1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22
fuse_pages_alloc(unsigned int npages,gfp_t flags,struct fuse_page_desc ** desc)23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 struct fuse_page_desc **desc)
25 {
26 struct page **pages;
27
28 pages = kzalloc(npages * (sizeof(struct page *) +
29 sizeof(struct fuse_page_desc)), flags);
30 *desc = (void *) (pages + npages);
31
32 return pages;
33 }
34
fuse_send_open(struct fuse_mount * fm,u64 nodeid,struct file * file,int opcode,struct fuse_open_out * outargp)35 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
36 int opcode, struct fuse_open_out *outargp)
37 {
38 struct fuse_open_in inarg;
39 FUSE_ARGS(args);
40
41 memset(&inarg, 0, sizeof(inarg));
42 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 if (!fm->fc->atomic_o_trunc)
44 inarg.flags &= ~O_TRUNC;
45 args.opcode = opcode;
46 args.nodeid = nodeid;
47 args.in_numargs = 1;
48 args.in_args[0].size = sizeof(inarg);
49 args.in_args[0].value = &inarg;
50 args.out_numargs = 1;
51 args.out_args[0].size = sizeof(*outargp);
52 args.out_args[0].value = outargp;
53
54 return fuse_simple_request(fm, &args);
55 }
56
57 struct fuse_release_args {
58 struct fuse_args args;
59 struct fuse_release_in inarg;
60 struct inode *inode;
61 };
62
fuse_file_alloc(struct fuse_mount * fm)63 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
64 {
65 struct fuse_file *ff;
66
67 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 if (unlikely(!ff))
69 return NULL;
70
71 ff->fm = fm;
72 ff->release_args = kzalloc(sizeof(*ff->release_args),
73 GFP_KERNEL_ACCOUNT);
74 if (!ff->release_args) {
75 kfree(ff);
76 return NULL;
77 }
78
79 INIT_LIST_HEAD(&ff->write_entry);
80 mutex_init(&ff->readdir.lock);
81 refcount_set(&ff->count, 1);
82 RB_CLEAR_NODE(&ff->polled_node);
83 init_waitqueue_head(&ff->poll_wait);
84
85 ff->kh = atomic64_inc_return(&fm->fc->khctr);
86
87 return ff;
88 }
89
fuse_file_free(struct fuse_file * ff)90 void fuse_file_free(struct fuse_file *ff)
91 {
92 kfree(ff->release_args);
93 mutex_destroy(&ff->readdir.lock);
94 kfree(ff);
95 }
96
fuse_file_get(struct fuse_file * ff)97 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 {
99 refcount_inc(&ff->count);
100 return ff;
101 }
102
fuse_release_end(struct fuse_mount * fm,struct fuse_args * args,int error)103 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
104 int error)
105 {
106 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107
108 iput(ra->inode);
109 kfree(ra);
110 }
111
fuse_file_put(struct fuse_file * ff,bool sync,bool isdir)112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 {
114 if (refcount_dec_and_test(&ff->count)) {
115 struct fuse_args *args = &ff->release_args->args;
116
117 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
118 /* Do nothing when client does not implement 'open' */
119 fuse_release_end(ff->fm, args, 0);
120 } else if (sync) {
121 fuse_simple_request(ff->fm, args);
122 fuse_release_end(ff->fm, args, 0);
123 } else {
124 args->end = fuse_release_end;
125 if (fuse_simple_background(ff->fm, args,
126 GFP_KERNEL | __GFP_NOFAIL))
127 fuse_release_end(ff->fm, args, -ENOTCONN);
128 }
129 kfree(ff);
130 }
131 }
132
fuse_do_open(struct fuse_mount * fm,u64 nodeid,struct file * file,bool isdir)133 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
134 bool isdir)
135 {
136 struct fuse_conn *fc = fm->fc;
137 struct fuse_file *ff;
138 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
139
140 ff = fuse_file_alloc(fm);
141 if (!ff)
142 return -ENOMEM;
143
144 ff->fh = 0;
145 /* Default for no-open */
146 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
147 if (isdir ? !fc->no_opendir : !fc->no_open) {
148 struct fuse_open_out outarg;
149 int err;
150
151 err = fuse_send_open(fm, nodeid, file, opcode, &outarg);
152 if (!err) {
153 ff->fh = outarg.fh;
154 ff->open_flags = outarg.open_flags;
155 fuse_passthrough_setup(fc, ff, &outarg);
156 } else if (err != -ENOSYS) {
157 fuse_file_free(ff);
158 return err;
159 } else {
160 if (isdir)
161 fc->no_opendir = 1;
162 else
163 fc->no_open = 1;
164 }
165 }
166
167 if (isdir)
168 ff->open_flags &= ~FOPEN_DIRECT_IO;
169
170 ff->nodeid = nodeid;
171 file->private_data = ff;
172
173 return 0;
174 }
175 EXPORT_SYMBOL_GPL(fuse_do_open);
176
fuse_link_write_file(struct file * file)177 static void fuse_link_write_file(struct file *file)
178 {
