xref: /OK3568_Linux_fs/kernel/fs/proc/task_mmu.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
task_vsize(struct mm_struct * mm)82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
hold_task_mempolicy(struct proc_maps_private * priv)104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
release_task_mempolicy(struct proc_maps_private * priv)113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
hold_task_mempolicy(struct proc_maps_private * priv)118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
release_task_mempolicy(struct proc_maps_private * priv)121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
seq_print_vma_name(struct seq_file * m,struct vm_area_struct * vma)126 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
127 {
128 	const char __user *name = vma_get_anon_name(vma);
129 	struct mm_struct *mm = vma->vm_mm;
130 
131 	unsigned long page_start_vaddr;
132 	unsigned long page_offset;
133 	unsigned long num_pages;
134 	unsigned long max_len = NAME_MAX;
135 	int i;
136 
137 	page_start_vaddr = (unsigned long)name & PAGE_MASK;
138 	page_offset = (unsigned long)name - page_start_vaddr;
139 	num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
140 
141 	seq_puts(m, "[anon:");
142 
143 	for (i = 0; i < num_pages; i++) {
144 		int len;
145 		int write_len;
146 		const char *kaddr;
147 		long pages_pinned;
148 		struct page *page;
149 
150 		pages_pinned = get_user_pages_remote(mm, page_start_vaddr, 1, 0,
151 						     &page, NULL, NULL);
152 		if (pages_pinned < 1) {
153 			seq_puts(m, "<fault>]");
154 			return;
155 		}
156 
157 		kaddr = (const char *)kmap(page);
158 		len = min(max_len, PAGE_SIZE - page_offset);
159 		write_len = strnlen(kaddr + page_offset, len);
160 		seq_write(m, kaddr + page_offset, write_len);
161 		kunmap(page);
162 		put_user_page(page);
163 
164 		/* if strnlen hit a null terminator then we're done */
165 		if (write_len != len)
166 			break;
167 
168 		max_len -= len;
169 		page_offset = 0;
170 		page_start_vaddr += PAGE_SIZE;
171 	}
172 
173 	seq_putc(m, ']');
174 }
175 
m_start(struct seq_file * m,loff_t * ppos)176 static void *m_start(struct seq_file *m, loff_t *ppos)
177 {
178 	struct proc_maps_private *priv = m->private;
179 	unsigned long last_addr = *ppos;
180 	struct mm_struct *mm;
181 	struct vm_area_struct *vma;
182 
183 	/* See m_next(). Zero at the start or after lseek. */
184 	if (last_addr == -1UL)
185 		return NULL;
186 
187 	priv->task = get_proc_task(priv->inode);
188 	if (!priv->task)
189 		return ERR_PTR(-ESRCH);
190 
191 	mm = priv->mm;
192 	if (!mm || !mmget_not_zero(mm)) {
193 		put_task_struct(priv->task);
194 		priv->task = NULL;
195 		return NULL;
196 	}
197 
198 	if (mmap_read_lock_killable(mm)) {
199 		mmput(mm);
200 		put_task_struct(priv->task);
201 		priv->task = NULL;
202 		return ERR_PTR(-EINTR);
203 	}
204 
205 	hold_task_mempolicy(priv);
206 	priv->tail_vma = get_gate_vma(mm);
207 
208 	vma = find_vma(mm, last_addr);
209 	if (vma)
210 		return vma;
211 
212 	return priv->tail_vma;
213 }
214 
m_next(struct seq_file * m,void * v,loff_t * ppos)215 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
216 {
217 	struct proc_maps_private *priv = m->private;
218 	struct vm_area_struct *next, *vma = v;
219 
220 	if (vma == priv->tail_vma)
221 		next = NULL;
222 	else if (vma->vm_next)
223 		next = vma->vm_next;
224 	else
225 		next = priv->tail_vma;
226 
227 	*ppos = next ? next->vm_start : -1UL;
228 
229 	return next;
230 }
231 
m_stop(struct seq_file * m,void * v)232 static void m_stop(struct seq_file *m, void *v)
233 {
234 	struct proc_maps_private *priv = m->private;
235 	struct mm_struct *mm = priv->mm;
236 
237 	if (!priv->task)
238 		return;
239 
240 	release_task_mempolicy(priv);
241 	mmap_read_unlock(mm);
242 	mmput(mm);
243 	put_task_struct(priv->task);
244 	priv->task = NULL;
245 }
246 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)247 static int proc_maps_open(struct inode *inode, struct file *file,
248 			const struct seq_operations *ops, int psize)
249 {
250 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
251 
252 	if (!priv)
253 		return -ENOMEM;
254 
255 	priv->inode = inode;
256 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
257 	if (IS_ERR(priv->mm)) {
258 		int err = PTR_ERR(priv->mm);
259 
260 		seq_release_private(inode, file);
261 		return err;
262 	}
263 
264 	return 0;
265 }
266 
proc_map_release(struct inode * inode,struct file * file)267 static int proc_map_release(struct inode *inode, struct file *file)
268 {
269 	struct seq_file *seq = file->private_data;
270 	struct proc_maps_private *priv = seq->private;
271 
272 	if (priv->mm)
273 		mmdrop(priv->mm);
274 
275 	return seq_release_private(inode, file);
276 }
277 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)278 static int do_maps_open(struct inode *inode, struct file *file,
279 			const struct seq_operations *ops)
280 {
281 	return proc_maps_open(inode, file, ops,
282 				sizeof(struct proc_maps_private));
283 }
284 
285 /*
286  * Indicate if the VMA is a stack for the given task; for
287  * /proc/PID/maps that is the stack of the main task.
288  */
is_stack(struct vm_area_struct * vma)289 static int is_stack(struct vm_area_struct *vma)
290 {
291 	/*
292 	 * We make no effort to guess what a given thread considers to be
293 	 * its "stack".  It's not even well-defined for programs written
294 	 * languages like Go.
295 	 */
296 	return vma->vm_start <= vma->vm_mm->start_stack &&
297 		vma->vm_end >= vma->vm_mm->start_stack;
298 }
299 
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)300 static void show_vma_header_prefix(struct seq_file *m,
301 				   unsigned long start, unsigned long end,
302 				   vm_flags_t flags, unsigned long long pgoff,
303 				   dev_t dev, unsigned long ino)
304 {
305 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
306 	seq_put_hex_ll(m, NULL, start, 8);
307 	seq_put_hex_ll(m, "-", end, 8);
308 	seq_putc(m, ' ');
309 	seq_putc(m, flags & VM_READ ? 'r' : '-');
310 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
311 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
312 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
313 	seq_put_hex_ll(m, " ", pgoff, 8);
314 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
315 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
316 	seq_put_decimal_ull(m, " ", ino);
317 	seq_putc(m, ' ');
318 }
319 
320 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)321 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
322 {
323 	struct mm_struct *mm = vma->vm_mm;
324 	struct file *file = vma->vm_file;
325 	vm_flags_t flags = vma->vm_flags;
326 	unsigned long ino = 0;
327 	unsigned long long pgoff = 0;
328 	unsigned long start, end;
329 	dev_t dev = 0;
330 	const char *name = NULL;
331 
332 	if (file) {
333 		struct inode *inode = file_inode(vma->vm_file);
334 		dev = inode->i_sb->s_dev;
335 		ino = inode->i_ino;
336 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
337 	}
338 
339 	start = vma->vm_start;
340 	end = vma->vm_end;
341 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
342 
343 	/*
344 	 * Print the dentry name for named mappings, and a
345 	 * special [heap] marker for the heap:
346 	 */
347 	if (file) {
348 		seq_pad(m, ' ');
349 		seq_file_path(m, file, "\n");
350 		goto done;
351 	}
352 
353 	if (vma->vm_ops && vma->vm_ops->name) {
354 		name = vma->vm_ops->name(vma);
355 		if (name)
356 			goto done;
357 	}
358 
359 	name = arch_vma_name(vma);
360 	if (!name) {
361 		if (!mm) {
362 			name = "[vdso]";
363 			goto done;
364 		}
365 
366 		if (vma->vm_start <= mm->brk &&
367 		    vma->vm_end >= mm->start_brk) {
368 			name = "[heap]";
369 			goto done;
370 		}
371 
372 		if (is_stack(vma)) {
373 			name = "[stack]";
374 			goto done;
375 		}
376 
377 		if (vma_get_anon_name(vma)) {
378 			seq_pad(m, ' ');
379 			seq_print_vma_name(m, vma);
380 		}
381 	}
382 
383 done:
384 	if (name) {
385 		seq_pad(m, ' ');
386 		seq_puts(m, name);
387 	}
388 	seq_putc(m, '\n');
389 }
390 
show_map(struct seq_file * m,void * v)391 static int show_map(struct seq_file *m, void *v)
392 {
393 	show_map_vma(m, v);
394 	return 0;
395 }
396 
397 static const struct seq_operations proc_pid_maps_op = {
398 	.start	= m_start,
399 	.next	= m_next,
400 	.stop	= m_stop,
401 	.show	= show_map
402 };
403 
pid_maps_open(struct inode * inode,struct file * file)404 static int pid_maps_open(struct inode *inode, struct file *file)
405 {
406 	return do_maps_open(inode, file, &proc_pid_maps_op);
407 }
408 
409 const struct file_operations proc_pid_maps_operations = {
410 	.open		= pid_maps_open,
411 	.read		= seq_read,
412 	.llseek		= seq_lseek,
413 	.release	= proc_map_release,
414 };
415 
416 /*
417  * Proportional Set Size(PSS): my share of RSS.
