1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun #ifndef _LINUX_JIFFIES_H
3*4882a593Smuzhiyun #define _LINUX_JIFFIES_H
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun #include <linux/cache.h>
6*4882a593Smuzhiyun #include <linux/limits.h>
7*4882a593Smuzhiyun #include <linux/math64.h>
8*4882a593Smuzhiyun #include <linux/minmax.h>
9*4882a593Smuzhiyun #include <linux/types.h>
10*4882a593Smuzhiyun #include <linux/time.h>
11*4882a593Smuzhiyun #include <linux/timex.h>
12*4882a593Smuzhiyun #include <vdso/jiffies.h>
13*4882a593Smuzhiyun #include <asm/param.h> /* for HZ */
14*4882a593Smuzhiyun #include <generated/timeconst.h>
15*4882a593Smuzhiyun
16*4882a593Smuzhiyun /*
17*4882a593Smuzhiyun * The following defines establish the engineering parameters of the PLL
18*4882a593Smuzhiyun * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
19*4882a593Smuzhiyun * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
20*4882a593Smuzhiyun * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
21*4882a593Smuzhiyun * nearest power of two in order to avoid hardware multiply operations.
22*4882a593Smuzhiyun */
23*4882a593Smuzhiyun #if HZ >= 12 && HZ < 24
24*4882a593Smuzhiyun # define SHIFT_HZ 4
25*4882a593Smuzhiyun #elif HZ >= 24 && HZ < 48
26*4882a593Smuzhiyun # define SHIFT_HZ 5
27*4882a593Smuzhiyun #elif HZ >= 48 && HZ < 96
28*4882a593Smuzhiyun # define SHIFT_HZ 6
29*4882a593Smuzhiyun #elif HZ >= 96 && HZ < 192
30*4882a593Smuzhiyun # define SHIFT_HZ 7
31*4882a593Smuzhiyun #elif HZ >= 192 && HZ < 384
32*4882a593Smuzhiyun # define SHIFT_HZ 8
33*4882a593Smuzhiyun #elif HZ >= 384 && HZ < 768
34*4882a593Smuzhiyun # define SHIFT_HZ 9
35*4882a593Smuzhiyun #elif HZ >= 768 && HZ < 1536
36*4882a593Smuzhiyun # define SHIFT_HZ 10
37*4882a593Smuzhiyun #elif HZ >= 1536 && HZ < 3072
38*4882a593Smuzhiyun # define SHIFT_HZ 11
39*4882a593Smuzhiyun #elif HZ >= 3072 && HZ < 6144
40*4882a593Smuzhiyun # define SHIFT_HZ 12
41*4882a593Smuzhiyun #elif HZ >= 6144 && HZ < 12288
42*4882a593Smuzhiyun # define SHIFT_HZ 13
43*4882a593Smuzhiyun #else
44*4882a593Smuzhiyun # error Invalid value of HZ.
45*4882a593Smuzhiyun #endif
46*4882a593Smuzhiyun
47*4882a593Smuzhiyun /* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
48*4882a593Smuzhiyun * improve accuracy by shifting LSH bits, hence calculating:
49*4882a593Smuzhiyun * (NOM << LSH) / DEN
50*4882a593Smuzhiyun * This however means trouble for large NOM, because (NOM << LSH) may no
51*4882a593Smuzhiyun * longer fit in 32 bits. The following way of calculating this gives us
52*4882a593Smuzhiyun * some slack, under the following conditions:
53*4882a593Smuzhiyun * - (NOM / DEN) fits in (32 - LSH) bits.
54*4882a593Smuzhiyun * - (NOM % DEN) fits in (32 - LSH) bits.
