1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
task_vsize(struct mm_struct * mm)82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 return PAGE_SIZE * mm->total_vm;
85 }
86
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90 {
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102 * Save get_task_policy() for show_numa_map().
103 */
hold_task_mempolicy(struct proc_maps_private * priv)104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112 }
release_task_mempolicy(struct proc_maps_private * priv)113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 mpol_put(priv->task_mempolicy);
116 }
117 #else
hold_task_mempolicy(struct proc_maps_private * priv)118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
release_task_mempolicy(struct proc_maps_private * priv)121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
seq_print_vma_name(struct seq_file * m,struct vm_area_struct * vma)126 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
127 {
128 const char __user *name = vma_get_anon_name(vma);
129 struct mm_struct *mm = vma->vm_mm;
130
131 unsigned long page_start_vaddr;
132 unsigned long page_offset;
133 unsigned long num_pages;
134 unsigned long max_len = NAME_MAX;
135 int i;
136
137 page_start_vaddr = (unsigned long)name & PAGE_MASK;
138 page_offset = (unsigned long)name - page_start_vaddr;
139 num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
140
141 seq_puts(m, "[anon:");
142
143 for (i = 0; i < num_pages; i++) {
144 int len;
145 int write_len;
146 const char *kaddr;
147 long pages_pinned;
148 struct page *page;
149
150 pages_pinned = get_user_pages_remote(mm, page_start_vaddr, 1, 0,
151 &page, NULL, NULL);
152 if (pages_pinned < 1) {
153 seq_puts(m, "<fault>]");
154 return;
155 }
156
157 kaddr = (const char *)kmap(page);
158 len = min(max_len, PAGE_SIZE - page_offset);
159 write_len = strnlen(kaddr + page_offset, len);
160 seq_write(m, kaddr + page_offset, write_len);
161 kunmap(page);
162 put_user_page(page);
163
164 /* if strnlen hit a null terminator then we're done */
165 if (write_len != len)
166 break;
167
168 max_len -= len;
169 page_offset = 0;
170 page_start_vaddr += PAGE_SIZE;
171 }
172
173 seq_putc(m, ']');
174 }
175
m_start(struct seq_file * m,loff_t * ppos)176 static void *m_start(struct seq_file *m, loff_t *ppos)
177 {
178 struct proc_maps_private *priv = m->private;
179 unsigned long last_addr = *ppos;
180 struct mm_struct *mm;
181 struct vm_area_struct *vma;
182
183 /* See m_next(). Zero at the start or after lseek. */
184 if (last_addr == -1UL)
185 return NULL;
186
187 priv->task = get_proc_task(priv->inode);
188 if (!priv->task)
189 return ERR_PTR(-ESRCH);
190
191 mm = priv->mm;
192 if (!mm || !mmget_not_zero(mm)) {
193 put_task_struct(priv->task);
194 priv->task = NULL;
195 return NULL;
196 }
197
198 if (mmap_read_lock_killable(mm)) {
199 mmput(mm);
200 put_task_struct(priv->task);
201 priv->task = NULL;
202 return ERR_PTR(-EINTR);
203 }
204
205 hold_task_mempolicy(priv);
206 priv->tail_vma = get_gate_vma(mm);
207
208 vma = find_vma(mm, last_addr);
209 if (vma)
210 return vma;
211
212 return priv->tail_vma;
213 }
214
m_next(struct seq_file * m,void * v,loff_t * ppos)215 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
216 {
217 struct proc_maps_private *priv = m->private;
218 struct vm_area_struct *next, *vma = v;
219
220 if (vma == priv->tail_vma)
221 next = NULL;
222 else if (vma->vm_next)
223 next = vma->vm_next;
224 else
225 next = priv->tail_vma;
226
227 *ppos = next ? next->vm_start : -1UL;
228
229 return next;
230 }
231
m_stop(struct seq_file * m,void * v)232 static void m_stop(struct seq_file *m, void *v)
233 {
234 struct proc_maps_private *priv = m->private;
235 struct mm_struct *mm = priv->mm;
236
237 if (!priv->task)
238 return;
239
240 release_task_mempolicy(priv);
241 mmap_read_unlock(mm);
242 mmput(mm);
243 put_task_struct(priv->task);
244 priv->task = NULL;
245 }
246
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)247 static int proc_maps_open(struct inode *inode, struct file *file,
248 const struct seq_operations *ops, int psize)
249 {
250 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
251
252 if (!priv)
253 return -ENOMEM;
254
255 priv->inode = inode;
256 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
257 if (IS_ERR(priv->mm)) {
258 int err = PTR_ERR(priv->mm);
259
260 seq_release_private(inode, file);
261 return err;
262 }
263
264 return 0;
265 }
266
proc_map_release(struct inode * inode,struct file * file)267 static int proc_map_release(struct inode *inode, struct file *file)
268 {
269 struct seq_file *seq = file->private_data;
270 struct proc_maps_private *priv = seq->private;
271
272 if (priv->mm)
273 mmdrop(priv->mm);
274
275 return seq_release_private(inode, file);
276 }
277
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)278 static int do_maps_open(struct inode *inode, struct file *file,
279 const struct seq_operations *ops)
280 {
281 return proc_maps_open(inode, file, ops,
282 sizeof(struct proc_maps_private));
283 }
284
285 /*
286 * Indicate if the VMA is a stack for the given task; for
287 * /proc/PID/maps that is the stack of the main task.
288 */
is_stack(struct vm_area_struct * vma)289 static int is_stack(struct vm_area_struct *vma)
290 {
291 /*
292 * We make no effort to guess what a given thread considers to be
293 * its "stack". It's not even well-defined for programs written
294 * languages like Go.
295 */
296 return vma->vm_start <= vma->vm_mm->start_stack &&
297 vma->vm_end >= vma->vm_mm->start_stack;
298 }
299
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)300 static void show_vma_header_prefix(struct seq_file *m,
301 unsigned long start, unsigned long end,
302 vm_flags_t flags, unsigned long long pgoff,
303 dev_t dev, unsigned long ino)
304 {
305 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
306 seq_put_hex_ll(m, NULL, start, 8);
307 seq_put_hex_ll(m, "-", end, 8);
308 seq_putc(m, ' ');
309 seq_putc(m, flags & VM_READ ? 'r' : '-');
310 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
311 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
312 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
313 seq_put_hex_ll(m, " ", pgoff, 8);
314 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
315 seq_put_hex_ll(m, ":", MINOR(dev), 2);
316 seq_put_decimal_ull(m, " ", ino);
317 seq_putc(m, ' ');
318 }
319
320 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)321 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
322 {
323 struct mm_struct *mm = vma->vm_mm;
324 struct file *file = vma->vm_file;
325 vm_flags_t flags = vma->vm_flags;
326 unsigned long ino = 0;
327 unsigned long long pgoff = 0;
328 unsigned long start, end;
329 dev_t dev = 0;
330 const char *name = NULL;
331
332 if (file) {
333 struct inode *inode = file_inode(vma->vm_file);
334 dev = inode->i_sb->s_dev;
335 ino = inode->i_ino;
336 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
337 }
338
339 start = vma->vm_start;
340 end = vma->vm_end;
341 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
342
343 /*
344 * Print the dentry name for named mappings, and a
345 * special [heap] marker for the heap:
346 */
347 if (file) {
348 seq_pad(m, ' ');
349 seq_file_path(m, file, "\n");
350 goto done;
351 }
352
353 if (vma->vm_ops && vma->vm_ops->name) {
354 name = vma->vm_ops->name(vma);
355 if (name)
356 goto done;
357 }
358
359 name = arch_vma_name(vma);
360 if (!name) {
361 if (!mm) {
362 name = "[vdso]";
363 goto done;
364 }
365
366 if (vma->vm_start <= mm->brk &&
367 vma->vm_end >= mm->start_brk) {
368 name = "[heap]";
369 goto done;
370 }
371
372 if (is_stack(vma)) {
373 name = "[stack]";
374 goto done;
375 }
376
377 if (vma_get_anon_name(vma)) {
378 seq_pad(m, ' ');
379 seq_print_vma_name(m, vma);
380 }
381 }
382
383 done:
384 if (name) {
385 seq_pad(m, ' ');
386 seq_puts(m, name);
387 }
388 seq_putc(m, '\n');
389 }
390
show_map(struct seq_file * m,void * v)391 static int show_map(struct seq_file *m, void *v)
392 {
393 show_map_vma(m, v);
394 return 0;
395 }
396
397 static const struct seq_operations proc_pid_maps_op = {
398 .start = m_start,
399 .next = m_next,
400 .stop = m_stop,
401 .show = show_map
402 };
403
pid_maps_open(struct inode * inode,struct file * file)404 static int pid_maps_open(struct inode *inode, struct file *file)
405 {
406 return do_maps_open(inode, file, &proc_pid_maps_op);
407 }
408
409 const struct file_operations proc_pid_maps_operations = {
410 .open = pid_maps_open,
411 .read = seq_read,
412 .llseek = seq_lseek,
413 .release = proc_map_release,
414 };
415
416 /*
417 * Proportional Set Size(PSS): my share of RSS.
