1558  * @IFF_MACVLAN_PORT: device used as macvlan port
1559  * @IFF_BRIDGE_PORT: device used as bridge port
1560  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1561  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1562  * @IFF_UNICAST_FLT: Supports unicast filtering
1563  * @IFF_TEAM_PORT: device used as team port
1564  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1565  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1566  *	change when it's running
1567  * @IFF_MACVLAN: Macvlan device
1568  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1569  *	underlying stacked devices
1570  * @IFF_L3MDEV_MASTER: device is an L3 master device
1571  * @IFF_NO_QUEUE: device can run without qdisc attached
1572  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1573  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1574  * @IFF_TEAM: device is a team device
1575  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1576  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1577  *	entity (i.e. the master device for bridged veth)
1578  * @IFF_MACSEC: device is a MACsec device
1579  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1580  * @IFF_FAILOVER: device is a failover master device
1581  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1582  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1583  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1584  */
1585 enum netdev_priv_flags {
1586 	IFF_802_1Q_VLAN			= 1<<0,
1587 	IFF_EBRIDGE			= 1<<1,
1588 	IFF_BONDING			= 1<<2,
1589 	IFF_ISATAP			= 1<<3,
1590 	IFF_WAN_HDLC			= 1<<4,
1591 	IFF_XMIT_DST_RELEASE		= 1<<5,
1592 	IFF_DONT_BRIDGE			= 1<<6,
1593 	IFF_DISABLE_NETPOLL		= 1<<7,
1594 	IFF_MACVLAN_PORT		= 1<<8,
1595 	IFF_BRIDGE_PORT			= 1<<9,
1596 	IFF_OVS_DATAPATH		= 1<<10,
1597 	IFF_TX_SKB_SHARING		= 1<<11,
1598 	IFF_UNICAST_FLT			= 1<<12,
1599 	IFF_TEAM_PORT			= 1<<13,
1600 	IFF_SUPP_NOFCS			= 1<<14,
1601 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1602 	IFF_MACVLAN			= 1<<16,
1603 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1604 	IFF_L3MDEV_MASTER		= 1<<18,
1605 	IFF_NO_QUEUE			= 1<<19,
1606 	IFF_OPENVSWITCH			= 1<<20,
1607 	IFF_L3MDEV_SLAVE		= 1<<21,
1608 	IFF_TEAM			= 1<<22,
1609 	IFF_RXFH_CONFIGURED		= 1<<23,
1610 	IFF_PHONY_HEADROOM		= 1<<24,
1611 	IFF_MACSEC			= 1<<25,
1612 	IFF_NO_RX_HANDLER		= 1<<26,
1613 	IFF_FAILOVER			= 1<<27,
1614 	IFF_FAILOVER_SLAVE		= 1<<28,
1615 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1616 	IFF_LIVE_RENAME_OK		= 1<<30,
1617 };
1618 
1619 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1620 #define IFF_EBRIDGE			IFF_EBRIDGE
1621 #define IFF_BONDING			IFF_BONDING
1622 #define IFF_ISATAP			IFF_ISATAP
1623 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1624 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1625 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1626 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1627 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1628 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1629 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1630 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1631 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1632 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1633 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1634 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1635 #define IFF_MACVLAN			IFF_MACVLAN
1636 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1637 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1638 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1639 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1640 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1641 #define IFF_TEAM			IFF_TEAM
1642 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1643 #define IFF_MACSEC			IFF_MACSEC
1644 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1645 #define IFF_FAILOVER			IFF_FAILOVER
1646 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1647 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1648 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1649 
1650 /* Specifies the type of the struct net_device::ml_priv pointer */
1651 enum netdev_ml_priv_type {
1652 	ML_PRIV_NONE,
1653 	ML_PRIV_CAN,
1654 };
1655 
1656 /**
1657  *	struct net_device - The DEVICE structure.
1658  *
1659  *	Actually, this whole structure is a big mistake.  It mixes I/O
1660  *	data with strictly "high-level" data, and it has to know about
1661  *	almost every data structure used in the INET module.
1662  *
1663  *	@name:	This is the first field of the "visible" part of this structure
1664  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1665  *		of the interface.
1666  *
1667  *	@name_node:	Name hashlist node
1668  *	@ifalias:	SNMP alias
1669  *	@mem_end:	Shared memory end
1670  *	@mem_start:	Shared memory start
1671  *	@base_addr:	Device I/O address
1672  *	@irq:		Device IRQ number
1673  *
1674  *	@state:		Generic network queuing layer state, see netdev_state_t
1675  *	@dev_list:	The global list of network devices
1676  *	@napi_list:	List entry used for polling NAPI devices
1677  *	@unreg_list:	List entry  when we are unregistering the
1678  *			device; see the function unregister_netdev
1679  *	@close_list:	List entry used when we are closing the device
1680  *	@ptype_all:     Device-specific packet handlers for all protocols
1681  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1682  *
1683  *	@adj_list:	Directly linked devices, like slaves for bonding
1684  *	@features:	Currently active device features
1685  *	@hw_features:	User-changeable features
1686  *
1687  *	@wanted_features:	User-requested features
1688  *	@vlan_features:		Mask of features inheritable by VLAN devices
1689  *
1690  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1691  *				This field indicates what encapsulation
1692  *				offloads the hardware is capable of doing,
1693  *				and drivers will need to set them appropriately.
1694  *
1695  *	@mpls_features:	Mask of features inheritable by MPLS
1696  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1697  *
1698  *	@ifindex:	interface index
1699  *	@group:		The group the device belongs to
1700  *
1701  *	@stats:		Statistics struct, which was left as a legacy, use
1702  *			rtnl_link_stats64 instead
1703  *
1704  *	@rx_dropped:	Dropped packets by core network,
1705  *			do not use this in drivers
1706  *	@tx_dropped:	Dropped packets by core network,
1707  *			do not use this in drivers
1708  *	@rx_nohandler:	nohandler dropped packets by core network on
1709  *			inactive devices, do not use this in drivers
1710  *	@carrier_up_count:	Number of times the carrier has been up
1711  *	@carrier_down_count:	Number of times the carrier has been down
1712  *
1713  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1714  *				instead of ioctl,
1715  *				see <net/iw_handler.h> for details.
1716  *	@wireless_data:	Instance data managed by the core of wireless extensions
1717  *
1718  *	@netdev_ops:	Includes several pointers to callbacks,
1719  *			if one wants to override the ndo_*() functions
1720  *	@ethtool_ops:	Management operations
1721  *	@l3mdev_ops:	Layer 3 master device operations
1722  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1723  *			discovery handling. Necessary for e.g. 6LoWPAN.
1724  *	@xfrmdev_ops:	Transformation offload operations
1725  *	@tlsdev_ops:	Transport Layer Security offload operations
1726  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1727  *			of Layer 2 headers.
1728  *
1729  *	@flags:		Interface flags (a la BSD)
1730  *	@priv_flags:	Like 'flags' but invisible to userspace,
1731  *			see if.h for the definitions
1732  *	@gflags:	Global flags ( kept as legacy )
1733  *	@padded:	How much padding added by alloc_netdev()
1734  *	@operstate:	RFC2863 operstate
1735  *	@link_mode:	Mapping policy to operstate
1736  *	@if_port:	Selectable AUI, TP, ...
1737  *	@dma:		DMA channel
1738  *	@mtu:		Interface MTU value
1739  *	@min_mtu:	Interface Minimum MTU value
1740  *	@max_mtu:	Interface Maximum MTU value
1741  *	@type:		Interface hardware type
1742  *	@hard_header_len: Maximum hardware header length.
1743  *	@min_header_len:  Minimum hardware header length
1744  *
1745  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1746  *			  cases can this be guaranteed
1747  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1748  *			  cases can this be guaranteed. Some cases also use
1749  *			  LL_MAX_HEADER instead to allocate the skb
1750  *
1751  *	interface address info:
1752  *
1753  * 	@perm_addr:		Permanent hw address
1754  * 	@addr_assign_type:	Hw address assignment type
1755  * 	@addr_len:		Hardware address length
1756  *	@upper_level:		Maximum depth level of upper devices.
1757  *	@lower_level:		Maximum depth level of lower devices.
1758  *	@neigh_priv_len:	Used in neigh_alloc()
1759  * 	@dev_id:		Used to differentiate devices that share
1760  * 				the same link layer address
1761  * 	@dev_port:		Used to differentiate devices that share
1762  * 				the same function
1763  *	@addr_list_lock:	XXX: need comments on this one
1764  *	@name_assign_type:	network interface name assignment type
1765  *	@uc_promisc:		Counter that indicates promiscuous mode
1766  *				has been enabled due to the need to listen to
1767  *				additional unicast addresses in a device that
1768  *				does not implement ndo_set_rx_mode()
1769  *	@uc:			unicast mac addresses
1770  *	@mc:			multicast mac addresses
1771  *	@dev_addrs:		list of device hw addresses
1772  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1773  *	@promiscuity:		Number of times the NIC is told to work in
1774  *				promiscuous mode; if it becomes 0 the NIC will
1775  *				exit promiscuous mode
1776  *	@allmulti:		Counter, enables or disables allmulticast mode
1777  *
1778  *	@vlan_info:	VLAN info
1779  *	@dsa_ptr:	dsa specific data
1780  *	@tipc_ptr:	TIPC specific data
1781  *	@atalk_ptr:	AppleTalk link
1782  *	@ip_ptr:	IPv4 specific data
1783  *	@dn_ptr:	DECnet specific data
1784  *	@ip6_ptr:	IPv6 specific data
1785  *	@ax25_ptr:	AX.25 specific data
1786  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1787  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1788  *			 device struct
1789  *	@mpls_ptr:	mpls_dev struct pointer
1790  *
1791  *	@dev_addr:	Hw address (before bcast,
1792  *			because most packets are unicast)
1793  *
1794  *	@_rx:			Array of RX queues
1795  *	@num_rx_queues:		Number of RX queues
1796  *				allocated at register_netdev() time
1797  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1798  *	@xdp_prog:		XDP sockets filter program pointer
1799  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1800  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1801  *				allow to avoid NIC hard IRQ, on busy queues.
1802  *
1803  *	@rx_handler:		handler for received packets
1804  *	@rx_handler_data: 	XXX: need comments on this one
1805  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1806  *				ingress processing
1807  *	@ingress_queue:		XXX: need comments on this one
1808  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1809  *	@broadcast:		hw bcast address
1810  *
1811  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1812  *			indexed by RX queue number. Assigned by driver.
1813  *			This must only be set if the ndo_rx_flow_steer
1814  *			operation is defined
1815  *	@index_hlist:		Device index hash chain
1816  *
1817  *	@_tx:			Array of TX queues
1818  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1819  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1820  *	@qdisc:			Root qdisc from userspace point of view
1821  *	@tx_queue_len:		Max frames per queue allowed
1822  *	@tx_global_lock: 	XXX: need comments on this one
1823  *	@xdp_bulkq:		XDP device bulk queue
1824  *	@xps_cpus_map:		all CPUs map for XPS device
1825  *	@xps_rxqs_map:		all RXQs map for XPS device
1826  *
1827  *	@xps_maps:	XXX: need comments on this one
1828  *	@miniq_egress:		clsact qdisc specific data for
1829  *				egress processing
1830  *	@qdisc_hash:		qdisc hash table
1831  *	@watchdog_timeo:	Represents the timeout that is used by
1832  *				the watchdog (see dev_watchdog())
1833  *	@watchdog_timer:	List of timers
1834  *
1835  *	@proto_down_reason:	reason a netdev interface is held down
1836  *	@pcpu_refcnt:		Number of references to this device
1837  *	@todo_list:		Delayed register/unregister
1838  *	@link_watch_list:	XXX: need comments on this one
1839  *
1840  *	@reg_state:		Register/unregister state machine
1841  *	@dismantle:		Device is going to be freed
1842  *	@rtnl_link_state:	This enum represents the phases of creating
1843  *				a new link
1844  *
1845  *	@needs_free_netdev:	Should unregister perform free_netdev?
1846  *	@priv_destructor:	Called from unregister
1847  *	@npinfo:		XXX: need comments on this one
1848  * 	@nd_net:		Network namespace this network device is inside
1849  *
1850  * 	@ml_priv:	Mid-layer private
1851  *	@ml_priv_type:  Mid-layer private type
1852  * 	@lstats:	Loopback statistics
1853  * 	@tstats:	Tunnel statistics
1854  * 	@dstats:	Dummy statistics
1855  * 	@vstats:	Virtual ethernet statistics
1856  *
1857  *	@garp_port:	GARP
1858  *	@mrp_port:	MRP
1859  *
1860  *	@dev:		Class/net/name entry
1861  *	@sysfs_groups:	Space for optional device, statistics and wireless
1862  *			sysfs groups
1863  *
1864  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1865  *	@rtnl_link_ops:	Rtnl_link_ops
1866  *
1867  *	@gso_max_size:	Maximum size of generic segmentation offload
1868  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1869  *			NIC for GSO
1870  *
1871  *	@dcbnl_ops:	Data Center Bridging netlink ops
1872  *	@num_tc:	Number of traffic classes in the net device
1873  *	@tc_to_txq:	XXX: need comments on this one
1874  *	@prio_tc_map:	XXX: need comments on this one
1875  *
1876  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1877  *
1878  *	@priomap:	XXX: need comments on this one
1879  *	@phydev:	Physical device may attach itself
1880  *			for hardware timestamping
1881  *	@sfp_bus:	attached &struct sfp_bus structure.
1882  *
1883  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1884  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1885  *
1886  *	@proto_down:	protocol port state information can be sent to the
1887  *			switch driver and used to set the phys state of the
1888  *			switch port.
1889  *
1890  *	@wol_enabled:	Wake-on-LAN is enabled
1891  *
1892  *	@net_notifier_list:	List of per-net netdev notifier block
1893  *				that follow this device when it is moved
1894  *				to another network namespace.
1895  *
1896  *	@macsec_ops:    MACsec offloading ops
1897  *
1898  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1899  *				offload capabilities of the device
1900  *	@udp_tunnel_nic:	UDP tunnel offload state
1901  *	@xdp_state:		stores info on attached XDP BPF programs
1902  *
1903  *	@nested_level:	Used as as a parameter of spin_lock_nested() of
1904  *			dev->addr_list_lock.
1905  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1906  *			keep a list of interfaces to be deleted.
1907  *
1908  *	FIXME: cleanup struct net_device such that network protocol info
1909  *	moves out.
1910  */
1911 
1912 struct net_device {
1913 	char			name[IFNAMSIZ];
1914 	struct netdev_name_node	*name_node;
1915 	struct dev_ifalias	__rcu *ifalias;
1916 	/*
1917 	 *	I/O specific fields
1918 	 *	FIXME: Merge these and struct ifmap into one
1919 	 */
1920 	unsigned long		mem_end;
1921 	unsigned long		mem_start;
1922 	unsigned long		base_addr;
1923 	int			irq;
1924 
1925 	/*
1926 	 *	Some hardware also needs these fields (state,dev_list,
1927 	 *	napi_list,unreg_list,close_list) but they are not
1928 	 *	part of the usual set specified in Space.c.