418  *
419  * PSS of a process is the count of pages it has in memory, where each
420  * page is divided by the number of processes sharing it.  So if a
421  * process has 1000 pages all to itself, and 1000 shared with one other
422  * process, its PSS will be 1500.
423  *
424  * To keep (accumulated) division errors low, we adopt a 64bit
425  * fixed-point pss counter to minimize division errors. So (pss >>
426  * PSS_SHIFT) would be the real byte count.
427  *
428  * A shift of 12 before division means (assuming 4K page size):
429  * 	- 1M 3-user-pages add up to 8KB errors;
430  * 	- supports mapcount up to 2^24, or 16M;
431  * 	- supports PSS up to 2^52 bytes, or 4PB.
432  */
433 #define PSS_SHIFT 12
434 
435 #ifdef CONFIG_PROC_PAGE_MONITOR
436 struct mem_size_stats {
437 	unsigned long resident;
438 	unsigned long shared_clean;
439 	unsigned long shared_dirty;
440 	unsigned long private_clean;
441 	unsigned long private_dirty;
442 	unsigned long referenced;
443 	unsigned long anonymous;
444 	unsigned long lazyfree;
445 	unsigned long anonymous_thp;
446 	unsigned long shmem_thp;
447 	unsigned long file_thp;
448 	unsigned long swap;
449 	unsigned long shared_hugetlb;
450 	unsigned long private_hugetlb;
451 	u64 pss;
452 	u64 pss_anon;
453 	u64 pss_file;
454 	u64 pss_shmem;
455 	u64 pss_locked;
456 	u64 swap_pss;
457 	bool check_shmem_swap;
458 };
459 
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)460 static void smaps_page_accumulate(struct mem_size_stats *mss,
461 		struct page *page, unsigned long size, unsigned long pss,
462 		bool dirty, bool locked, bool private)
463 {
464 	mss->pss += pss;
465 
466 	if (PageAnon(page))
467 		mss->pss_anon += pss;
468 	else if (PageSwapBacked(page))
469 		mss->pss_shmem += pss;
470 	else
471 		mss->pss_file += pss;
472 
473 	if (locked)
474 		mss->pss_locked += pss;
475 
476 	if (dirty || PageDirty(page)) {
477 		if (private)
478 			mss->private_dirty += size;
479 		else
480 			mss->shared_dirty += size;
481 	} else {
482 		if (private)
483 			mss->private_clean += size;
484 		else
485 			mss->shared_clean += size;
486 	}
487 }
488 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)489 static void smaps_account(struct mem_size_stats *mss, struct page *page,
490 		bool compound, bool young, bool dirty, bool locked,
491 		bool migration)
492 {
493 	int i, nr = compound ? compound_nr(page) : 1;
494 	unsigned long size = nr * PAGE_SIZE;
495 
496 	/*
497 	 * First accumulate quantities that depend only on |size| and the type
498 	 * of the compound page.
499 	 */
500 	if (PageAnon(page)) {
501 		mss->anonymous += size;
502 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
503 			mss->lazyfree += size;
504 	}
505 
506 	mss->resident += size;
507 	/* Accumulate the size in pages that have been accessed. */
508 	if (young || page_is_young(page) || PageReferenced(page))
509 		mss->referenced += size;
510 
511 	/*
512 	 * Then accumulate quantities that may depend on sharing, or that may
513 	 * differ page-by-page.
514 	 *
515 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
516 	 * If any subpage of the compound page mapped with PTE it would elevate
517 	 * page_count().
518 	 *
519 	 * The page_mapcount() is called to get a snapshot of the mapcount.
520 	 * Without holding the page lock this snapshot can be slightly wrong as
521 	 * we cannot always read the mapcount atomically.  It is not safe to
522 	 * call page_mapcount() even with PTL held if the page is not mapped,
523 	 * especially for migration entries.  Treat regular migration entries
524 	 * as mapcount == 1.
525 	 */
526 	if ((page_count(page) == 1) || migration) {
527 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
528 			locked, true);
529 		return;
530 	}
531 	for (i = 0; i < nr; i++, page++) {
532 		int mapcount = page_mapcount(page);
533 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
534 		if (mapcount >= 2)
535 			pss /= mapcount;
536 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
537 				      mapcount < 2);
538 	}
539 }
540 
541 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)542 static int smaps_pte_hole(unsigned long addr, unsigned long end,
543 			  __always_unused int depth, struct mm_walk *walk)
544 {
545 	struct mem_size_stats *mss = walk->private;
546 
547 	mss->swap += shmem_partial_swap_usage(
548 			walk->vma->vm_file->f_mapping, addr, end);
549 
550 	return 0;
551 }
552 #else
553 #define smaps_pte_hole		NULL
554 #endif /* CONFIG_SHMEM */
555 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)556 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
557 		struct mm_walk *walk)
558 {
559 	struct mem_size_stats *mss = walk->private;
560 	struct vm_area_struct *vma = walk->vma;
561 	bool locked = !!(vma->vm_flags & VM_LOCKED);
562 	struct page *page = NULL;
563 	bool migration = false, young = false, dirty = false;
564 
565 	if (pte_present(*pte)) {
566 		page = vm_normal_page(vma, addr, *pte);
567 		young = pte_young(*pte);
568 		dirty = pte_dirty(*pte);
569 	} else if (is_swap_pte(*pte)) {
570 		swp_entry_t swpent = pte_to_swp_entry(*pte);
571 
572 		if (!non_swap_entry(swpent)) {
573 			int mapcount;
574 
575 			mss->swap += PAGE_SIZE;
576 			mapcount = swp_swapcount(swpent);
577 			if (mapcount >= 2) {
578 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
579 
580 				do_div(pss_delta, mapcount);
581 				mss->swap_pss += pss_delta;
582 			} else {
583 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
584 			}
585 		} else if (is_migration_entry(swpent)) {
586 			migration = true;
587 			page = migration_entry_to_page(swpent);
588 		} else if (is_device_private_entry(swpent))
589 			page = device_private_entry_to_page(swpent);
590 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
591 							&& pte_none(*pte))) {
592 		page = xa_load(&vma->vm_file->f_mapping->i_pages,
593 						linear_page_index(vma, addr));
594 		if (xa_is_value(page))
595 			mss->swap += PAGE_SIZE;
596 		return;
597 	}
598 
599 	if (!page)
600 		return;
601 
602 	smaps_account(mss, page, false, young, dirty, locked, migration);
603 }
604 
605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)606 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607 		struct mm_walk *walk)
608 {
609 	struct mem_size_stats *mss = walk->private;
610 	struct vm_area_struct *vma = walk->vma;
611 	bool locked = !!(vma->vm_flags & VM_LOCKED);
612 	struct page *page = NULL;
613 	bool migration = false;
614 
615 	if (pmd_present(*pmd)) {
616 		/* FOLL_DUMP will return -EFAULT on huge zero page */
617 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
618 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
619 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
620 
621 		if (is_migration_entry(entry)) {
622 			migration = true;
623 			page = migration_entry_to_page(entry);
624 		}
625 	}
626 	if (IS_ERR_OR_NULL(page))
627 		return;
628 	if (PageAnon(page))
629 		mss->anonymous_thp += HPAGE_PMD_SIZE;
630 	else if (PageSwapBacked(page))
631 		mss->shmem_thp += HPAGE_PMD_SIZE;
632 	else if (is_zone_device_page(page))
633 		/* pass */;
634 	else
635 		mss->file_thp += HPAGE_PMD_SIZE;
636 
637 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
638 		      locked, migration);
639 }
640 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)641 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
642 		struct mm_walk *walk)
643 {
644 }
645 #endif
646 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)647 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
648 			   struct mm_walk *walk)
649 {
650 	struct vm_area_struct *vma = walk->vma;
651 	pte_t *pte;
652 	spinlock_t *ptl;
653 
654 	ptl = pmd_trans_huge_lock(pmd, vma);
655 	if (ptl) {
656 		smaps_pmd_entry(pmd, addr, walk);
657 		spin_unlock(ptl);
658 		goto out;
659 	}
660 
661 	if (pmd_trans_unstable(pmd))
662 		goto out;
663 	/*
664 	 * The mmap_lock held all the way back in m_start() is what
665 	 * keeps khugepaged out of here and from collapsing things
666 	 * in here.
