1*4882a593Smuzhiyun /* gf128mul.h - GF(2^128) multiplication functions
2*4882a593Smuzhiyun *
3*4882a593Smuzhiyun * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4*4882a593Smuzhiyun * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5*4882a593Smuzhiyun *
6*4882a593Smuzhiyun * Based on Dr Brian Gladman's (GPL'd) work published at
7*4882a593Smuzhiyun * http://fp.gladman.plus.com/cryptography_technology/index.htm
8*4882a593Smuzhiyun * See the original copyright notice below.
9*4882a593Smuzhiyun *
10*4882a593Smuzhiyun * This program is free software; you can redistribute it and/or modify it
11*4882a593Smuzhiyun * under the terms of the GNU General Public License as published by the Free
12*4882a593Smuzhiyun * Software Foundation; either version 2 of the License, or (at your option)
13*4882a593Smuzhiyun * any later version.
14*4882a593Smuzhiyun */
15*4882a593Smuzhiyun /*
16*4882a593Smuzhiyun ---------------------------------------------------------------------------
17*4882a593Smuzhiyun Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
18*4882a593Smuzhiyun
19*4882a593Smuzhiyun LICENSE TERMS
20*4882a593Smuzhiyun
21*4882a593Smuzhiyun The free distribution and use of this software in both source and binary
22*4882a593Smuzhiyun form is allowed (with or without changes) provided that:
23*4882a593Smuzhiyun
24*4882a593Smuzhiyun 1. distributions of this source code include the above copyright
25*4882a593Smuzhiyun notice, this list of conditions and the following disclaimer;
26*4882a593Smuzhiyun
27*4882a593Smuzhiyun 2. distributions in binary form include the above copyright
28*4882a593Smuzhiyun notice, this list of conditions and the following disclaimer
29*4882a593Smuzhiyun in the documentation and/or other associated materials;
30*4882a593Smuzhiyun
31*4882a593Smuzhiyun 3. the copyright holder's name is not used to endorse products
32*4882a593Smuzhiyun built using this software without specific written permission.
33*4882a593Smuzhiyun
34*4882a593Smuzhiyun ALTERNATIVELY, provided that this notice is retained in full, this product
35*4882a593Smuzhiyun may be distributed under the terms of the GNU General Public License (GPL),
36*4882a593Smuzhiyun in which case the provisions of the GPL apply INSTEAD OF those given above.
37*4882a593Smuzhiyun
38*4882a593Smuzhiyun DISCLAIMER
39*4882a593Smuzhiyun
40*4882a593Smuzhiyun This software is provided 'as is' with no explicit or implied warranties
41*4882a593Smuzhiyun in respect of its properties, including, but not limited to, correctness
42*4882a593Smuzhiyun and/or fitness for purpose.
43*4882a593Smuzhiyun ---------------------------------------------------------------------------
44*4882a593Smuzhiyun Issue Date: 31/01/2006
45*4882a593Smuzhiyun
46*4882a593Smuzhiyun An implementation of field multiplication in Galois Field GF(2^128)
47*4882a593Smuzhiyun */
48*4882a593Smuzhiyun
49*4882a593Smuzhiyun #ifndef _CRYPTO_GF128MUL_H
50*4882a593Smuzhiyun #define _CRYPTO_GF128MUL_H
51*4882a593Smuzhiyun
52*4882a593Smuzhiyun #include <asm/byteorder.h>
53*4882a593Smuzhiyun #include <crypto/b128ops.h>
54*4882a593Smuzhiyun #include <linux/slab.h>
55*4882a593Smuzhiyun
56*4882a593Smuzhiyun /* Comment by Rik:
57*4882a593Smuzhiyun *
58*4882a593Smuzhiyun * For some background on GF(2^128) see for example:
59*4882a593Smuzhiyun * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
60*4882a593Smuzhiyun *
61*4882a593Smuzhiyun * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can
62*4882a593Smuzhiyun * be mapped to computer memory in a variety of ways. Let's examine
63*4882a593Smuzhiyun * three common cases.