1929 	 */
1930 
1931 	unsigned long		state;
1932 
1933 	struct list_head	dev_list;
1934 	struct list_head	napi_list;
1935 	struct list_head	unreg_list;
1936 	struct list_head	close_list;
1937 	struct list_head	ptype_all;
1938 	struct list_head	ptype_specific;
1939 
1940 	struct {
1941 		struct list_head upper;
1942 		struct list_head lower;
1943 	} adj_list;
1944 
1945 	netdev_features_t	features;
1946 	netdev_features_t	hw_features;
1947 	netdev_features_t	wanted_features;
1948 	netdev_features_t	vlan_features;
1949 	netdev_features_t	hw_enc_features;
1950 	netdev_features_t	mpls_features;
1951 	netdev_features_t	gso_partial_features;
1952 
1953 	int			ifindex;
1954 	int			group;
1955 
1956 	struct net_device_stats	stats;
1957 
1958 	atomic_long_t		rx_dropped;
1959 	atomic_long_t		tx_dropped;
1960 	atomic_long_t		rx_nohandler;
1961 
1962 	/* Stats to monitor link on/off, flapping */
1963 	atomic_t		carrier_up_count;
1964 	atomic_t		carrier_down_count;
1965 
1966 #ifdef CONFIG_WIRELESS_EXT
1967 	const struct iw_handler_def *wireless_handlers;
1968 	struct iw_public_data	*wireless_data;
1969 #endif
1970 	const struct net_device_ops *netdev_ops;
1971 	const struct ethtool_ops *ethtool_ops;
1972 #ifdef CONFIG_NET_L3_MASTER_DEV
1973 	const struct l3mdev_ops	*l3mdev_ops;
1974 #endif
1975 #if IS_ENABLED(CONFIG_IPV6)
1976 	const struct ndisc_ops *ndisc_ops;
1977 #endif
1978 
1979 #ifdef CONFIG_XFRM_OFFLOAD
1980 	const struct xfrmdev_ops *xfrmdev_ops;
1981 #endif
1982 
1983 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1984 	const struct tlsdev_ops *tlsdev_ops;
1985 #endif
1986 
1987 	const struct header_ops *header_ops;
1988 
1989 	unsigned int		flags;
1990 	unsigned int		priv_flags;
1991 
1992 	unsigned short		gflags;
1993 	unsigned short		padded;
1994 
1995 	unsigned char		operstate;
1996 	unsigned char		link_mode;
1997 
1998 	unsigned char		if_port;
1999 	unsigned char		dma;
2000 
2001 	/* Note : dev->mtu is often read without holding a lock.
2002 	 * Writers usually hold RTNL.
2003 	 * It is recommended to use READ_ONCE() to annotate the reads,
2004 	 * and to use WRITE_ONCE() to annotate the writes.
2005 	 */
2006 	unsigned int		mtu;
2007 	unsigned int		min_mtu;
2008 	unsigned int		max_mtu;
2009 	unsigned short		type;
2010 	unsigned short		hard_header_len;
2011 	unsigned char		min_header_len;
2012 	unsigned char		name_assign_type;
2013 
2014 	unsigned short		needed_headroom;
2015 	unsigned short		needed_tailroom;
2016 
2017 	/* Interface address info. */
2018 	unsigned char		perm_addr[MAX_ADDR_LEN];
2019 	unsigned char		addr_assign_type;
2020 	unsigned char		addr_len;
2021 	unsigned char		upper_level;
2022 	unsigned char		lower_level;
2023 
2024 	unsigned short		neigh_priv_len;
2025 	unsigned short          dev_id;
2026 	unsigned short          dev_port;
2027 	spinlock_t		addr_list_lock;
2028 
2029 	struct netdev_hw_addr_list	uc;
2030 	struct netdev_hw_addr_list	mc;
2031 	struct netdev_hw_addr_list	dev_addrs;
2032 
2033 #ifdef CONFIG_SYSFS
2034 	struct kset		*queues_kset;
2035 #endif
2036 #ifdef CONFIG_LOCKDEP
2037 	struct list_head	unlink_list;
2038 #endif
2039 	unsigned int		promiscuity;
2040 	unsigned int		allmulti;
2041 	bool			uc_promisc;
2042 #ifdef CONFIG_LOCKDEP
2043 	unsigned char		nested_level;
2044 #endif
2045 
2046 
2047 	/* Protocol-specific pointers */
2048 
2049 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2050 	struct vlan_info __rcu	*vlan_info;
2051 #endif
2052 #if IS_ENABLED(CONFIG_NET_DSA)
2053 	struct dsa_port		*dsa_ptr;
2054 #endif
2055 #if IS_ENABLED(CONFIG_TIPC)
2056 	struct tipc_bearer __rcu *tipc_ptr;
2057 #endif
2058 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2059 	void 			*atalk_ptr;
2060 #endif
2061 	struct in_device __rcu	*ip_ptr;
2062 #if IS_ENABLED(CONFIG_DECNET)
2063 	struct dn_dev __rcu     *dn_ptr;
2064 #endif
2065 	struct inet6_dev __rcu	*ip6_ptr;
2066 #if IS_ENABLED(CONFIG_AX25)
2067 	void			*ax25_ptr;
2068 #endif
2069 	struct wireless_dev	*ieee80211_ptr;
2070 	struct wpan_dev		*ieee802154_ptr;
2071 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2072 	struct mpls_dev __rcu	*mpls_ptr;
2073 #endif
2074 
2075 /*
2076  * Cache lines mostly used on receive path (including eth_type_trans())
2077  */
2078 	/* Interface address info used in eth_type_trans() */
2079 	unsigned char		*dev_addr;
2080 
2081 	struct netdev_rx_queue	*_rx;
2082 	unsigned int		num_rx_queues;
2083 	unsigned int		real_num_rx_queues;
2084 
2085 	struct bpf_prog __rcu	*xdp_prog;
2086 	unsigned long		gro_flush_timeout;
2087 	int			napi_defer_hard_irqs;
2088 	rx_handler_func_t __rcu	*rx_handler;
2089 	void __rcu		*rx_handler_data;
2090 
2091 #ifdef CONFIG_NET_CLS_ACT
2092 	struct mini_Qdisc __rcu	*miniq_ingress;
2093 #endif
2094 	struct netdev_queue __rcu *ingress_queue;
2095 #ifdef CONFIG_NETFILTER_INGRESS
2096 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2097 #endif
2098 
2099 	unsigned char		broadcast[MAX_ADDR_LEN];
2100 #ifdef CONFIG_RFS_ACCEL
2101 	struct cpu_rmap		*rx_cpu_rmap;
2102 #endif
2103 	struct hlist_node	index_hlist;
2104 
2105 /*
2106  * Cache lines mostly used on transmit path
2107  */
2108 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2109 	unsigned int		num_tx_queues;
2110 	unsigned int		real_num_tx_queues;
2111 	struct Qdisc __rcu	*qdisc;
2112 	unsigned int		tx_queue_len;
2113 	spinlock_t		tx_global_lock;
2114 
2115 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2116 
2117 #ifdef CONFIG_XPS
2118 	struct xps_dev_maps __rcu *xps_cpus_map;
2119 	struct xps_dev_maps __rcu *xps_rxqs_map;
2120 #endif
2121 #ifdef CONFIG_NET_CLS_ACT
2122 	struct mini_Qdisc __rcu	*miniq_egress;
2123 #endif
2124 
2125 #ifdef CONFIG_NET_SCHED
2126 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2127 #endif
2128 	/* These may be needed for future network-power-down code. */
2129 	struct timer_list	watchdog_timer;
2130 	int			watchdog_timeo;
2131 
2132 	u32                     proto_down_reason;
2133 
2134 	struct list_head	todo_list;
2135 	int __percpu		*pcpu_refcnt;
2136 
2137 	struct list_head	link_watch_list;
2138 
2139 	enum { NETREG_UNINITIALIZED=0,
2140 	       NETREG_REGISTERED,	/* completed register_netdevice */
2141 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2142 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2143 	       NETREG_RELEASED,		/* called free_netdev */
2144 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2145 	} reg_state:8;
2146 
2147 	bool dismantle;
2148 
2149 	enum {
2150 		RTNL_LINK_INITIALIZED,
2151 		RTNL_LINK_INITIALIZING,
2152 	} rtnl_link_state:16;
2153 
2154 	bool needs_free_netdev;
2155 	void (*priv_destructor)(struct net_device *dev);
2156 
2157 #ifdef CONFIG_NETPOLL
2158 	struct netpoll_info __rcu	*npinfo;
2159 #endif
2160 
2161 	possible_net_t			nd_net;
2162 
2163 	/* mid-layer private */
2164 	void				*ml_priv;
2165 	enum netdev_ml_priv_type	ml_priv_type;
2166 
2167 	union {
2168 		struct pcpu_lstats __percpu		*lstats;
2169 		struct pcpu_sw_netstats __percpu	*tstats;
2170 		struct pcpu_dstats __percpu		*dstats;
2171 	};
2172 
2173 #if IS_ENABLED(CONFIG_GARP)
2174 	struct garp_port __rcu	*garp_port;
2175 #endif
2176 #if IS_ENABLED(CONFIG_MRP)
2177 	struct mrp_port __rcu	*mrp_port;
2178 #endif
2179 
2180 	struct device		dev;
2181 	const struct attribute_group *sysfs_groups[4];
2182 	const struct attribute_group *sysfs_rx_queue_group;
2183 
2184 	const struct rtnl_link_ops *rtnl_link_ops;
2185 
2186 	/* for setting kernel sock attribute on TCP connection setup */
2187 #define GSO_MAX_SIZE		65536
2188 	unsigned int		gso_max_size;
2189 #define GSO_MAX_SEGS		65535
2190 	u16			gso_max_segs;
2191 
2192 #ifdef CONFIG_DCB
2193 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2194 #endif
2195 	s16			num_tc;
2196 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2197 	u8			prio_tc_map[TC_BITMASK + 1];
2198 
2199 #if IS_ENABLED(CONFIG_FCOE)
2200 	unsigned int		fcoe_ddp_xid;
2201 #endif
2202 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2203 	struct netprio_map __rcu *priomap;
2204 #endif
2205 	struct phy_device	*phydev;
2206 	struct sfp_bus		*sfp_bus;
2207 	struct lock_class_key	*qdisc_tx_busylock;
2208 	struct lock_class_key	*qdisc_running_key;
2209 	bool			proto_down;
2210 	unsigned		wol_enabled:1;
2211 
2212 	struct list_head	net_notifier_list;
2213 
2214 #if IS_ENABLED(CONFIG_MACSEC)
2215 	/* MACsec management functions */
2216 	const struct macsec_ops *macsec_ops;
2217 #endif
2218 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2219 	struct udp_tunnel_nic	*udp_tunnel_nic;
2220 
2221 	/* protected by rtnl_lock */
2222 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2223 
2224 	ANDROID_KABI_RESERVE(1);
2225 	ANDROID_KABI_RESERVE(2);
2226 	ANDROID_KABI_RESERVE(3);
2227 	ANDROID_KABI_RESERVE(4);
2228 	ANDROID_KABI_RESERVE(5);
2229 	ANDROID_KABI_RESERVE(6);
2230 	ANDROID_KABI_RESERVE(7);
2231 	ANDROID_KABI_RESERVE(8);
2232 };
2233 #define to_net_dev(d) container_of(d, struct net_device, dev)
2234 
netif_elide_gro(const struct net_device * dev)2235 static inline bool netif_elide_gro(const struct net_device *dev)
2236 {
2237 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2238 		return true;
2239 	return false;
2240 }
2241 
2242 #define	NETDEV_ALIGN		32
2243 
2244 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2245 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2246 {
2247 	return dev->prio_tc_map[prio & TC_BITMASK];
2248 }
2249 
2250 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2251 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2252 {
2253 	if (tc >= dev->num_tc)
2254 		return -EINVAL;
2255 
2256 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2257 	return 0;
2258 }
2259 
2260 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2261 void netdev_reset_tc(struct net_device *dev);
2262 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2263 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2264 
2265 static inline
netdev_get_num_tc(struct net_device * dev)2266 int netdev_get_num_tc(struct net_device *dev)
2267 {
2268 	return dev->num_tc;
2269 }
2270 
net_prefetch(void * p)2271 static inline void net_prefetch(void *p)
2272 {
2273 	prefetch(p);
2274 #if L1_CACHE_BYTES < 128
2275 	prefetch((u8 *)p + L1_CACHE_BYTES);
2276 #endif
2277 }
2278 
net_prefetchw(void * p)2279 static inline void net_prefetchw(void *p)
2280 {
2281 	prefetchw(p);
2282 #if L1_CACHE_BYTES < 128
2283 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2284 #endif
2285 }
2286 
2287 void netdev_unbind_sb_channel(struct net_device *dev,
2288 			      struct net_device *sb_dev);
2289 int netdev_bind_sb_channel_queue(struct net_device *dev,
2290 				 struct net_device *sb_dev,
2291 				 u8 tc, u16 count, u16 offset);
2292 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2293 static inline int netdev_get_sb_channel(struct net_device *dev)
2294 {
2295 	return max_t(int, -dev->num_tc, 0);
2296 }
2297 
2298 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2299 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2300 					 unsigned int index)
2301 {
2302 	return &dev->_tx[index];
2303 }
2304 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2305 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2306 						    const struct sk_buff *skb)
2307 {
2308 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2309 }
2310 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2311 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2312 					    void (*f)(struct net_device *,
2313 						      struct netdev_queue *,
2314 						      void *),
2315 					    void *arg)
2316 {
2317 	unsigned int i;
2318 
2319 	for (i = 0; i < dev->num_tx_queues; i++)
2320 		f(dev, &dev->_tx[i], arg);
2321 }
2322 
2323 #define netdev_lockdep_set_classes(dev)				\
2324 {								\
2325 	static struct lock_class_key qdisc_tx_busylock_key;	\
2326 	static struct lock_class_key qdisc_running_key;		\
2327 	static struct lock_class_key qdisc_xmit_lock_key;	\
2328 	static struct lock_class_key dev_addr_list_lock_key;	\
2329 	unsigned int i;						\
2330 								\
2331 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2332 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2333 	lockdep_set_class(&(dev)->addr_list_lock,		\
2334 			  &dev_addr_list_lock_key);		\
2335 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2336 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2337 				  &qdisc_xmit_lock_key);	\
2338 }
2339 
2340 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2341 		     struct net_device *sb_dev);
2342 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2343 					 struct sk_buff *skb,
2344 					 struct net_device *sb_dev);
2345 
2346 /* returns the headroom that the master device needs to take in account
2347  * when forwarding to this dev
2348  */
netdev_get_fwd_headroom(struct net_device * dev)2349 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2350 {
2351 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2352 }
2353 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2354 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2355 {
2356 	if (dev->netdev_ops->ndo_set_rx_headroom)
2357 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2358 }
2359 
2360 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2361 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2362 {
2363 	netdev_set_rx_headroom(dev, -1);
2364 }
2365 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2366 static inline void *netdev_get_ml_priv(struct net_device *dev,
2367 				       enum netdev_ml_priv_type type)
2368 {
2369 	if (dev->ml_priv_type != type)
2370 		return NULL;
2371 
2372 	return dev->ml_priv;
2373 }
2374 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2375 static inline void netdev_set_ml_priv(struct net_device *dev,
2376 				      void *ml_priv,
2377 				      enum netdev_ml_priv_type type)
2378 {
2379 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2380 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2381 	     dev->ml_priv_type, type);
2382 	WARN(!dev->ml_priv_type && dev->ml_priv,
2383 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2384 
2385 	dev->ml_priv = ml_priv;
2386 	dev->ml_priv_type = type;
2387 }
2388 
2389 /*
2390  * Net namespace inlines
2391  */
2392 static inline
dev_net(const struct net_device * dev)2393 struct net *dev_net(const struct net_device *dev)
2394 {
2395 	return read_pnet(&dev->nd_net);
2396 }
2397 
2398 static inline
dev_net_set(struct net_device * dev,struct net * net)2399 void dev_net_set(struct net_device *dev, struct net *net)
2400 {
2401 	write_pnet(&dev->nd_net, net);
2402 }
2403 
2404 /**
2405  *	netdev_priv - access network device private data
2406  *	@dev: network device
2407  *
2408  * Get network device private data
2409  */
netdev_priv(const struct net_device * dev)2410 static inline void *netdev_priv(const struct net_device *dev)
2411 {
2412 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2413 }
2414 
2415 /* Set the sysfs physical device reference for the network logical device
2416  * if set prior to registration will cause a symlink during initialization.