667 	 */
668 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
669 	for (; addr != end; pte++, addr += PAGE_SIZE)
670 		smaps_pte_entry(pte, addr, walk);
671 	pte_unmap_unlock(pte - 1, ptl);
672 out:
673 	cond_resched();
674 	return 0;
675 }
676 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)677 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
678 {
679 	/*
680 	 * Don't forget to update Documentation/ on changes.
681 	 */
682 	static const char mnemonics[BITS_PER_LONG][2] = {
683 		/*
684 		 * In case if we meet a flag we don't know about.
685 		 */
686 		[0 ... (BITS_PER_LONG-1)] = "??",
687 
688 		[ilog2(VM_READ)]	= "rd",
689 		[ilog2(VM_WRITE)]	= "wr",
690 		[ilog2(VM_EXEC)]	= "ex",
691 		[ilog2(VM_SHARED)]	= "sh",
692 		[ilog2(VM_MAYREAD)]	= "mr",
693 		[ilog2(VM_MAYWRITE)]	= "mw",
694 		[ilog2(VM_MAYEXEC)]	= "me",
695 		[ilog2(VM_MAYSHARE)]	= "ms",
696 		[ilog2(VM_GROWSDOWN)]	= "gd",
697 		[ilog2(VM_PFNMAP)]	= "pf",
698 		[ilog2(VM_DENYWRITE)]	= "dw",
699 		[ilog2(VM_LOCKED)]	= "lo",
700 		[ilog2(VM_IO)]		= "io",
701 		[ilog2(VM_SEQ_READ)]	= "sr",
702 		[ilog2(VM_RAND_READ)]	= "rr",
703 		[ilog2(VM_DONTCOPY)]	= "dc",
704 		[ilog2(VM_DONTEXPAND)]	= "de",
705 		[ilog2(VM_ACCOUNT)]	= "ac",
706 		[ilog2(VM_NORESERVE)]	= "nr",
707 		[ilog2(VM_HUGETLB)]	= "ht",
708 		[ilog2(VM_SYNC)]	= "sf",
709 		[ilog2(VM_ARCH_1)]	= "ar",
710 		[ilog2(VM_WIPEONFORK)]	= "wf",
711 		[ilog2(VM_DONTDUMP)]	= "dd",
712 #ifdef CONFIG_ARM64_BTI
713 		[ilog2(VM_ARM64_BTI)]	= "bt",
714 #endif
715 #ifdef CONFIG_MEM_SOFT_DIRTY
716 		[ilog2(VM_SOFTDIRTY)]	= "sd",
717 #endif
718 		[ilog2(VM_MIXEDMAP)]	= "mm",
719 		[ilog2(VM_HUGEPAGE)]	= "hg",
720 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
721 		[ilog2(VM_MERGEABLE)]	= "mg",
722 		[ilog2(VM_UFFD_MISSING)]= "um",
723 		[ilog2(VM_UFFD_WP)]	= "uw",
724 #ifdef CONFIG_ARM64_MTE
725 		[ilog2(VM_MTE)]		= "mt",
726 		[ilog2(VM_MTE_ALLOWED)]	= "",
727 #endif
728 #ifdef CONFIG_ARCH_HAS_PKEYS
729 		/* These come out via ProtectionKey: */
730 		[ilog2(VM_PKEY_BIT0)]	= "",
731 		[ilog2(VM_PKEY_BIT1)]	= "",
732 		[ilog2(VM_PKEY_BIT2)]	= "",
733 		[ilog2(VM_PKEY_BIT3)]	= "",
734 #if VM_PKEY_BIT4
735 		[ilog2(VM_PKEY_BIT4)]	= "",
736 #endif
737 #endif /* CONFIG_ARCH_HAS_PKEYS */
738 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
739 		[ilog2(VM_UFFD_MINOR)]	= "ui",
740 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
741 	};
742 	size_t i;
743 
744 	seq_puts(m, "VmFlags: ");
745 	for (i = 0; i < BITS_PER_LONG; i++) {
746 		if (!mnemonics[i][0])
747 			continue;
748 		if (vma->vm_flags & (1UL << i)) {
749 			seq_putc(m, mnemonics[i][0]);
750 			seq_putc(m, mnemonics[i][1]);
751 			seq_putc(m, ' ');
752 		}
753 	}
754 	seq_putc(m, '\n');
755 }
756 
757 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)758 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
759 				 unsigned long addr, unsigned long end,
760 				 struct mm_walk *walk)
761 {
762 	struct mem_size_stats *mss = walk->private;
763 	struct vm_area_struct *vma = walk->vma;
764 	struct page *page = NULL;
765 
766 	if (pte_present(*pte)) {
767 		page = vm_normal_page(vma, addr, *pte);
768 	} else if (is_swap_pte(*pte)) {
769 		swp_entry_t swpent = pte_to_swp_entry(*pte);
770 
771 		if (is_migration_entry(swpent))
772 			page = migration_entry_to_page(swpent);
773 		else if (is_device_private_entry(swpent))
774 			page = device_private_entry_to_page(swpent);
775 	}
776 	if (page) {
777 		int mapcount = page_mapcount(page);
778 
779 		if (mapcount >= 2)
780 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
781 		else
782 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
783 	}
784 	return 0;
785 }
786 #else
787 #define smaps_hugetlb_range	NULL
788 #endif /* HUGETLB_PAGE */
789 
790 static const struct mm_walk_ops smaps_walk_ops = {
791 	.pmd_entry		= smaps_pte_range,
792 	.hugetlb_entry		= smaps_hugetlb_range,
793 };
794 
795 static const struct mm_walk_ops smaps_shmem_walk_ops = {
796 	.pmd_entry		= smaps_pte_range,
797 	.hugetlb_entry		= smaps_hugetlb_range,
798 	.pte_hole		= smaps_pte_hole,
799 };
800 
801 /*
802  * Gather mem stats from @vma with the indicated beginning
803  * address @start, and keep them in @mss.
