1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0-or-later */ 2*4882a593Smuzhiyun /* Integer base 2 logarithm calculation 3*4882a593Smuzhiyun * 4*4882a593Smuzhiyun * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. 5*4882a593Smuzhiyun * Written by David Howells (dhowells@redhat.com) 6*4882a593Smuzhiyun */ 7*4882a593Smuzhiyun 8*4882a593Smuzhiyun #ifndef _LINUX_LOG2_H 9*4882a593Smuzhiyun #define _LINUX_LOG2_H 10*4882a593Smuzhiyun 11*4882a593Smuzhiyun #include <linux/types.h> 12*4882a593Smuzhiyun #include <linux/bitops.h> 13*4882a593Smuzhiyun 14*4882a593Smuzhiyun /* 15*4882a593Smuzhiyun * non-constant log of base 2 calculators 16*4882a593Smuzhiyun * - the arch may override these in asm/bitops.h if they can be implemented 17*4882a593Smuzhiyun * more efficiently than using fls() and fls64() 18*4882a593Smuzhiyun * - the arch is not required to handle n==0 if implementing the fallback 19*4882a593Smuzhiyun */ 20*4882a593Smuzhiyun #ifndef CONFIG_ARCH_HAS_ILOG2_U32 21*4882a593Smuzhiyun static inline __attribute__((const)) __ilog2_u32(u32 n)22*4882a593Smuzhiyunint __ilog2_u32(u32 n) 23*4882a593Smuzhiyun { 24*4882a593Smuzhiyun return fls(n) - 1; 25*4882a593Smuzhiyun } 26*4882a593Smuzhiyun #endif 27*4882a593Smuzhiyun 28*4882a593Smuzhiyun #ifndef CONFIG_ARCH_HAS_ILOG2_U64 29*4882a593Smuzhiyun static inline __attribute__((const)) __ilog2_u64(u64 n)30*4882a593Smuzhiyunint __ilog2_u64(u64 n) 31*4882a593Smuzhiyun { 32*4882a593Smuzhiyun return fls64(n) - 1; 33*4882a593Smuzhiyun } 34*4882a593Smuzhiyun #endif 35*4882a593Smuzhiyun 36*4882a593Smuzhiyun /** 37*4882a593Smuzhiyun * is_power_of_2() - check if a value is a power of two 38*4882a593Smuzhiyun * @n: the value to check 39*4882a593Smuzhiyun * 40*4882a593Smuzhiyun * Determine whether some value is a power of two, where zero is 41*4882a593Smuzhiyun * *not* considered a power of two. 42*4882a593Smuzhiyun * Return: true if @n is a power of 2, otherwise false. 43*4882a593Smuzhiyun */ 44*4882a593Smuzhiyun static inline __attribute__((const)) is_power_of_2(unsigned long n)45*4882a593Smuzhiyunbool is_power_of_2(unsigned long n) 46*4882a593Smuzhiyun { 47*4882a593Smuzhiyun return (n != 0 && ((n & (n - 1)) == 0)); 48*4882a593Smuzhiyun } 49*4882a593Smuzhiyun 50*4882a593Smuzhiyun /** 51*4882a593Smuzhiyun * __roundup_pow_of_two() - round up to nearest power of two 52*4882a593Smuzhiyun * @n: value to round up 53*4882a593Smuzhiyun */ 54*4882a593Smuzhiyun static inline __attribute__((const)) __roundup_pow_of_two(unsigned long n)55*4882a593Smuzhiyununsigned long __roundup_pow_of_two(unsigned long n) 56*4882a593Smuzhiyun { 57*4882a593Smuzhiyun return 1UL << fls_long(n - 1); 58*4882a593Smuzhiyun } 59*4882a593Smuzhiyun 60*4882a593Smuzhiyun /** 61*4882a593Smuzhiyun * __rounddown_pow_of_two() - round down to nearest power of two 62*4882a593Smuzhiyun * @n: value to round down 63*4882a593Smuzhiyun */ 64*4882a593Smuzhiyun static inline __attribute__((const)) __rounddown_pow_of_two(unsigned long n)65*4882a593Smuzhiyununsigned long __rounddown_pow_of_two(unsigned long n) 66*4882a593Smuzhiyun { 67*4882a593Smuzhiyun return 1UL << (fls_long(n) - 1); 68*4882a593Smuzhiyun } 69*4882a593Smuzhiyun 70*4882a593Smuzhiyun /** 71*4882a593Smuzhiyun * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value 72*4882a593Smuzhiyun * @n: parameter 73*4882a593Smuzhiyun * 74*4882a593Smuzhiyun * Use this where sparse expects a true constant expression, e.g. for array 75*4882a593Smuzhiyun * indices. 76*4882a593Smuzhiyun */ 77*4882a593Smuzhiyun #define const_ilog2(n) \ 78*4882a593Smuzhiyun ( \ 79*4882a593Smuzhiyun __builtin_constant_p(n) ? ( \ 80*4882a593Smuzhiyun (n) < 2 ? 0 : \ 81*4882a593Smuzhiyun (n) & (1ULL << 63) ? 63 : \ 82*4882a593Smuzhiyun (n) & (1ULL << 62) ? 62 : \ 83*4882a593Smuzhiyun (n) & (1ULL << 61) ? 61 : \ 84*4882a593Smuzhiyun (n) & (1ULL << 60) ? 60 : \ 85*4882a593Smuzhiyun (n) & (1ULL << 59) ? 59 : \ 86*4882a593Smuzhiyun (n) & (1ULL << 58) ? 58 : \ 87*4882a593Smuzhiyun (n) & (1ULL << 57) ? 57 : \ 88*4882a593Smuzhiyun (n) & (1ULL << 56) ? 56 : \ 89*4882a593Smuzhiyun (n) & (1ULL << 55) ? 55 : \ 90*4882a593Smuzhiyun (n) & (1ULL << 54) ? 54 : \ 91*4882a593Smuzhiyun (n) & (1ULL << 53) ? 53 : \ 92*4882a593Smuzhiyun (n) & (1ULL << 52) ? 52 : \ 93*4882a593Smuzhiyun (n) & (1ULL << 51) ? 51 : \ 94*4882a593Smuzhiyun (n) & (1ULL << 50) ? 50 : \ 95*4882a593Smuzhiyun (n) & (1ULL << 49) ? 49 : \ 96*4882a593Smuzhiyun (n) & (1ULL << 48) ? 48 : \ 97*4882a593Smuzhiyun (n) & (1ULL << 47) ? 47 : \ 98*4882a593Smuzhiyun (n) & (1ULL << 46) ? 46 : \ 99*4882a593Smuzhiyun (n) & (1ULL << 45) ? 45 : \ 100*4882a593Smuzhiyun (n) & (1ULL << 44) ? 44 : \ 101*4882a593Smuzhiyun (n) & (1ULL << 43) ? 43 : \ 102*4882a593Smuzhiyun (n) & (1ULL << 42) ? 42 : \ 103*4882a593Smuzhiyun (n) & (1ULL << 41) ? 41 : \ 104*4882a593Smuzhiyun (n) & (1ULL << 40) ? 40 : \ 105*4882a593Smuzhiyun (n) & (1ULL << 39) ? 39 : \ 106*4882a593Smuzhiyun (n) & (1ULL << 38) ? 38 : \ 107*4882a593Smuzhiyun (n) & (1ULL << 37) ? 37 : \ 108*4882a593Smuzhiyun (n) & (1ULL << 36) ? 36 : \ 109*4882a593Smuzhiyun (n) & (1ULL << 35) ? 35 : \ 110*4882a593Smuzhiyun (n) & (1ULL << 34) ? 34 : \ 111*4882a593Smuzhiyun (n) & (1ULL << 33) ? 33 : \ 112*4882a593Smuzhiyun (n) & (1ULL << 32) ? 32 : \ 113*4882a593Smuzhiyun (n) & (1ULL << 31) ? 31 : \ 114*4882a593Smuzhiyun (n) & (1ULL << 30) ? 30 : \ 115*4882a593Smuzhiyun (n) & (1ULL << 29) ? 29 : \ 116*4882a593Smuzhiyun (n) & (1ULL << 28) ? 28 : \ 117*4882a593Smuzhiyun (n) & (1ULL << 27) ? 27 : \ 118*4882a593Smuzhiyun (n) & (1ULL << 26) ? 26 : \ 119*4882a593Smuzhiyun (n) & (1ULL << 25) ? 25 : \ 120*4882a593Smuzhiyun (n) & (1ULL << 24) ? 24 : \ 121*4882a593Smuzhiyun (n) & (1ULL << 23) ? 23 : \ 122*4882a593Smuzhiyun (n) & (1ULL << 22) ? 22 : \ 123*4882a593Smuzhiyun (n) & (1ULL << 21) ? 21 : \ 124*4882a593Smuzhiyun (n) & (1ULL << 20) ? 20 : \ 125*4882a593Smuzhiyun (n) & (1ULL << 19) ? 