2417  */
2418 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2419 
2420 /* Set the sysfs device type for the network logical device to allow
2421  * fine-grained identification of different network device types. For
2422  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2423  */
2424 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2425 
2426 /* Default NAPI poll() weight
2427  * Device drivers are strongly advised to not use bigger value
2428  */
2429 #define NAPI_POLL_WEIGHT 64
2430 
2431 /**
2432  *	netif_napi_add - initialize a NAPI context
2433  *	@dev:  network device
2434  *	@napi: NAPI context
2435  *	@poll: polling function
2436  *	@weight: default weight
2437  *
2438  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2439  * *any* of the other NAPI-related functions.
2440  */
2441 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2442 		    int (*poll)(struct napi_struct *, int), int weight);
2443 
2444 /**
2445  *	netif_tx_napi_add - initialize a NAPI context
2446  *	@dev:  network device
2447  *	@napi: NAPI context
2448  *	@poll: polling function
2449  *	@weight: default weight
2450  *
2451  * This variant of netif_napi_add() should be used from drivers using NAPI
2452  * to exclusively poll a TX queue.
2453  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2454  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2455 static inline void netif_tx_napi_add(struct net_device *dev,
2456 				     struct napi_struct *napi,
2457 				     int (*poll)(struct napi_struct *, int),
2458 				     int weight)
2459 {
2460 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2461 	netif_napi_add(dev, napi, poll, weight);
2462 }
2463 
2464 /**
2465  *  __netif_napi_del - remove a NAPI context
2466  *  @napi: NAPI context
2467  *
2468  * Warning: caller must observe RCU grace period before freeing memory
2469  * containing @napi. Drivers might want to call this helper to combine
2470  * all the needed RCU grace periods into a single one.
2471  */
2472 void __netif_napi_del(struct napi_struct *napi);
2473 
2474 /**
2475  *  netif_napi_del - remove a NAPI context
2476  *  @napi: NAPI context
2477  *
2478  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2479  */
netif_napi_del(struct napi_struct * napi)2480 static inline void netif_napi_del(struct napi_struct *napi)
2481 {
2482 	__netif_napi_del(napi);
2483 	synchronize_net();
2484 }
2485 
2486 struct napi_gro_cb {
2487 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2488 	void	*frag0;
2489 
2490 	/* Length of frag0. */
2491 	unsigned int frag0_len;
2492 
2493 	/* This indicates where we are processing relative to skb->data. */
2494 	int	data_offset;
2495 
2496 	/* This is non-zero if the packet cannot be merged with the new skb. */
2497 	u16	flush;
2498 
2499 	/* Save the IP ID here and check when we get to the transport layer */
2500 	u16	flush_id;
2501 
2502 	/* Number of segments aggregated. */
2503 	u16	count;
2504 
2505 	/* Start offset for remote checksum offload */
2506 	u16	gro_remcsum_start;
2507 
2508 	/* jiffies when first packet was created/queued */
2509 	unsigned long age;
2510 
2511 	/* Used in ipv6_gro_receive() and foo-over-udp */
2512 	u16	proto;
2513 
2514 	/* This is non-zero if the packet may be of the same flow. */
2515 	u8	same_flow:1;
2516 
2517 	/* Used in tunnel GRO receive */
2518 	u8	encap_mark:1;
2519 
2520 	/* GRO checksum is valid */
2521 	u8	csum_valid:1;
2522 
2523 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2524 	u8	csum_cnt:3;
2525 
2526 	/* Free the skb? */
2527 	u8	free:2;
2528 #define NAPI_GRO_FREE		  1
2529 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2530 
2531 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2532 	u8	is_ipv6:1;
2533 
2534 	/* Used in GRE, set in fou/gue_gro_receive */
2535 	u8	is_fou:1;
2536 
2537 	/* Used to determine if flush_id can be ignored */
2538 	u8	is_atomic:1;
2539 
2540 	/* Number of gro_receive callbacks this packet already went through */
2541 	u8 recursion_counter:4;
2542 
2543 	/* GRO is done by frag_list pointer chaining. */
2544 	u8	is_flist:1;
2545 
2546 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2547 	__wsum	csum;
2548 
2549 	/* used in skb_gro_receive() slow path */
2550 	struct sk_buff *last;
2551 };
2552 
2553 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2554 
2555 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2556 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2557 {
2558 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2559 }
2560 
2561 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2562 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2563 					       struct list_head *head,
2564 					       struct sk_buff *skb)
2565 {
2566 	if (unlikely(gro_recursion_inc_test(skb))) {
2567 		NAPI_GRO_CB(skb)->flush |= 1;
2568 		return NULL;
2569 	}
2570 
2571 	return cb(head, skb);
2572 }
2573 
2574 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2575 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2576 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2577 						  struct sock *sk,
2578 						  struct list_head *head,
2579 						  struct sk_buff *skb)
2580 {
2581 	if (unlikely(gro_recursion_inc_test(skb))) {
2582 		NAPI_GRO_CB(skb)->flush |= 1;
2583 		return NULL;
2584 	}
2585 
2586 	return cb(sk, head, skb);
2587 }
2588 
2589 struct packet_type {
2590 	__be16			type;	/* This is really htons(ether_type). */
2591 	bool			ignore_outgoing;
2592 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2593 	int			(*func) (struct sk_buff *,
2594 					 struct net_device *,
2595 					 struct packet_type *,
2596 					 struct net_device *);
2597 	void			(*list_func) (struct list_head *,
2598 					      struct packet_type *,
2599 					      struct net_device *);
2600 	bool			(*id_match)(struct packet_type *ptype,
2601 					    struct sock *sk);
2602 	struct net		*af_packet_net;
2603 	void			*af_packet_priv;
2604 	struct list_head	list;
2605 
2606 	ANDROID_KABI_RESERVE(1);
2607 	ANDROID_KABI_RESERVE(2);
2608 	ANDROID_KABI_RESERVE(3);
2609 	ANDROID_KABI_RESERVE(4);
2610 };
2611 
2612 struct offload_callbacks {
2613 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2614 						netdev_features_t features);
2615 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2616 						struct sk_buff *skb);
2617 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2618 };
2619 
2620 struct packet_offload {
2621 	__be16			 type;	/* This is really htons(ether_type). */
2622 	u16			 priority;
2623 	struct offload_callbacks callbacks;
2624 	struct list_head	 list;
2625 };
2626 
2627 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2628 struct pcpu_sw_netstats {
2629 	u64     rx_packets;
2630 	u64     rx_bytes;
2631 	u64     tx_packets;
2632 	u64     tx_bytes;
2633 	struct u64_stats_sync   syncp;
2634 } __aligned(4 * sizeof(u64));
2635 
2636 struct pcpu_lstats {
2637 	u64_stats_t packets;
2638 	u64_stats_t bytes;
2639 	struct u64_stats_sync syncp;
2640 } __aligned(2 * sizeof(u64));
2641 
2642 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2643 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2644 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2645 {
2646 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2647 
2648 	u64_stats_update_begin(&tstats->syncp);
2649 	tstats->rx_bytes += len;
2650 	tstats->rx_packets++;
2651 	u64_stats_update_end(&tstats->syncp);
2652 }
2653 
dev_lstats_add(struct net_device * dev,unsigned int len)2654 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2655 {
2656 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2657 
2658 	u64_stats_update_begin(&lstats->syncp);
2659 	u64_stats_add(&lstats->bytes, len);
2660 	u64_stats_inc(&lstats->packets);
2661 	u64_stats_update_end(&lstats->syncp);
2662 }
2663 
2664 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2665 ({									\
2666 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2667 	if (pcpu_stats)	{						\
2668 		int __cpu;						\
2669 		for_each_possible_cpu(__cpu) {				\
2670 			typeof(type) *stat;				\
2671 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2672 			u64_stats_init(&stat->syncp);			\
2673 		}							\
2674 	}								\
2675 	pcpu_stats;							\
2676 })
2677 
2678 #define netdev_alloc_pcpu_stats(type)					\
2679 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2680 
2681 enum netdev_lag_tx_type {
2682 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2683 	NETDEV_LAG_TX_TYPE_RANDOM,
2684 	NETDEV_LAG_TX_TYPE_BROADCAST,
2685 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2686 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2687 	NETDEV_LAG_TX_TYPE_HASH,
2688 };
2689 
2690 enum netdev_lag_hash {
2691 	NETDEV_LAG_HASH_NONE,
2692 	NETDEV_LAG_HASH_L2,
2693 	NETDEV_LAG_HASH_L34,
2694 	NETDEV_LAG_HASH_L23,
2695 	NETDEV_LAG_HASH_E23,
2696 	NETDEV_LAG_HASH_E34,
2697 	NETDEV_LAG_HASH_UNKNOWN,
2698 };
2699 
2700 struct netdev_lag_upper_info {
2701 	enum netdev_lag_tx_type tx_type;
2702 	enum netdev_lag_hash hash_type;
2703 };
2704 
2705 struct netdev_lag_lower_state_info {
2706 	u8 link_up : 1,
2707 	   tx_enabled : 1;
2708 };
2709 
2710 #include <linux/notifier.h>
2711 
2712 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2713  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2714  * adding new types.
2715  */
2716 enum netdev_cmd {
2717 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2718 	NETDEV_DOWN,
2719 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2720 				   detected a hardware crash and restarted
2721 				   - we can use this eg to kick tcp sessions
2722 				   once done */
2723 	NETDEV_CHANGE,		/* Notify device state change */
2724 	NETDEV_REGISTER,
2725 	NETDEV_UNREGISTER,
2726 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2727 	NETDEV_CHANGEADDR,	/* notify after the address change */
2728 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2729 	NETDEV_GOING_DOWN,
2730 	NETDEV_CHANGENAME,
2731 	NETDEV_FEAT_CHANGE,
2732 	NETDEV_BONDING_FAILOVER,
2733 	NETDEV_PRE_UP,
2734 	NETDEV_PRE_TYPE_CHANGE,
2735 	NETDEV_POST_TYPE_CHANGE,
2736 	NETDEV_POST_INIT,
2737 	NETDEV_RELEASE,
2738 	NETDEV_NOTIFY_PEERS,
2739 	NETDEV_JOIN,
2740 	NETDEV_CHANGEUPPER,
2741 	NETDEV_RESEND_IGMP,
2742 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2743 	NETDEV_CHANGEINFODATA,
2744 	NETDEV_BONDING_INFO,
2745 	NETDEV_PRECHANGEUPPER,
2746 	NETDEV_CHANGELOWERSTATE,
2747 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2748 	NETDEV_UDP_TUNNEL_DROP_INFO,
2749 	NETDEV_CHANGE_TX_QUEUE_LEN,
2750 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2751 	NETDEV_CVLAN_FILTER_DROP_INFO,
2752 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2753 	NETDEV_SVLAN_FILTER_DROP_INFO,
2754 };
2755 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2756 
2757 int register_netdevice_notifier(struct notifier_block *nb);
2758 int unregister_netdevice_notifier(struct notifier_block *nb);
2759 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2760 int unregister_netdevice_notifier_net(struct net *net,
2761 				      struct notifier_block *nb);
2762 int register_netdevice_notifier_dev_net(struct net_device *dev,
2763 					struct notifier_block *nb,
2764 					struct netdev_net_notifier *nn);
2765 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2766 					  struct notifier_block *nb,
2767 					  struct netdev_net_notifier *nn);
2768 
2769 struct netdev_notifier_info {
2770 	struct net_device	*dev;
2771 	struct netlink_ext_ack	*extack;
2772 };
2773 
2774 struct netdev_notifier_info_ext {
2775 	struct netdev_notifier_info info; /* must be first */
2776 	union {
2777 		u32 mtu;
2778 	} ext;
2779 };
2780 
2781 struct netdev_notifier_change_info {
2782 	struct netdev_notifier_info info; /* must be first */
2783 	unsigned int flags_changed;
2784 };
2785 
2786 struct netdev_notifier_changeupper_info {
2787 	struct netdev_notifier_info info; /* must be first */
2788 	struct net_device *upper_dev; /* new upper dev */
2789 	bool master; /* is upper dev master */
2790 	bool linking; /* is the notification for link or unlink */
2791 	void *upper_info; /* upper dev info */
2792 };
2793 
2794 struct netdev_notifier_changelowerstate_info {
2795 	struct netdev_notifier_info info; /* must be first */
2796 	void *lower_state_info; /* is lower dev state */
2797 };
2798 
2799 struct netdev_notifier_pre_changeaddr_info {
2800 	struct netdev_notifier_info info; /* must be first */
2801 	const unsigned char *dev_addr;
2802 };
2803 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2804 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2805 					     struct net_device *dev)
2806 {
2807 	info->dev = dev;
2808 	info->extack = NULL;
2809 }
2810 
2811 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2812 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2813 {
2814 	return info->dev;
2815 }
2816 
2817 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2818 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2819 {
2820 	return info->extack;
2821 }
2822 
2823 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2824 
2825 
2826 extern rwlock_t				dev_base_lock;		/* Device list lock */
2827 
2828 #define for_each_netdev(net, d)		\
2829 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2830 #define for_each_netdev_reverse(net, d)	\
2831 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2832 #define for_each_netdev_rcu(net, d)		\
2833 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2834 #define for_each_netdev_safe(net, d, n)	\
2835 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2836 #define for_each_netdev_continue(net, d)		\
2837 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2838 #define for_each_netdev_continue_reverse(net, d)		\
2839 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2840 						     dev_list)
2841 #define for_each_netdev_continue_rcu(net, d)		\
2842 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2843 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2844 		for_each_netdev_rcu(&init_net, slave)	\
2845 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2846 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2847 
next_net_device(struct net_device * dev)2848 static inline struct net_device *next_net_device(struct net_device *dev)
2849 {
2850 	struct list_head *lh;
2851 	struct net *net;
2852 
2853 	net = dev_net(dev);
2854 	lh = dev->dev_list.next;
2855 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2856 }
2857 
next_net_device_rcu(struct net_device * dev)2858 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2859 {
2860 	struct list_head *lh;
2861 	struct net *net;
2862 
2863 	net = dev_net(dev);
2864 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2865 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2866 }
2867 
first_net_device(struct net * net)2868 static inline struct net_device *first_net_device(struct net *net)
2869 {
2870 	return list_empty(&net->dev_base_head) ? NULL :
2871 		net_device_entry(net->dev_base_head.next);
2872 }
2873 
first_net_device_rcu(struct net * net)2874 static inline struct net_device *first_net_device_rcu(struct net *net)
2875 {
2876 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2877 
2878 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2879 }
2880 
2881 int netdev_boot_setup_check(struct net_device *dev);
2882 unsigned long netdev_boot_base(const char *prefix, int unit);
2883 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2884 				       const char *hwaddr);
2885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2886 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2887 void dev_add_pack(struct packet_type *pt);
2888 void dev_remove_pack(struct packet_type *pt);
2889 void __dev_remove_pack(struct packet_type *pt);
2890 void dev_add_offload(struct packet_offload *po);
2891 void dev_remove_offload(struct packet_offload *po);
2892 
2893 int dev_get_iflink(const struct net_device *dev);
2894 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2895 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2896 				      unsigned short mask);