179 struct inode *inode = file_inode(file);
180 struct fuse_inode *fi = get_fuse_inode(inode);
181 struct fuse_file *ff = file->private_data;
182 /*
183 * file may be written through mmap, so chain it onto the
184 * inodes's write_file list
185 */
186 spin_lock(&fi->lock);
187 if (list_empty(&ff->write_entry))
188 list_add(&ff->write_entry, &fi->write_files);
189 spin_unlock(&fi->lock);
190 }
191
fuse_finish_open(struct inode * inode,struct file * file)192 void fuse_finish_open(struct inode *inode, struct file *file)
193 {
194 struct fuse_file *ff = file->private_data;
195 struct fuse_conn *fc = get_fuse_conn(inode);
196
197 if (ff->open_flags & FOPEN_STREAM)
198 stream_open(inode, file);
199 else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 nonseekable_open(inode, file);
201
202 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
203 struct fuse_inode *fi = get_fuse_inode(inode);
204
205 spin_lock(&fi->lock);
206 fi->attr_version = atomic64_inc_return(&fc->attr_version);
207 i_size_write(inode, 0);
208 spin_unlock(&fi->lock);
209 truncate_pagecache(inode, 0);
210 fuse_invalidate_attr(inode);
211 if (fc->writeback_cache)
212 file_update_time(file);
213 } else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) {
214 invalidate_inode_pages2(inode->i_mapping);
215 }
216
217 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
218 fuse_link_write_file(file);
219 }
220
fuse_open_common(struct inode * inode,struct file * file,bool isdir)221 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
222 {
223 struct fuse_mount *fm = get_fuse_mount(inode);
224 struct fuse_conn *fc = fm->fc;
225 int err;
226 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
227 fc->atomic_o_trunc &&
228 fc->writeback_cache;
229 bool dax_truncate = (file->f_flags & O_TRUNC) &&
230 fc->atomic_o_trunc && FUSE_IS_DAX(inode);
231
232 if (fuse_is_bad(inode))
233 return -EIO;
234
235 err = generic_file_open(inode, file);
236 if (err)
237 return err;
238
239 if (is_wb_truncate || dax_truncate) {
240 inode_lock(inode);
241 fuse_set_nowrite(inode);
242 }
243
244 if (dax_truncate) {
245 down_write(&get_fuse_inode(inode)->i_mmap_sem);
246 err = fuse_dax_break_layouts(inode, 0, 0);
247 if (err)
248 goto out;
249 }
250
251 err = fuse_do_open(fm, get_node_id(inode), file, isdir);
252 if (!err)
253 fuse_finish_open(inode, file);
254
255 out:
256 if (dax_truncate)
257 up_write(&get_fuse_inode(inode)->i_mmap_sem);
258
259 if (is_wb_truncate | dax_truncate) {
260 fuse_release_nowrite(inode);
261 inode_unlock(inode);
262 }
263
264 return err;
265 }
266
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,int flags,int opcode)267 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
268 int flags, int opcode)
269 {
270 struct fuse_conn *fc = ff->fm->fc;
271 struct fuse_release_args *ra = ff->release_args;
272
273 /* Inode is NULL on error path of fuse_create_open() */
274 if (likely(fi)) {
275 spin_lock(&fi->lock);
276 list_del(&ff->write_entry);
277 spin_unlock(&fi->lock);
278 }
279 spin_lock(&fc->lock);
280 if (!RB_EMPTY_NODE(&ff->polled_node))
281 rb_erase(&ff->polled_node, &fc->polled_files);
282 spin_unlock(&fc->lock);
283
284 wake_up_interruptible_all(&ff->poll_wait);
285
286 ra->inarg.fh = ff->fh;
287 ra->inarg.flags = flags;
288 ra->args.in_numargs = 1;
289 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
290 ra->args.in_args[0].value = &ra->inarg;
291 ra->args.opcode = opcode;
292 ra->args.nodeid = ff->nodeid;
293 ra->args.force = true;
294 ra->args.nocreds = true;
295 }
296
fuse_release_common(struct file * file,bool isdir)297 void fuse_release_common(struct file *file, bool isdir)
298 {
299 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
300 struct fuse_file *ff = file->private_data;
301 struct fuse_release_args *ra = ff->release_args;
302 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
303
304 fuse_passthrough_release(&ff->passthrough);
305
306 fuse_prepare_release(fi, ff, file->f_flags, opcode);
307
308 if (ff->flock) {
309 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
310 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc,
311 (fl_owner_t) file);
312 }
313 /* Hold inode until release is finished */
314 ra->inode = igrab(file_inode(file));
315
316 /*
317 * Normally this will send the RELEASE request, however if
318 * some asynchronous READ or WRITE requests are outstanding,
319 * the sending will be delayed.