19 : \ 126*4882a593Smuzhiyun (n) & (1ULL << 18) ? 18 : \ 127*4882a593Smuzhiyun (n) & (1ULL << 17) ? 17 : \ 128*4882a593Smuzhiyun (n) & (1ULL << 16) ? 16 : \ 129*4882a593Smuzhiyun (n) & (1ULL << 15) ? 15 : \ 130*4882a593Smuzhiyun (n) & (1ULL << 14) ? 14 : \ 131*4882a593Smuzhiyun (n) & (1ULL << 13) ? 13 : \ 132*4882a593Smuzhiyun (n) & (1ULL << 12) ? 12 : \ 133*4882a593Smuzhiyun (n) & (1ULL << 11) ? 11 : \ 134*4882a593Smuzhiyun (n) & (1ULL << 10) ? 10 : \ 135*4882a593Smuzhiyun (n) & (1ULL << 9) ? 9 : \ 136*4882a593Smuzhiyun (n) & (1ULL << 8) ? 8 : \ 137*4882a593Smuzhiyun (n) & (1ULL << 7) ? 7 : \ 138*4882a593Smuzhiyun (n) & (1ULL << 6) ? 6 : \ 139*4882a593Smuzhiyun (n) & (1ULL << 5) ? 5 : \ 140*4882a593Smuzhiyun (n) & (1ULL << 4) ? 4 : \ 141*4882a593Smuzhiyun (n) & (1ULL << 3) ? 3 : \ 142*4882a593Smuzhiyun (n) & (1ULL << 2) ? 2 : \ 143*4882a593Smuzhiyun 1) : \ 144*4882a593Smuzhiyun -1) 145*4882a593Smuzhiyun 146*4882a593Smuzhiyun /** 147*4882a593Smuzhiyun * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value 148*4882a593Smuzhiyun * @n: parameter 149*4882a593Smuzhiyun * 150*4882a593Smuzhiyun * constant-capable log of base 2 calculation 151*4882a593Smuzhiyun * - this can be used to initialise global variables from constant data, hence 152*4882a593Smuzhiyun * the massive ternary operator construction 153*4882a593Smuzhiyun * 154*4882a593Smuzhiyun * selects the appropriately-sized optimised version depending on sizeof(n) 155*4882a593Smuzhiyun */ 156*4882a593Smuzhiyun #define ilog2(n) \ 157*4882a593Smuzhiyun ( \ 158*4882a593Smuzhiyun __builtin_constant_p(n) ? \ 159*4882a593Smuzhiyun const_ilog2(n) : \ 160*4882a593Smuzhiyun (sizeof(n) <= 4) ? \ 161*4882a593Smuzhiyun __ilog2_u32(n) : \ 162*4882a593Smuzhiyun __ilog2_u64(n) \ 163*4882a593Smuzhiyun ) 164*4882a593Smuzhiyun 165*4882a593Smuzhiyun /** 166*4882a593Smuzhiyun * roundup_pow_of_two - round the given value up to nearest power of two 167*4882a593Smuzhiyun * @n: parameter 168*4882a593Smuzhiyun * 169*4882a593Smuzhiyun * round the given value up to the nearest power of two 170*4882a593Smuzhiyun * - the result is undefined when n == 0 171*4882a593Smuzhiyun * - this can be used to initialise global variables from constant data 172*4882a593Smuzhiyun */ 173*4882a593Smuzhiyun #define roundup_pow_of_two(n) \ 174*4882a593Smuzhiyun ( \ 175*4882a593Smuzhiyun __builtin_constant_p(n) ? ( \ 176*4882a593Smuzhiyun ((n) == 1) ? 1 : \ 177*4882a593Smuzhiyun (1UL << (ilog2((n) - 1) + 1)) \ 178*4882a593Smuzhiyun ) : \ 179*4882a593Smuzhiyun __roundup_pow_of_two(n) \ 180*4882a593Smuzhiyun ) 181*4882a593Smuzhiyun 182*4882a593Smuzhiyun /** 183*4882a593Smuzhiyun * rounddown_pow_of_two - round the given value down to nearest power of two 184*4882a593Smuzhiyun * @n: parameter 185*4882a593Smuzhiyun * 186*4882a593Smuzhiyun * round the given value down to the nearest power of two 187*4882a593Smuzhiyun * - the result is undefined when n == 0 