2897 struct net_device *dev_get_by_name(struct net *net, const char *name);
2898 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2899 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2900 int dev_alloc_name(struct net_device *dev, const char *name);
2901 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2902 void dev_close(struct net_device *dev);
2903 void dev_close_many(struct list_head *head, bool unlink);
2904 void dev_disable_lro(struct net_device *dev);
2905 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2906 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2907 		     struct net_device *sb_dev);
2908 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2909 		       struct net_device *sb_dev);
2910 
2911 int dev_queue_xmit(struct sk_buff *skb);
2912 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2913 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2914 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)2915 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2916 {
2917 	int ret;
2918 
2919 	ret = __dev_direct_xmit(skb, queue_id);
2920 	if (!dev_xmit_complete(ret))
2921 		kfree_skb(skb);
2922 	return ret;
2923 }
2924 
2925 int register_netdevice(struct net_device *dev);
2926 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2927 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2928 static inline void unregister_netdevice(struct net_device *dev)
2929 {
2930 	unregister_netdevice_queue(dev, NULL);
2931 }
2932 
2933 int netdev_refcnt_read(const struct net_device *dev);
2934 void free_netdev(struct net_device *dev);
2935 void netdev_freemem(struct net_device *dev);
2936 int init_dummy_netdev(struct net_device *dev);
2937 
2938 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2939 					 struct sk_buff *skb,
2940 					 bool all_slaves);
2941 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2942 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2943 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2944 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2945 int netdev_get_name(struct net *net, char *name, int ifindex);
2946 int dev_restart(struct net_device *dev);
2947 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2948 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2949 
skb_gro_offset(const struct sk_buff * skb)2950 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2951 {
2952 	return NAPI_GRO_CB(skb)->data_offset;
2953 }
2954 
skb_gro_len(const struct sk_buff * skb)2955 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2956 {
2957 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2958 }
2959 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2960 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2961 {
2962 	NAPI_GRO_CB(skb)->data_offset += len;
2963 }
2964 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2965 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2966 					unsigned int offset)
2967 {
2968 	return NAPI_GRO_CB(skb)->frag0 + offset;
2969 }
2970 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2971 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2972 {
2973 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2974 }
2975 
skb_gro_frag0_invalidate(struct sk_buff * skb)2976 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2977 {
2978 	NAPI_GRO_CB(skb)->frag0 = NULL;
2979 	NAPI_GRO_CB(skb)->frag0_len = 0;
2980 }
2981 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2982 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2983 					unsigned int offset)
2984 {
2985 	if (!pskb_may_pull(skb, hlen))
2986 		return NULL;
2987 
2988 	skb_gro_frag0_invalidate(skb);
2989 	return skb->data + offset;
2990 }
2991 
skb_gro_network_header(struct sk_buff * skb)2992 static inline void *skb_gro_network_header(struct sk_buff *skb)
2993 {
2994 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2995 	       skb_network_offset(skb);
2996 }
2997 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2998 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2999 					const void *start, unsigned int len)
3000 {
3001 	if (NAPI_GRO_CB(skb)->csum_valid)
3002 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3003 						  csum_partial(start, len, 0));
3004 }
3005 
3006 /* GRO checksum functions. These are logical equivalents of the normal
3007  * checksum functions (in skbuff.h) except that they operate on the GRO
3008  * offsets and fields in sk_buff.
3009  */
3010 
3011 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3012 
skb_at_gro_remcsum_start(struct sk_buff * skb)3013 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3014 {
3015 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3016 }
3017 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)3018 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3019 						      bool zero_okay,
3020 						      __sum16 check)
3021 {
3022 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3023 		skb_checksum_start_offset(skb) <
3024 		 skb_gro_offset(skb)) &&
3025 		!skb_at_gro_remcsum_start(skb) &&
3026 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3027 		(!zero_okay || check));
3028 }
3029 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)3030 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3031 							   __wsum psum)
3032 {
3033 	if (NAPI_GRO_CB(skb)->csum_valid &&
3034 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3035 		return 0;
3036 
3037 	NAPI_GRO_CB(skb)->csum = psum;
3038 
3039 	return __skb_gro_checksum_complete(skb);
3040 }
3041 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)3042 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3043 {
3044 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3045 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
3046 		NAPI_GRO_CB(skb)->csum_cnt--;
3047 	} else {
3048 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3049 		 * verified a new top level checksum or an encapsulated one
3050 		 * during GRO. This saves work if we fallback to normal path.
3051 		 */
3052 		__skb_incr_checksum_unnecessary(skb);
3053 	}
3054 }
3055 
3056 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
3057 				    compute_pseudo)			\
3058 ({									\
3059 	__sum16 __ret = 0;						\
3060 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
3061 		__ret = __skb_gro_checksum_validate_complete(skb,	\
3062 				compute_pseudo(skb, proto));		\
3063 	if (!__ret)							\
3064 		skb_gro_incr_csum_unnecessary(skb);			\
3065 	__ret;								\
3066 })
3067 
3068 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
3069 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3070 
3071 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
3072 					     compute_pseudo)		\
3073 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3074 
3075 #define skb_gro_checksum_simple_validate(skb)				\
3076 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3077 
__skb_gro_checksum_convert_check(struct sk_buff * skb)3078 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3079 {
3080 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3081 		!NAPI_GRO_CB(skb)->csum_valid);
3082 }
3083 
__skb_gro_checksum_convert(struct sk_buff * skb,__wsum pseudo)3084 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3085 					      __wsum pseudo)
3086 {
3087 	NAPI_GRO_CB(skb)->csum = ~pseudo;
3088 	NAPI_GRO_CB(skb)->csum_valid = 1;
3089 }
3090 
3091 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)	\
3092 do {									\
3093 	if (__skb_gro_checksum_convert_check(skb))			\
3094 		__skb_gro_checksum_convert(skb, 			\
3095 					   compute_pseudo(skb, proto));	\
3096 } while (0)
3097 
3098 struct gro_remcsum {
3099 	int offset;
3100 	__wsum delta;
3101 };
3102 
skb_gro_remcsum_init(struct gro_remcsum * grc)3103 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3104 {
3105 	grc->offset = 0;
3106 	grc->delta = 0;
3107 }
3108 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)3109 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3110 					    unsigned int off, size_t hdrlen,
3111 					    int start, int offset,
3112 					    struct gro_remcsum *grc,
3113 					    bool nopartial)
3114 {
3115 	__wsum delta;
3116 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3117 
3118 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3119 
3120 	if (!nopartial) {
3121 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3122 		return ptr;
3123 	}
3124 
3125 	ptr = skb_gro_header_fast(skb, off);
3126 	if (skb_gro_header_hard(skb, off + plen)) {
3127 		ptr = skb_gro_header_slow(skb, off + plen, off);
3128 		if (!ptr)
3129 			return NULL;
3130 	}
3131 
3132 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3133 			       start, offset);
3134 
3135 	/* Adjust skb->csum since we changed the packet */
3136 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3137 
3138 	grc->offset = off + hdrlen + offset;
3139 	grc->delta = delta;
3140 
3141 	return ptr;
3142 }
3143 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)3144 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3145 					   struct gro_remcsum *grc)
3146 {
3147 	void *ptr;
3148 	size_t plen = grc->offset + sizeof(u16);
3149 
3150 	if (!grc->delta)
3151 		return;
3152 
3153 	ptr = skb_gro_header_fast(skb, grc->offset);
3154 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3155 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
3156 		if (!ptr)
3157 			return;
3158 	}
3159 
3160 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
3161 }
3162 
3163 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3164 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3165 {
3166 	if (PTR_ERR(pp) != -EINPROGRESS)
3167 		NAPI_GRO_CB(skb)->flush |= flush;
3168 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3169 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3170 					       struct sk_buff *pp,
3171 					       int flush,
3172 					       struct gro_remcsum *grc)
3173 {
3174 	if (PTR_ERR(pp) != -EINPROGRESS) {
3175 		NAPI_GRO_CB(skb)->flush |= flush;
3176 		skb_gro_remcsum_cleanup(skb, grc);
3177 		skb->remcsum_offload = 0;
3178 	}
3179 }
3180 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)3181 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3182 {
3183 	NAPI_GRO_CB(skb)->flush |= flush;
3184 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)3185 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3186 					       struct sk_buff *pp,
3187 					       int flush,
3188 					       struct gro_remcsum *grc)
3189 {
3190 	NAPI_GRO_CB(skb)->flush |= flush;
3191 	skb_gro_remcsum_cleanup(skb, grc);
3192 	skb->remcsum_offload = 0;
3193 }
3194 #endif
3195 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3196 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3197 				  unsigned short type,
3198 				  const void *daddr, const void *saddr,
3199 				  unsigned int len)
3200 {
3201 	if (!dev->header_ops || !dev->header_ops->create)
3202 		return 0;
3203 
3204 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3205 }
3206 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3207 static inline int dev_parse_header(const struct sk_buff *skb,
3208 				   unsigned char *haddr)
3209 {
3210 	const struct net_device *dev = skb->dev;
3211 
3212 	if (!dev->header_ops || !dev->header_ops->parse)
3213 		return 0;
3214 	return dev->header_ops->parse(skb, haddr);
3215 }
3216 
dev_parse_header_protocol(const struct sk_buff * skb)3217 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3218 {
3219 	const struct net_device *dev = skb->dev;
3220 
3221 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3222 		return 0;
3223 	return dev->header_ops->parse_protocol(skb);
3224 }
3225 
3226 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3227 static inline bool dev_validate_header(const struct net_device *dev,
3228 				       char *ll_header, int len)
3229 {
3230 	if (likely(len >= dev->hard_header_len))
3231 		return true;
3232 	if (len < dev->min_header_len)
3233 		return false;
3234 
3235 	if (capable(CAP_SYS_RAWIO)) {
3236 		memset(ll_header + len, 0, dev->hard_header_len - len);
3237 		return true;
3238 	}
3239 
3240 	if (dev->header_ops && dev->header_ops->validate)
3241 		return dev->header_ops->validate(ll_header, len);
3242 
3243 	return false;
3244 }
3245 
dev_has_header(const struct net_device * dev)3246 static inline bool dev_has_header(const struct net_device *dev)
3247 {
3248 	return dev->header_ops && dev->header_ops->create;
3249 }
3250 
3251 #ifdef CONFIG_NET_FLOW_LIMIT
3252 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
3253 struct sd_flow_limit {
3254 	u64			count;
3255 	unsigned int		num_buckets;
3256 	unsigned int		history_head;
3257 	u16			history[FLOW_LIMIT_HISTORY];
3258 	u8			buckets[];
3259 };
3260 
3261 extern int netdev_flow_limit_table_len;
3262 #endif /* CONFIG_NET_FLOW_LIMIT */
3263 
3264 /*
3265  * Incoming packets are placed on per-CPU queues
3266  */
3267 struct softnet_data {
3268 	struct list_head	poll_list;
3269 	struct sk_buff_head	process_queue;
3270 
3271 	/* stats */
3272 	unsigned int		processed;
3273 	unsigned int		time_squeeze;
3274 	unsigned int		received_rps;
3275 #ifdef CONFIG_RPS
3276 	struct softnet_data	*rps_ipi_list;
3277 #endif
3278 #ifdef CONFIG_NET_FLOW_LIMIT
3279 	struct sd_flow_limit __rcu *flow_limit;
3280 #endif
3281 	struct Qdisc		*output_queue;
3282 	struct Qdisc		**output_queue_tailp;
3283 	struct sk_buff		*completion_queue;
3284 #ifdef CONFIG_XFRM_OFFLOAD
3285 	struct sk_buff_head	xfrm_backlog;
3286 #endif
3287 	/* written and read only by owning cpu: */
3288 	struct {
3289 		u16 recursion;
3290 		u8  more;
3291 	} xmit;
3292 #ifdef CONFIG_RPS
3293 	/* input_queue_head should be written by cpu owning this struct,
3294 	 * and only read by other cpus. Worth using a cache line.
3295 	 */
3296 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3297 
3298 	/* Elements below can be accessed between CPUs for RPS/RFS */
3299 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3300 	struct softnet_data	*rps_ipi_next;
3301 	unsigned int		cpu;
3302 	unsigned int		input_queue_tail;
3303 #endif
3304 	unsigned int		dropped;
3305 	struct sk_buff_head	input_pkt_queue;
3306 	struct napi_struct	backlog;
3307 
3308 };
3309 
input_queue_head_incr(struct softnet_data * sd)3310 static inline void input_queue_head_incr(struct softnet_data *sd)
3311 {
3312 #ifdef CONFIG_RPS
3313 	sd->input_queue_head++;
3314 #endif
3315 }
3316 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3317 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3318 					      unsigned int *qtail)
3319 {
3320 #ifdef CONFIG_RPS
3321 	*qtail = ++sd->input_queue_tail;
3322 #endif
3323 }
3324 
3325 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3326 
dev_recursion_level(void)3327 static inline int dev_recursion_level(void)
3328 {
3329 	return this_cpu_read(softnet_data.xmit.recursion);
3330 }
3331 
3332 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3333 static inline bool dev_xmit_recursion(void)
3334 {
3335 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3336 			XMIT_RECURSION_LIMIT);
3337 }
3338 
dev_xmit_recursion_inc(void)3339 static inline void dev_xmit_recursion_inc(void)
3340 {
3341 	__this_cpu_inc(softnet_data.xmit.recursion);
3342 }
3343 
dev_xmit_recursion_dec(void)3344 static inline void dev_xmit_recursion_dec(void)
3345 {
3346 	__this_cpu_dec(softnet_data.xmit.recursion);
3347 }
3348 
3349 void __netif_schedule(struct Qdisc *q);
3350 void netif_schedule_queue(struct netdev_queue *txq);
3351 
netif_tx_schedule_all(struct net_device * dev)3352 static inline void netif_tx_schedule_all(struct net_device *dev)
3353 {
3354 	unsigned int i;
3355 
3356 	for (i = 0; i < dev->num_tx_queues; i++)
3357 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3358 }
3359 
netif_tx_start_queue(struct netdev_queue * dev_queue)3360 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3361 {
3362 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3363 }
3364 
3365 /**
3366  *	netif_start_queue - allow transmit
3367  *	@dev: network device
3368  *
3369  *	Allow upper layers to call the device hard_start_xmit routine.