804  *
805  * Use vm_start of @vma as the beginning address if @start is 0.
806  */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)807 static void smap_gather_stats(struct vm_area_struct *vma,
808 		struct mem_size_stats *mss, unsigned long start)
809 {
810 	const struct mm_walk_ops *ops = &smaps_walk_ops;
811 
812 	/* Invalid start */
813 	if (start >= vma->vm_end)
814 		return;
815 
816 #ifdef CONFIG_SHMEM
817 	/* In case of smaps_rollup, reset the value from previous vma */
818 	mss->check_shmem_swap = false;
819 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
820 		/*
821 		 * For shared or readonly shmem mappings we know that all
822 		 * swapped out pages belong to the shmem object, and we can
823 		 * obtain the swap value much more efficiently. For private
824 		 * writable mappings, we might have COW pages that are
825 		 * not affected by the parent swapped out pages of the shmem
826 		 * object, so we have to distinguish them during the page walk.
827 		 * Unless we know that the shmem object (or the part mapped by
828 		 * our VMA) has no swapped out pages at all.
829 		 */
830 		unsigned long shmem_swapped = shmem_swap_usage(vma);
831 
832 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
833 					!(vma->vm_flags & VM_WRITE))) {
834 			mss->swap += shmem_swapped;
835 		} else {
836 			mss->check_shmem_swap = true;
837 			ops = &smaps_shmem_walk_ops;
838 		}
839 	}
840 #endif
841 	/* mmap_lock is held in m_start */
842 	if (!start)
843 		walk_page_vma(vma, ops, mss);
844 	else
845 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
846 }
847 
848 #define SEQ_PUT_DEC(str, val) \
849 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
850 
851 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)852 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
853 	bool rollup_mode)
854 {
855 	SEQ_PUT_DEC("Rss:            ", mss->resident);
856 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
857 	if (rollup_mode) {
858 		/*
859 		 * These are meaningful only for smaps_rollup, otherwise two of
860 		 * them are zero, and the other one is the same as Pss.
861 		 */
862 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
863 			mss->pss_anon >> PSS_SHIFT);
864 		SEQ_PUT_DEC(" kB\nPss_File:       ",
865 			mss->pss_file >> PSS_SHIFT);
866 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
867 			mss->pss_shmem >> PSS_SHIFT);
868 	}
869 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
870 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
871 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
872 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
873 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
874 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
875 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
876 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
877 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
878 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
879 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
880 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
881 				  mss->private_hugetlb >> 10, 7);
882 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
883 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
884 					mss->swap_pss >> PSS_SHIFT);
885 	SEQ_PUT_DEC(" kB\nLocked:         ",
886 					mss->pss_locked >> PSS_SHIFT);
887 	seq_puts(m, " kB\n");
888 }
889 
show_smap(struct seq_file * m,void * v)890 static int show_smap(struct seq_file *m, void *v)
891 {
892 	struct vm_area_struct *vma = v;
893 	struct mem_size_stats mss;
894 
895 	memset(&mss, 0, sizeof(mss));
896 
897 	smap_gather_stats(vma, &mss, 0);
898 
899 	show_map_vma(m, vma);
900 	if (vma_get_anon_name(vma)) {
901 		seq_puts(m, "Name:           ");
902 		seq_print_vma_name(m, vma);
903 		seq_putc(m, '\n');
904 	}
905 
906 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
907 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
908 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
909 	seq_puts(m, " kB\n");
910 
911 	__show_smap(m, &mss, false);
912 
913 	seq_printf(m, "THPeligible:    %d\n",
914 		   transparent_hugepage_active(vma));
915 
916 	if (arch_pkeys_enabled())
917 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
918 	show_smap_vma_flags(m, vma);
919 
920 	return 0;
921 }
922 
show_smaps_rollup(struct seq_file * m,void * v)923 static int show_smaps_rollup(struct seq_file *m, void *v)
924 {
925 	struct proc_maps_private *priv = m->private;
926 	struct mem_size_stats mss;
927 	struct mm_struct *mm;
928 	struct vm_area_struct *vma;
929 	unsigned long last_vma_end = 0;
930 	int ret = 0;
931 
932 	priv->task = get_proc_task(priv->inode);
933 	if (!priv->task)
934 		return -ESRCH;
935 
936 	mm = priv->mm;
937 	if (!mm || !mmget_not_zero(mm)) {
938 		ret = -ESRCH;
939 		goto out_put_task;
940 	}
941 
942 	memset(&mss, 0, sizeof(mss));
943 
944 	ret = mmap_read_lock_killable(mm);
945 	if (ret)
946 		goto out_put_mm;
947 
948 	hold_task_mempolicy(priv);
949 
950 	for (vma = priv->mm->mmap; vma;) {
951 		smap_gather_stats(vma, &mss, 0);
952 		last_vma_end = vma->vm_end;
953 
954 		/*
955 		 * Release mmap_lock temporarily if someone wants to
956 		 * access it for write request.
957 		 */
958 		if (mmap_lock_is_contended(mm)) {
959 			mmap_read_unlock(mm);
960 			ret = mmap_read_lock_killable(mm);
961 			if (ret) {
962 				release_task_mempolicy(priv);
963 				goto out_put_mm;
964 			}
965 
966 			/*
967 			 * After dropping the lock, there are four cases to
968 			 * consider. See the following example for explanation.
969 			 *
970 			 *   +------+------+-----------+
971 			 *   | VMA1 | VMA2 | VMA3      |
972 			 *   +------+------+-----------+
973 			 *   |      |      |           |
974 			 *  4k     8k     16k         400k
975 			 *
976 			 * Suppose we drop the lock after reading VMA2 due to
977 			 * contention, then we get:
978 			 *
979 			 *	last_vma_end = 16k
980 			 *
981 			 * 1) VMA2 is freed, but VMA3 exists:
982 			 *
983 			 *    find_vma(mm, 16k - 1) will return VMA3.
984 			 *    In this case, just continue from VMA3.
985 			 *
986 			 * 2) VMA2 still exists:
987 			 *
988 			 *    find_vma(mm, 16k - 1) will return VMA2.
989 			 *    Iterate the loop like the original one.
990 			 *
991 			 * 3) No more VMAs can be found:
992 			 *
993 			 *    find_vma(mm, 16k - 1) will return NULL.
994 			 *    No more things to do, just break.
995 			 *
996 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
997 			 *
998 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
999 			 *    contains last_vma_end.
1000 			 *    Iterate VMA' from last_vma_end.