55*4882a593Smuzhiyun */
56*4882a593Smuzhiyun #define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
57*4882a593Smuzhiyun + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
58*4882a593Smuzhiyun
59*4882a593Smuzhiyun /* LATCH is used in the interval timer and ftape setup. */
60*4882a593Smuzhiyun #define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
61*4882a593Smuzhiyun
62*4882a593Smuzhiyun extern int register_refined_jiffies(long clock_tick_rate);
63*4882a593Smuzhiyun
64*4882a593Smuzhiyun /* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
65*4882a593Smuzhiyun #define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
66*4882a593Smuzhiyun
67*4882a593Smuzhiyun /* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
68*4882a593Smuzhiyun #define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
69*4882a593Smuzhiyun
70*4882a593Smuzhiyun #ifndef __jiffy_arch_data
71*4882a593Smuzhiyun #define __jiffy_arch_data
72*4882a593Smuzhiyun #endif
73*4882a593Smuzhiyun
74*4882a593Smuzhiyun /*
75*4882a593Smuzhiyun * The 64-bit value is not atomic - you MUST NOT read it
76*4882a593Smuzhiyun * without sampling the sequence number in jiffies_lock.
77*4882a593Smuzhiyun * get_jiffies_64() will do this for you as appropriate.
78*4882a593Smuzhiyun */
79*4882a593Smuzhiyun extern u64 __cacheline_aligned_in_smp jiffies_64;
80*4882a593Smuzhiyun extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
81*4882a593Smuzhiyun
82*4882a593Smuzhiyun #if (BITS_PER_LONG < 64)
83*4882a593Smuzhiyun u64 get_jiffies_64(void);
84*4882a593Smuzhiyun #else
get_jiffies_64(void)85*4882a593Smuzhiyun static inline u64 get_jiffies_64(void)
86*4882a593Smuzhiyun {
87*4882a593Smuzhiyun return (u64)jiffies;
88*4882a593Smuzhiyun }
89*4882a593Smuzhiyun #endif
90*4882a593Smuzhiyun
91*4882a593Smuzhiyun /*
92*4882a593Smuzhiyun * These inlines deal with timer wrapping correctly. You are
93*4882a593Smuzhiyun * strongly encouraged to use them
94*4882a593Smuzhiyun * 1. Because people otherwise forget
95*4882a593Smuzhiyun * 2. Because if the timer wrap changes in future you won't have to
96*4882a593Smuzhiyun * alter your driver code.
97*4882a593Smuzhiyun *
98*4882a593Smuzhiyun * time_after(a,b) returns true if the time a is after time b.
99*4882a593Smuzhiyun *
100*4882a593Smuzhiyun * Do this with "<0" and ">=0" to only test the sign of the result. A
101*4882a593Smuzhiyun * good compiler would generate better code (and a really good compiler
102*4882a593Smuzhiyun * wouldn't care). Gcc is currently neither.
103*4882a593Smuzhiyun */
104*4882a593Smuzhiyun #define time_after(a,b) \
105*4882a593Smuzhiyun (typecheck(unsigned long, a) && \
106*4882a593Smuzhiyun typecheck(unsigned long, b) && \
107*4882a593Smuzhiyun ((long)((b) - (a)) < 0))
108*4882a593Smuzhiyun #define time_before(a,b) time_after(b,a)
109*4882a593Smuzhiyun
110*4882a593Smuzhiyun #define time_after_eq(a,b) \
111*4882a593Smuzhiyun (typecheck(unsigned long, a) && \
112*4882a593Smuzhiyun typecheck(unsigned long, b) && \
113*4882a593Smuzhiyun ((long)((a) - (b)) >= 0))
114*4882a593Smuzhiyun #define time_before_eq(a,b) time_after_eq(b,a)
115*4882a593Smuzhiyun
116*4882a593Smuzhiyun /*
117*4882a593Smuzhiyun * Calculate whether a is in the range of [b, c].
118*4882a593Smuzhiyun */
119*4882a593Smuzhiyun #define time_in_range(a,b,c) \
120*4882a593Smuzhiyun (time_after_eq(a,b) && \
121*4882a593Smuzhiyun time_before_eq(a,c))
122*4882a593Smuzhiyun
123*4882a593Smuzhiyun /*
124*4882a593Smuzhiyun * Calculate whether a is in the range of [b, c).
125*4882a593Smuzhiyun */
126*4882a593Smuzhiyun #define time_in_range_open(a,b,c) \
127*4882a593Smuzhiyun (time_after_eq(a,b) && \
128*4882a593Smuzhiyun time_before(a,c))
129*4882a593Smuzhiyun
130*4882a593Smuzhiyun /* Same as above, but does so with platform independent 64bit types.