64*4882a593Smuzhiyun *
65*4882a593Smuzhiyun * Take a look at the 16 binary octets below in memory order. The msb's
66*4882a593Smuzhiyun * are left and the lsb's are right. char b[16] is an array and b[0] is
67*4882a593Smuzhiyun * the first octet.
68*4882a593Smuzhiyun *
69*4882a593Smuzhiyun * 10000000 00000000 00000000 00000000 .... 00000000 00000000 00000000
70*4882a593Smuzhiyun * b[0] b[1] b[2] b[3] b[13] b[14] b[15]
71*4882a593Smuzhiyun *
72*4882a593Smuzhiyun * Every bit is a coefficient of some power of X. We can store the bits
73*4882a593Smuzhiyun * in every byte in little-endian order and the bytes themselves also in
74*4882a593Smuzhiyun * little endian order. I will call this lle (little-little-endian).
75*4882a593Smuzhiyun * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks
76*4882a593Smuzhiyun * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }.
77*4882a593Smuzhiyun * This format was originally implemented in gf128mul and is used
78*4882a593Smuzhiyun * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length).
79*4882a593Smuzhiyun *
80*4882a593Smuzhiyun * Another convention says: store the bits in bigendian order and the
81*4882a593Smuzhiyun * bytes also. This is bbe (big-big-endian). Now the buffer above
82*4882a593Smuzhiyun * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111,
83*4882a593Smuzhiyun * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe
84*4882a593Smuzhiyun * is partly implemented.
85*4882a593Smuzhiyun *
86*4882a593Smuzhiyun * Both of the above formats are easy to implement on big-endian
87*4882a593Smuzhiyun * machines.
88*4882a593Smuzhiyun *
89*4882a593Smuzhiyun * XTS and EME (the latter of which is patent encumbered) use the ble
90*4882a593Smuzhiyun * format (bits are stored in big endian order and the bytes in little
91*4882a593Smuzhiyun * endian). The above buffer represents X^7 in this case and the
92*4882a593Smuzhiyun * primitive polynomial is b[0] = 0x87.
93*4882a593Smuzhiyun *
94*4882a593Smuzhiyun * The common machine word-size is smaller than 128 bits, so to make
95*4882a593Smuzhiyun * an efficient implementation we must split into machine word sizes.
96*4882a593Smuzhiyun * This implementation uses 64-bit words for the moment. Machine
97*4882a593Smuzhiyun * endianness comes into play. The lle format in relation to machine
98*4882a593Smuzhiyun * endianness is discussed below by the original author of gf128mul Dr
99*4882a593Smuzhiyun * Brian Gladman.
100*4882a593Smuzhiyun *
101*4882a593Smuzhiyun * Let's look at the bbe and ble format on a little endian machine.
102*4882a593Smuzhiyun *
103*4882a593Smuzhiyun * bbe on a little endian machine u32 x[4]:
104*4882a593Smuzhiyun *
105*4882a593Smuzhiyun * MS x[0] LS MS x[1] LS
106*4882a593Smuzhiyun * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
107*4882a593Smuzhiyun * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88
108*4882a593Smuzhiyun *
109*4882a593Smuzhiyun * MS x[2] LS MS x[3] LS
110*4882a593Smuzhiyun * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
111*4882a593Smuzhiyun * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24
112*4882a593Smuzhiyun *
113*4882a593Smuzhiyun * ble on a little endian machine
114*4882a593Smuzhiyun *
115*4882a593Smuzhiyun * MS x[0] LS MS x[1] LS
116*4882a593Smuzhiyun * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
117*4882a593Smuzhiyun * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32
118*4882a593Smuzhiyun *
119*4882a593Smuzhiyun * MS x[2] LS MS x[3] LS
120*4882a593Smuzhiyun * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
121*4882a593Smuzhiyun * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96
122*4882a593Smuzhiyun *
123*4882a593Smuzhiyun * Multiplications in GF(2^128) are mostly bit-shifts, so you see why
124*4882a593Smuzhiyun * ble (and lbe also) are easier to implement on a little-endian
125*4882a593Smuzhiyun * machine than on a big-endian machine. The converse holds for bbe
126*4882a593Smuzhiyun * and lle.