320 *
321 * Make the release synchronous if this is a fuseblk mount,
322 * synchronous RELEASE is allowed (and desirable) in this case
323 * because the server can be trusted not to screw up.
324 */
325 fuse_file_put(ff, ff->fm->fc->destroy, isdir);
326 }
327
fuse_open(struct inode * inode,struct file * file)328 static int fuse_open(struct inode *inode, struct file *file)
329 {
330 return fuse_open_common(inode, file, false);
331 }
332
fuse_release(struct inode * inode,struct file * file)333 static int fuse_release(struct inode *inode, struct file *file)
334 {
335 struct fuse_conn *fc = get_fuse_conn(inode);
336
337 /* see fuse_vma_close() for !writeback_cache case */
338 if (fc->writeback_cache)
339 write_inode_now(inode, 1);
340
341 fuse_release_common(file, false);
342
343 /* return value is ignored by VFS */
344 return 0;
345 }
346
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,int flags)347 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
348 {
349 WARN_ON(refcount_read(&ff->count) > 1);
350 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
351 /*
352 * iput(NULL) is a no-op and since the refcount is 1 and everything's
353 * synchronous, we are fine with not doing igrab() here"
354 */
355 fuse_file_put(ff, true, false);
356 }
357 EXPORT_SYMBOL_GPL(fuse_sync_release);
358
359 /*
360 * Scramble the ID space with XTEA, so that the value of the files_struct
361 * pointer is not exposed to userspace.
362 */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)363 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
364 {
365 u32 *k = fc->scramble_key;
366 u64 v = (unsigned long) id;
367 u32 v0 = v;
368 u32 v1 = v >> 32;
369 u32 sum = 0;
370 int i;
371
372 for (i = 0; i < 32; i++) {
373 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
374 sum += 0x9E3779B9;
375 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
376 }
377
378 return (u64) v0 + ((u64) v1 << 32);
379 }
380
381 struct fuse_writepage_args {
382 struct fuse_io_args ia;
383 struct rb_node writepages_entry;
384 struct list_head queue_entry;
385 struct fuse_writepage_args *next;
386 struct inode *inode;
387 };
388
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)389 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
390 pgoff_t idx_from, pgoff_t idx_to)
391 {
392 struct rb_node *n;
393
394 n = fi->writepages.rb_node;
395
396 while (n) {
397 struct fuse_writepage_args *wpa;
398 pgoff_t curr_index;
399
400 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
401 WARN_ON(get_fuse_inode(wpa->inode) != fi);
402 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
403 if (idx_from >= curr_index + wpa->ia.ap.num_pages)
404 n = n->rb_right;
405 else if (idx_to < curr_index)
406 n = n->rb_left;
407 else
408 return wpa;
409 }
410 return NULL;
411 }
412
413 /*
414 * Check if any page in a range is under writeback
415 *
416 * This is currently done by walking the list of writepage requests
417 * for the inode, which can be pretty inefficient.
418 */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)419 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
420 pgoff_t idx_to)
421 {
422 struct fuse_inode *fi = get_fuse_inode(inode);
423 bool found;
424
425 spin_lock(&fi->lock);
426 found = fuse_find_writeback(fi, idx_from, idx_to);
427 spin_unlock(&fi->lock);
428
429 return found;
430 }
431
fuse_page_is_writeback(struct inode * inode,pgoff_t index)432 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
433 {
434 return fuse_range_is_writeback(inode, index, index);
435 }
436
437 /*
438 * Wait for page writeback to be completed.
439 *
440 * Since fuse doesn't rely on the VM writeback tracking, this has to
441 * use some other means.
442 */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)443 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
444 {
445 struct fuse_inode *fi = get_fuse_inode(inode);
446
447 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
448 }
449
450 /*
451 * Wait for all pending writepages on the inode to finish.
452 *
453 * This is currently done by blocking further writes with FUSE_NOWRITE
454 * and waiting for all sent writes to complete.
455 *
456 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
457 * could conflict with truncation.