3370  */
netif_start_queue(struct net_device * dev)3371 static inline void netif_start_queue(struct net_device *dev)
3372 {
3373 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3374 }
3375 
netif_tx_start_all_queues(struct net_device * dev)3376 static inline void netif_tx_start_all_queues(struct net_device *dev)
3377 {
3378 	unsigned int i;
3379 
3380 	for (i = 0; i < dev->num_tx_queues; i++) {
3381 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3382 		netif_tx_start_queue(txq);
3383 	}
3384 }
3385 
3386 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3387 
3388 /**
3389  *	netif_wake_queue - restart transmit
3390  *	@dev: network device
3391  *
3392  *	Allow upper layers to call the device hard_start_xmit routine.
3393  *	Used for flow control when transmit resources are available.
3394  */
netif_wake_queue(struct net_device * dev)3395 static inline void netif_wake_queue(struct net_device *dev)
3396 {
3397 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3398 }
3399 
netif_tx_wake_all_queues(struct net_device * dev)3400 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3401 {
3402 	unsigned int i;
3403 
3404 	for (i = 0; i < dev->num_tx_queues; i++) {
3405 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3406 		netif_tx_wake_queue(txq);
3407 	}
3408 }
3409 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3410 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3411 {
3412 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3413 }
3414 
3415 /**
3416  *	netif_stop_queue - stop transmitted packets
3417  *	@dev: network device
3418  *
3419  *	Stop upper layers calling the device hard_start_xmit routine.
3420  *	Used for flow control when transmit resources are unavailable.
3421  */
netif_stop_queue(struct net_device * dev)3422 static inline void netif_stop_queue(struct net_device *dev)
3423 {
3424 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3425 }
3426 
3427 void netif_tx_stop_all_queues(struct net_device *dev);
3428 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3429 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3430 {
3431 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3432 }
3433 
3434 /**
3435  *	netif_queue_stopped - test if transmit queue is flowblocked
3436  *	@dev: network device
3437  *
3438  *	Test if transmit queue on device is currently unable to send.
3439  */
netif_queue_stopped(const struct net_device * dev)3440 static inline bool netif_queue_stopped(const struct net_device *dev)
3441 {
3442 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3443 }
3444 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3445 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3446 {
3447 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3448 }
3449 
3450 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3451 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3452 {
3453 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3454 }
3455 
3456 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3457 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3458 {
3459 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3460 }
3461 
3462 /**
3463  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3464  *	@dev_queue: pointer to transmit queue
3465  *
3466  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3467  * to give appropriate hint to the CPU.
3468  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3469 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3470 {
3471 #ifdef CONFIG_BQL
3472 	prefetchw(&dev_queue->dql.num_queued);
3473 #endif
3474 }
3475 
3476 /**
3477  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3478  *	@dev_queue: pointer to transmit queue
3479  *
3480  * BQL enabled drivers might use this helper in their TX completion path,
3481  * to give appropriate hint to the CPU.
3482  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3483 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3484 {
3485 #ifdef CONFIG_BQL
3486 	prefetchw(&dev_queue->dql.limit);
3487 #endif
3488 }
3489 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3490 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3491 					unsigned int bytes)
3492 {
3493 #ifdef CONFIG_BQL
3494 	dql_queued(&dev_queue->dql, bytes);
3495 
3496 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3497 		return;
3498 
3499 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3500 
3501 	/*
3502 	 * The XOFF flag must be set before checking the dql_avail below,
3503 	 * because in netdev_tx_completed_queue we update the dql_completed
3504 	 * before checking the XOFF flag.
3505 	 */
3506 	smp_mb();
3507 
3508 	/* check again in case another CPU has just made room avail */
3509 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3510 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3511 #endif
3512 }
3513 
3514 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3515  * that they should not test BQL status themselves.
3516  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3517  * skb of a batch.
3518  * Returns true if the doorbell must be used to kick the NIC.
3519  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3520 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3521 					  unsigned int bytes,
3522 					  bool xmit_more)
3523 {
3524 	if (xmit_more) {
3525 #ifdef CONFIG_BQL
3526 		dql_queued(&dev_queue->dql, bytes);
3527 #endif
3528 		return netif_tx_queue_stopped(dev_queue);
3529 	}
3530 	netdev_tx_sent_queue(dev_queue, bytes);
3531 	return true;
3532 }
3533 
3534 /**
3535  * 	netdev_sent_queue - report the number of bytes queued to hardware
3536  * 	@dev: network device
3537  * 	@bytes: number of bytes queued to the hardware device queue
3538  *
3539  * 	Report the number of bytes queued for sending/completion to the network
3540  * 	device hardware queue. @bytes should be a good approximation and should
3541  * 	exactly match netdev_completed_queue() @bytes
3542  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3543 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3544 {
3545 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3546 }
3547 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3548 static inline bool __netdev_sent_queue(struct net_device *dev,
3549 				       unsigned int bytes,
3550 				       bool xmit_more)
3551 {
3552 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3553 				      xmit_more);
3554 }
3555 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3556 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3557 					     unsigned int pkts, unsigned int bytes)
3558 {
3559 #ifdef CONFIG_BQL
3560 	if (unlikely(!bytes))
3561 		return;
3562 
3563 	dql_completed(&dev_queue->dql, bytes);
3564 
3565 	/*
3566 	 * Without the memory barrier there is a small possiblity that
3567 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3568 	 * be stopped forever
3569 	 */
3570 	smp_mb();
3571 
3572 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3573 		return;
3574 
3575 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3576 		netif_schedule_queue(dev_queue);
3577 #endif
3578 }
3579 
3580 /**
3581  * 	netdev_completed_queue - report bytes and packets completed by device
3582  * 	@dev: network device
3583  * 	@pkts: actual number of packets sent over the medium
3584  * 	@bytes: actual number of bytes sent over the medium
3585  *
3586  * 	Report the number of bytes and packets transmitted by the network device
3587  * 	hardware queue over the physical medium, @bytes must exactly match the
3588  * 	@bytes amount passed to netdev_sent_queue()
3589  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3590 static inline void netdev_completed_queue(struct net_device *dev,
3591 					  unsigned int pkts, unsigned int bytes)
3592 {
3593 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3594 }
3595 
netdev_tx_reset_queue(struct netdev_queue * q)3596 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3597 {
3598 #ifdef CONFIG_BQL
3599 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3600 	dql_reset(&q->dql);
3601 #endif
3602 }
3603 
3604 /**
3605  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3606  * 	@dev_queue: network device
3607  *
3608  * 	Reset the bytes and packet count of a network device and clear the
3609  * 	software flow control OFF bit for this network device
3610  */
netdev_reset_queue(struct net_device * dev_queue)3611 static inline void netdev_reset_queue(struct net_device *dev_queue)
3612 {
3613 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3614 }
3615 
3616 /**
3617  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3618  * 	@dev: network device
3619  * 	@queue_index: given tx queue index
3620  *
3621  * 	Returns 0 if given tx queue index >= number of device tx queues,
3622  * 	otherwise returns the originally passed tx queue index.
3623  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3624 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3625 {
3626 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3627 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3628 				     dev->name, queue_index,
3629 				     dev->real_num_tx_queues);
3630 		return 0;
3631 	}
3632 
3633 	return queue_index;
3634 }
3635 
3636 /**
3637  *	netif_running - test if up
3638  *	@dev: network device
3639  *
3640  *	Test if the device has been brought up.
3641  */
netif_running(const struct net_device * dev)3642 static inline bool netif_running(const struct net_device *dev)
3643 {
3644 	return test_bit(__LINK_STATE_START, &dev->state);
3645 }
3646 
3647 /*
3648  * Routines to manage the subqueues on a device.  We only need start,
3649  * stop, and a check if it's stopped.  All other device management is
3650  * done at the overall netdevice level.
3651  * Also test the device if we're multiqueue.
3652  */
3653 
3654 /**
3655  *	netif_start_subqueue - allow sending packets on subqueue
3656  *	@dev: network device
3657  *	@queue_index: sub queue index
3658  *
3659  * Start individual transmit queue of a device with multiple transmit queues.
3660  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3661 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3662 {
3663 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3664 
3665 	netif_tx_start_queue(txq);
3666 }
3667 
3668 /**
3669  *	netif_stop_subqueue - stop sending packets on subqueue
3670  *	@dev: network device
3671  *	@queue_index: sub queue index
3672  *
3673  * Stop individual transmit queue of a device with multiple transmit queues.
3674  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3675 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3676 {
3677 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3678 	netif_tx_stop_queue(txq);
3679 }
3680 
3681 /**
3682  *	netif_subqueue_stopped - test status of subqueue
3683  *	@dev: network device
3684  *	@queue_index: sub queue index
3685  *
3686  * Check individual transmit queue of a device with multiple transmit queues.
3687  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3688 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3689 					    u16 queue_index)
3690 {
3691 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3692 
3693 	return netif_tx_queue_stopped(txq);
3694 }
3695 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3696 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3697 					  struct sk_buff *skb)
3698 {
3699 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3700 }
3701 
3702 /**
3703  *	netif_wake_subqueue - allow sending packets on subqueue
3704  *	@dev: network device
3705  *	@queue_index: sub queue index
3706  *
3707  * Resume individual transmit queue of a device with multiple transmit queues.
3708  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3709 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3710 {
3711 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3712 
3713 	netif_tx_wake_queue(txq);
3714 }
3715 
3716 #ifdef CONFIG_XPS
3717 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3718 			u16 index);
3719 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3720 			  u16 index, bool is_rxqs_map);
3721 
3722 /**
3723  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3724  *	@j: CPU/Rx queue index
3725  *	@mask: bitmask of all cpus/rx queues
3726  *	@nr_bits: number of bits in the bitmask
3727  *
3728  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3729  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3730 static inline bool netif_attr_test_mask(unsigned long j,
3731 					const unsigned long *mask,
3732 					unsigned int nr_bits)
3733 {
3734 	cpu_max_bits_warn(j, nr_bits);
3735 	return test_bit(j, mask);
3736 }
3737 
3738 /**
3739  *	netif_attr_test_online - Test for online CPU/Rx queue
3740  *	@j: CPU/Rx queue index
3741  *	@online_mask: bitmask for CPUs/Rx queues that are online
3742  *	@nr_bits: number of bits in the bitmask
3743  *
3744  * Returns true if a CPU/Rx queue is online.
3745  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3746 static inline bool netif_attr_test_online(unsigned long j,
3747 					  const unsigned long *online_mask,
3748 					  unsigned int nr_bits)
3749 {
3750 	cpu_max_bits_warn(j, nr_bits);
3751 
3752 	if (online_mask)
3753 		return test_bit(j, online_mask);
3754 
3755 	return (j < nr_bits);
3756 }
3757 
3758 /**
3759  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3760  *	@n: CPU/Rx queue index
3761  *	@srcp: the cpumask/Rx queue mask pointer
3762  *	@nr_bits: number of bits in the bitmask
3763  *
3764  * Returns >= nr_bits if no further CPUs/Rx queues set.
3765  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3766 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3767 					       unsigned int nr_bits)
3768 {
3769 	/* -1 is a legal arg here. */
3770 	if (n != -1)
3771 		cpu_max_bits_warn(n, nr_bits);
3772 
3773 	if (srcp)
3774 		return find_next_bit(srcp, nr_bits, n + 1);
3775 
3776 	return n + 1;
3777 }
3778 
3779 /**
3780  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3781  *	@n: CPU/Rx queue index
3782  *	@src1p: the first CPUs/Rx queues mask pointer
3783  *	@src2p: the second CPUs/Rx queues mask pointer
3784  *	@nr_bits: number of bits in the bitmask
3785  *
3786  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3787  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3788 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3789 					  const unsigned long *src2p,
3790 					  unsigned int nr_bits)
3791 {
3792 	/* -1 is a legal arg here. */
3793 	if (n != -1)
3794 		cpu_max_bits_warn(n, nr_bits);
3795 
3796 	if (src1p && src2p)
3797 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3798 	else if (src1p)
3799 		return find_next_bit(src1p, nr_bits, n + 1);
3800 	else if (src2p)
3801 		return find_next_bit(src2p, nr_bits, n + 1);
3802 
3803 	return n + 1;
3804 }
3805 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3806 static inline int netif_set_xps_queue(struct net_device *dev,
3807 				      const struct cpumask *mask,
3808 				      u16 index)
3809 {
3810 	return 0;
3811 }
3812 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3813 static inline int __netif_set_xps_queue(struct net_device *dev,
3814 					const unsigned long *mask,
3815 					u16 index, bool is_rxqs_map)
3816 {
3817 	return 0;
3818 }
3819 #endif
3820 
3821 /**
3822  *	netif_is_multiqueue - test if device has multiple transmit queues
3823  *	@dev: network device
3824  *
3825  * Check if device has multiple transmit queues
3826  */
netif_is_multiqueue(const struct net_device * dev)3827 static inline bool netif_is_multiqueue(const struct net_device *dev)
3828 {
3829 	return dev->num_tx_queues > 1;
3830 }
3831 
3832 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3833 
3834 #ifdef CONFIG_SYSFS
3835 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3836 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3837 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3838 						unsigned int rxqs)
3839 {
3840 	dev->real_num_rx_queues = rxqs;
3841 	return 0;
3842 }
3843 #endif
3844 
3845 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3846 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3847 {
3848 	return dev->_rx + rxq;
3849 }
3850 
3851 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3852 static inline unsigned int get_netdev_rx_queue_index(
3853 		struct netdev_rx_queue *queue)
3854 {
3855 	struct net_device *dev = queue->dev;
3856 	int index = queue - dev->_rx;
3857 
3858 	BUG_ON(index >= dev->num_rx_queues);
3859 	return index;
3860 }
3861 #endif
3862 
3863 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3864 int netif_get_num_default_rss_queues(void);
3865 
3866 enum skb_free_reason {
3867 	SKB_REASON_CONSUMED,
3868 	SKB_REASON_DROPPED,
3869 };
3870 
3871 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3872 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3873 
3874 /*
3875  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3876  * interrupt context or with hardware interrupts being disabled.