418 *
419 * PSS of a process is the count of pages it has in memory, where each
420 * page is divided by the number of processes sharing it. So if a
421 * process has 1000 pages all to itself, and 1000 shared with one other
422 * process, its PSS will be 1500.
423 *
424 * To keep (accumulated) division errors low, we adopt a 64bit
425 * fixed-point pss counter to minimize division errors. So (pss >>
426 * PSS_SHIFT) would be the real byte count.
427 *
428 * A shift of 12 before division means (assuming 4K page size):
429 * - 1M 3-user-pages add up to 8KB errors;
430 * - supports mapcount up to 2^24, or 16M;
431 * - supports PSS up to 2^52 bytes, or 4PB.
432 */
433 #define PSS_SHIFT 12
434
435 #ifdef CONFIG_PROC_PAGE_MONITOR
436 struct mem_size_stats {
437 unsigned long resident;
438 unsigned long shared_clean;
439 unsigned long shared_dirty;
440 unsigned long private_clean;
441 unsigned long private_dirty;
442 unsigned long referenced;
443 unsigned long anonymous;
444 unsigned long lazyfree;
445 unsigned long anonymous_thp;
446 unsigned long shmem_thp;
447 unsigned long file_thp;
448 unsigned long swap;
449 unsigned long shared_hugetlb;
450 unsigned long private_hugetlb;
451 u64 pss;
452 u64 pss_anon;
453 u64 pss_file;
454 u64 pss_shmem;
455 u64 pss_locked;
456 u64 swap_pss;
457 bool check_shmem_swap;
458 };
459
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)460 static void smaps_page_accumulate(struct mem_size_stats *mss,
461 struct page *page, unsigned long size, unsigned long pss,
462 bool dirty, bool locked, bool private)
463 {
464 mss->pss += pss;
465
466 if (PageAnon(page))
467 mss->pss_anon += pss;
468 else if (PageSwapBacked(page))
469 mss->pss_shmem += pss;
470 else
471 mss->pss_file += pss;
472
473 if (locked)
474 mss->pss_locked += pss;
475
476 if (dirty || PageDirty(page)) {
477 if (private)
478 mss->private_dirty += size;
479 else
480 mss->shared_dirty += size;
481 } else {
482 if (private)
483 mss->private_clean += size;
484 else
485 mss->shared_clean += size;
486 }
487 }
488
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)489 static void smaps_account(struct mem_size_stats *mss, struct page *page,
490 bool compound, bool young, bool dirty, bool locked,
491 bool migration)
492 {
493 int i, nr = compound ? compound_nr(page) : 1;
494 unsigned long size = nr * PAGE_SIZE;
495
496 /*
497 * First accumulate quantities that depend only on |size| and the type
498 * of the compound page.
499 */
500 if (PageAnon(page)) {
501 mss->anonymous += size;
502 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
503 mss->lazyfree += size;
504 }
505
506 mss->resident += size;
507 /* Accumulate the size in pages that have been accessed. */
508 if (young || page_is_young(page) || PageReferenced(page))
509 mss->referenced += size;
510
511 /*
512 * Then accumulate quantities that may depend on sharing, or that may
513 * differ page-by-page.
514 *
515 * page_count(page) == 1 guarantees the page is mapped exactly once.
516 * If any subpage of the compound page mapped with PTE it would elevate
517 * page_count().
518 *
519 * The page_mapcount() is called to get a snapshot of the mapcount.
520 * Without holding the page lock this snapshot can be slightly wrong as
521 * we cannot always read the mapcount atomically. It is not safe to
522 * call page_mapcount() even with PTL held if the page is not mapped,
523 * especially for migration entries. Treat regular migration entries
524 * as mapcount == 1.
525 */
526 if ((page_count(page) == 1) || migration) {
527 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
528 locked, true);
529 return;
530 }
531 for (i = 0; i < nr; i++, page++) {
532 int mapcount = page_mapcount(page);
533 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
534 if (mapcount >= 2)
535 pss /= mapcount;
536 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
537 mapcount < 2);
538 }
539 }
540
541 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)542 static int smaps_pte_hole(unsigned long addr, unsigned long end,
543 __always_unused int depth, struct mm_walk *walk)
544 {
545 struct mem_size_stats *mss = walk->private;
546
547 mss->swap += shmem_partial_swap_usage(
548 walk->vma->vm_file->f_mapping, addr, end);
549
550 return 0;
551 }
552 #else
553 #define smaps_pte_hole NULL
554 #endif /* CONFIG_SHMEM */
555
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)556 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
557 struct mm_walk *walk)
558 {
559 struct mem_size_stats *mss = walk->private;
560 struct vm_area_struct *vma = walk->vma;
561 bool locked = !!(vma->vm_flags & VM_LOCKED);
562 struct page *page = NULL;
563 bool migration = false, young = false, dirty = false;
564
565 if (pte_present(*pte)) {
566 page = vm_normal_page(vma, addr, *pte);
567 young = pte_young(*pte);
568 dirty = pte_dirty(*pte);
569 } else if (is_swap_pte(*pte)) {
570 swp_entry_t swpent = pte_to_swp_entry(*pte);
571
572 if (!non_swap_entry(swpent)) {
573 int mapcount;
574
575 mss->swap += PAGE_SIZE;
576 mapcount = swp_swapcount(swpent);
577 if (mapcount >= 2) {
578 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
579
580 do_div(pss_delta, mapcount);
581 mss->swap_pss += pss_delta;
582 } else {
583 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
584 }
585 } else if (is_migration_entry(swpent)) {
586 migration = true;
587 page = migration_entry_to_page(swpent);
588 } else if (is_device_private_entry(swpent))
589 page = device_private_entry_to_page(swpent);
590 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
591 && pte_none(*pte))) {
592 page = xa_load(&vma->vm_file->f_mapping->i_pages,
593 linear_page_index(vma, addr));
594 if (xa_is_value(page))
595 mss->swap += PAGE_SIZE;
596 return;
597 }
598
599 if (!page)
600 return;
601
602 smaps_account(mss, page, false, young, dirty, locked, migration);
603 }
604
605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)606 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607 struct mm_walk *walk)
608 {
609 struct mem_size_stats *mss = walk->private;
610 struct vm_area_struct *vma = walk->vma;
611 bool locked = !!(vma->vm_flags & VM_LOCKED);
612 struct page *page = NULL;
613 bool migration = false;
614
615 if (pmd_present(*pmd)) {
616 /* FOLL_DUMP will return -EFAULT on huge zero page */
617 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
618 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
619 swp_entry_t entry = pmd_to_swp_entry(*pmd);
620
621 if (is_migration_entry(entry)) {
622 migration = true;
623 page = migration_entry_to_page(entry);
624 }
625 }
626 if (IS_ERR_OR_NULL(page))
627 return;
628 if (PageAnon(page))
629 mss->anonymous_thp += HPAGE_PMD_SIZE;
630 else if (PageSwapBacked(page))
631 mss->shmem_thp += HPAGE_PMD_SIZE;
632 else if (is_zone_device_page(page))
633 /* pass */;
634 else
635 mss->file_thp += HPAGE_PMD_SIZE;
636
637 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
638 locked, migration);
639 }
640 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)641 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
642 struct mm_walk *walk)
643 {
644 }
645 #endif
646
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)647 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
648 struct mm_walk *walk)
649 {
650 struct vm_area_struct *vma = walk->vma;
651 pte_t *pte;
652 spinlock_t *ptl;
653
654 ptl = pmd_trans_huge_lock(pmd, vma);
655 if (ptl) {
656 smaps_pmd_entry(pmd, addr, walk);
657 spin_unlock(ptl);
658 goto out;
659 }
660
661 if (pmd_trans_unstable(pmd))
662 goto out;
663 /*
664 * The mmap_lock held all the way back in m_start() is what
665 * keeps khugepaged out of here and from collapsing things
666 * in here.