458 */
fuse_sync_writes(struct inode * inode)459 static void fuse_sync_writes(struct inode *inode)
460 {
461 fuse_set_nowrite(inode);
462 fuse_release_nowrite(inode);
463 }
464
fuse_flush(struct file * file,fl_owner_t id)465 static int fuse_flush(struct file *file, fl_owner_t id)
466 {
467 struct inode *inode = file_inode(file);
468 struct fuse_mount *fm = get_fuse_mount(inode);
469 struct fuse_file *ff = file->private_data;
470 struct fuse_flush_in inarg;
471 FUSE_ARGS(args);
472 int err;
473
474 if (fuse_is_bad(inode))
475 return -EIO;
476
477 err = write_inode_now(inode, 1);
478 if (err)
479 return err;
480
481 inode_lock(inode);
482 fuse_sync_writes(inode);
483 inode_unlock(inode);
484
485 err = filemap_check_errors(file->f_mapping);
486 if (err)
487 return err;
488
489 err = 0;
490 if (fm->fc->no_flush)
491 goto inval_attr_out;
492
493 memset(&inarg, 0, sizeof(inarg));
494 inarg.fh = ff->fh;
495 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
496 args.opcode = FUSE_FLUSH;
497 args.nodeid = get_node_id(inode);
498 args.in_numargs = 1;
499 args.in_args[0].size = sizeof(inarg);
500 args.in_args[0].value = &inarg;
501 args.force = true;
502
503 err = fuse_simple_request(fm, &args);
504 if (err == -ENOSYS) {
505 fm->fc->no_flush = 1;
506 err = 0;
507 }
508
509 inval_attr_out:
510 /*
511 * In memory i_blocks is not maintained by fuse, if writeback cache is
512 * enabled, i_blocks from cached attr may not be accurate.
513 */
514 if (!err && fm->fc->writeback_cache)
515 fuse_invalidate_attr(inode);
516 return err;
517 }
518
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)519 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
520 int datasync, int opcode)
521 {
522 struct inode *inode = file->f_mapping->host;
523 struct fuse_mount *fm = get_fuse_mount(inode);
524 struct fuse_file *ff = file->private_data;
525 FUSE_ARGS(args);
526 struct fuse_fsync_in inarg;
527
528 memset(&inarg, 0, sizeof(inarg));
529 inarg.fh = ff->fh;
530 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
531 args.opcode = opcode;
532 args.nodeid = get_node_id(inode);
533 args.in_numargs = 1;
534 args.in_args[0].size = sizeof(inarg);
535 args.in_args[0].value = &inarg;
536 return fuse_simple_request(fm, &args);
537 }
538
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)539 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
540 int datasync)
541 {
542 struct inode *inode = file->f_mapping->host;
543 struct fuse_conn *fc = get_fuse_conn(inode);
544 int err;
545
546 if (fuse_is_bad(inode))
547 return -EIO;
548
549 inode_lock(inode);
550
551 /*
552 * Start writeback against all dirty pages of the inode, then
553 * wait for all outstanding writes, before sending the FSYNC
554 * request.
555 */
556 err = file_write_and_wait_range(file, start, end);
557 if (err)
558 goto out;
559
560 fuse_sync_writes(inode);
561
562 /*
563 * Due to implementation of fuse writeback
564 * file_write_and_wait_range() does not catch errors.
565 * We have to do this directly after fuse_sync_writes()
566 */
567 err = file_check_and_advance_wb_err(file);
568 if (err)
569 goto out;
570
571 err = sync_inode_metadata(inode, 1);
572 if (err)
573 goto out;
574
575 if (fc->no_fsync)
576 goto out;
577
578 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
579 if (err == -ENOSYS) {
580 fc->no_fsync = 1;
581 err = 0;
582 }
583 out:
584 inode_unlock(inode);
585
586 return err;
587 }
588
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)589 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
590 size_t count, int opcode)
591 {
592 struct fuse_file *ff = file->private_data;
593 struct fuse_args *args = &ia->ap.args;
594
595 ia->read.in.fh = ff->fh;
596 ia->read.in.offset = pos;
597 ia->read.in.size = count;
598 ia->read.in.flags = file->f_flags;
599 args->opcode = opcode;
600 args->nodeid = ff->nodeid;
601 args->in_numargs = 1;
602 args->in_args[0].size = sizeof(ia->read.in);
603 args->in_args[0].value = &ia->read.in;
604 args->out_argvar = true;
605 args->out_numargs = 1;
606 args->out_args[0].size = count;
607 }
608
fuse_release_user_pages(struct fuse_args_pages * ap,bool should_dirty)609 static void fuse_release_user_pages(struct fuse_args_pages *ap,
610 bool should_dirty)
611 {
612 unsigned int i;
613
614 for (i = 0; i < ap->num_pages; i++) {
615 if (should_dirty)
616 set_page_dirty_lock(ap->pages[i]);
617 put_page(ap->pages[i]);
618 }
619 }
620
fuse_io_release(struct kref * kref)621 static void fuse_io_release(struct kref *kref)
622 {
623 kfree(container_of(kref, struct fuse_io_priv, refcnt));
624 }
625
fuse_get_res_by_io(struct fuse_io_priv * io)626 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
627 {
628 if (io->err)
629 return io->err;
630
631 if (io->bytes >= 0 && io->write)
632 return -EIO;
633
634 return io->bytes < 0 ? io->size : io->bytes;
635 }
636
637 /**
638 * In case of short read, the caller sets 'pos' to the position of
639 * actual end of fuse request in IO request. Otherwise, if bytes_requested
640 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
641 *
642 * An example:
643 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
644 * both submitted asynchronously. The first of them was ACKed by userspace as
645 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
646 * second request was ACKed as short, e.g. only 1K was read, resulting in
647 * pos == 33K.