3877  * (in_irq() || irqs_disabled())
3878  *
3879  * We provide four helpers that can be used in following contexts :
3880  *
3881  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3882  *  replacing kfree_skb(skb)
3883  *
3884  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3885  *  Typically used in place of consume_skb(skb) in TX completion path
3886  *
3887  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3888  *  replacing kfree_skb(skb)
3889  *
3890  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3891  *  and consumed a packet. Used in place of consume_skb(skb)
3892  */
dev_kfree_skb_irq(struct sk_buff * skb)3893 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3894 {
3895 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3896 }
3897 
dev_consume_skb_irq(struct sk_buff * skb)3898 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3899 {
3900 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3901 }
3902 
dev_kfree_skb_any(struct sk_buff * skb)3903 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3904 {
3905 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3906 }
3907 
dev_consume_skb_any(struct sk_buff * skb)3908 static inline void dev_consume_skb_any(struct sk_buff *skb)
3909 {
3910 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3911 }
3912 
3913 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3914 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3915 int netif_rx(struct sk_buff *skb);
3916 int netif_rx_ni(struct sk_buff *skb);
3917 int netif_rx_any_context(struct sk_buff *skb);
3918 int netif_receive_skb(struct sk_buff *skb);
3919 int netif_receive_skb_core(struct sk_buff *skb);
3920 void netif_receive_skb_list(struct list_head *head);
3921 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3922 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3923 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3924 gro_result_t napi_gro_frags(struct napi_struct *napi);
3925 struct packet_offload *gro_find_receive_by_type(__be16 type);
3926 struct packet_offload *gro_find_complete_by_type(__be16 type);
3927 
napi_free_frags(struct napi_struct * napi)3928 static inline void napi_free_frags(struct napi_struct *napi)
3929 {
3930 	kfree_skb(napi->skb);
3931 	napi->skb = NULL;
3932 }
3933 
3934 bool netdev_is_rx_handler_busy(struct net_device *dev);
3935 int netdev_rx_handler_register(struct net_device *dev,
3936 			       rx_handler_func_t *rx_handler,
3937 			       void *rx_handler_data);
3938 void netdev_rx_handler_unregister(struct net_device *dev);
3939 
3940 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3941 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3942 {
3943 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3944 }
3945 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3946 		bool *need_copyout);
3947 int dev_ifconf(struct net *net, struct ifconf *, int);
3948 int dev_ethtool(struct net *net, struct ifreq *);
3949 unsigned int dev_get_flags(const struct net_device *);
3950 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3951 		       struct netlink_ext_ack *extack);
3952 int dev_change_flags(struct net_device *dev, unsigned int flags,
3953 		     struct netlink_ext_ack *extack);
3954 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3955 			unsigned int gchanges);
3956 int dev_change_name(struct net_device *, const char *);
3957 int dev_set_alias(struct net_device *, const char *, size_t);
3958 int dev_get_alias(const struct net_device *, char *, size_t);
3959 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3960 int __dev_set_mtu(struct net_device *, int);
3961 int dev_validate_mtu(struct net_device *dev, int mtu,
3962 		     struct netlink_ext_ack *extack);
3963 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3964 		    struct netlink_ext_ack *extack);
3965 int dev_set_mtu(struct net_device *, int);
3966 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3967 void dev_set_group(struct net_device *, int);
3968 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3969 			      struct netlink_ext_ack *extack);
3970 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3971 			struct netlink_ext_ack *extack);
3972 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3973 			     struct netlink_ext_ack *extack);
3974 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3975 int dev_change_carrier(struct net_device *, bool new_carrier);
3976 int dev_get_phys_port_id(struct net_device *dev,
3977 			 struct netdev_phys_item_id *ppid);
3978 int dev_get_phys_port_name(struct net_device *dev,
3979 			   char *name, size_t len);
3980 int dev_get_port_parent_id(struct net_device *dev,
3981 			   struct netdev_phys_item_id *ppid, bool recurse);
3982 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3983 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3984 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3985 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3986 				  u32 value);
3987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3988 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3989 				    struct netdev_queue *txq, int *ret);
3990 
3991 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3992 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3993 		      int fd, int expected_fd, u32 flags);
3994 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3995 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3996 
3997 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3998 
3999 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4000 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4001 bool is_skb_forwardable(const struct net_device *dev,
4002 			const struct sk_buff *skb);
4003 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)4004 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4005 					       struct sk_buff *skb)
4006 {
4007 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4008 	    unlikely(!is_skb_forwardable(dev, skb))) {
4009 		atomic_long_inc(&dev->rx_dropped);
4010 		kfree_skb(skb);
4011 		return NET_RX_DROP;
4012 	}
4013 
4014 	skb_scrub_packet(skb, true);
4015 	skb->priority = 0;
4016 	return 0;
4017 }
4018 
4019 bool dev_nit_active(struct net_device *dev);
4020 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4021 
4022 extern int		netdev_budget;
4023 extern unsigned int	netdev_budget_usecs;
4024 
4025 /* Called by rtnetlink.c:rtnl_unlock() */
4026 void netdev_run_todo(void);
4027 
4028 /**
4029  *	dev_put - release reference to device
4030  *	@dev: network device
4031  *
4032  * Release reference to device to allow it to be freed.
4033  */
dev_put(struct net_device * dev)4034 static inline void dev_put(struct net_device *dev)
4035 {
4036 	if (dev)
4037 		this_cpu_dec(*dev->pcpu_refcnt);
4038 }
4039 
4040 /**
4041  *	dev_hold - get reference to device
4042  *	@dev: network device
4043  *
4044  * Hold reference to device to keep it from being freed.
4045  */
dev_hold(struct net_device * dev)4046 static inline void dev_hold(struct net_device *dev)
4047 {
4048 	if (dev)
4049 		this_cpu_inc(*dev->pcpu_refcnt);
4050 }
4051 
4052 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4053  * and _off may be called from IRQ context, but it is caller
4054  * who is responsible for serialization of these calls.
4055  *
4056  * The name carrier is inappropriate, these functions should really be
4057  * called netif_lowerlayer_*() because they represent the state of any
4058  * kind of lower layer not just hardware media.
4059  */
4060 
4061 void linkwatch_init_dev(struct net_device *dev);
4062 void linkwatch_fire_event(struct net_device *dev);
4063 void linkwatch_forget_dev(struct net_device *dev);
4064 
4065 /**
4066  *	netif_carrier_ok - test if carrier present
4067  *	@dev: network device
4068  *
4069  * Check if carrier is present on device
4070  */
netif_carrier_ok(const struct net_device * dev)4071 static inline bool netif_carrier_ok(const struct net_device *dev)
4072 {
4073 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4074 }
4075 
4076 unsigned long dev_trans_start(struct net_device *dev);
4077 
4078 void __netdev_watchdog_up(struct net_device *dev);
4079 
4080 void netif_carrier_on(struct net_device *dev);
4081 
4082 void netif_carrier_off(struct net_device *dev);
4083 
4084 /**
4085  *	netif_dormant_on - mark device as dormant.
4086  *	@dev: network device
4087  *
4088  * Mark device as dormant (as per RFC2863).
4089  *
4090  * The dormant state indicates that the relevant interface is not
4091  * actually in a condition to pass packets (i.e., it is not 'up') but is
4092  * in a "pending" state, waiting for some external event.  For "on-
4093  * demand" interfaces, this new state identifies the situation where the
4094  * interface is waiting for events to place it in the up state.
4095  */
netif_dormant_on(struct net_device * dev)4096 static inline void netif_dormant_on(struct net_device *dev)
4097 {
4098 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4099 		linkwatch_fire_event(dev);
4100 }
4101 
4102 /**
4103  *	netif_dormant_off - set device as not dormant.
4104  *	@dev: network device
4105  *
4106  * Device is not in dormant state.
4107  */
netif_dormant_off(struct net_device * dev)4108 static inline void netif_dormant_off(struct net_device *dev)
4109 {
4110 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4111 		linkwatch_fire_event(dev);
4112 }
4113 
4114 /**
4115  *	netif_dormant - test if device is dormant
4116  *	@dev: network device
4117  *
4118  * Check if device is dormant.
4119  */
netif_dormant(const struct net_device * dev)4120 static inline bool netif_dormant(const struct net_device *dev)
4121 {
4122 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4123 }
4124 
4125 
4126 /**
4127  *	netif_testing_on - mark device as under test.
4128  *	@dev: network device
4129  *
4130  * Mark device as under test (as per RFC2863).
4131  *
4132  * The testing state indicates that some test(s) must be performed on
4133  * the interface. After completion, of the test, the interface state
4134  * will change to up, dormant, or down, as appropriate.
4135  */
netif_testing_on(struct net_device * dev)4136 static inline void netif_testing_on(struct net_device *dev)
4137 {
4138 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4139 		linkwatch_fire_event(dev);
4140 }
4141 
4142 /**
4143  *	netif_testing_off - set device as not under test.
4144  *	@dev: network device
4145  *
4146  * Device is not in testing state.
4147  */
netif_testing_off(struct net_device * dev)4148 static inline void netif_testing_off(struct net_device *dev)
4149 {
4150 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4151 		linkwatch_fire_event(dev);
4152 }
4153 
4154 /**
4155  *	netif_testing - test if device is under test
4156  *	@dev: network device
4157  *
4158  * Check if device is under test
4159  */
netif_testing(const struct net_device * dev)4160 static inline bool netif_testing(const struct net_device *dev)
4161 {
4162 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4163 }
4164 
4165 
4166 /**
4167  *	netif_oper_up - test if device is operational
4168  *	@dev: network device
4169  *
4170  * Check if carrier is operational
4171  */
netif_oper_up(const struct net_device * dev)4172 static inline bool netif_oper_up(const struct net_device *dev)
4173 {
4174 	return (dev->operstate == IF_OPER_UP ||
4175 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4176 }
4177 
4178 /**
4179  *	netif_device_present - is device available or removed
4180  *	@dev: network device
4181  *
4182  * Check if device has not been removed from system.
4183  */
netif_device_present(struct net_device * dev)4184 static inline bool netif_device_present(struct net_device *dev)
4185 {
4186 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4187 }
4188 
4189 void netif_device_detach(struct net_device *dev);
4190 
4191 void netif_device_attach(struct net_device *dev);
4192 
4193 /*
4194  * Network interface message level settings
4195  */
4196 
4197 enum {
4198 	NETIF_MSG_DRV_BIT,
4199 	NETIF_MSG_PROBE_BIT,
4200 	NETIF_MSG_LINK_BIT,
4201 	NETIF_MSG_TIMER_BIT,
4202 	NETIF_MSG_IFDOWN_BIT,
4203 	NETIF_MSG_IFUP_BIT,
4204 	NETIF_MSG_RX_ERR_BIT,
4205 	NETIF_MSG_TX_ERR_BIT,
4206 	NETIF_MSG_TX_QUEUED_BIT,
4207 	NETIF_MSG_INTR_BIT,
4208 	NETIF_MSG_TX_DONE_BIT,
4209 	NETIF_MSG_RX_STATUS_BIT,
4210 	NETIF_MSG_PKTDATA_BIT,
4211 	NETIF_MSG_HW_BIT,
4212 	NETIF_MSG_WOL_BIT,
4213 
4214 	/* When you add a new bit above, update netif_msg_class_names array
4215 	 * in net/ethtool/common.c
4216 	 */
4217 	NETIF_MSG_CLASS_COUNT,
4218 };
4219 /* Both ethtool_ops interface and internal driver implementation use u32 */
4220 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4221 
4222 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4223 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4224 
4225 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4226 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4227 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4228 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4229 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4230 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4231 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4232 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4233 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4234 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4235 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4236 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4237 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4238 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4239 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4240 
4241 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4242 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4243 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4244 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4245 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4246 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4247 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4248 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4249 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4250 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4251 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4252 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4253 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4254 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4255 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4256 
netif_msg_init(int debug_value,int default_msg_enable_bits)4257 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4258 {
4259 	/* use default */
4260 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4261 		return default_msg_enable_bits;
4262 	if (debug_value == 0)	/* no output */
4263 		return 0;
4264 	/* set low N bits */
4265 	return (1U << debug_value) - 1;
4266 }
4267 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4268 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4269 {
4270 	spin_lock(&txq->_xmit_lock);
4271 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4272 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4273 }
4274 
__netif_tx_acquire(struct netdev_queue * txq)4275 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4276 {
4277 	__acquire(&txq->_xmit_lock);
4278 	return true;
4279 }
4280 
__netif_tx_release(struct netdev_queue * txq)4281 static inline void __netif_tx_release(struct netdev_queue *txq)
4282 {
4283 	__release(&txq->_xmit_lock);
4284 }
4285 
__netif_tx_lock_bh(struct netdev_queue * txq)4286 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4287 {
4288 	spin_lock_bh(&txq->_xmit_lock);
4289 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4290 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4291 }
4292 
__netif_tx_trylock(struct netdev_queue * txq)4293 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4294 {
4295 	bool ok = spin_trylock(&txq->_xmit_lock);
4296 
4297 	if (likely(ok)) {
4298 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4299 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4300 	}
4301 	return ok;
4302 }
4303 
__netif_tx_unlock(struct netdev_queue * txq)4304 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4305 {
4306 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4307 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4308 	spin_unlock(&txq->_xmit_lock);
4309 }
4310 
__netif_tx_unlock_bh(struct netdev_queue * txq)4311 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4312 {
4313 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4314 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4315 	spin_unlock_bh(&txq->_xmit_lock);
4316 }
4317 
txq_trans_update(struct netdev_queue * txq)4318 static inline void txq_trans_update(struct netdev_queue *txq)
4319 {
4320 	if (txq->xmit_lock_owner != -1)
4321 		txq->trans_start = jiffies;
4322 }
4323 
4324 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4325 static inline void netif_trans_update(struct net_device *dev)
4326 {
4327 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4328 
4329 	if (txq->trans_start != jiffies)
4330 		txq->trans_start = jiffies;
4331 }
4332 
4333 /**
4334  *	netif_tx_lock - grab network device transmit lock
4335  *	@dev: network device
4336  *
4337  * Get network device transmit lock
4338  */
netif_tx_lock(struct net_device * dev)4339 static inline void netif_tx_lock(struct net_device *dev)
4340 {
4341 	unsigned int i;
4342 	int cpu;
4343 
4344 	spin_lock(&dev->tx_global_lock);
4345 	cpu = smp_processor_id();
4346 	for (i = 0; i < dev->num_tx_queues; i++) {
4347 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4348 
4349 		/* We are the only thread of execution doing a
4350 		 * freeze, but we have to grab the _xmit_lock in
4351 		 * order to synchronize with threads which are in
4352 		 * the ->hard_start_xmit() handler and already
4353 		 * checked the frozen bit.
4354 		 */
4355 		__netif_tx_lock(txq, cpu);
4356 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4357 		__netif_tx_unlock(txq);
4358 	}
4359 }
4360 
netif_tx_lock_bh(struct net_device * dev)4361 static inline void netif_tx_lock_bh(struct net_device *dev)
4362 {
4363 	local_bh_disable();
4364 	netif_tx_lock(dev);
4365 }
4366 
netif_tx_unlock(struct net_device * dev)4367 static inline void netif_tx_unlock(struct net_device *dev)
4368 {
4369 	unsigned int i;
4370 
4371 	for (i = 0; i < dev->num_tx_queues; i++) {
4372 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4373 
4374 		/* No need to grab the _xmit_lock here.  If the
4375 		 * queue is not stopped for another reason, we
4376 		 * force a schedule.