667 */
668 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
669 for (; addr != end; pte++, addr += PAGE_SIZE)
670 smaps_pte_entry(pte, addr, walk);
671 pte_unmap_unlock(pte - 1, ptl);
672 out:
673 cond_resched();
674 return 0;
675 }
676
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)677 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
678 {
679 /*
680 * Don't forget to update Documentation/ on changes.
681 */
682 static const char mnemonics[BITS_PER_LONG][2] = {
683 /*
684 * In case if we meet a flag we don't know about.
685 */
686 [0 ... (BITS_PER_LONG-1)] = "??",
687
688 [ilog2(VM_READ)] = "rd",
689 [ilog2(VM_WRITE)] = "wr",
690 [ilog2(VM_EXEC)] = "ex",
691 [ilog2(VM_SHARED)] = "sh",
692 [ilog2(VM_MAYREAD)] = "mr",
693 [ilog2(VM_MAYWRITE)] = "mw",
694 [ilog2(VM_MAYEXEC)] = "me",
695 [ilog2(VM_MAYSHARE)] = "ms",
696 [ilog2(VM_GROWSDOWN)] = "gd",
697 [ilog2(VM_PFNMAP)] = "pf",
698 [ilog2(VM_DENYWRITE)] = "dw",
699 [ilog2(VM_LOCKED)] = "lo",
700 [ilog2(VM_IO)] = "io",
701 [ilog2(VM_SEQ_READ)] = "sr",
702 [ilog2(VM_RAND_READ)] = "rr",
703 [ilog2(VM_DONTCOPY)] = "dc",
704 [ilog2(VM_DONTEXPAND)] = "de",
705 [ilog2(VM_ACCOUNT)] = "ac",
706 [ilog2(VM_NORESERVE)] = "nr",
707 [ilog2(VM_HUGETLB)] = "ht",
708 [ilog2(VM_SYNC)] = "sf",
709 [ilog2(VM_ARCH_1)] = "ar",
710 [ilog2(VM_WIPEONFORK)] = "wf",
711 [ilog2(VM_DONTDUMP)] = "dd",
712 #ifdef CONFIG_ARM64_BTI
713 [ilog2(VM_ARM64_BTI)] = "bt",
714 #endif
715 #ifdef CONFIG_MEM_SOFT_DIRTY
716 [ilog2(VM_SOFTDIRTY)] = "sd",
717 #endif
718 [ilog2(VM_MIXEDMAP)] = "mm",
719 [ilog2(VM_HUGEPAGE)] = "hg",
720 [ilog2(VM_NOHUGEPAGE)] = "nh",
721 [ilog2(VM_MERGEABLE)] = "mg",
722 [ilog2(VM_UFFD_MISSING)]= "um",
723 [ilog2(VM_UFFD_WP)] = "uw",
724 #ifdef CONFIG_ARM64_MTE
725 [ilog2(VM_MTE)] = "mt",
726 [ilog2(VM_MTE_ALLOWED)] = "",
727 #endif
728 #ifdef CONFIG_ARCH_HAS_PKEYS
729 /* These come out via ProtectionKey: */
730 [ilog2(VM_PKEY_BIT0)] = "",
731 [ilog2(VM_PKEY_BIT1)] = "",
732 [ilog2(VM_PKEY_BIT2)] = "",
733 [ilog2(VM_PKEY_BIT3)] = "",
734 #if VM_PKEY_BIT4
735 [ilog2(VM_PKEY_BIT4)] = "",
736 #endif
737 #endif /* CONFIG_ARCH_HAS_PKEYS */
738 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
739 [ilog2(VM_UFFD_MINOR)] = "ui",
740 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
741 };
742 size_t i;
743
744 seq_puts(m, "VmFlags: ");
745 for (i = 0; i < BITS_PER_LONG; i++) {
746 if (!mnemonics[i][0])
747 continue;
748 if (vma->vm_flags & (1UL << i)) {
749 seq_putc(m, mnemonics[i][0]);
750 seq_putc(m, mnemonics[i][1]);
751 seq_putc(m, ' ');
752 }
753 }
754 seq_putc(m, '\n');
755 }
756
757 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)758 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
759 unsigned long addr, unsigned long end,
760 struct mm_walk *walk)
761 {
762 struct mem_size_stats *mss = walk->private;
763 struct vm_area_struct *vma = walk->vma;
764 struct page *page = NULL;
765
766 if (pte_present(*pte)) {
767 page = vm_normal_page(vma, addr, *pte);
768 } else if (is_swap_pte(*pte)) {
769 swp_entry_t swpent = pte_to_swp_entry(*pte);
770
771 if (is_migration_entry(swpent))
772 page = migration_entry_to_page(swpent);
773 else if (is_device_private_entry(swpent))
774 page = device_private_entry_to_page(swpent);
775 }
776 if (page) {
777 int mapcount = page_mapcount(page);
778
779 if (mapcount >= 2)
780 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
781 else
782 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
783 }
784 return 0;
785 }
786 #else
787 #define smaps_hugetlb_range NULL
788 #endif /* HUGETLB_PAGE */
789
790 static const struct mm_walk_ops smaps_walk_ops = {
791 .pmd_entry = smaps_pte_range,
792 .hugetlb_entry = smaps_hugetlb_range,
793 };
794
795 static const struct mm_walk_ops smaps_shmem_walk_ops = {
796 .pmd_entry = smaps_pte_range,
797 .hugetlb_entry = smaps_hugetlb_range,
798 .pte_hole = smaps_pte_hole,
799 };
800
801 /*
802 * Gather mem stats from @vma with the indicated beginning
803 * address @start, and keep them in @mss.
804 *
805 * Use vm_start of @vma as the beginning address if @start is 0.