131*4882a593Smuzhiyun * These must be used when utilizing jiffies_64 (i.e. return value of
132*4882a593Smuzhiyun * get_jiffies_64() */
133*4882a593Smuzhiyun #define time_after64(a,b) \
134*4882a593Smuzhiyun (typecheck(__u64, a) && \
135*4882a593Smuzhiyun typecheck(__u64, b) && \
136*4882a593Smuzhiyun ((__s64)((b) - (a)) < 0))
137*4882a593Smuzhiyun #define time_before64(a,b) time_after64(b,a)
138*4882a593Smuzhiyun
139*4882a593Smuzhiyun #define time_after_eq64(a,b) \
140*4882a593Smuzhiyun (typecheck(__u64, a) && \
141*4882a593Smuzhiyun typecheck(__u64, b) && \
142*4882a593Smuzhiyun ((__s64)((a) - (b)) >= 0))
143*4882a593Smuzhiyun #define time_before_eq64(a,b) time_after_eq64(b,a)
144*4882a593Smuzhiyun
145*4882a593Smuzhiyun #define time_in_range64(a, b, c) \
146*4882a593Smuzhiyun (time_after_eq64(a, b) && \
147*4882a593Smuzhiyun time_before_eq64(a, c))
148*4882a593Smuzhiyun
149*4882a593Smuzhiyun /*
150*4882a593Smuzhiyun * These four macros compare jiffies and 'a' for convenience.
151*4882a593Smuzhiyun */
152*4882a593Smuzhiyun
153*4882a593Smuzhiyun /* time_is_before_jiffies(a) return true if a is before jiffies */
154*4882a593Smuzhiyun #define time_is_before_jiffies(a) time_after(jiffies, a)
155*4882a593Smuzhiyun #define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
156*4882a593Smuzhiyun
157*4882a593Smuzhiyun /* time_is_after_jiffies(a) return true if a is after jiffies */
158*4882a593Smuzhiyun #define time_is_after_jiffies(a) time_before(jiffies, a)
159*4882a593Smuzhiyun #define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
160*4882a593Smuzhiyun
161*4882a593Smuzhiyun /* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
162*4882a593Smuzhiyun #define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
163*4882a593Smuzhiyun #define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
164*4882a593Smuzhiyun
165*4882a593Smuzhiyun /* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
166*4882a593Smuzhiyun #define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
167*4882a593Smuzhiyun #define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
168*4882a593Smuzhiyun
169*4882a593Smuzhiyun /*
170*4882a593Smuzhiyun * Have the 32 bit jiffies value wrap 5 minutes after boot
171*4882a593Smuzhiyun * so jiffies wrap bugs show up earlier.
172*4882a593Smuzhiyun */
173*4882a593Smuzhiyun #define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
174*4882a593Smuzhiyun
175*4882a593Smuzhiyun /*
176*4882a593Smuzhiyun * Change timeval to jiffies, trying to avoid the
177*4882a593Smuzhiyun * most obvious overflows..
178*4882a593Smuzhiyun *
179*4882a593Smuzhiyun * And some not so obvious.
180*4882a593Smuzhiyun *
181*4882a593Smuzhiyun * Note that we don't want to return LONG_MAX, because
182*4882a593Smuzhiyun * for various timeout reasons we often end up having
183*4882a593Smuzhiyun * to wait "jiffies+1" in order to guarantee that we wait
184*4882a593Smuzhiyun * at _least_ "jiffies" - so "jiffies+1" had better still
185*4882a593Smuzhiyun * be positive.
186*4882a593Smuzhiyun */
187*4882a593Smuzhiyun #define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
188*4882a593Smuzhiyun
189*4882a593Smuzhiyun extern unsigned long preset_lpj;
190*4882a593Smuzhiyun
191*4882a593Smuzhiyun /*
192*4882a593Smuzhiyun * We want to do realistic conversions of time so we need to use the same
193*4882a593Smuzhiyun * values the update wall clock code uses as the jiffies size. This value
194*4882a593Smuzhiyun * is: TICK_NSEC (which is defined in timex.h). This
195*4882a593Smuzhiyun * is a constant and is in nanoseconds. We will use scaled math
196*4882a593Smuzhiyun * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
197*4882a593Smuzhiyun * NSEC_JIFFIE_SC. Note that these defines contain nothing but
198*4882a593Smuzhiyun * constants and so are computed at compile time. SHIFT_HZ (computed in
199*4882a593Smuzhiyun * timex.h) adjusts the scaling for different HZ values.