4377 		 */
4378 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4379 		netif_schedule_queue(txq);
4380 	}
4381 	spin_unlock(&dev->tx_global_lock);
4382 }
4383 
netif_tx_unlock_bh(struct net_device * dev)4384 static inline void netif_tx_unlock_bh(struct net_device *dev)
4385 {
4386 	netif_tx_unlock(dev);
4387 	local_bh_enable();
4388 }
4389 
4390 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4391 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4392 		__netif_tx_lock(txq, cpu);		\
4393 	} else {					\
4394 		__netif_tx_acquire(txq);		\
4395 	}						\
4396 }
4397 
4398 #define HARD_TX_TRYLOCK(dev, txq)			\
4399 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4400 		__netif_tx_trylock(txq) :		\
4401 		__netif_tx_acquire(txq))
4402 
4403 #define HARD_TX_UNLOCK(dev, txq) {			\
4404 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4405 		__netif_tx_unlock(txq);			\
4406 	} else {					\
4407 		__netif_tx_release(txq);		\
4408 	}						\
4409 }
4410 
netif_tx_disable(struct net_device * dev)4411 static inline void netif_tx_disable(struct net_device *dev)
4412 {
4413 	unsigned int i;
4414 	int cpu;
4415 
4416 	local_bh_disable();
4417 	cpu = smp_processor_id();
4418 	spin_lock(&dev->tx_global_lock);
4419 	for (i = 0; i < dev->num_tx_queues; i++) {
4420 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4421 
4422 		__netif_tx_lock(txq, cpu);
4423 		netif_tx_stop_queue(txq);
4424 		__netif_tx_unlock(txq);
4425 	}
4426 	spin_unlock(&dev->tx_global_lock);
4427 	local_bh_enable();
4428 }
4429 
netif_addr_lock(struct net_device * dev)4430 static inline void netif_addr_lock(struct net_device *dev)
4431 {
4432 	unsigned char nest_level = 0;
4433 
4434 #ifdef CONFIG_LOCKDEP
4435 	nest_level = dev->nested_level;
4436 #endif
4437 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4438 }
4439 
netif_addr_lock_bh(struct net_device * dev)4440 static inline void netif_addr_lock_bh(struct net_device *dev)
4441 {
4442 	unsigned char nest_level = 0;
4443 
4444 #ifdef CONFIG_LOCKDEP
4445 	nest_level = dev->nested_level;
4446 #endif
4447 	local_bh_disable();
4448 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4449 }
4450 
netif_addr_unlock(struct net_device * dev)4451 static inline void netif_addr_unlock(struct net_device *dev)
4452 {
4453 	spin_unlock(&dev->addr_list_lock);
4454 }
4455 
netif_addr_unlock_bh(struct net_device * dev)4456 static inline void netif_addr_unlock_bh(struct net_device *dev)
4457 {
4458 	spin_unlock_bh(&dev->addr_list_lock);
4459 }
4460 
4461 /*
4462  * dev_addrs walker. Should be used only for read access. Call with
4463  * rcu_read_lock held.
4464  */
4465 #define for_each_dev_addr(dev, ha) \
4466 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4467 
4468 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4469 
4470 void ether_setup(struct net_device *dev);
4471 
4472 /* Support for loadable net-drivers */
4473 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4474 				    unsigned char name_assign_type,
4475 				    void (*setup)(struct net_device *),
4476 				    unsigned int txqs, unsigned int rxqs);
4477 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4478 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4479 
4480 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4481 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4482 			 count)
4483 
4484 int register_netdev(struct net_device *dev);
4485 void unregister_netdev(struct net_device *dev);
4486 
4487 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4488 
4489 /* General hardware address lists handling functions */
4490 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4491 		   struct netdev_hw_addr_list *from_list, int addr_len);
4492 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4493 		      struct netdev_hw_addr_list *from_list, int addr_len);
4494 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4495 		       struct net_device *dev,
4496 		       int (*sync)(struct net_device *, const unsigned char *),
4497 		       int (*unsync)(struct net_device *,
4498 				     const unsigned char *));
4499 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4500 			   struct net_device *dev,
4501 			   int (*sync)(struct net_device *,
4502 				       const unsigned char *, int),
4503 			   int (*unsync)(struct net_device *,
4504 					 const unsigned char *, int));
4505 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4506 			      struct net_device *dev,
4507 			      int (*unsync)(struct net_device *,
4508 					    const unsigned char *, int));
4509 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4510 			  struct net_device *dev,
4511 			  int (*unsync)(struct net_device *,
4512 					const unsigned char *));
4513 void __hw_addr_init(struct netdev_hw_addr_list *list);
4514 
4515 /* Functions used for device addresses handling */
4516 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4517 		 unsigned char addr_type);
4518 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4519 		 unsigned char addr_type);
4520 void dev_addr_flush(struct net_device *dev);
4521 int dev_addr_init(struct net_device *dev);
4522 
4523 /* Functions used for unicast addresses handling */
4524 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4525 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4526 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4527 int dev_uc_sync(struct net_device *to, struct net_device *from);
4528 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4529 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4530 void dev_uc_flush(struct net_device *dev);
4531 void dev_uc_init(struct net_device *dev);
4532 
4533 /**
4534  *  __dev_uc_sync - Synchonize device's unicast list
4535  *  @dev:  device to sync
4536  *  @sync: function to call if address should be added
4537  *  @unsync: function to call if address should be removed
4538  *
4539  *  Add newly added addresses to the interface, and release
4540  *  addresses that have been deleted.
4541  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4542 static inline int __dev_uc_sync(struct net_device *dev,
4543 				int (*sync)(struct net_device *,
4544 					    const unsigned char *),
4545 				int (*unsync)(struct net_device *,
4546 					      const unsigned char *))
4547 {
4548 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4549 }
4550 
4551 /**
4552  *  __dev_uc_unsync - Remove synchronized addresses from device
4553  *  @dev:  device to sync
4554  *  @unsync: function to call if address should be removed
4555  *
4556  *  Remove all addresses that were added to the device by dev_uc_sync().
4557  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4558 static inline void __dev_uc_unsync(struct net_device *dev,
4559 				   int (*unsync)(struct net_device *,
4560 						 const unsigned char *))
4561 {
4562 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4563 }
4564 
4565 /* Functions used for multicast addresses handling */
4566 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4567 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4568 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4569 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4570 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4571 int dev_mc_sync(struct net_device *to, struct net_device *from);
4572 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4573 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4574 void dev_mc_flush(struct net_device *dev);
4575 void dev_mc_init(struct net_device *dev);
4576 
4577 /**
4578  *  __dev_mc_sync - Synchonize device's multicast list
4579  *  @dev:  device to sync
4580  *  @sync: function to call if address should be added
4581  *  @unsync: function to call if address should be removed
4582  *
4583  *  Add newly added addresses to the interface, and release
4584  *  addresses that have been deleted.
4585  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4586 static inline int __dev_mc_sync(struct net_device *dev,
4587 				int (*sync)(struct net_device *,
4588 					    const unsigned char *),
4589 				int (*unsync)(struct net_device *,
4590 					      const unsigned char *))
4591 {
4592 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4593 }
4594 
4595 /**
4596  *  __dev_mc_unsync - Remove synchronized addresses from device
4597  *  @dev:  device to sync
4598  *  @unsync: function to call if address should be removed
4599  *
4600  *  Remove all addresses that were added to the device by dev_mc_sync().
4601  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4602 static inline void __dev_mc_unsync(struct net_device *dev,
4603 				   int (*unsync)(struct net_device *,
4604 						 const unsigned char *))
4605 {
4606 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4607 }
4608 
4609 /* Functions used for secondary unicast and multicast support */
4610 void dev_set_rx_mode(struct net_device *dev);
4611 void __dev_set_rx_mode(struct net_device *dev);
4612 int dev_set_promiscuity(struct net_device *dev, int inc);
4613 int dev_set_allmulti(struct net_device *dev, int inc);
4614 void netdev_state_change(struct net_device *dev);
4615 void netdev_notify_peers(struct net_device *dev);
4616 void netdev_features_change(struct net_device *dev);
4617 /* Load a device via the kmod */
4618 void dev_load(struct net *net, const char *name);
4619 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4620 					struct rtnl_link_stats64 *storage);
4621 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4622 			     const struct net_device_stats *netdev_stats);
4623 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4624 			   const struct pcpu_sw_netstats __percpu *netstats);
4625 
4626 extern int		netdev_max_backlog;
4627 extern int		netdev_tstamp_prequeue;
4628 extern int		weight_p;
4629 extern int		dev_weight_rx_bias;
4630 extern int		dev_weight_tx_bias;
4631 extern int		dev_rx_weight;
4632 extern int		dev_tx_weight;
4633 extern int		gro_normal_batch;
4634 
4635 enum {
4636 	NESTED_SYNC_IMM_BIT,
4637 	NESTED_SYNC_TODO_BIT,
4638 };
4639 
4640 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4641 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4642 
4643 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4644 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4645 
4646 struct netdev_nested_priv {
4647 	unsigned char flags;
4648 	void *data;
4649 };
4650 
4651 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4652 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4653 						     struct list_head **iter);
4654 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4655 						     struct list_head **iter);
4656 
4657 #ifdef CONFIG_LOCKDEP
4658 static LIST_HEAD(net_unlink_list);
4659 
net_unlink_todo(struct net_device * dev)4660 static inline void net_unlink_todo(struct net_device *dev)
4661 {
4662 	if (list_empty(&dev->unlink_list))
4663 		list_add_tail(&dev->unlink_list, &net_unlink_list);
4664 }
4665 #endif
4666 
4667 /* iterate through upper list, must be called under RCU read lock */
4668 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4669 	for (iter = &(dev)->adj_list.upper, \
4670 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4671 	     updev; \
4672 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4673 
4674 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4675 				  int (*fn)(struct net_device *upper_dev,
4676 					    struct netdev_nested_priv *priv),
4677 				  struct netdev_nested_priv *priv);
4678 
4679 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4680 				  struct net_device *upper_dev);
4681 
4682 bool netdev_has_any_upper_dev(struct net_device *dev);
4683 
4684 void *netdev_lower_get_next_private(struct net_device *dev,
4685 				    struct list_head **iter);
4686 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4687 					struct list_head **iter);
4688 
4689 #define netdev_for_each_lower_private(dev, priv, iter) \
4690 	for (iter = (dev)->adj_list.lower.next, \
4691 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4692 	     priv; \
4693 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4694 
4695 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4696 	for (iter = &(dev)->adj_list.lower, \
4697 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4698 	     priv; \
4699 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4700 
4701 void *netdev_lower_get_next(struct net_device *dev,
4702 				struct list_head **iter);
4703 
4704 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4705 	for (iter = (dev)->adj_list.lower.next, \
4706 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4707 	     ldev; \
4708 	     ldev = netdev_lower_get_next(dev, &(iter)))
4709 
4710 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4711 					     struct list_head **iter);
4712 int netdev_walk_all_lower_dev(struct net_device *dev,
4713 			      int (*fn)(struct net_device *lower_dev,
4714 					struct netdev_nested_priv *priv),
4715 			      struct netdev_nested_priv *priv);
4716 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4717 				  int (*fn)(struct net_device *lower_dev,
4718 					    struct netdev_nested_priv *priv),
4719 				  struct netdev_nested_priv *priv);
4720 
4721 void *netdev_adjacent_get_private(struct list_head *adj_list);
4722 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4723 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4724 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4725 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4726 			  struct netlink_ext_ack *extack);
4727 int netdev_master_upper_dev_link(struct net_device *dev,
4728 				 struct net_device *upper_dev,
4729 				 void *upper_priv, void *upper_info,
4730 				 struct netlink_ext_ack *extack);
4731 void netdev_upper_dev_unlink(struct net_device *dev,
4732 			     struct net_device *upper_dev);
4733 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4734 				   struct net_device *new_dev,
4735 				   struct net_device *dev,
4736 				   struct netlink_ext_ack *extack);
4737 void netdev_adjacent_change_commit(struct net_device *old_dev,
4738 				   struct net_device *new_dev,
4739 				   struct net_device *dev);
4740 void netdev_adjacent_change_abort(struct net_device *old_dev,
4741 				  struct net_device *new_dev,
4742 				  struct net_device *dev);
4743 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4744 void *netdev_lower_dev_get_private(struct net_device *dev,
4745 				   struct net_device *lower_dev);
4746 void netdev_lower_state_changed(struct net_device *lower_dev,
4747 				void *lower_state_info);
4748 
4749 /* RSS keys are 40 or 52 bytes long */
4750 #define NETDEV_RSS_KEY_LEN 52
4751 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4752 void netdev_rss_key_fill(void *buffer, size_t len);
4753 
4754 int skb_checksum_help(struct sk_buff *skb);
4755 int skb_crc32c_csum_help(struct sk_buff *skb);
4756 int skb_csum_hwoffload_help(struct sk_buff *skb,
4757 			    const netdev_features_t features);
4758 
4759 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4760 				  netdev_features_t features, bool tx_path);
4761 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4762 				    netdev_features_t features);
4763 
4764 struct netdev_bonding_info {
4765 	ifslave	slave;
4766 	ifbond	master;
4767 };
4768 
4769 struct netdev_notifier_bonding_info {
4770 	struct netdev_notifier_info info; /* must be first */
4771 	struct netdev_bonding_info  bonding_info;
4772 };
4773 
4774 void netdev_bonding_info_change(struct net_device *dev,
4775 				struct netdev_bonding_info *bonding_info);
4776 
4777 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4778 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4779 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4780 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4781 				  const void *data)
4782 {
4783 }
4784 #endif
4785 
4786 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4787 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4788 {
4789 	return __skb_gso_segment(skb, features, true);
4790 }
4791 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4792 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4793 static inline bool can_checksum_protocol(netdev_features_t features,
4794 					 __be16 protocol)
4795 {
4796 	if (protocol == htons(ETH_P_FCOE))
4797 		return !!(features & NETIF_F_FCOE_CRC);
4798 
4799 	/* Assume this is an IP checksum (not SCTP CRC) */
4800 
4801 	if (features & NETIF_F_HW_CSUM) {
4802 		/* Can checksum everything */
4803 		return true;
4804 	}
4805 
4806 	switch (protocol) {
4807 	case htons(ETH_P_IP):
4808 		return !!(features & NETIF_F_IP_CSUM);
4809 	case htons(ETH_P_IPV6):
4810 		return !!(features & NETIF_F_IPV6_CSUM);
4811 	default:
4812 		return false;
4813 	}
4814 }
4815 
4816 #ifdef CONFIG_BUG
4817 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4818 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4819 static inline void netdev_rx_csum_fault(struct net_device *dev,
4820 					struct sk_buff *skb)
4821 {
4822 }
4823 #endif
4824 /* rx skb timestamps */
4825 void net_enable_timestamp(void);
4826 void net_disable_timestamp(void);
4827 
4828 #ifdef CONFIG_PROC_FS
4829 int __init dev_proc_init(void);
4830 #else
4831 #define dev_proc_init() 0
4832 #endif
4833 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4834 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4835 					      struct sk_buff *skb, struct net_device *dev,
4836 					      bool more)
4837 {
4838 	__this_cpu_write(softnet_data.xmit.more, more);
4839 	return ops->ndo_start_xmit(skb, dev);
4840 }
4841 
netdev_xmit_more(void)4842 static inline bool netdev_xmit_more(void)
4843 {
4844 	return __this_cpu_read(softnet_data.xmit.more);
4845 }
4846 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4847 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4848 					    struct netdev_queue *txq, bool more)
4849 {
4850 	const struct net_device_ops *ops = dev->netdev_ops;
4851 	netdev_tx_t rc;
4852 
4853 	rc = __netdev_start_xmit(ops, skb, dev, more);
4854 	if (rc == NETDEV_TX_OK)
4855 		txq_trans_update(txq);
4856 
4857 	return rc;
4858 }
4859 
4860 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4861 				const void *ns);
4862 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4863 				 const void *ns);
4864 
4865 extern const struct kobj_ns_type_operations net_ns_type_operations;
4866 
4867 const char *netdev_drivername(const struct net_device *dev);
4868 
4869 void linkwatch_run_queue(void);
4870 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4871 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4872 							  netdev_features_t f2)
4873 {
4874 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4875 		if (f1 & NETIF_F_HW_CSUM)
4876 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4877 		else
4878 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4879 	}
4880 
4881 	return f1 & f2;
4882 }
4883 
netdev_get_wanted_features(struct net_device * dev)4884 static inline netdev_features_t netdev_get_wanted_features(
4885 	struct net_device *dev)
4886 {
4887 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4888 }
4889 netdev_features_t netdev_increment_features(netdev_features_t all,
4890 	netdev_features_t one, netdev_features_t mask);
4891 
4892 /* Allow TSO being used on stacked device :
4893  * Performing the GSO segmentation before last device
4894  * is a performance improvement.