806 */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)807 static void smap_gather_stats(struct vm_area_struct *vma,
808 struct mem_size_stats *mss, unsigned long start)
809 {
810 const struct mm_walk_ops *ops = &smaps_walk_ops;
811
812 /* Invalid start */
813 if (start >= vma->vm_end)
814 return;
815
816 #ifdef CONFIG_SHMEM
817 /* In case of smaps_rollup, reset the value from previous vma */
818 mss->check_shmem_swap = false;
819 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
820 /*
821 * For shared or readonly shmem mappings we know that all
822 * swapped out pages belong to the shmem object, and we can
823 * obtain the swap value much more efficiently. For private
824 * writable mappings, we might have COW pages that are
825 * not affected by the parent swapped out pages of the shmem
826 * object, so we have to distinguish them during the page walk.
827 * Unless we know that the shmem object (or the part mapped by
828 * our VMA) has no swapped out pages at all.
829 */
830 unsigned long shmem_swapped = shmem_swap_usage(vma);
831
832 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
833 !(vma->vm_flags & VM_WRITE))) {
834 mss->swap += shmem_swapped;
835 } else {
836 mss->check_shmem_swap = true;
837 ops = &smaps_shmem_walk_ops;
838 }
839 }
840 #endif
841 /* mmap_lock is held in m_start */
842 if (!start)
843 walk_page_vma(vma, ops, mss);
844 else
845 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
846 }
847
848 #define SEQ_PUT_DEC(str, val) \
849 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
850
851 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)852 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
853 bool rollup_mode)
854 {
855 SEQ_PUT_DEC("Rss: ", mss->resident);
856 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
857 if (rollup_mode) {
858 /*
859 * These are meaningful only for smaps_rollup, otherwise two of
860 * them are zero, and the other one is the same as Pss.
861 */
862 SEQ_PUT_DEC(" kB\nPss_Anon: ",
863 mss->pss_anon >> PSS_SHIFT);
864 SEQ_PUT_DEC(" kB\nPss_File: ",
865 mss->pss_file >> PSS_SHIFT);
866 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
867 mss->pss_shmem >> PSS_SHIFT);
868 }
869 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
870 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
871 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
872 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
873 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
874 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
875 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
876 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
877 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
878 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
879 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
880 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
881 mss->private_hugetlb >> 10, 7);
882 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
883 SEQ_PUT_DEC(" kB\nSwapPss: ",
884 mss->swap_pss >> PSS_SHIFT);
885 SEQ_PUT_DEC(" kB\nLocked: ",
886 mss->pss_locked >> PSS_SHIFT);
887 seq_puts(m, " kB\n");
888 }
889
show_smap(struct seq_file * m,void * v)890 static int show_smap(struct seq_file *m, void *v)
891 {
892 struct vm_area_struct *vma = v;
893 struct mem_size_stats mss;
894
895 memset(&mss, 0, sizeof(mss));
896
897 smap_gather_stats(vma, &mss, 0);
898
899 show_map_vma(m, vma);
900 if (vma_get_anon_name(vma)) {
901 seq_puts(m, "Name: ");
902 seq_print_vma_name(m, vma);
903 seq_putc(m, '\n');
904 }
905
906 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
907 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
908 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
909 seq_puts(m, " kB\n");
910
911 __show_smap(m, &mss, false);
912
913 seq_printf(m, "THPeligible: %d\n",
914 transparent_hugepage_active(vma));
915
916 if (arch_pkeys_enabled())
917 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
918 show_smap_vma_flags(m, vma);
919
920 return 0;
921 }
922
show_smaps_rollup(struct seq_file * m,void * v)923 static int show_smaps_rollup(struct seq_file *m, void *v)
924 {
925 struct proc_maps_private *priv = m->private;
926 struct mem_size_stats mss;
927 struct mm_struct *mm;
928 struct vm_area_struct *vma;
929 unsigned long last_vma_end = 0;
930 int ret = 0;
931
932 priv->task = get_proc_task(priv->inode);
933 if (!priv->task)
934 return -ESRCH;
935
936 mm = priv->mm;
937 if (!mm || !mmget_not_zero(mm)) {
938 ret = -ESRCH;
939 goto out_put_task;
940 }
941
942 memset(&mss, 0, sizeof(mss));
943
944 ret = mmap_read_lock_killable(mm);
945 if (ret)
946 goto out_put_mm;
947
948 hold_task_mempolicy(priv);
949
950 for (vma = priv->mm->mmap; vma;) {
951 smap_gather_stats(vma, &mss, 0);
952 last_vma_end = vma->vm_end;
953
954 /*
955 * Release mmap_lock temporarily if someone wants to
956 * access it for write request.
957 */
958 if (mmap_lock_is_contended(mm)) {
959 mmap_read_unlock(mm);
960 ret = mmap_read_lock_killable(mm);
961 if (ret) {
962 release_task_mempolicy(priv);
963 goto out_put_mm;
964 }
965
966 /*
967 * After dropping the lock, there are four cases to
968 * consider. See the following example for explanation.
969 *
970 * +------+------+-----------+
971 * | VMA1 | VMA2 | VMA3 |
972 * +------+------+-----------+
973 * | | | |
974 * 4k 8k 16k 400k
975 *
976 * Suppose we drop the lock after reading VMA2 due to
977 * contention, then we get:
978 *
979 * last_vma_end = 16k
980 *
981 * 1) VMA2 is freed, but VMA3 exists:
982 *
983 * find_vma(mm, 16k - 1) will return VMA3.
984 * In this case, just continue from VMA3.
985 *
986 * 2) VMA2 still exists:
987 *
988 * find_vma(mm, 16k - 1) will return VMA2.
989 * Iterate the loop like the original one.
990 *
991 * 3) No more VMAs can be found:
992 *
993 * find_vma(mm, 16k - 1) will return NULL.
994 * No more things to do, just break.
995 *
996 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
997 *
998 * find_vma(mm, 16k - 1) will return VMA' whose range
999 * contains last_vma_end.
1000 * Iterate VMA' from last_vma_end.