1001 			 */
1002 			vma = find_vma(mm, last_vma_end - 1);
1003 			/* Case 3 above */
1004 			if (!vma)
1005 				break;
1006 
1007 			/* Case 1 above */
1008 			if (vma->vm_start >= last_vma_end)
1009 				continue;
1010 
1011 			/* Case 4 above */
1012 			if (vma->vm_end > last_vma_end)
1013 				smap_gather_stats(vma, &mss, last_vma_end);
1014 		}
1015 		/* Case 2 above */
1016 		vma = vma->vm_next;
1017 	}
1018 
1019 	show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
1020 			       last_vma_end, 0, 0, 0, 0);
1021 	seq_pad(m, ' ');
1022 	seq_puts(m, "[rollup]\n");
1023 
1024 	__show_smap(m, &mss, true);
1025 
1026 	release_task_mempolicy(priv);
1027 	mmap_read_unlock(mm);
1028 
1029 out_put_mm:
1030 	mmput(mm);
1031 out_put_task:
1032 	put_task_struct(priv->task);
1033 	priv->task = NULL;
1034 
1035 	return ret;
1036 }
1037 #undef SEQ_PUT_DEC
1038 
1039 static const struct seq_operations proc_pid_smaps_op = {
1040 	.start	= m_start,
1041 	.next	= m_next,
1042 	.stop	= m_stop,
1043 	.show	= show_smap
1044 };
1045 
pid_smaps_open(struct inode * inode,struct file * file)1046 static int pid_smaps_open(struct inode *inode, struct file *file)
1047 {
1048 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1049 }
1050 
smaps_rollup_open(struct inode * inode,struct file * file)1051 static int smaps_rollup_open(struct inode *inode, struct file *file)
1052 {
1053 	int ret;
1054 	struct proc_maps_private *priv;
1055 
1056 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1057 	if (!priv)
1058 		return -ENOMEM;
1059 
1060 	ret = single_open(file, show_smaps_rollup, priv);
1061 	if (ret)
1062 		goto out_free;
1063 
1064 	priv->inode = inode;
1065 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1066 	if (IS_ERR(priv->mm)) {
1067 		ret = PTR_ERR(priv->mm);
1068 
1069 		single_release(inode, file);
1070 		goto out_free;
1071 	}
1072 
1073 	return 0;
1074 
1075 out_free:
1076 	kfree(priv);
1077 	return ret;
1078 }
1079 
smaps_rollup_release(struct inode * inode,struct file * file)1080 static int smaps_rollup_release(struct inode *inode, struct file *file)
1081 {
1082 	struct seq_file *seq = file->private_data;
1083 	struct proc_maps_private *priv = seq->private;
1084 
1085 	if (priv->mm)
1086 		mmdrop(priv->mm);
1087 
1088 	kfree(priv);
1089 	return single_release(inode, file);
1090 }
1091 
1092 const struct file_operations proc_pid_smaps_operations = {
1093 	.open		= pid_smaps_open,
1094 	.read		= seq_read,
1095 	.llseek		= seq_lseek,
1096 	.release	= proc_map_release,
1097 };
1098 
1099 const struct file_operations proc_pid_smaps_rollup_operations = {
1100 	.open		= smaps_rollup_open,
1101 	.read		= seq_read,
1102 	.llseek		= seq_lseek,
1103 	.release	= smaps_rollup_release,
1104 };
1105 
1106 enum clear_refs_types {
1107 	CLEAR_REFS_ALL = 1,
1108 	CLEAR_REFS_ANON,
1109 	CLEAR_REFS_MAPPED,
1110 	CLEAR_REFS_SOFT_DIRTY,
1111 	CLEAR_REFS_MM_HIWATER_RSS,
1112 	CLEAR_REFS_LAST,
1113 };
1114 
1115 struct clear_refs_private {
1116 	enum clear_refs_types type;
1117 };
1118 
1119 #ifdef CONFIG_MEM_SOFT_DIRTY
1120 
1121 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1122 
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1123 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1124 {
1125 	struct page *page;
1126 
1127 	if (!pte_write(pte))
1128 		return false;
1129 	if (!is_cow_mapping(vma->vm_flags))
1130 		return false;
1131 	if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1132 		return false;
1133 	page = vm_normal_page(vma, addr, pte);
1134 	if (!page)
1135 		return false;
1136 	return page_maybe_dma_pinned(page);
1137 }
1138 
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1139 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1140 		unsigned long addr, pte_t *pte)
1141 {
1142 	/*
1143 	 * The soft-dirty tracker uses #PF-s to catch writes
1144 	 * to pages, so write-protect the pte as well. See the
1145 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1146 	 * of how soft-dirty works.
1147 	 */
1148 	pte_t ptent = *pte;
1149 
1150 	if (pte_present(ptent)) {
1151 		pte_t old_pte;
1152 
1153 		if (pte_is_pinned(vma, addr, ptent))
1154 			return;
1155 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1156 		ptent = pte_wrprotect(old_pte);
1157 		ptent = pte_clear_soft_dirty(ptent);
1158 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1159 	} else if (is_swap_pte(ptent)) {
1160 		ptent = pte_swp_clear_soft_dirty(ptent);
1161 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1162 	}
1163 }
1164 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1165 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1166 		unsigned long addr, pte_t *pte)
1167 {
1168 }
1169 #endif
1170 
1171 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1172 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1173 		unsigned long addr, pmd_t *pmdp)
1174 {
1175 	pmd_t old, pmd = *pmdp;
1176 
1177 	if (pmd_present(pmd)) {
1178 		/* See comment in change_huge_pmd() */
1179 		old = pmdp_invalidate(vma, addr, pmdp);
1180 		if (pmd_dirty(old))
1181 			pmd = pmd_mkdirty(pmd);
1182 		if (pmd_young(old))
1183 			pmd = pmd_mkyoung(pmd);
1184 
1185 		pmd = pmd_wrprotect(pmd);
1186 		pmd = pmd_clear_soft_dirty(pmd);
1187 
1188 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1189 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1190 		pmd = pmd_swp_clear_soft_dirty(pmd);
1191 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1192 	}
1193 }
1194 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1195 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1196 		unsigned long addr, pmd_t *pmdp)
1197 {
1198 }
1199 #endif
1200 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1201 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1202 				unsigned long end, struct mm_walk *walk)
1203 {
1204 	struct clear_refs_private *cp = walk->private;
1205 	struct vm_area_struct *vma = walk->vma;
1206 	pte_t *pte, ptent;
1207 	spinlock_t *ptl;
1208 	struct page *page;
1209 
1210 	ptl = pmd_trans_huge_lock(pmd, vma);
1211 	if (ptl) {
1212 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1213 			clear_soft_dirty_pmd(vma, addr, pmd);
1214 			goto out;
1215 		}
1216 
1217 		if (!pmd_present(*pmd))
1218 			goto out;
1219 
1220 		page = pmd_page(*pmd);
1221 
1222 		/* Clear accessed and referenced bits. */
1223 		pmdp_test_and_clear_young(vma, addr, pmd);
1224 		test_and_clear_page_young(page);
1225 		ClearPageReferenced(page);
1226 out:
1227 		spin_unlock(ptl);
1228 		return 0;
1229 	}
1230 
1231 	if (pmd_trans_unstable(pmd))
1232 		return 0;
1233 
1234 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1235 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1236 		ptent = *pte;
1237 
1238 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1239 			clear_soft_dirty(vma, addr, pte);
1240 			continue;
1241 		}
1242 
1243 		if (!pte_present(ptent))
1244 			continue;
1245 
1246 		page = vm_normal_page(vma, addr, ptent);
1247 		if (!page)
1248 			continue;
1249 
1250 		/* Clear accessed and referenced bits. */
1251 		ptep_test_and_clear_young(vma, addr, pte);
1252 		test_and_clear_page_young(page);
1253 		ClearPageReferenced(page);
1254 	}
1255 	pte_unmap_unlock(pte - 1, ptl);
1256 	cond_resched();
1257 	return 0;
1258 }
1259 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1260 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1261 				struct mm_walk *walk)
1262 {
1263 	struct clear_refs_private *cp = walk->private;
1264 	struct vm_area_struct *vma = walk->vma;
1265 
1266 	if (vma->vm_flags & VM_PFNMAP)
1267 		return 1;
1268 
1269 	/*
1270 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1271 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1272 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1273 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1274 	 */
1275 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1276 		return 1;
1277 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1278 		return 1;
1279 	return 0;
1280 }
1281 
1282 static const struct mm_walk_ops clear_refs_walk_ops = {
1283 	.pmd_entry		= clear_refs_pte_range,
1284 	.test_walk		= clear_refs_test_walk,
1285 };
1286 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1287 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1288 				size_t count, loff_t *ppos)
1289 {
1290 	struct task_struct *task;
1291 	char buffer[PROC_NUMBUF];
1292 	struct mm_struct *mm;
1293 	struct vm_area_struct *vma;
1294 	enum clear_refs_types type;
1295 	int itype;
1296 	int rv;
1297 
1298 	memset(buffer, 0, sizeof(buffer));
1299 	if (count > sizeof(buffer) - 1)
1300 		count = sizeof(buffer) - 1;
1301 	if (copy_from_user(buffer, buf, count))
1302 		return -EFAULT;
1303 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1304 	if (rv < 0)
1305 		return rv;
1306 	type = (enum clear_refs_types)itype;
1307 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1308 		return -EINVAL;
1309 
1310 	task = get_proc_task(file_inode(file));
1311 	if (!task)
1312 		return -ESRCH;
1313 	mm = get_task_mm(task);
1314 	if (mm) {
1315 		struct mmu_notifier_range range;
1316 		struct clear_refs_private cp = {
1317 			.type = type,
1318 		};
1319 
1320 		if (mmap_write_lock_killable(mm)) {
1321 			count = -EINTR;
1322 			goto out_mm;
1323 		}
1324 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1325 			/*
1326 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1327 			 * resident set size to this mm's current rss value.