200*4882a593Smuzhiyun
201*4882a593Smuzhiyun * Scaled math??? What is that?
202*4882a593Smuzhiyun *
203*4882a593Smuzhiyun * Scaled math is a way to do integer math on values that would,
204*4882a593Smuzhiyun * otherwise, either overflow, underflow, or cause undesired div
205*4882a593Smuzhiyun * instructions to appear in the execution path. In short, we "scale"
206*4882a593Smuzhiyun * up the operands so they take more bits (more precision, less
207*4882a593Smuzhiyun * underflow), do the desired operation and then "scale" the result back
208*4882a593Smuzhiyun * by the same amount. If we do the scaling by shifting we avoid the
209*4882a593Smuzhiyun * costly mpy and the dastardly div instructions.
210*4882a593Smuzhiyun
211*4882a593Smuzhiyun * Suppose, for example, we want to convert from seconds to jiffies
212*4882a593Smuzhiyun * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
213*4882a593Smuzhiyun * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
214*4882a593Smuzhiyun * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
215*4882a593Smuzhiyun * might calculate at compile time, however, the result will only have
216*4882a593Smuzhiyun * about 3-4 bits of precision (less for smaller values of HZ).
217*4882a593Smuzhiyun *
218*4882a593Smuzhiyun * So, we scale as follows:
219*4882a593Smuzhiyun * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
220*4882a593Smuzhiyun * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
221*4882a593Smuzhiyun * Then we make SCALE a power of two so:
222*4882a593Smuzhiyun * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
223*4882a593Smuzhiyun * Now we define:
224*4882a593Smuzhiyun * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
225*4882a593Smuzhiyun * jiff = (sec * SEC_CONV) >> SCALE;
226*4882a593Smuzhiyun *
227*4882a593Smuzhiyun * Often the math we use will expand beyond 32-bits so we tell C how to
228*4882a593Smuzhiyun * do this and pass the 64-bit result of the mpy through the ">> SCALE"
229*4882a593Smuzhiyun * which should take the result back to 32-bits. We want this expansion
230*4882a593Smuzhiyun * to capture as much precision as possible. At the same time we don't
231*4882a593Smuzhiyun * want to overflow so we pick the SCALE to avoid this. In this file,
232*4882a593Smuzhiyun * that means using a different scale for each range of HZ values (as
233*4882a593Smuzhiyun * defined in timex.h).
234*4882a593Smuzhiyun *
235*4882a593Smuzhiyun * For those who want to know, gcc will give a 64-bit result from a "*"
236*4882a593Smuzhiyun * operator if the result is a long long AND at least one of the
237*4882a593Smuzhiyun * operands is cast to long long (usually just prior to the "*" so as
238*4882a593Smuzhiyun * not to confuse it into thinking it really has a 64-bit operand,
239*4882a593Smuzhiyun * which, buy the way, it can do, but it takes more code and at least 2
240*4882a593Smuzhiyun * mpys).
241*4882a593Smuzhiyun
242*4882a593Smuzhiyun * We also need to be aware that one second in nanoseconds is only a
243*4882a593Smuzhiyun * couple of bits away from overflowing a 32-bit word, so we MUST use
244*4882a593Smuzhiyun * 64-bits to get the full range time in nanoseconds.
245*4882a593Smuzhiyun
246*4882a593Smuzhiyun */
247*4882a593Smuzhiyun
248*4882a593Smuzhiyun /*
249*4882a593Smuzhiyun * Here are the scales we will use. One for seconds, nanoseconds and
250*4882a593Smuzhiyun * microseconds.
251*4882a593Smuzhiyun *
252*4882a593Smuzhiyun * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
253*4882a593Smuzhiyun * check if the sign bit is set. If not, we bump the shift count by 1.
254*4882a593Smuzhiyun * (Gets an extra bit of precision where we can use it.)
255*4882a593Smuzhiyun * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
256*4882a593Smuzhiyun * Haven't tested others.