4895  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4896 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4897 							netdev_features_t mask)
4898 {
4899 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4900 }
4901 
4902 int __netdev_update_features(struct net_device *dev);
4903 void netdev_update_features(struct net_device *dev);
4904 void netdev_change_features(struct net_device *dev);
4905 
4906 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4907 					struct net_device *dev);
4908 
4909 netdev_features_t passthru_features_check(struct sk_buff *skb,
4910 					  struct net_device *dev,
4911 					  netdev_features_t features);
4912 netdev_features_t netif_skb_features(struct sk_buff *skb);
4913 
net_gso_ok(netdev_features_t features,int gso_type)4914 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4915 {
4916 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4917 
4918 	/* check flags correspondence */
4919 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4920 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4921 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4922 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4923 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4924 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4925 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4926 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4927 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4928 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4929 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4930 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4931 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4932 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4933 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4934 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4935 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4936 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4937 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4938 
4939 	return (features & feature) == feature;
4940 }
4941 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4942 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4943 {
4944 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4945 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4946 }
4947 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4948 static inline bool netif_needs_gso(struct sk_buff *skb,
4949 				   netdev_features_t features)
4950 {
4951 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4952 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4953 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4954 }
4955 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4956 static inline void netif_set_gso_max_size(struct net_device *dev,
4957 					  unsigned int size)
4958 {
4959 	dev->gso_max_size = size;
4960 }
4961 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4962 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4963 					int pulled_hlen, u16 mac_offset,
4964 					int mac_len)
4965 {
4966 	skb->protocol = protocol;
4967 	skb->encapsulation = 1;
4968 	skb_push(skb, pulled_hlen);
4969 	skb_reset_transport_header(skb);
4970 	skb->mac_header = mac_offset;
4971 	skb->network_header = skb->mac_header + mac_len;
4972 	skb->mac_len = mac_len;
4973 }
4974 
netif_is_macsec(const struct net_device * dev)4975 static inline bool netif_is_macsec(const struct net_device *dev)
4976 {
4977 	return dev->priv_flags & IFF_MACSEC;
4978 }
4979 
netif_is_macvlan(const struct net_device * dev)4980 static inline bool netif_is_macvlan(const struct net_device *dev)
4981 {
4982 	return dev->priv_flags & IFF_MACVLAN;
4983 }
4984 
netif_is_macvlan_port(const struct net_device * dev)4985 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4986 {
4987 	return dev->priv_flags & IFF_MACVLAN_PORT;
4988 }
4989 
netif_is_bond_master(const struct net_device * dev)4990 static inline bool netif_is_bond_master(const struct net_device *dev)
4991 {
4992 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4993 }
4994 
netif_is_bond_slave(const struct net_device * dev)4995 static inline bool netif_is_bond_slave(const struct net_device *dev)
4996 {
4997 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4998 }
4999 
netif_supports_nofcs(struct net_device * dev)5000 static inline bool netif_supports_nofcs(struct net_device *dev)
5001 {
5002 	return dev->priv_flags & IFF_SUPP_NOFCS;
5003 }
5004 
netif_has_l3_rx_handler(const struct net_device * dev)5005 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5006 {
5007 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5008 }
5009 
netif_is_l3_master(const struct net_device * dev)5010 static inline bool netif_is_l3_master(const struct net_device *dev)
5011 {
5012 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5013 }
5014 
netif_is_l3_slave(const struct net_device * dev)5015 static inline bool netif_is_l3_slave(const struct net_device *dev)
5016 {
5017 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5018 }
5019 
netif_is_bridge_master(const struct net_device * dev)5020 static inline bool netif_is_bridge_master(const struct net_device *dev)
5021 {
5022 	return dev->priv_flags & IFF_EBRIDGE;
5023 }
5024 
netif_is_bridge_port(const struct net_device * dev)5025 static inline bool netif_is_bridge_port(const struct net_device *dev)
5026 {
5027 	return dev->priv_flags & IFF_BRIDGE_PORT;
5028 }
5029 
netif_is_ovs_master(const struct net_device * dev)5030 static inline bool netif_is_ovs_master(const struct net_device *dev)
5031 {
5032 	return dev->priv_flags & IFF_OPENVSWITCH;
5033 }
5034 
netif_is_ovs_port(const struct net_device * dev)5035 static inline bool netif_is_ovs_port(const struct net_device *dev)
5036 {
5037 	return dev->priv_flags & IFF_OVS_DATAPATH;
5038 }
5039 
netif_is_any_bridge_port(const struct net_device * dev)5040 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5041 {
5042 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5043 }
5044 
netif_is_team_master(const struct net_device * dev)5045 static inline bool netif_is_team_master(const struct net_device *dev)
5046 {
5047 	return dev->priv_flags & IFF_TEAM;
5048 }
5049 
netif_is_team_port(const struct net_device * dev)5050 static inline bool netif_is_team_port(const struct net_device *dev)
5051 {
5052 	return dev->priv_flags & IFF_TEAM_PORT;
5053 }
5054 
netif_is_lag_master(const struct net_device * dev)5055 static inline bool netif_is_lag_master(const struct net_device *dev)
5056 {
5057 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5058 }
5059 
netif_is_lag_port(const struct net_device * dev)5060 static inline bool netif_is_lag_port(const struct net_device *dev)
5061 {
5062 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5063 }
5064 
netif_is_rxfh_configured(const struct net_device * dev)5065 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5066 {
5067 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5068 }
5069 
netif_is_failover(const struct net_device * dev)5070 static inline bool netif_is_failover(const struct net_device *dev)
5071 {
5072 	return dev->priv_flags & IFF_FAILOVER;
5073 }
5074 
netif_is_failover_slave(const struct net_device * dev)5075 static inline bool netif_is_failover_slave(const struct net_device *dev)
5076 {
5077 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5078 }
5079 
5080 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5081 static inline void netif_keep_dst(struct net_device *dev)
5082 {
5083 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5084 }
5085 
5086 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5087 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5088 {
5089 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5090 	return dev->priv_flags & IFF_MACSEC;
5091 }
5092 
5093 extern struct pernet_operations __net_initdata loopback_net_ops;
5094 
5095 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5096 
5097 /* netdev_printk helpers, similar to dev_printk */
5098 
netdev_name(const struct net_device * dev)5099 static inline const char *netdev_name(const struct net_device *dev)
5100 {
5101 	if (!dev->name[0] || strchr(dev->name, '%'))
5102 		return "(unnamed net_device)";
5103 	return dev->name;
5104 }
5105 
netdev_unregistering(const struct net_device * dev)5106 static inline bool netdev_unregistering(const struct net_device *dev)
5107 {
5108 	return dev->reg_state == NETREG_UNREGISTERING;
5109 }
5110 
netdev_reg_state(const struct net_device * dev)5111 static inline const char *netdev_reg_state(const struct net_device *dev)
5112 {
5113 	switch (dev->reg_state) {
5114 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5115 	case NETREG_REGISTERED: return "";
5116 	case NETREG_UNREGISTERING: return " (unregistering)";
5117 	case NETREG_UNREGISTERED: return " (unregistered)";
5118 	case NETREG_RELEASED: return " (released)";
5119 	case NETREG_DUMMY: return " (dummy)";
5120 	}
5121 
5122 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5123 	return " (unknown)";
5124 }
5125 
5126 __printf(3, 4) __cold
5127 void netdev_printk(const char *level, const struct net_device *dev,
5128 		   const char *format, ...);
5129 __printf(2, 3) __cold
5130 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5131 __printf(2, 3) __cold
5132 void netdev_alert(const struct net_device *dev, const char *format, ...);
5133 __printf(2, 3) __cold
5134 void netdev_crit(const struct net_device *dev, const char *format, ...);
5135 __printf(2, 3) __cold
5136 void netdev_err(const struct net_device *dev, const char *format, ...);
5137 __printf(2, 3) __cold
5138 void netdev_warn(const struct net_device *dev, const char *format, ...);
5139 __printf(2, 3) __cold
5140 void netdev_notice(const struct net_device *dev, const char *format, ...);
5141 __printf(2, 3) __cold
5142 void netdev_info(const struct net_device *dev, const char *format, ...);
5143 
5144 #define netdev_level_once(level, dev, fmt, ...)			\
5145 do {								\
5146 	static bool __print_once __read_mostly;			\
5147 								\
5148 	if (!__print_once) {					\
5149 		__print_once = true;				\
5150 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
5151 	}							\
5152 } while (0)
5153 
5154 #define netdev_emerg_once(dev, fmt, ...) \
5155 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5156 #define netdev_alert_once(dev, fmt, ...) \
5157 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5158 #define netdev_crit_once(dev, fmt, ...) \
5159 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5160 #define netdev_err_once(dev, fmt, ...) \
5161 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5162 #define netdev_warn_once(dev, fmt, ...) \
5163 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5164 #define netdev_notice_once(dev, fmt, ...) \
5165 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5166 #define netdev_info_once(dev, fmt, ...) \
5167 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5168 
5169 #define MODULE_ALIAS_NETDEV(device) \
5170 	MODULE_ALIAS("netdev-" device)
5171 
5172 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5173 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5174 #define netdev_dbg(__dev, format, args...)			\
5175 do {								\
5176 	dynamic_netdev_dbg(__dev, format, ##args);		\
5177 } while (0)
5178 #elif defined(DEBUG)
5179 #define netdev_dbg(__dev, format, args...)			\
5180 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
5181 #else
5182 #define netdev_dbg(__dev, format, args...)			\
5183 ({								\
5184 	if (0)							\
5185 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5186 })
5187 #endif
5188 
5189 #if defined(VERBOSE_DEBUG)
5190 #define netdev_vdbg	netdev_dbg
5191 #else
5192 
5193 #define netdev_vdbg(dev, format, args...)			\
5194 ({								\
5195 	if (0)							\
5196 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
5197 	0;							\
5198 })
5199 #endif
5200 
5201 /*
5202  * netdev_WARN() acts like dev_printk(), but with the key difference
5203  * of using a WARN/WARN_ON to get the message out, including the
5204  * file/line information and a backtrace.
5205  */
5206 #define netdev_WARN(dev, format, args...)			\
5207 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5208 	     netdev_reg_state(dev), ##args)
5209 
5210 #define netdev_WARN_ONCE(dev, format, args...)				\
5211 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5212 		  netdev_reg_state(dev), ##args)
5213 
5214 /* netif printk helpers, similar to netdev_printk */
5215 
5216 #define netif_printk(priv, type, level, dev, fmt, args...)	\
5217 do {					  			\
5218 	if (netif_msg_##type(priv))				\
5219 		netdev_printk(level, (dev), fmt, ##args);	\
5220 } while (0)
5221 
5222 #define netif_level(level, priv, type, dev, fmt, args...)	\
5223 do {								\
5224 	if (netif_msg_##type(priv))				\
5225 		netdev_##level(dev, fmt, ##args);		\
5226 } while (0)
5227 
5228 #define netif_emerg(priv, type, dev, fmt, args...)		\
5229 	netif_level(emerg, priv, type, dev, fmt, ##args)
5230 #define netif_alert(priv, type, dev, fmt, args...)		\
5231 	netif_level(alert, priv, type, dev, fmt, ##args)
5232 #define netif_crit(priv, type, dev, fmt, args...)		\
5233 	netif_level(crit, priv, type, dev, fmt, ##args)
5234 #define netif_err(priv, type, dev, fmt, args...)		\
5235 	netif_level(err, priv, type, dev, fmt, ##args)
5236 #define netif_warn(priv, type, dev, fmt, args...)		\
5237 	netif_level(warn, priv, type, dev, fmt, ##args)
5238 #define netif_notice(priv, type, dev, fmt, args...)		\
5239 	netif_level(notice, priv, type, dev, fmt, ##args)
5240 #define netif_info(priv, type, dev, fmt, args...)		\
5241 	netif_level(info, priv, type, dev, fmt, ##args)
5242 
5243 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5244 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5245 #define netif_dbg(priv, type, netdev, format, args...)		\
5246 do {								\
5247 	if (netif_msg_##type(priv))				\
5248 		dynamic_netdev_dbg(netdev, format, ##args);	\
5249 } while (0)
5250 #elif defined(DEBUG)
5251 #define netif_dbg(priv, type, dev, format, args...)		\
5252 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5253 #else
5254 #define netif_dbg(priv, type, dev, format, args...)			\
5255 ({									\
5256 	if (0)								\
5257 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5258 	0;								\
5259 })
5260 #endif
5261 
5262 /* if @cond then downgrade to debug, else print at @level */
5263 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5264 	do {                                                              \
5265 		if (cond)                                                 \
5266 			netif_dbg(priv, type, netdev, fmt, ##args);       \
5267 		else                                                      \
5268 			netif_ ## level(priv, type, netdev, fmt, ##args); \
5269 	} while (0)
5270 
5271 #if defined(VERBOSE_DEBUG)
5272 #define netif_vdbg	netif_dbg
5273 #else
5274 #define netif_vdbg(priv, type, dev, format, args...)		\
5275 ({								\
5276 	if (0)							\
5277 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5278 	0;							\
5279 })
5280 #endif
5281 
5282 /*
5283  *	The list of packet types we will receive (as opposed to discard)
5284  *	and the routines to invoke.
5285  *
5286  *	Why 16. Because with 16 the only overlap we get on a hash of the
5287  *	low nibble of the protocol value is RARP/SNAP/X.25.
5288  *
5289  *		0800	IP
5290  *		0001	802.3
5291  *		0002	AX.25
5292  *		0004	802.2
5293  *		8035	RARP
5294  *		0005	SNAP
5295  *		0805	X.25
5296  *		0806	ARP
5297  *		8137	IPX
5298  *		0009	Localtalk
5299  *		86DD	IPv6
5300  */
5301 #define PTYPE_HASH_SIZE	(16)
5302 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5303 
5304 extern struct net_device *blackhole_netdev;
5305 
5306 #endif	/* _LINUX_NETDEVICE_H */
5307