648 *
649 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
650 * will be equal to the length of the longest contiguous fragment of
651 * transferred data starting from the beginning of IO request.
652 */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)653 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
654 {
655 int left;
656
657 spin_lock(&io->lock);
658 if (err)
659 io->err = io->err ? : err;
660 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
661 io->bytes = pos;
662
663 left = --io->reqs;
664 if (!left && io->blocking)
665 complete(io->done);
666 spin_unlock(&io->lock);
667
668 if (!left && !io->blocking) {
669 ssize_t res = fuse_get_res_by_io(io);
670
671 if (res >= 0) {
672 struct inode *inode = file_inode(io->iocb->ki_filp);
673 struct fuse_conn *fc = get_fuse_conn(inode);
674 struct fuse_inode *fi = get_fuse_inode(inode);
675
676 spin_lock(&fi->lock);
677 fi->attr_version = atomic64_inc_return(&fc->attr_version);
678 spin_unlock(&fi->lock);
679 }
680
681 io->iocb->ki_complete(io->iocb, res, 0);
682 }
683
684 kref_put(&io->refcnt, fuse_io_release);
685 }
686
fuse_io_alloc(struct fuse_io_priv * io,unsigned int npages)687 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
688 unsigned int npages)
689 {
690 struct fuse_io_args *ia;
691
692 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
693 if (ia) {
694 ia->io = io;
695 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
696 &ia->ap.descs);
697 if (!ia->ap.pages) {
698 kfree(ia);
699 ia = NULL;
700 }
701 }
702 return ia;
703 }
704
fuse_io_free(struct fuse_io_args * ia)705 static void fuse_io_free(struct fuse_io_args *ia)
706 {
707 kfree(ia->ap.pages);
708 kfree(ia);
709 }
710
fuse_aio_complete_req(struct fuse_mount * fm,struct fuse_args * args,int err)711 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
712 int err)
713 {
714 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
715 struct fuse_io_priv *io = ia->io;
716 ssize_t pos = -1;
717
718 fuse_release_user_pages(&ia->ap, io->should_dirty);
719
720 if (err) {
721 /* Nothing */
722 } else if (io->write) {
723 if (ia->write.out.size > ia->write.in.size) {
724 err = -EIO;
725 } else if (ia->write.in.size != ia->write.out.size) {
726 pos = ia->write.in.offset - io->offset +
727 ia->write.out.size;
728 }
729 } else {
730 u32 outsize = args->out_args[0].size;
731
732 if (ia->read.in.size != outsize)
733 pos = ia->read.in.offset - io->offset + outsize;
734 }
735
736 fuse_aio_complete(io, err, pos);
737 fuse_io_free(ia);
738 }
739
fuse_async_req_send(struct fuse_mount * fm,struct fuse_io_args * ia,size_t num_bytes)740 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
741 struct fuse_io_args *ia, size_t num_bytes)
742 {
743 ssize_t err;
744 struct fuse_io_priv *io = ia->io;
745
746 spin_lock(&io->lock);
747 kref_get(&io->refcnt);
748 io->size += num_bytes;
749 io->reqs++;
750 spin_unlock(&io->lock);
751
752 ia->ap.args.end = fuse_aio_complete_req;
753 ia->ap.args.may_block = io->should_dirty;
754 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
755 if (err)
756 fuse_aio_complete_req(fm, &ia->ap.args, err);
757
758 return num_bytes;
759 }
760
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)761 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
762 fl_owner_t owner)
763 {
764 struct file *file = ia->io->iocb->ki_filp;
765 struct fuse_file *ff = file->private_data;
766 struct fuse_mount *fm = ff->fm;
767
768 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
769 if (owner != NULL) {
770 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
771 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
772 }
773
774 if (ia->io->async)
775 return fuse_async_req_send(fm, ia, count);
776
777 return fuse_simple_request(fm, &ia->ap.args);
778 }
779
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)780 static void fuse_read_update_size(struct inode *inode, loff_t size,
781 u64 attr_ver)
782 {
783 struct fuse_conn *fc = get_fuse_conn(inode);
784 struct fuse_inode *fi = get_fuse_inode(inode);
785
786 spin_lock(&fi->lock);
787 if (attr_ver == fi->attr_version && size < inode->i_size &&
788 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
789 fi->attr_version = atomic64_inc_return(&fc->attr_version);
790 i_size_write(inode, size);
791 }
792 spin_unlock(&fi->lock);
793 }
794
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)795 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
796 struct fuse_args_pages *ap)
797 {
798 struct fuse_conn *fc = get_fuse_conn(inode);
799
800 if (fc->writeback_cache) {
801 /*
802 * A hole in a file. Some data after the hole are in page cache,
803 * but have not reached the client fs yet. So, the hole is not
804 * present there.