257*4882a593Smuzhiyun
258*4882a593Smuzhiyun * Limits of cpp (for #if expressions) only long (no long long), but
259*4882a593Smuzhiyun * then we only need the most signicant bit.
260*4882a593Smuzhiyun */
261*4882a593Smuzhiyun
262*4882a593Smuzhiyun #define SEC_JIFFIE_SC (31 - SHIFT_HZ)
263*4882a593Smuzhiyun #if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
264*4882a593Smuzhiyun #undef SEC_JIFFIE_SC
265*4882a593Smuzhiyun #define SEC_JIFFIE_SC (32 - SHIFT_HZ)
266*4882a593Smuzhiyun #endif
267*4882a593Smuzhiyun #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
268*4882a593Smuzhiyun #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
269*4882a593Smuzhiyun TICK_NSEC -1) / (u64)TICK_NSEC))
270*4882a593Smuzhiyun
271*4882a593Smuzhiyun #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
272*4882a593Smuzhiyun TICK_NSEC -1) / (u64)TICK_NSEC))
273*4882a593Smuzhiyun /*
274*4882a593Smuzhiyun * The maximum jiffie value is (MAX_INT >> 1). Here we translate that
275*4882a593Smuzhiyun * into seconds. The 64-bit case will overflow if we are not careful,
276*4882a593Smuzhiyun * so use the messy SH_DIV macro to do it. Still all constants.
277*4882a593Smuzhiyun */
278*4882a593Smuzhiyun #if BITS_PER_LONG < 64
279*4882a593Smuzhiyun # define MAX_SEC_IN_JIFFIES \
280*4882a593Smuzhiyun (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
281*4882a593Smuzhiyun #else /* take care of overflow on 64 bits machines */
282*4882a593Smuzhiyun # define MAX_SEC_IN_JIFFIES \
283*4882a593Smuzhiyun (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
284*4882a593Smuzhiyun
285*4882a593Smuzhiyun #endif
286*4882a593Smuzhiyun
287*4882a593Smuzhiyun /*
288*4882a593Smuzhiyun * Convert various time units to each other:
289*4882a593Smuzhiyun */
290*4882a593Smuzhiyun extern unsigned int jiffies_to_msecs(const unsigned long j);
291*4882a593Smuzhiyun extern unsigned int jiffies_to_usecs(const unsigned long j);
292*4882a593Smuzhiyun
jiffies_to_nsecs(const unsigned long j)293*4882a593Smuzhiyun static inline u64 jiffies_to_nsecs(const unsigned long j)
294*4882a593Smuzhiyun {
295*4882a593Smuzhiyun return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
296*4882a593Smuzhiyun }
297*4882a593Smuzhiyun
298*4882a593Smuzhiyun extern u64 jiffies64_to_nsecs(u64 j);
299*4882a593Smuzhiyun extern u64 jiffies64_to_msecs(u64 j);
300*4882a593Smuzhiyun
301*4882a593Smuzhiyun extern unsigned long __msecs_to_jiffies(const unsigned int m);
302*4882a593Smuzhiyun #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
303*4882a593Smuzhiyun /*
304*4882a593Smuzhiyun * HZ is equal to or smaller than 1000, and 1000 is a nice round
305*4882a593Smuzhiyun * multiple of HZ, divide with the factor between them, but round
306*4882a593Smuzhiyun * upwards:
307*4882a593Smuzhiyun */
_msecs_to_jiffies(const unsigned int m)308*4882a593Smuzhiyun static inline unsigned long _msecs_to_jiffies(const unsigned int m)
309*4882a593Smuzhiyun {
310*4882a593Smuzhiyun return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
311*4882a593Smuzhiyun }
312*4882a593Smuzhiyun #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
313*4882a593Smuzhiyun /*
314*4882a593Smuzhiyun * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
315*4882a593Smuzhiyun * simply multiply with the factor between them.