1001 */
1002 vma = find_vma(mm, last_vma_end - 1);
1003 /* Case 3 above */
1004 if (!vma)
1005 break;
1006
1007 /* Case 1 above */
1008 if (vma->vm_start >= last_vma_end)
1009 continue;
1010
1011 /* Case 4 above */
1012 if (vma->vm_end > last_vma_end)
1013 smap_gather_stats(vma, &mss, last_vma_end);
1014 }
1015 /* Case 2 above */
1016 vma = vma->vm_next;
1017 }
1018
1019 show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
1020 last_vma_end, 0, 0, 0, 0);
1021 seq_pad(m, ' ');
1022 seq_puts(m, "[rollup]\n");
1023
1024 __show_smap(m, &mss, true);
1025
1026 release_task_mempolicy(priv);
1027 mmap_read_unlock(mm);
1028
1029 out_put_mm:
1030 mmput(mm);
1031 out_put_task:
1032 put_task_struct(priv->task);
1033 priv->task = NULL;
1034
1035 return ret;
1036 }
1037 #undef SEQ_PUT_DEC
1038
1039 static const struct seq_operations proc_pid_smaps_op = {
1040 .start = m_start,
1041 .next = m_next,
1042 .stop = m_stop,
1043 .show = show_smap
1044 };
1045
pid_smaps_open(struct inode * inode,struct file * file)1046 static int pid_smaps_open(struct inode *inode, struct file *file)
1047 {
1048 return do_maps_open(inode, file, &proc_pid_smaps_op);
1049 }
1050
smaps_rollup_open(struct inode * inode,struct file * file)1051 static int smaps_rollup_open(struct inode *inode, struct file *file)
1052 {
1053 int ret;
1054 struct proc_maps_private *priv;
1055
1056 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1057 if (!priv)
1058 return -ENOMEM;
1059
1060 ret = single_open(file, show_smaps_rollup, priv);
1061 if (ret)
1062 goto out_free;
1063
1064 priv->inode = inode;
1065 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1066 if (IS_ERR(priv->mm)) {
1067 ret = PTR_ERR(priv->mm);
1068
1069 single_release(inode, file);
1070 goto out_free;
1071 }
1072
1073 return 0;
1074
1075 out_free:
1076 kfree(priv);
1077 return ret;
1078 }
1079
smaps_rollup_release(struct inode * inode,struct file * file)1080 static int smaps_rollup_release(struct inode *inode, struct file *file)
1081 {
1082 struct seq_file *seq = file->private_data;
1083 struct proc_maps_private *priv = seq->private;
1084
1085 if (priv->mm)
1086 mmdrop(priv->mm);
1087
1088 kfree(priv);
1089 return single_release(inode, file);
1090 }
1091
1092 const struct file_operations proc_pid_smaps_operations = {
1093 .open = pid_smaps_open,
1094 .read = seq_read,
1095 .llseek = seq_lseek,
1096 .release = proc_map_release,
1097 };
1098
1099 const struct file_operations proc_pid_smaps_rollup_operations = {
1100 .open = smaps_rollup_open,
1101 .read = seq_read,
1102 .llseek = seq_lseek,
1103 .release = smaps_rollup_release,
1104 };
1105
1106 enum clear_refs_types {
1107 CLEAR_REFS_ALL = 1,
1108 CLEAR_REFS_ANON,
1109 CLEAR_REFS_MAPPED,
1110 CLEAR_REFS_SOFT_DIRTY,
1111 CLEAR_REFS_MM_HIWATER_RSS,
1112 CLEAR_REFS_LAST,
1113 };
1114
1115 struct clear_refs_private {
1116 enum clear_refs_types type;
1117 };
1118
1119 #ifdef CONFIG_MEM_SOFT_DIRTY
1120
1121 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1122
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1123 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1124 {
1125 struct page *page;
1126
1127 if (!pte_write(pte))
1128 return false;
1129 if (!is_cow_mapping(vma->vm_flags))
1130 return false;
1131 if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1132 return false;
1133 page = vm_normal_page(vma, addr, pte);
1134 if (!page)
1135 return false;
1136 return page_maybe_dma_pinned(page);
1137 }
1138
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1139 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1140 unsigned long addr, pte_t *pte)
1141 {
1142 /*
1143 * The soft-dirty tracker uses #PF-s to catch writes
1144 * to pages, so write-protect the pte as well. See the
1145 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1146 * of how soft-dirty works.
1147 */
1148 pte_t ptent = *pte;
1149
1150 if (pte_present(ptent)) {
1151 pte_t old_pte;
1152
1153 if (pte_is_pinned(vma, addr, ptent))
1154 return;
1155 old_pte = ptep_modify_prot_start(vma, addr, pte);
1156 ptent = pte_wrprotect(old_pte);
1157 ptent = pte_clear_soft_dirty(ptent);
1158 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1159 } else if (is_swap_pte(ptent)) {
1160 ptent = pte_swp_clear_soft_dirty(ptent);
1161 set_pte_at(vma->vm_mm, addr, pte, ptent);
1162 }
1163 }
1164 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1165 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1166 unsigned long addr, pte_t *pte)
1167 {
1168 }
1169 #endif
1170
1171 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1172 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1173 unsigned long addr, pmd_t *pmdp)
1174 {
1175 pmd_t old, pmd = *pmdp;
1176
1177 if (pmd_present(pmd)) {
1178 /* See comment in change_huge_pmd() */
1179 old = pmdp_invalidate(vma, addr, pmdp);
1180 if (pmd_dirty(old))
1181 pmd = pmd_mkdirty(pmd);
1182 if (pmd_young(old))
1183 pmd = pmd_mkyoung(pmd);
1184
1185 pmd = pmd_wrprotect(pmd);
1186 pmd = pmd_clear_soft_dirty(pmd);
1187
1188 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1189 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1190 pmd = pmd_swp_clear_soft_dirty(pmd);
1191 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1192 }
1193 }
1194 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1195 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1196 unsigned long addr, pmd_t *pmdp)
1197 {
1198 }
1199 #endif
1200
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1201 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1202 unsigned long end, struct mm_walk *walk)
1203 {
1204 struct clear_refs_private *cp = walk->private;
1205 struct vm_area_struct *vma = walk->vma;
1206 pte_t *pte, ptent;
1207 spinlock_t *ptl;
1208 struct page *page;
1209
1210 ptl = pmd_trans_huge_lock(pmd, vma);
1211 if (ptl) {
1212 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1213 clear_soft_dirty_pmd(vma, addr, pmd);
1214 goto out;
1215 }
1216
1217 if (!pmd_present(*pmd))
1218 goto out;
1219
1220 page = pmd_page(*pmd);
1221
1222 /* Clear accessed and referenced bits. */
1223 pmdp_test_and_clear_young(vma, addr, pmd);
1224 test_and_clear_page_young(page);
1225 ClearPageReferenced(page);
1226 out:
1227 spin_unlock(ptl);
1228 return 0;
1229 }
1230
1231 if (pmd_trans_unstable(pmd))
1232 return 0;
1233
1234 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1235 for (; addr != end; pte++, addr += PAGE_SIZE) {
1236 ptent = *pte;
1237
1238 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1239 clear_soft_dirty(vma, addr, pte);
1240 continue;
1241 }
1242
1243 if (!pte_present(ptent))
1244 continue;
1245
1246 page = vm_normal_page(vma, addr, ptent);
1247 if (!page)
1248 continue;
1249
1250 /* Clear accessed and referenced bits. */
1251 ptep_test_and_clear_young(vma, addr, pte);
1252 test_and_clear_page_young(page);
1253 ClearPageReferenced(page);
1254 }
1255 pte_unmap_unlock(pte - 1, ptl);
1256 cond_resched();
1257 return 0;
1258 }
1259
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1260 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1261 struct mm_walk *walk)
1262 {
1263 struct clear_refs_private *cp = walk->private;
1264 struct vm_area_struct *vma = walk->vma;
1265
1266 if (vma->vm_flags & VM_PFNMAP)
1267 return 1;
1268
1269 /*
1270 * Writing 1 to /proc/pid/clear_refs affects all pages.
1271 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1272 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1273 * Writing 4 to /proc/pid/clear_refs affects all pages.
1274 */
1275 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1276 return 1;
1277 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1278 return 1;
1279 return 0;
1280 }
1281
1282 static const struct mm_walk_ops clear_refs_walk_ops = {
1283 .pmd_entry = clear_refs_pte_range,
1284 .test_walk = clear_refs_test_walk,
1285 };
1286
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1287 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1288 size_t count, loff_t *ppos)
1289 {
1290 struct task_struct *task;
1291 char buffer[PROC_NUMBUF];
1292 struct mm_struct *mm;
1293 struct vm_area_struct *vma;
1294 enum clear_refs_types type;
1295 int itype;
1296 int rv;
1297
1298 memset(buffer, 0, sizeof(buffer));
1299 if (count > sizeof(buffer) - 1)
1300 count = sizeof(buffer) - 1;
1301 if (copy_from_user(buffer, buf, count))
1302 return -EFAULT;
1303 rv = kstrtoint(strstrip(buffer), 10, &itype);
1304 if (rv < 0)
1305 return rv;
1306 type = (enum clear_refs_types)itype;
1307 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1308 return -EINVAL;
1309
1310 task = get_proc_task(file_inode(file));
1311 if (!task)
1312 return -ESRCH;
1313 mm = get_task_mm(task);
1314 if (mm) {
1315 struct mmu_notifier_range range;
1316 struct clear_refs_private cp = {
1317 .type = type,
1318 };
1319
1320 if (mmap_write_lock_killable(mm)) {
1321 count = -EINTR;
1322 goto out_mm;
1323 }
1324 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1325 /*
1326 * Writing 5 to /proc/pid/clear_refs resets the peak
1327 * resident set size to this mm's current rss value.