188*4882a593Smuzhiyun * - this can be used to initialise global variables from constant data 189*4882a593Smuzhiyun */ 190*4882a593Smuzhiyun #define rounddown_pow_of_two(n) \ 191*4882a593Smuzhiyun ( \ 192*4882a593Smuzhiyun __builtin_constant_p(n) ? ( \ 193*4882a593Smuzhiyun (1UL << ilog2(n))) : \ 194*4882a593Smuzhiyun __rounddown_pow_of_two(n) \ 195*4882a593Smuzhiyun ) 196*4882a593Smuzhiyun 197*4882a593Smuzhiyun static inline __attribute_const__ __order_base_2(unsigned long n)198*4882a593Smuzhiyunint __order_base_2(unsigned long n) 199*4882a593Smuzhiyun { 200*4882a593Smuzhiyun return n > 1 ? ilog2(n - 1) + 1 : 0; 201*4882a593Smuzhiyun } 202*4882a593Smuzhiyun 203*4882a593Smuzhiyun /** 204*4882a593Smuzhiyun * order_base_2 - calculate the (rounded up) base 2 order of the argument 205*4882a593Smuzhiyun * @n: parameter 206*4882a593Smuzhiyun * 207*4882a593Smuzhiyun * The first few values calculated by this routine: 208*4882a593Smuzhiyun * ob2(0) = 0 209*4882a593Smuzhiyun * ob2(1) = 0 210*4882a593Smuzhiyun * ob2(2) = 1 211*4882a593Smuzhiyun * ob2(3) = 2 212*4882a593Smuzhiyun * ob2(4) = 2 213*4882a593Smuzhiyun * ob2(5) = 3 214*4882a593Smuzhiyun * ... and so on. 215*4882a593Smuzhiyun */ 216*4882a593Smuzhiyun #define order_base_2(n) \ 217*4882a593Smuzhiyun ( \ 218*4882a593Smuzhiyun __builtin_constant_p(n) ? ( \ 219*4882a593Smuzhiyun ((n) == 0 || (n) == 1) ? 0 : \ 220*4882a593Smuzhiyun ilog2((n) - 1) + 1) : \ 221*4882a593Smuzhiyun __order_base_2(n) \ 222*4882a593Smuzhiyun ) 223*4882a593Smuzhiyun 224*4882a593Smuzhiyun static inline __attribute__((const)) __bits_per(unsigned long n)225*4882a593Smuzhiyunint __bits_per(unsigned long n) 226*4882a593Smuzhiyun { 227*4882a593Smuzhiyun if (n < 2) 228*4882a593Smuzhiyun return 1; 229*4882a593Smuzhiyun if (is_power_of_2(n)) 230*4882a593Smuzhiyun return order_base_2(n) + 1; 231*4882a593Smuzhiyun return order_base_2(n); 232*4882a593Smuzhiyun } 233*4882a593Smuzhiyun 234*4882a593Smuzhiyun /** 235*4882a593Smuzhiyun * bits_per - calculate the number of bits required for the argument 236*4882a593Smuzhiyun * @n: parameter 237*4882a593Smuzhiyun * 238*4882a593Smuzhiyun * This is constant-capable and can be used for compile time 239*4882a593Smuzhiyun * initializations, e.g bitfields. 240*4882a593Smuzhiyun * 241*4882a593Smuzhiyun * The first few values calculated by this routine: 242*4882a593Smuzhiyun * bf(0) = 1 243*4882a593Smuzhiyun * bf(1) = 1 244*4882a593Smuzhiyun * bf(2) = 2 245*4882a593Smuzhiyun * bf(3) = 2 246*4882a593Smuzhiyun * bf(4) = 3 247*4882a593Smuzhiyun * ... and so on. 248*4882a593Smuzhiyun */ 249*4882a593Smuzhiyun #define bits_per(n) \ 250*4882a593Smuzhiyun ( \ 251*4882a593Smuzhiyun __builtin_constant_p(n) ? ( \ 252*4882a593Smuzhiyun ((n) == 0 || (n) == 1) \ 253*4882a593Smuzhiyun ? 1 : ilog2(n) + 1 \ 254*4882a593Smuzhiyun ) : \ 255*4882a593Smuzhiyun __bits_per(n) \ 256*4882a593Smuzhiyun ) 257*4882a593Smuzhiyun #endif /* _LINUX_LOG2_H */ 258