805 */
806 int i;
807 int start_idx = num_read >> PAGE_SHIFT;
808 size_t off = num_read & (PAGE_SIZE - 1);
809
810 for (i = start_idx; i < ap->num_pages; i++) {
811 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
812 off = 0;
813 }
814 } else {
815 loff_t pos = page_offset(ap->pages[0]) + num_read;
816 fuse_read_update_size(inode, pos, attr_ver);
817 }
818 }
819
fuse_do_readpage(struct file * file,struct page * page)820 static int fuse_do_readpage(struct file *file, struct page *page)
821 {
822 struct inode *inode = page->mapping->host;
823 struct fuse_mount *fm = get_fuse_mount(inode);
824 loff_t pos = page_offset(page);
825 struct fuse_page_desc desc = { .length = PAGE_SIZE };
826 struct fuse_io_args ia = {
827 .ap.args.page_zeroing = true,
828 .ap.args.out_pages = true,
829 .ap.num_pages = 1,
830 .ap.pages = &page,
831 .ap.descs = &desc,
832 };
833 ssize_t res;
834 u64 attr_ver;
835
836 /*
837 * Page writeback can extend beyond the lifetime of the
838 * page-cache page, so make sure we read a properly synced
839 * page.
840 */
841 fuse_wait_on_page_writeback(inode, page->index);
842
843 attr_ver = fuse_get_attr_version(fm->fc);
844
845 /* Don't overflow end offset */
846 if (pos + (desc.length - 1) == LLONG_MAX)
847 desc.length--;
848
849 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
850 res = fuse_simple_request(fm, &ia.ap.args);
851 if (res < 0)
852 return res;
853 /*
854 * Short read means EOF. If file size is larger, truncate it
855 */
856 if (res < desc.length)
857 fuse_short_read(inode, attr_ver, res, &ia.ap);
858
859 SetPageUptodate(page);
860
861 return 0;
862 }
863
fuse_readpage(struct file * file,struct page * page)864 static int fuse_readpage(struct file *file, struct page *page)
865 {
866 struct inode *inode = page->mapping->host;
867 int err;
868
869 err = -EIO;
870 if (fuse_is_bad(inode))
871 goto out;
872
873 err = fuse_do_readpage(file, page);
874 fuse_invalidate_atime(inode);
875 out:
876 unlock_page(page);
877 return err;
878 }
879
fuse_readpages_end(struct fuse_mount * fm,struct fuse_args * args,int err)880 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
881 int err)
882 {
883 int i;
884 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
885 struct fuse_args_pages *ap = &ia->ap;
886 size_t count = ia->read.in.size;
887 size_t num_read = args->out_args[0].size;
888 struct address_space *mapping = NULL;
889
890 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
891 mapping = ap->pages[i]->mapping;
892
893 if (mapping) {
894 struct inode *inode = mapping->host;
895
896 /*
897 * Short read means EOF. If file size is larger, truncate it
898 */
899 if (!err && num_read < count)
900 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
901
902 fuse_invalidate_atime(inode);
903 }
904
905 for (i = 0; i < ap->num_pages; i++) {
906 struct page *page = ap->pages[i];
907
908 if (!err)
909 SetPageUptodate(page);
910 else
911 SetPageError(page);
912 unlock_page(page);
913 put_page(page);
914 }
915 if (ia->ff)
916 fuse_file_put(ia->ff, false, false);
917
918 fuse_io_free(ia);
919 }
920
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)921 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
922 {
923 struct fuse_file *ff = file->private_data;
924 struct fuse_mount *fm = ff->fm;
925 struct fuse_args_pages *ap = &ia->ap;
926 loff_t pos = page_offset(ap->pages[0]);
927 size_t count = ap->num_pages << PAGE_SHIFT;
928 ssize_t res;
929 int err;
930
931 ap->args.out_pages = true;
932 ap->args.page_zeroing = true;
933 ap->args.page_replace = true;
934
935 /* Don't overflow end offset */
936 if (pos + (count - 1) == LLONG_MAX) {
937 count--;
938 ap->descs[ap->num_pages - 1].length--;
939 }
940 WARN_ON((loff_t) (pos + count) < 0);
941
942 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
943 ia->read.attr_ver = fuse_get_attr_version(fm->fc);
944 if (fm->fc->async_read) {
945 ia->ff = fuse_file_get(ff);
946 ap->args.end = fuse_readpages_end;
947 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
948 if (!err)
949 return;
950 } else {
951 res = fuse_simple_request(fm, &ap->args);
952 err = res < 0 ? res : 0;
953 }
954 fuse_readpages_end(fm, &ap->args, err);
955 }
956
fuse_readahead(struct readahead_control * rac)957 static void fuse_readahead(struct readahead_control *rac)
958 {
959 struct inode *inode = rac->mapping->host;
960 struct fuse_conn *fc = get_fuse_conn(inode);
961 unsigned int i, max_pages, nr_pages = 0;
962
963 if (fuse_is_bad(inode))
964 return;
965
966 max_pages = min_t(unsigned int, fc->max_pages,
967 fc->max_read / PAGE_SIZE);
968
969 for (;;) {
970 struct fuse_io_args *ia;
971 struct fuse_args_pages *ap;
972
973 nr_pages = readahead_count(rac) - nr_pages;
974 if (nr_pages > max_pages)
975 nr_pages = max_pages;
976 if (nr_pages == 0)
977 break;
978 ia = fuse_io_alloc(NULL, nr_pages);
979 if (!ia)
980 return;
981 ap = &ia->ap;
982 nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
983 for (i = 0; i < nr_pages; i++) {
984 fuse_wait_on_page_writeback(inode,
985 readahead_index(rac) + i);
986 ap->descs[i].length = PAGE_SIZE;
987 }
988 ap->num_pages = nr_pages;
989 fuse_send_readpages(ia, rac->file);
990 }
991 }
992
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)993 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
994 {
995 struct inode *inode = iocb->ki_filp->f_mapping->host;
996 struct fuse_conn *fc = get_fuse_conn(inode);
997
998 /*
999 * In auto invalidate mode, always update attributes on read.