1328 */
1329 reset_mm_hiwater_rss(mm);
1330 goto out_unlock;
1331 }
1332
1333 if (type == CLEAR_REFS_SOFT_DIRTY) {
1334 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1335 if (!(vma->vm_flags & VM_SOFTDIRTY))
1336 continue;
1337 vm_write_begin(vma);
1338 WRITE_ONCE(vma->vm_flags,
1339 vma->vm_flags & ~VM_SOFTDIRTY);
1340 vma_set_page_prot(vma);
1341 vm_write_end(vma);
1342 }
1343
1344 inc_tlb_flush_pending(mm);
1345 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1346 0, NULL, mm, 0, -1UL);
1347 mmu_notifier_invalidate_range_start(&range);
1348 }
1349 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1350 &cp);
1351 if (type == CLEAR_REFS_SOFT_DIRTY) {
1352 mmu_notifier_invalidate_range_end(&range);
1353 flush_tlb_mm(mm);
1354 dec_tlb_flush_pending(mm);
1355 }
1356 out_unlock:
1357 mmap_write_unlock(mm);
1358 out_mm:
1359 mmput(mm);
1360 }
1361 put_task_struct(task);
1362
1363 return count;
1364 }
1365
1366 const struct file_operations proc_clear_refs_operations = {
1367 .write = clear_refs_write,
1368 .llseek = noop_llseek,
1369 };
1370
1371 typedef struct {
1372 u64 pme;
1373 } pagemap_entry_t;
1374
1375 struct pagemapread {
1376 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1377 pagemap_entry_t *buffer;
1378 bool show_pfn;
1379 };
1380
1381 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1382 #define PAGEMAP_WALK_MASK (PMD_MASK)
1383
1384 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1385 #define PM_PFRAME_BITS 55
1386 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1387 #define PM_SOFT_DIRTY BIT_ULL(55)
1388 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1389 #define PM_FILE BIT_ULL(61)
1390 #define PM_SWAP BIT_ULL(62)
1391 #define PM_PRESENT BIT_ULL(63)
1392
1393 #define PM_END_OF_BUFFER 1
1394
make_pme(u64 frame,u64 flags)1395 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1396 {
1397 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1398 }
1399
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1400 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1401 struct pagemapread *pm)
1402 {
1403 pm->buffer[pm->pos++] = *pme;
1404 if (pm->pos >= pm->len)
1405 return PM_END_OF_BUFFER;
1406 return 0;
1407 }
1408
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1409 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1410 __always_unused int depth, struct mm_walk *walk)
1411 {
1412 struct pagemapread *pm = walk->private;
1413 unsigned long addr = start;
1414 int err = 0;
1415
1416 while (addr < end) {
1417 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1418 pagemap_entry_t pme = make_pme(0, 0);
1419 /* End of address space hole, which we mark as non-present. */
1420 unsigned long hole_end;
1421
1422 if (vma)
1423 hole_end = min(end, vma->vm_start);
1424 else
1425 hole_end = end;
1426
1427 for (; addr < hole_end; addr += PAGE_SIZE) {
1428 err = add_to_pagemap(addr, &pme, pm);
1429 if (err)
1430 goto out;
1431 }
1432
1433 if (!vma)
1434 break;
1435
1436 /* Addresses in the VMA. */
1437 if (vma->vm_flags & VM_SOFTDIRTY)
1438 pme = make_pme(0, PM_SOFT_DIRTY);
1439 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1440 err = add_to_pagemap(addr, &pme, pm);
1441 if (err)
1442 goto out;
1443 }
1444 }
1445 out:
1446 return err;
1447 }
1448
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1449 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1450 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1451 {
1452 u64 frame = 0, flags = 0;
1453 struct page *page = NULL;
1454 bool migration = false;
1455
1456 if (pte_present(pte)) {
1457 if (pm->show_pfn)
1458 frame = pte_pfn(pte);
1459 flags |= PM_PRESENT;
1460 page = vm_normal_page(vma, addr, pte);
1461 if (pte_soft_dirty(pte))
1462 flags |= PM_SOFT_DIRTY;
1463 } else if (is_swap_pte(pte)) {
1464 swp_entry_t entry;
1465 if (pte_swp_soft_dirty(pte))
1466 flags |= PM_SOFT_DIRTY;
1467 entry = pte_to_swp_entry(pte);
1468 if (pm->show_pfn)
1469 frame = swp_type(entry) |
1470 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1471 flags |= PM_SWAP;
1472 if (is_migration_entry(entry)) {
1473 migration = true;
1474 page = migration_entry_to_page(entry);
1475 }
1476
1477 if (is_device_private_entry(entry))
1478 page = device_private_entry_to_page(entry);
1479 }
1480
1481 if (page && !PageAnon(page))
1482 flags |= PM_FILE;
1483 if (page && !migration && page_mapcount(page) == 1)
1484 flags |= PM_MMAP_EXCLUSIVE;
1485 if (vma->vm_flags & VM_SOFTDIRTY)
1486 flags |= PM_SOFT_DIRTY;
1487
1488 return make_pme(frame, flags);
1489 }
1490
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1491 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1492 struct mm_walk *walk)
1493 {
1494 struct vm_area_struct *vma = walk->vma;
1495 struct pagemapread *pm = walk->private;
1496 spinlock_t *ptl;
1497 pte_t *pte, *orig_pte;
1498 int err = 0;
1499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1500 bool migration = false;
1501
1502 ptl = pmd_trans_huge_lock(pmdp, vma);
1503 if (ptl) {
1504 u64 flags = 0, frame = 0;
1505 pmd_t pmd = *pmdp;
1506 struct page *page = NULL;
1507
1508 if (vma->vm_flags & VM_SOFTDIRTY)
1509 flags |= PM_SOFT_DIRTY;
1510
1511 if (pmd_present(pmd)) {
1512 page = pmd_page(pmd);
1513
1514 flags |= PM_PRESENT;
1515 if (pmd_soft_dirty(pmd))
1516 flags |= PM_SOFT_DIRTY;
1517 if (pm->show_pfn)
1518 frame = pmd_pfn(pmd) +
1519 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1520 }
1521 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1522 else if (is_swap_pmd(pmd)) {
1523 swp_entry_t entry = pmd_to_swp_entry(pmd);
1524 unsigned long offset;
1525
1526 if (pm->show_pfn) {
1527 offset = swp_offset(entry) +
1528 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1529 frame = swp_type(entry) |
1530 (offset << MAX_SWAPFILES_SHIFT);
1531 }
1532 flags |= PM_SWAP;
1533 if (pmd_swp_soft_dirty(pmd))
1534 flags |= PM_SOFT_DIRTY;
1535 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1536 migration = is_migration_entry(entry);
1537 page = migration_entry_to_page(entry);
1538 }
1539 #endif
1540
1541 if (page && !migration && page_mapcount(page) == 1)
1542 flags |= PM_MMAP_EXCLUSIVE;
1543
1544 for (; addr != end; addr += PAGE_SIZE) {
1545 pagemap_entry_t pme = make_pme(frame, flags);
1546
1547 err = add_to_pagemap(addr, &pme, pm);
1548 if (err)
1549 break;
1550 if (pm->show_pfn) {
1551 if (flags & PM_PRESENT)
1552 frame++;
1553 else if (flags & PM_SWAP)
1554 frame += (1 << MAX_SWAPFILES_SHIFT);
1555 }
1556 }
1557 spin_unlock(ptl);
1558 return err;
1559 }
1560
1561 if (pmd_trans_unstable(pmdp))
1562 return 0;
1563 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1564
1565 /*
1566 * We can assume that @vma always points to a valid one and @end never
1567 * goes beyond vma->vm_end.