127*4882a593Smuzhiyun *
128*4882a593Smuzhiyun * Note: to have good alignment, it seems to me that it is sufficient
129*4882a593Smuzhiyun * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize
130*4882a593Smuzhiyun * machines this will automatically aligned to wordsize and on a 64-bit
131*4882a593Smuzhiyun * machine also.
132*4882a593Smuzhiyun */
133*4882a593Smuzhiyun /* Multiply a GF(2^128) field element by x. Field elements are
134*4882a593Smuzhiyun held in arrays of bytes in which field bits 8n..8n + 7 are held in
135*4882a593Smuzhiyun byte[n], with lower indexed bits placed in the more numerically
136*4882a593Smuzhiyun significant bit positions within bytes.
137*4882a593Smuzhiyun
138*4882a593Smuzhiyun On little endian machines the bit indexes translate into the bit
139*4882a593Smuzhiyun positions within four 32-bit words in the following way
140*4882a593Smuzhiyun
141*4882a593Smuzhiyun MS x[0] LS MS x[1] LS
142*4882a593Smuzhiyun ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
143*4882a593Smuzhiyun 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39
144*4882a593Smuzhiyun
145*4882a593Smuzhiyun MS x[2] LS MS x[3] LS
146*4882a593Smuzhiyun ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
147*4882a593Smuzhiyun 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103
148*4882a593Smuzhiyun
149*4882a593Smuzhiyun On big endian machines the bit indexes translate into the bit
150*4882a593Smuzhiyun positions within four 32-bit words in the following way
151*4882a593Smuzhiyun
152*4882a593Smuzhiyun MS x[0] LS MS x[1] LS
153*4882a593Smuzhiyun ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
154*4882a593Smuzhiyun 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63
155*4882a593Smuzhiyun
156*4882a593Smuzhiyun MS x[2] LS MS x[3] LS
157*4882a593Smuzhiyun ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
158*4882a593Smuzhiyun 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127
159*4882a593Smuzhiyun */
160*4882a593Smuzhiyun
161*4882a593Smuzhiyun /* A slow generic version of gf_mul, implemented for lle and bbe
162*4882a593Smuzhiyun * It multiplies a and b and puts the result in a */
163*4882a593Smuzhiyun void gf128mul_lle(be128 *a, const be128 *b);
164*4882a593Smuzhiyun
165*4882a593Smuzhiyun void gf128mul_bbe(be128 *a, const be128 *b);
166*4882a593Smuzhiyun
167*4882a593Smuzhiyun /*
168*4882a593Smuzhiyun * The following functions multiply a field element by x in
169*4882a593Smuzhiyun * the polynomial field representation. They use 64-bit word operations
170*4882a593Smuzhiyun * to gain speed but compensate for machine endianness and hence work
171*4882a593Smuzhiyun * correctly on both styles of machine.
172*4882a593Smuzhiyun *
173*4882a593Smuzhiyun * They are defined here for performance.