316*4882a593Smuzhiyun *
317*4882a593Smuzhiyun * But first make sure the multiplication result cannot overflow:
318*4882a593Smuzhiyun */
_msecs_to_jiffies(const unsigned int m)319*4882a593Smuzhiyun static inline unsigned long _msecs_to_jiffies(const unsigned int m)
320*4882a593Smuzhiyun {
321*4882a593Smuzhiyun if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
322*4882a593Smuzhiyun return MAX_JIFFY_OFFSET;
323*4882a593Smuzhiyun return m * (HZ / MSEC_PER_SEC);
324*4882a593Smuzhiyun }
325*4882a593Smuzhiyun #else
326*4882a593Smuzhiyun /*
327*4882a593Smuzhiyun * Generic case - multiply, round and divide. But first check that if
328*4882a593Smuzhiyun * we are doing a net multiplication, that we wouldn't overflow:
329*4882a593Smuzhiyun */
_msecs_to_jiffies(const unsigned int m)330*4882a593Smuzhiyun static inline unsigned long _msecs_to_jiffies(const unsigned int m)
331*4882a593Smuzhiyun {
332*4882a593Smuzhiyun if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
333*4882a593Smuzhiyun return MAX_JIFFY_OFFSET;
334*4882a593Smuzhiyun
335*4882a593Smuzhiyun return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
336*4882a593Smuzhiyun }
337*4882a593Smuzhiyun #endif
338*4882a593Smuzhiyun /**
339*4882a593Smuzhiyun * msecs_to_jiffies: - convert milliseconds to jiffies
340*4882a593Smuzhiyun * @m: time in milliseconds
341*4882a593Smuzhiyun *
342*4882a593Smuzhiyun * conversion is done as follows:
343*4882a593Smuzhiyun *
344*4882a593Smuzhiyun * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
345*4882a593Smuzhiyun *
346*4882a593Smuzhiyun * - 'too large' values [that would result in larger than
347*4882a593Smuzhiyun * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
348*4882a593Smuzhiyun *
349*4882a593Smuzhiyun * - all other values are converted to jiffies by either multiplying
350*4882a593Smuzhiyun * the input value by a factor or dividing it with a factor and
351*4882a593Smuzhiyun * handling any 32-bit overflows.
352*4882a593Smuzhiyun * for the details see __msecs_to_jiffies()
353*4882a593Smuzhiyun *
354*4882a593Smuzhiyun * msecs_to_jiffies() checks for the passed in value being a constant
355*4882a593Smuzhiyun * via __builtin_constant_p() allowing gcc to eliminate most of the
356*4882a593Smuzhiyun * code, __msecs_to_jiffies() is called if the value passed does not
357*4882a593Smuzhiyun * allow constant folding and the actual conversion must be done at
358*4882a593Smuzhiyun * runtime.
359*4882a593Smuzhiyun * the HZ range specific helpers _msecs_to_jiffies() are called both
360*4882a593Smuzhiyun * directly here and from __msecs_to_jiffies() in the case where
361*4882a593Smuzhiyun * constant folding is not possible.
362*4882a593Smuzhiyun */
msecs_to_jiffies(const unsigned int m)363*4882a593Smuzhiyun static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
364*4882a593Smuzhiyun {
365*4882a593Smuzhiyun if (__builtin_constant_p(m)) {
366*4882a593Smuzhiyun if ((int)m < 0)
367*4882a593Smuzhiyun return MAX_JIFFY_OFFSET;
368*4882a593Smuzhiyun return _msecs_to_jiffies(m);
369*4882a593Smuzhiyun } else {
370*4882a593Smuzhiyun return __msecs_to_jiffies(m);
371*4882a593Smuzhiyun }
372*4882a593Smuzhiyun }
373*4882a593Smuzhiyun
374*4882a593Smuzhiyun extern unsigned long __usecs_to_jiffies(const unsigned int u);
375*4882a593Smuzhiyun #if !(USEC_PER_SEC % HZ)
_usecs_to_jiffies(const unsigned int u)376*4882a593Smuzhiyun static inline unsigned long _usecs_to_jiffies(const unsigned int u)
377*4882a593Smuzhiyun {
378*4882a593Smuzhiyun return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
379*4882a593Smuzhiyun }
380*4882a593Smuzhiyun #else
_usecs_to_jiffies(const unsigned int u)381*4882a593Smuzhiyun static inline unsigned long _usecs_to_jiffies(const unsigned int u)
382*4882a593Smuzhiyun {
383*4882a593Smuzhiyun return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
384*4882a593Smuzhiyun >> USEC_TO_HZ_SHR32;
385*4882a593Smuzhiyun }
386*4882a593Smuzhiyun #endif
387*4882a593Smuzhiyun
388*4882a593Smuzhiyun /**
389*4882a593Smuzhiyun * usecs_to_jiffies: - convert microseconds to jiffies
390*4882a593Smuzhiyun * @u: time in microseconds
391*4882a593Smuzhiyun *
392*4882a593Smuzhiyun * conversion is done as follows:
393*4882a593Smuzhiyun *
394*4882a593Smuzhiyun * - 'too large' values [that would result in larger than
395*4882a593Smuzhiyun * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
396*4882a593Smuzhiyun *
397*4882a593Smuzhiyun * - all other values are converted to jiffies by either multiplying
398*4882a593Smuzhiyun * the input value by a factor or dividing it with a factor and
399*4882a593Smuzhiyun * handling any 32-bit overflows as for msecs_to_jiffies.