1328 			 */
1329 			reset_mm_hiwater_rss(mm);
1330 			goto out_unlock;
1331 		}
1332 
1333 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1334 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1335 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1336 					continue;
1337 				vm_write_begin(vma);
1338 				WRITE_ONCE(vma->vm_flags,
1339 					vma->vm_flags & ~VM_SOFTDIRTY);
1340 				vma_set_page_prot(vma);
1341 				vm_write_end(vma);
1342 			}
1343 
1344 			inc_tlb_flush_pending(mm);
1345 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1346 						0, NULL, mm, 0, -1UL);
1347 			mmu_notifier_invalidate_range_start(&range);
1348 		}
1349 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1350 				&cp);
1351 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1352 			mmu_notifier_invalidate_range_end(&range);
1353 			flush_tlb_mm(mm);
1354 			dec_tlb_flush_pending(mm);
1355 		}
1356 out_unlock:
1357 		mmap_write_unlock(mm);
1358 out_mm:
1359 		mmput(mm);
1360 	}
1361 	put_task_struct(task);
1362 
1363 	return count;
1364 }
1365 
1366 const struct file_operations proc_clear_refs_operations = {
1367 	.write		= clear_refs_write,
1368 	.llseek		= noop_llseek,
1369 };
1370 
1371 typedef struct {
1372 	u64 pme;
1373 } pagemap_entry_t;
1374 
1375 struct pagemapread {
1376 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1377 	pagemap_entry_t *buffer;
1378 	bool show_pfn;
1379 };
1380 
1381 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1382 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1383 
1384 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1385 #define PM_PFRAME_BITS		55
1386 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1387 #define PM_SOFT_DIRTY		BIT_ULL(55)
1388 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1389 #define PM_FILE			BIT_ULL(61)
1390 #define PM_SWAP			BIT_ULL(62)
1391 #define PM_PRESENT		BIT_ULL(63)
1392 
1393 #define PM_END_OF_BUFFER    1
1394 
make_pme(u64 frame,u64 flags)1395 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1396 {
1397 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1398 }
1399 
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1400 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1401 			  struct pagemapread *pm)
1402 {
1403 	pm->buffer[pm->pos++] = *pme;
1404 	if (pm->pos >= pm->len)
1405 		return PM_END_OF_BUFFER;
1406 	return 0;
1407 }
1408 
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1409 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1410 			    __always_unused int depth, struct mm_walk *walk)
1411 {
1412 	struct pagemapread *pm = walk->private;
1413 	unsigned long addr = start;
1414 	int err = 0;
1415 
1416 	while (addr < end) {
1417 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1418 		pagemap_entry_t pme = make_pme(0, 0);
1419 		/* End of address space hole, which we mark as non-present. */
1420 		unsigned long hole_end;
1421 
1422 		if (vma)
1423 			hole_end = min(end, vma->vm_start);
1424 		else
1425 			hole_end = end;
1426 
1427 		for (; addr < hole_end; addr += PAGE_SIZE) {
1428 			err = add_to_pagemap(addr, &pme, pm);
1429 			if (err)
1430 				goto out;
1431 		}
1432 
1433 		if (!vma)
1434 			break;
1435 
1436 		/* Addresses in the VMA. */
1437 		if (vma->vm_flags & VM_SOFTDIRTY)
1438 			pme = make_pme(0, PM_SOFT_DIRTY);
1439 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1440 			err = add_to_pagemap(addr, &pme, pm);
1441 			if (err)
1442 				goto out;
1443 		}
1444 	}
1445 out:
1446 	return err;
1447 }
1448 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1449 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1450 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1451 {
1452 	u64 frame = 0, flags = 0;
1453 	struct page *page = NULL;
1454 	bool migration = false;
1455 
1456 	if (pte_present(pte)) {
1457 		if (pm->show_pfn)
1458 			frame = pte_pfn(pte);
1459 		flags |= PM_PRESENT;
1460 		page = vm_normal_page(vma, addr, pte);
1461 		if (pte_soft_dirty(pte))
1462 			flags |= PM_SOFT_DIRTY;
1463 	} else if (is_swap_pte(pte)) {
1464 		swp_entry_t entry;
1465 		if (pte_swp_soft_dirty(pte))
1466 			flags |= PM_SOFT_DIRTY;
1467 		entry = pte_to_swp_entry(pte);
1468 		if (pm->show_pfn)
1469 			frame = swp_type(entry) |
1470 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1471 		flags |= PM_SWAP;
1472 		if (is_migration_entry(entry)) {
1473 			migration = true;
1474 			page = migration_entry_to_page(entry);
1475 		}
1476 
1477 		if (is_device_private_entry(entry))
1478 			page = device_private_entry_to_page(entry);
1479 	}
1480 
1481 	if (page && !PageAnon(page))
1482 		flags |= PM_FILE;
1483 	if (page && !migration && page_mapcount(page) == 1)
1484 		flags |= PM_MMAP_EXCLUSIVE;
1485 	if (vma->vm_flags & VM_SOFTDIRTY)
1486 		flags |= PM_SOFT_DIRTY;
1487 
1488 	return make_pme(frame, flags);
1489 }
1490 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1491 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1492 			     struct mm_walk *walk)
1493 {
1494 	struct vm_area_struct *vma = walk->vma;
1495 	struct pagemapread *pm = walk->private;
1496 	spinlock_t *ptl;
1497 	pte_t *pte, *orig_pte;
1498 	int err = 0;
1499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1500 	bool migration = false;
1501 
1502 	ptl = pmd_trans_huge_lock(pmdp, vma);
1503 	if (ptl) {
1504 		u64 flags = 0, frame = 0;
1505 		pmd_t pmd = *pmdp;
1506 		struct page *page = NULL;
1507 
1508 		if (vma->vm_flags & VM_SOFTDIRTY)
1509 			flags |= PM_SOFT_DIRTY;
1510 
1511 		if (pmd_present(pmd)) {
1512 			page = pmd_page(pmd);
1513 
1514 			flags |= PM_PRESENT;
1515 			if (pmd_soft_dirty(pmd))
1516 				flags |= PM_SOFT_DIRTY;
1517 			if (pm->show_pfn)
1518 				frame = pmd_pfn(pmd) +
1519 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1520 		}
1521 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1522 		else if (is_swap_pmd(pmd)) {
1523 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1524 			unsigned long offset;
1525 
1526 			if (pm->show_pfn) {
1527 				offset = swp_offset(entry) +
1528 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1529 				frame = swp_type(entry) |
1530 					(offset << MAX_SWAPFILES_SHIFT);
1531 			}
1532 			flags |= PM_SWAP;
1533 			if (pmd_swp_soft_dirty(pmd))
1534 				flags |= PM_SOFT_DIRTY;
1535 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1536 			migration = is_migration_entry(entry);
1537 			page = migration_entry_to_page(entry);
1538 		}
1539 #endif
1540 
1541 		if (page && !migration && page_mapcount(page) == 1)
1542 			flags |= PM_MMAP_EXCLUSIVE;
1543 
1544 		for (; addr != end; addr += PAGE_SIZE) {
1545 			pagemap_entry_t pme = make_pme(frame, flags);
1546 
1547 			err = add_to_pagemap(addr, &pme, pm);
1548 			if (err)
1549 				break;
1550 			if (pm->show_pfn) {
1551 				if (flags & PM_PRESENT)
1552 					frame++;
1553 				else if (flags & PM_SWAP)
1554 					frame += (1 << MAX_SWAPFILES_SHIFT);
1555 			}
1556 		}
1557 		spin_unlock(ptl);
1558 		return err;
1559 	}
1560 
1561 	if (pmd_trans_unstable(pmdp))
1562 		return 0;
1563 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1564 
1565 	/*
1566 	 * We can assume that @vma always points to a valid one and @end never
1567 	 * goes beyond vma->vm_end.