1568 */
1569 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1570 for (; addr < end; pte++, addr += PAGE_SIZE) {
1571 pagemap_entry_t pme;
1572
1573 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1574 err = add_to_pagemap(addr, &pme, pm);
1575 if (err)
1576 break;
1577 }
1578 pte_unmap_unlock(orig_pte, ptl);
1579
1580 cond_resched();
1581
1582 return err;
1583 }
1584
1585 #ifdef CONFIG_HUGETLB_PAGE
1586 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1587 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1588 unsigned long addr, unsigned long end,
1589 struct mm_walk *walk)
1590 {
1591 struct pagemapread *pm = walk->private;
1592 struct vm_area_struct *vma = walk->vma;
1593 u64 flags = 0, frame = 0;
1594 int err = 0;
1595 pte_t pte;
1596
1597 if (vma->vm_flags & VM_SOFTDIRTY)
1598 flags |= PM_SOFT_DIRTY;
1599
1600 pte = huge_ptep_get(ptep);
1601 if (pte_present(pte)) {
1602 struct page *page = pte_page(pte);
1603
1604 if (!PageAnon(page))
1605 flags |= PM_FILE;
1606
1607 if (page_mapcount(page) == 1)
1608 flags |= PM_MMAP_EXCLUSIVE;
1609
1610 flags |= PM_PRESENT;
1611 if (pm->show_pfn)
1612 frame = pte_pfn(pte) +
1613 ((addr & ~hmask) >> PAGE_SHIFT);
1614 }
1615
1616 for (; addr != end; addr += PAGE_SIZE) {
1617 pagemap_entry_t pme = make_pme(frame, flags);
1618
1619 err = add_to_pagemap(addr, &pme, pm);
1620 if (err)
1621 return err;
1622 if (pm->show_pfn && (flags & PM_PRESENT))
1623 frame++;
1624 }
1625
1626 cond_resched();
1627
1628 return err;
1629 }
1630 #else
1631 #define pagemap_hugetlb_range NULL
1632 #endif /* HUGETLB_PAGE */
1633
1634 static const struct mm_walk_ops pagemap_ops = {
1635 .pmd_entry = pagemap_pmd_range,
1636 .pte_hole = pagemap_pte_hole,
1637 .hugetlb_entry = pagemap_hugetlb_range,
1638 };
1639
1640 /*
1641 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1642 *
1643 * For each page in the address space, this file contains one 64-bit entry
1644 * consisting of the following:
1645 *
1646 * Bits 0-54 page frame number (PFN) if present
1647 * Bits 0-4 swap type if swapped
1648 * Bits 5-54 swap offset if swapped
1649 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1650 * Bit 56 page exclusively mapped
1651 * Bits 57-60 zero
1652 * Bit 61 page is file-page or shared-anon
1653 * Bit 62 page swapped
1654 * Bit 63 page present
1655 *
1656 * If the page is not present but in swap, then the PFN contains an
1657 * encoding of the swap file number and the page's offset into the
1658 * swap. Unmapped pages return a null PFN. This allows determining
1659 * precisely which pages are mapped (or in swap) and comparing mapped
1660 * pages between processes.
1661 *
1662 * Efficient users of this interface will use /proc/pid/maps to
1663 * determine which areas of memory are actually mapped and llseek to
1664 * skip over unmapped regions.
1665 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1666 static ssize_t pagemap_read(struct file *file, char __user *buf,
1667 size_t count, loff_t *ppos)
1668 {
1669 struct mm_struct *mm = file->private_data;
1670 struct pagemapread pm;
1671 unsigned long src;
1672 unsigned long svpfn;
1673 unsigned long start_vaddr;
1674 unsigned long end_vaddr;
1675 int ret = 0, copied = 0;
1676
1677 if (!mm || !mmget_not_zero(mm))
1678 goto out;
1679
1680 ret = -EINVAL;
1681 /* file position must be aligned */
1682 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1683 goto out_mm;
1684
1685 ret = 0;
1686 if (!count)
1687 goto out_mm;
1688
1689 /* do not disclose physical addresses: attack vector */
1690 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1691
1692 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1693 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1694 ret = -ENOMEM;
1695 if (!pm.buffer)
1696 goto out_mm;
1697
1698 src = *ppos;
1699 svpfn = src / PM_ENTRY_BYTES;
1700 end_vaddr = mm->task_size;
1701
1702 /* watch out for wraparound */
1703 start_vaddr = end_vaddr;
1704 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1705 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1706
1707 /* Ensure the address is inside the task */
1708 if (start_vaddr > mm->task_size)
1709 start_vaddr = end_vaddr;
1710
1711 /*
1712 * The odds are that this will stop walking way
1713 * before end_vaddr, because the length of the
1714 * user buffer is tracked in "pm", and the walk
1715 * will stop when we hit the end of the buffer.