1000 * Otherwise, only update if we attempt to read past EOF (to ensure
1001 * i_size is up to date).
1002 */
1003 if (fc->auto_inval_data ||
1004 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1005 int err;
1006 err = fuse_update_attributes(inode, iocb->ki_filp);
1007 if (err)
1008 return err;
1009 }
1010
1011 return generic_file_read_iter(iocb, to);
1012 }
1013
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1014 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1015 loff_t pos, size_t count)
1016 {
1017 struct fuse_args *args = &ia->ap.args;
1018
1019 ia->write.in.fh = ff->fh;
1020 ia->write.in.offset = pos;
1021 ia->write.in.size = count;
1022 args->opcode = FUSE_WRITE;
1023 args->nodeid = ff->nodeid;
1024 args->in_numargs = 2;
1025 if (ff->fm->fc->minor < 9)
1026 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1027 else
1028 args->in_args[0].size = sizeof(ia->write.in);
1029 args->in_args[0].value = &ia->write.in;
1030 args->in_args[1].size = count;
1031 args->out_numargs = 1;
1032 args->out_args[0].size = sizeof(ia->write.out);
1033 args->out_args[0].value = &ia->write.out;
1034 }
1035
fuse_write_flags(struct kiocb * iocb)1036 static unsigned int fuse_write_flags(struct kiocb *iocb)
1037 {
1038 unsigned int flags = iocb->ki_filp->f_flags;
1039
1040 if (iocb->ki_flags & IOCB_DSYNC)
1041 flags |= O_DSYNC;
1042 if (iocb->ki_flags & IOCB_SYNC)
1043 flags |= O_SYNC;
1044
1045 return flags;
1046 }
1047
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1048 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1049 size_t count, fl_owner_t owner)
1050 {
1051 struct kiocb *iocb = ia->io->iocb;
1052 struct file *file = iocb->ki_filp;
1053 struct fuse_file *ff = file->private_data;
1054 struct fuse_mount *fm = ff->fm;
1055 struct fuse_write_in *inarg = &ia->write.in;
1056 ssize_t err;
1057
1058 fuse_write_args_fill(ia, ff, pos, count);
1059 inarg->flags = fuse_write_flags(iocb);
1060 if (owner != NULL) {
1061 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1062 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1063 }
1064
1065 if (ia->io->async)
1066 return fuse_async_req_send(fm, ia, count);
1067
1068 err = fuse_simple_request(fm, &ia->ap.args);
1069 if (!err && ia->write.out.size > count)
1070 err = -EIO;
1071
1072 return err ?: ia->write.out.size;
1073 }
1074
fuse_write_update_size(struct inode * inode,loff_t pos)1075 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1076 {
1077 struct fuse_conn *fc = get_fuse_conn(inode);
1078 struct fuse_inode *fi = get_fuse_inode(inode);
1079 bool ret = false;
1080
1081 spin_lock(&fi->lock);
1082 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1083 if (pos > inode->i_size) {
1084 i_size_write(inode, pos);
1085 ret = true;
1086 }
1087 spin_unlock(&fi->lock);
1088
1089 return ret;
1090 }
1091
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1092 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1093 struct kiocb *iocb, struct inode *inode,
1094 loff_t pos, size_t count)
1095 {
1096 struct fuse_args_pages *ap = &ia->ap;
1097 struct file *file = iocb->ki_filp;
1098 struct fuse_file *ff = file->private_data;
1099 struct fuse_mount *fm = ff->fm;
1100 unsigned int offset, i;
1101 bool short_write;
1102 int err;
1103
1104 for (i = 0; i < ap->num_pages; i++)
1105 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1106
1107 fuse_write_args_fill(ia, ff, pos, count);
1108 ia->write.in.flags = fuse_write_flags(iocb);
1109
1110 err = fuse_simple_request(fm, &ap->args);
1111 if (!err && ia->write.out.size > count)
1112 err = -EIO;
1113
1114 short_write = ia->write.out.size < count;
1115 offset = ap->descs[0].offset;
1116 count = ia->write.out.size;
1117 for (i = 0; i < ap->num_pages; i++) {