400*4882a593Smuzhiyun *
401*4882a593Smuzhiyun * usecs_to_jiffies() checks for the passed in value being a constant
402*4882a593Smuzhiyun * via __builtin_constant_p() allowing gcc to eliminate most of the
403*4882a593Smuzhiyun * code, __usecs_to_jiffies() is called if the value passed does not
404*4882a593Smuzhiyun * allow constant folding and the actual conversion must be done at
405*4882a593Smuzhiyun * runtime.
406*4882a593Smuzhiyun * the HZ range specific helpers _usecs_to_jiffies() are called both
407*4882a593Smuzhiyun * directly here and from __msecs_to_jiffies() in the case where
408*4882a593Smuzhiyun * constant folding is not possible.
409*4882a593Smuzhiyun */
usecs_to_jiffies(const unsigned int u)410*4882a593Smuzhiyun static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
411*4882a593Smuzhiyun {
412*4882a593Smuzhiyun if (__builtin_constant_p(u)) {
413*4882a593Smuzhiyun if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
414*4882a593Smuzhiyun return MAX_JIFFY_OFFSET;
415*4882a593Smuzhiyun return _usecs_to_jiffies(u);
416*4882a593Smuzhiyun } else {
417*4882a593Smuzhiyun return __usecs_to_jiffies(u);
418*4882a593Smuzhiyun }
419*4882a593Smuzhiyun }
420*4882a593Smuzhiyun
421*4882a593Smuzhiyun extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
422*4882a593Smuzhiyun extern void jiffies_to_timespec64(const unsigned long jiffies,
423*4882a593Smuzhiyun struct timespec64 *value);
424*4882a593Smuzhiyun extern clock_t jiffies_to_clock_t(unsigned long x);
jiffies_delta_to_clock_t(long delta)425*4882a593Smuzhiyun static inline clock_t jiffies_delta_to_clock_t(long delta)
426*4882a593Smuzhiyun {
427*4882a593Smuzhiyun return jiffies_to_clock_t(max(0L, delta));
428*4882a593Smuzhiyun }
429*4882a593Smuzhiyun
jiffies_delta_to_msecs(long delta)430*4882a593Smuzhiyun static inline unsigned int jiffies_delta_to_msecs(long delta)
431*4882a593Smuzhiyun {
432*4882a593Smuzhiyun return jiffies_to_msecs(max(0L, delta));
433*4882a593Smuzhiyun }
434*4882a593Smuzhiyun
435*4882a593Smuzhiyun extern unsigned long clock_t_to_jiffies(unsigned long x);
436*4882a593Smuzhiyun extern u64 jiffies_64_to_clock_t(u64 x);
437*4882a593Smuzhiyun extern u64 nsec_to_clock_t(u64 x);
438*4882a593Smuzhiyun extern u64 nsecs_to_jiffies64(u64 n);
439*4882a593Smuzhiyun extern unsigned long nsecs_to_jiffies(u64 n);
440*4882a593Smuzhiyun
441*4882a593Smuzhiyun #define TIMESTAMP_SIZE 30
442*4882a593Smuzhiyun
443*4882a593Smuzhiyun #endif
444