1568 	 */
1569 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1570 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1571 		pagemap_entry_t pme;
1572 
1573 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1574 		err = add_to_pagemap(addr, &pme, pm);
1575 		if (err)
1576 			break;
1577 	}
1578 	pte_unmap_unlock(orig_pte, ptl);
1579 
1580 	cond_resched();
1581 
1582 	return err;
1583 }
1584 
1585 #ifdef CONFIG_HUGETLB_PAGE
1586 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1587 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1588 				 unsigned long addr, unsigned long end,
1589 				 struct mm_walk *walk)
1590 {
1591 	struct pagemapread *pm = walk->private;
1592 	struct vm_area_struct *vma = walk->vma;
1593 	u64 flags = 0, frame = 0;
1594 	int err = 0;
1595 	pte_t pte;
1596 
1597 	if (vma->vm_flags & VM_SOFTDIRTY)
1598 		flags |= PM_SOFT_DIRTY;
1599 
1600 	pte = huge_ptep_get(ptep);
1601 	if (pte_present(pte)) {
1602 		struct page *page = pte_page(pte);
1603 
1604 		if (!PageAnon(page))
1605 			flags |= PM_FILE;
1606 
1607 		if (page_mapcount(page) == 1)
1608 			flags |= PM_MMAP_EXCLUSIVE;
1609 
1610 		flags |= PM_PRESENT;
1611 		if (pm->show_pfn)
1612 			frame = pte_pfn(pte) +
1613 				((addr & ~hmask) >> PAGE_SHIFT);
1614 	}
1615 
1616 	for (; addr != end; addr += PAGE_SIZE) {
1617 		pagemap_entry_t pme = make_pme(frame, flags);
1618 
1619 		err = add_to_pagemap(addr, &pme, pm);
1620 		if (err)
1621 			return err;
1622 		if (pm->show_pfn && (flags & PM_PRESENT))
1623 			frame++;
1624 	}
1625 
1626 	cond_resched();
1627 
1628 	return err;
1629 }
1630 #else
1631 #define pagemap_hugetlb_range	NULL
1632 #endif /* HUGETLB_PAGE */
1633 
1634 static const struct mm_walk_ops pagemap_ops = {
1635 	.pmd_entry	= pagemap_pmd_range,
1636 	.pte_hole	= pagemap_pte_hole,
1637 	.hugetlb_entry	= pagemap_hugetlb_range,
1638 };
1639 
1640 /*
1641  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1642  *
1643  * For each page in the address space, this file contains one 64-bit entry
1644  * consisting of the following:
1645  *
1646  * Bits 0-54  page frame number (PFN) if present
1647  * Bits 0-4   swap type if swapped
1648  * Bits 5-54  swap offset if swapped
1649  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1650  * Bit  56    page exclusively mapped
1651  * Bits 57-60 zero
1652  * Bit  61    page is file-page or shared-anon
1653  * Bit  62    page swapped
1654  * Bit  63    page present
1655  *
1656  * If the page is not present but in swap, then the PFN contains an
1657  * encoding of the swap file number and the page's offset into the
1658  * swap. Unmapped pages return a null PFN. This allows determining
1659  * precisely which pages are mapped (or in swap) and comparing mapped
1660  * pages between processes.
1661  *
1662  * Efficient users of this interface will use /proc/pid/maps to
1663  * determine which areas of memory are actually mapped and llseek to
1664  * skip over unmapped regions.
1665  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1666 static ssize_t pagemap_read(struct file *file, char __user *buf,
1667 			    size_t count, loff_t *ppos)
1668 {
1669 	struct mm_struct *mm = file->private_data;
1670 	struct pagemapread pm;
1671 	unsigned long src;
1672 	unsigned long svpfn;
1673 	unsigned long start_vaddr;
1674 	unsigned long end_vaddr;
1675 	int ret = 0, copied = 0;
1676 
1677 	if (!mm || !mmget_not_zero(mm))
1678 		goto out;
1679 
1680 	ret = -EINVAL;
1681 	/* file position must be aligned */
1682 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1683 		goto out_mm;
1684 
1685 	ret = 0;
1686 	if (!count)
1687 		goto out_mm;
1688 
1689 	/* do not disclose physical addresses: attack vector */
1690 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1691 
1692 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1693 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1694 	ret = -ENOMEM;
1695 	if (!pm.buffer)
1696 		goto out_mm;
1697 
1698 	src = *ppos;
1699 	svpfn = src / PM_ENTRY_BYTES;
1700 	end_vaddr = mm->task_size;
1701 
1702 	/* watch out for wraparound */
1703 	start_vaddr = end_vaddr;
1704 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1705 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1706 
1707 	/* Ensure the address is inside the task */
1708 	if (start_vaddr > mm->task_size)
1709 		start_vaddr = end_vaddr;
1710 
1711 	/*
1712 	 * The odds are that this will stop walking way
1713 	 * before end_vaddr, because the length of the
1714 	 * user buffer is tracked in "pm", and the walk
1715 	 * will stop when we hit the end of the buffer.