1716 */
1717 ret = 0;
1718 while (count && (start_vaddr < end_vaddr)) {
1719 int len;
1720 unsigned long end;
1721
1722 pm.pos = 0;
1723 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1724 /* overflow ? */
1725 if (end < start_vaddr || end > end_vaddr)
1726 end = end_vaddr;
1727 ret = mmap_read_lock_killable(mm);
1728 if (ret)
1729 goto out_free;
1730 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1731 mmap_read_unlock(mm);
1732 start_vaddr = end;
1733
1734 len = min(count, PM_ENTRY_BYTES * pm.pos);
1735 if (copy_to_user(buf, pm.buffer, len)) {
1736 ret = -EFAULT;
1737 goto out_free;
1738 }
1739 copied += len;
1740 buf += len;
1741 count -= len;
1742 }
1743 *ppos += copied;
1744 if (!ret || ret == PM_END_OF_BUFFER)
1745 ret = copied;
1746
1747 out_free:
1748 kfree(pm.buffer);
1749 out_mm:
1750 mmput(mm);
1751 out:
1752 return ret;
1753 }
1754
pagemap_open(struct inode * inode,struct file * file)1755 static int pagemap_open(struct inode *inode, struct file *file)
1756 {
1757 struct mm_struct *mm;
1758
1759 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1760 if (IS_ERR(mm))
1761 return PTR_ERR(mm);
1762 file->private_data = mm;
1763 return 0;
1764 }
1765
pagemap_release(struct inode * inode,struct file * file)1766 static int pagemap_release(struct inode *inode, struct file *file)
1767 {
1768 struct mm_struct *mm = file->private_data;
1769
1770 if (mm)
1771 mmdrop(mm);
1772 return 0;
1773 }
1774
1775 const struct file_operations proc_pagemap_operations = {
1776 .llseek = mem_lseek, /* borrow this */
1777 .read = pagemap_read,
1778 .open = pagemap_open,
1779 .release = pagemap_release,
1780 };
1781 #endif /* CONFIG_PROC_PAGE_MONITOR */
1782
1783 #ifdef CONFIG_NUMA
1784
1785 struct numa_maps {
1786 unsigned long pages;
1787 unsigned long anon;
1788 unsigned long active;
1789 unsigned long writeback;
1790 unsigned long mapcount_max;
1791 unsigned long dirty;
1792 unsigned long swapcache;
1793 unsigned long node[MAX_NUMNODES];
1794 };
1795
1796 struct numa_maps_private {
1797 struct proc_maps_private proc_maps;
1798 struct numa_maps md;
1799 };
1800
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1801 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1802 unsigned long nr_pages)
1803 {
1804 int count = page_mapcount(page);
1805
1806 md->pages += nr_pages;
1807 if (pte_dirty || PageDirty(page))
1808 md->dirty += nr_pages;
1809
1810 if (PageSwapCache(page))
1811 md->swapcache += nr_pages;
1812
1813 if (PageActive(page) || PageUnevictable(page))
1814 md->active += nr_pages;
1815
1816 if (PageWriteback(page))
1817 md->writeback += nr_pages;
1818
1819 if (PageAnon(page))
1820 md->anon += nr_pages;
1821
1822 if (count > md->mapcount_max)
1823 md->mapcount_max = count;
1824
1825 md->node[page_to_nid(page)] += nr_pages;
1826 }
1827
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1828 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1829 unsigned long addr)
1830 {
1831 struct page *page;
1832 int nid;
1833
1834 if (!pte_present(pte))
1835 return NULL;
1836
1837 page = vm_normal_page(vma, addr, pte);
1838 if (!page)
1839 return NULL;
1840
1841 if (PageReserved(page))
1842 return NULL;
1843
1844 nid = page_to_nid(page);
1845 if (!node_isset(nid, node_states[N_MEMORY]))
1846 return NULL;
1847
1848 return page;
1849 }
1850
1851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1852 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1853 struct vm_area_struct *vma,
1854 unsigned long addr)
1855 {
1856 struct page *page;
1857 int nid;
1858
1859 if (!pmd_present(pmd))
1860 return NULL;
1861
1862 page = vm_normal_page_pmd(vma, addr, pmd);
1863 if (!page)
1864 return NULL;
1865
1866 if (PageReserved(page))
1867 return NULL;
1868
1869 nid = page_to_nid(page);
1870 if (!node_isset(nid, node_states[N_MEMORY]))
1871 return NULL;
1872
1873 return page;
1874 }
1875 #endif
1876
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1877 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1878 unsigned long end, struct mm_walk *walk)
1879 {
1880 struct numa_maps *md = walk->private;
1881 struct vm_area_struct *vma = walk->vma;
1882 spinlock_t *ptl;
1883 pte_t *orig_pte;
1884 pte_t *pte;
1885
1886 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1887 ptl = pmd_trans_huge_lock(pmd, vma);
1888 if (ptl) {
1889 struct page *page;
1890
1891 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1892 if (page)
1893 gather_stats(page, md, pmd_dirty(*pmd),
1894 HPAGE_PMD_SIZE/PAGE_SIZE);
1895 spin_unlock(ptl);
1896 return 0;
1897 }
1898
1899 if (pmd_trans_unstable(pmd))
1900 return 0;
1901 #endif
1902 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1903 do {
1904 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1905 if (!page)
1906 continue;
1907 gather_stats(page, md, pte_dirty(*pte), 1);
1908
1909 } while (pte++, addr += PAGE_SIZE, addr != end);
1910 pte_unmap_unlock(orig_pte, ptl);
1911 cond_resched();
1912 return 0;
1913 }
1914 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1915 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1916 unsigned long addr, unsigned long end, struct mm_walk *walk)
1917 {
1918 pte_t huge_pte = huge_ptep_get(pte);
1919 struct numa_maps *md;
1920 struct page *page;
1921
1922 if (!pte_present(huge_pte))
1923 return 0;
1924
1925 page = pte_page(huge_pte);
1926 if (!page)
1927 return 0;
1928
1929 md = walk->private;
1930 gather_stats(page, md, pte_dirty(huge_pte), 1);
1931 return 0;
1932 }
1933
1934 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1935 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1936 unsigned long addr, unsigned long end, struct mm_walk *walk)
1937 {
1938 return 0;
1939 }
1940 #endif
1941
1942 static const struct mm_walk_ops show_numa_ops = {
1943 .hugetlb_entry = gather_hugetlb_stats,
1944 .pmd_entry = gather_pte_stats,
1945 };
1946
1947 /*
1948 * Display pages allocated per node and memory policy via /proc.
1949 */
show_numa_map(struct seq_file * m,void * v)1950 static int show_numa_map(struct seq_file *m, void *v)
1951 {
1952 struct numa_maps_private *numa_priv = m->private;
1953 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1954 struct vm_area_struct *vma = v;
1955 struct numa_maps *md = &numa_priv->md;
1956 struct file *file = vma->vm_file;
1957 struct mm_struct *mm = vma->vm_mm;
1958 struct mempolicy *pol;
1959 char buffer[64];
1960 int nid;
1961
1962 if (!mm)
1963 return 0;
1964
1965 /* Ensure we start with an empty set of numa_maps statistics. */
1966 memset(md, 0, sizeof(*md));
1967
1968 pol = __get_vma_policy(vma, vma->vm_start);
1969 if (pol) {
1970 mpol_to_str(buffer, sizeof(buffer), pol);
1971 mpol_cond_put(pol);
1972 } else {
1973 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1974 }
1975
1976 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1977
1978 if (file) {
1979 seq_puts(m, " file=");
1980 seq_file_path(m, file, "\n\t= ");
1981 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1982 seq_puts(m, " heap");
1983 } else if (is_stack(vma)) {
1984 seq_puts(m, " stack");
1985 }
1986
1987 if (is_vm_hugetlb_page(vma))
1988 seq_puts(m, " huge");
1989
1990 /* mmap_lock is held by m_start */
1991 walk_page_vma(vma, &show_numa_ops, md);
1992
1993 if (!md->pages)
1994 goto out;
1995
1996 if (md->anon)
1997 seq_printf(m, " anon=%lu", md->anon);
1998
1999 if (md->dirty)
2000 seq_printf(m, " dirty=%lu", md->dirty);
2001
2002 if (md->pages != md->anon && md->pages != md->dirty)
2003 seq_printf(m, " mapped=%lu", md->pages);
2004
2005 if (md->mapcount_max > 1)
2006 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2007
2008 if (md->swapcache)
2009 seq_printf(m, " swapcache=%lu", md->swapcache);
2010
2011 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2012 seq_printf(m, " active=%lu", md->active);
2013
2014 if (md->writeback)
2015 seq_printf(m, " writeback=%lu", md->writeback);
2016
2017 for_each_node_state(nid, N_MEMORY)
2018 if (md->node[nid])
2019 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2020
2021 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2022 out:
2023 seq_putc(m, '\n');
2024 return 0;
2025 }
2026
2027 static const struct seq_operations proc_pid_numa_maps_op = {
2028 .start = m_start,
2029 .next = m_next,
2030 .stop = m_stop,
2031 .show = show_numa_map,
2032 };
2033
pid_numa_maps_open(struct inode * inode,struct file * file)2034 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2035 {
2036 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2037 sizeof(struct numa_maps_private));
2038 }
2039
2040 const struct file_operations proc_pid_numa_maps_operations = {
2041 .open = pid_numa_maps_open,
2042 .read = seq_read,
2043 .llseek = seq_lseek,
2044 .release = proc_map_release,
2045 };
2046
2047 #endif /* CONFIG_NUMA */
2048