174*4882a593Smuzhiyun */
175*4882a593Smuzhiyun
gf128mul_mask_from_bit(u64 x,int which)176*4882a593Smuzhiyun static inline u64 gf128mul_mask_from_bit(u64 x, int which)
177*4882a593Smuzhiyun {
178*4882a593Smuzhiyun /* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */
179*4882a593Smuzhiyun return ((s64)(x << (63 - which)) >> 63);
180*4882a593Smuzhiyun }
181*4882a593Smuzhiyun
gf128mul_x_lle(be128 * r,const be128 * x)182*4882a593Smuzhiyun static inline void gf128mul_x_lle(be128 *r, const be128 *x)
183*4882a593Smuzhiyun {
184*4882a593Smuzhiyun u64 a = be64_to_cpu(x->a);
185*4882a593Smuzhiyun u64 b = be64_to_cpu(x->b);
186*4882a593Smuzhiyun
187*4882a593Smuzhiyun /* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48
188*4882a593Smuzhiyun * (see crypto/gf128mul.c): */
189*4882a593Smuzhiyun u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56);
190*4882a593Smuzhiyun
191*4882a593Smuzhiyun r->b = cpu_to_be64((b >> 1) | (a << 63));
192*4882a593Smuzhiyun r->a = cpu_to_be64((a >> 1) ^ _tt);
193*4882a593Smuzhiyun }
194*4882a593Smuzhiyun
gf128mul_x_bbe(be128 * r,const be128 * x)195*4882a593Smuzhiyun static inline void gf128mul_x_bbe(be128 *r, const be128 *x)
196*4882a593Smuzhiyun {
197*4882a593Smuzhiyun u64 a = be64_to_cpu(x->a);
198*4882a593Smuzhiyun u64 b = be64_to_cpu(x->b);
199*4882a593Smuzhiyun
200*4882a593Smuzhiyun /* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */
201*4882a593Smuzhiyun u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87;
202*4882a593Smuzhiyun
203*4882a593Smuzhiyun r->a = cpu_to_be64((a << 1) | (b >> 63));
204*4882a593Smuzhiyun r->b = cpu_to_be64((b << 1) ^ _tt);
205*4882a593Smuzhiyun }
206*4882a593Smuzhiyun
207*4882a593Smuzhiyun /* needed by XTS */
gf128mul_x_ble(le128 * r,const le128 * x)208*4882a593Smuzhiyun static inline void gf128mul_x_ble(le128 *r, const le128 *x)
209*4882a593Smuzhiyun {
210*4882a593Smuzhiyun u64 a = le64_to_cpu(x->a);
211*4882a593Smuzhiyun u64 b = le64_to_cpu(x->b);
212*4882a593Smuzhiyun
213*4882a593Smuzhiyun /* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */
214*4882a593Smuzhiyun u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87;
215*4882a593Smuzhiyun
216*4882a593Smuzhiyun r->a = cpu_to_le64((a << 1) | (b >> 63));
217*4882a593Smuzhiyun r->b = cpu_to_le64((b << 1) ^ _tt);
218*4882a593Smuzhiyun }
219*4882a593Smuzhiyun
220*4882a593Smuzhiyun /* 4k table optimization */
221*4882a593Smuzhiyun
222*4882a593Smuzhiyun struct gf128mul_4k {
223*4882a593Smuzhiyun be128 t[256];
224*4882a593Smuzhiyun };
225*4882a593Smuzhiyun
226*4882a593Smuzhiyun struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g);
227*4882a593Smuzhiyun struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g);
228*4882a593Smuzhiyun void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t);
229*4882a593Smuzhiyun void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t);
230*4882a593Smuzhiyun void gf128mul_x8_ble(le128 *r, const le128 *x);
gf128mul_free_4k(struct gf128mul_4k * t)231*4882a593Smuzhiyun static inline void gf128mul_free_4k(struct gf128mul_4k *t)
232*4882a593Smuzhiyun {
233*4882a593Smuzhiyun kfree_sensitive(t);
234*4882a593Smuzhiyun }
235*4882a593Smuzhiyun
236*4882a593Smuzhiyun
237*4882a593Smuzhiyun /* 64k table optimization, implemented for bbe */
238*4882a593Smuzhiyun
239*4882a593Smuzhiyun struct gf128mul_64k {
240*4882a593Smuzhiyun struct gf128mul_4k *t[16];
241*4882a593Smuzhiyun };
242*4882a593Smuzhiyun
243*4882a593Smuzhiyun /* First initialize with the constant factor with which you
244*4882a593Smuzhiyun * want to multiply and then call gf128mul_64k_bbe with the other
245*4882a593Smuzhiyun * factor in the first argument, and the table in the second.
246*4882a593Smuzhiyun * Afterwards, the result is stored in *a.
247*4882a593Smuzhiyun */
248*4882a593Smuzhiyun struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g);
249*4882a593Smuzhiyun void gf128mul_free_64k(struct gf128mul_64k *t);
250*4882a593Smuzhiyun void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t);
251*4882a593Smuzhiyun
252*4882a593Smuzhiyun #endif /* _CRYPTO_GF128MUL_H */
253