1716 	 */
1717 	ret = 0;
1718 	while (count && (start_vaddr < end_vaddr)) {
1719 		int len;
1720 		unsigned long end;
1721 
1722 		pm.pos = 0;
1723 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1724 		/* overflow ? */
1725 		if (end < start_vaddr || end > end_vaddr)
1726 			end = end_vaddr;
1727 		ret = mmap_read_lock_killable(mm);
1728 		if (ret)
1729 			goto out_free;
1730 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1731 		mmap_read_unlock(mm);
1732 		start_vaddr = end;
1733 
1734 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1735 		if (copy_to_user(buf, pm.buffer, len)) {
1736 			ret = -EFAULT;
1737 			goto out_free;
1738 		}
1739 		copied += len;
1740 		buf += len;
1741 		count -= len;
1742 	}
1743 	*ppos += copied;
1744 	if (!ret || ret == PM_END_OF_BUFFER)
1745 		ret = copied;
1746 
1747 out_free:
1748 	kfree(pm.buffer);
1749 out_mm:
1750 	mmput(mm);
1751 out:
1752 	return ret;
1753 }
1754 
pagemap_open(struct inode * inode,struct file * file)1755 static int pagemap_open(struct inode *inode, struct file *file)
1756 {
1757 	struct mm_struct *mm;
1758 
1759 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1760 	if (IS_ERR(mm))
1761 		return PTR_ERR(mm);
1762 	file->private_data = mm;
1763 	return 0;
1764 }
1765 
pagemap_release(struct inode * inode,struct file * file)1766 static int pagemap_release(struct inode *inode, struct file *file)
1767 {
1768 	struct mm_struct *mm = file->private_data;
1769 
1770 	if (mm)
1771 		mmdrop(mm);
1772 	return 0;
1773 }
1774 
1775 const struct file_operations proc_pagemap_operations = {
1776 	.llseek		= mem_lseek, /* borrow this */
1777 	.read		= pagemap_read,
1778 	.open		= pagemap_open,
1779 	.release	= pagemap_release,
1780 };
1781 #endif /* CONFIG_PROC_PAGE_MONITOR */
1782 
1783 #ifdef CONFIG_NUMA
1784 
1785 struct numa_maps {
1786 	unsigned long pages;
1787 	unsigned long anon;
1788 	unsigned long active;
1789 	unsigned long writeback;
1790 	unsigned long mapcount_max;
1791 	unsigned long dirty;
1792 	unsigned long swapcache;
1793 	unsigned long node[MAX_NUMNODES];
1794 };
1795 
1796 struct numa_maps_private {
1797 	struct proc_maps_private proc_maps;
1798 	struct numa_maps md;
1799 };
1800 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1801 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1802 			unsigned long nr_pages)
1803 {
1804 	int count = page_mapcount(page);
1805 
1806 	md->pages += nr_pages;
1807 	if (pte_dirty || PageDirty(page))
1808 		md->dirty += nr_pages;
1809 
1810 	if (PageSwapCache(page))
1811 		md->swapcache += nr_pages;
1812 
1813 	if (PageActive(page) || PageUnevictable(page))
1814 		md->active += nr_pages;
1815 
1816 	if (PageWriteback(page))
1817 		md->writeback += nr_pages;
1818 
1819 	if (PageAnon(page))
1820 		md->anon += nr_pages;
1821 
1822 	if (count > md->mapcount_max)
1823 		md->mapcount_max = count;
1824 
1825 	md->node[page_to_nid(page)] += nr_pages;
1826 }
1827 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1828 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1829 		unsigned long addr)
1830 {
1831 	struct page *page;
1832 	int nid;
1833 
1834 	if (!pte_present(pte))
1835 		return NULL;
1836 
1837 	page = vm_normal_page(vma, addr, pte);
1838 	if (!page)
1839 		return NULL;
1840 
1841 	if (PageReserved(page))
1842 		return NULL;
1843 
1844 	nid = page_to_nid(page);
1845 	if (!node_isset(nid, node_states[N_MEMORY]))
1846 		return NULL;
1847 
1848 	return page;
1849 }
1850 
1851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1852 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1853 					      struct vm_area_struct *vma,
1854 					      unsigned long addr)
1855 {
1856 	struct page *page;
1857 	int nid;
1858 
1859 	if (!pmd_present(pmd))
1860 		return NULL;
1861 
1862 	page = vm_normal_page_pmd(vma, addr, pmd);
1863 	if (!page)
1864 		return NULL;
1865 
1866 	if (PageReserved(page))
1867 		return NULL;
1868 
1869 	nid = page_to_nid(page);
1870 	if (!node_isset(nid, node_states[N_MEMORY]))
1871 		return NULL;
1872 
1873 	return page;
1874 }
1875 #endif
1876 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1877 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1878 		unsigned long end, struct mm_walk *walk)
1879 {
1880 	struct numa_maps *md = walk->private;
1881 	struct vm_area_struct *vma = walk->vma;
1882 	spinlock_t *ptl;
1883 	pte_t *orig_pte;
1884 	pte_t *pte;
1885 
1886 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1887 	ptl = pmd_trans_huge_lock(pmd, vma);
1888 	if (ptl) {
1889 		struct page *page;
1890 
1891 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1892 		if (page)
1893 			gather_stats(page, md, pmd_dirty(*pmd),
1894 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1895 		spin_unlock(ptl);
1896 		return 0;
1897 	}
1898 
1899 	if (pmd_trans_unstable(pmd))
1900 		return 0;
1901 #endif
1902 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1903 	do {
1904 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1905 		if (!page)
1906 			continue;
1907 		gather_stats(page, md, pte_dirty(*pte), 1);
1908 
1909 	} while (pte++, addr += PAGE_SIZE, addr != end);
1910 	pte_unmap_unlock(orig_pte, ptl);
1911 	cond_resched();
1912 	return 0;
1913 }
1914 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1915 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1916 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1917 {
1918 	pte_t huge_pte = huge_ptep_get(pte);
1919 	struct numa_maps *md;
1920 	struct page *page;
1921 
1922 	if (!pte_present(huge_pte))
1923 		return 0;
1924 
1925 	page = pte_page(huge_pte);
1926 	if (!page)
1927 		return 0;
1928 
1929 	md = walk->private;
1930 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1931 	return 0;
1932 }
1933 
1934 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1935 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1936 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1937 {
1938 	return 0;
1939 }
1940 #endif
1941 
1942 static const struct mm_walk_ops show_numa_ops = {
1943 	.hugetlb_entry = gather_hugetlb_stats,
1944 	.pmd_entry = gather_pte_stats,
1945 };
1946 
1947 /*
1948  * Display pages allocated per node and memory policy via /proc.
1949  */
show_numa_map(struct seq_file * m,void * v)1950 static int show_numa_map(struct seq_file *m, void *v)
1951 {
1952 	struct numa_maps_private *numa_priv = m->private;
1953 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1954 	struct vm_area_struct *vma = v;
1955 	struct numa_maps *md = &numa_priv->md;
1956 	struct file *file = vma->vm_file;
1957 	struct mm_struct *mm = vma->vm_mm;
1958 	struct mempolicy *pol;
1959 	char buffer[64];
1960 	int nid;
1961 
1962 	if (!mm)
1963 		return 0;
1964 
1965 	/* Ensure we start with an empty set of numa_maps statistics. */
1966 	memset(md, 0, sizeof(*md));
1967 
1968 	pol = __get_vma_policy(vma, vma->vm_start);
1969 	if (pol) {
1970 		mpol_to_str(buffer, sizeof(buffer), pol);
1971 		mpol_cond_put(pol);
1972 	} else {
1973 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1974 	}
1975 
1976 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1977 
1978 	if (file) {
1979 		seq_puts(m, " file=");
1980 		seq_file_path(m, file, "\n\t= ");
1981 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1982 		seq_puts(m, " heap");
1983 	} else if (is_stack(vma)) {
1984 		seq_puts(m, " stack");
1985 	}
1986 
1987 	if (is_vm_hugetlb_page(vma))
1988 		seq_puts(m, " huge");
1989 
1990 	/* mmap_lock is held by m_start */
1991 	walk_page_vma(vma, &show_numa_ops, md);
1992 
1993 	if (!md->pages)
1994 		goto out;
1995 
1996 	if (md->anon)
1997 		seq_printf(m, " anon=%lu", md->anon);
1998 
1999 	if (md->dirty)
2000 		seq_printf(m, " dirty=%lu", md->dirty);
2001 
2002 	if (md->pages != md->anon && md->pages != md->dirty)
2003 		seq_printf(m, " mapped=%lu", md->pages);
2004 
2005 	if (md->mapcount_max > 1)
2006 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2007 
2008 	if (md->swapcache)
2009 		seq_printf(m, " swapcache=%lu", md->swapcache);
2010 
2011 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2012 		seq_printf(m, " active=%lu", md->active);
2013 
2014 	if (md->writeback)
2015 		seq_printf(m, " writeback=%lu", md->writeback);
2016 
2017 	for_each_node_state(nid, N_MEMORY)
2018 		if (md->node[nid])
2019 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2020 
2021 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2022 out:
2023 	seq_putc(m, '\n');
2024 	return 0;
2025 }
2026 
2027 static const struct seq_operations proc_pid_numa_maps_op = {
2028 	.start  = m_start,
2029 	.next   = m_next,
2030 	.stop   = m_stop,
2031 	.show   = show_numa_map,
2032 };
2033 
pid_numa_maps_open(struct inode * inode,struct file * file)2034 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2035 {
2036 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2037 				sizeof(struct numa_maps_private));
2038 }
2039 
2040 const struct file_operations proc_pid_numa_maps_operations = {
2041 	.open		= pid_numa_maps_open,
2042 	.read		= seq_read,
2043 	.llseek		= seq_lseek,
2044 	.release	= proc_map_release,
2045 };
2046 
2047 #endif /* CONFIG_NUMA */
2048