1118 struct page *page = ap->pages[i];
1119
1120 if (err) {
1121 ClearPageUptodate(page);
1122 } else {
1123 if (count >= PAGE_SIZE - offset)
1124 count -= PAGE_SIZE - offset;
1125 else {
1126 if (short_write)
1127 ClearPageUptodate(page);
1128 count = 0;
1129 }
1130 offset = 0;
1131 }
1132 if (ia->write.page_locked && (i == ap->num_pages - 1))
1133 unlock_page(page);
1134 put_page(page);
1135 }
1136
1137 return err;
1138 }
1139
fuse_fill_write_pages(struct fuse_io_args * ia,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1140 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1141 struct address_space *mapping,
1142 struct iov_iter *ii, loff_t pos,
1143 unsigned int max_pages)
1144 {
1145 struct fuse_args_pages *ap = &ia->ap;
1146 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1147 unsigned offset = pos & (PAGE_SIZE - 1);
1148 size_t count = 0;
1149 int err;
1150
1151 ap->args.in_pages = true;
1152 ap->descs[0].offset = offset;
1153
1154 do {
1155 size_t tmp;
1156 struct page *page;
1157 pgoff_t index = pos >> PAGE_SHIFT;
1158 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1159 iov_iter_count(ii));
1160
1161 bytes = min_t(size_t, bytes, fc->max_write - count);
1162
1163 again:
1164 err = -EFAULT;
1165 if (iov_iter_fault_in_readable(ii, bytes))
1166 break;
1167
1168 err = -ENOMEM;
1169 page = grab_cache_page_write_begin(mapping, index, 0);
1170 if (!page)
1171 break;
1172
1173 if (mapping_writably_mapped(mapping))
1174 flush_dcache_page(page);
1175
1176 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1177 flush_dcache_page(page);
1178
1179 iov_iter_advance(ii, tmp);
1180 if (!tmp) {
1181 unlock_page(page);
1182 put_page(page);
1183 bytes = min(bytes, iov_iter_single_seg_count(ii));
1184 goto again;
1185 }
1186
1187 err = 0;
1188 ap->pages[ap->num_pages] = page;
1189 ap->descs[ap->num_pages].length = tmp;
1190 ap->num_pages++;
1191
1192 count += tmp;
1193 pos += tmp;
1194 offset += tmp;
1195 if (offset == PAGE_SIZE)
1196 offset = 0;
1197
1198 /* If we copied full page, mark it uptodate */
1199 if (tmp == PAGE_SIZE)
1200 SetPageUptodate(page);
1201
1202 if (PageUptodate(page)) {
1203 unlock_page(page);
1204 } else {
1205 ia->write.page_locked = true;
1206 break;
1207 }
1208 if (!fc->big_writes)
1209 break;
1210 } while (iov_iter_count(ii) && count < fc->max_write &&
1211 ap->num_pages < max_pages && offset == 0);
1212
1213 return count > 0 ? count : err;
1214 }
1215
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1216 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1217 unsigned int max_pages)
1218 {
1219 return min_t(unsigned int,
1220 ((pos + len - 1) >> PAGE_SHIFT) -
1221 (pos >> PAGE_SHIFT) + 1,
1222 max_pages);
1223 }
1224
fuse_perform_write(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1225 static ssize_t fuse_perform_write(struct kiocb *iocb,
1226 struct address_space *mapping,
1227 struct iov_iter *ii, loff_t pos)
1228 {
1229 struct inode *inode = mapping->host;
1230 struct fuse_conn *fc = get_fuse_conn(inode);
1231 struct fuse_inode *fi = get_fuse_inode(inode);
1232 int err = 0;
1233 ssize_t res = 0;
1234
1235 if (inode->i_size < pos + iov_iter_count(ii))
1236 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1237
1238 do {
1239 ssize_t count;
1240 struct fuse_io_args ia = {};
1241 struct fuse_args_pages *ap = &ia.ap;
1242 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1243 fc->max_pages);
1244
1245 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1246 if (!ap->pages) {
1247 err = -ENOMEM;
1248 break;
1249 }
1250
1251 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1252 if (count <= 0) {
1253 err = count;
1254 } else {
1255 err = fuse_send_write_pages(&ia, iocb, inode,
1256 pos, count);
1257 if (!err) {
1258 size_t num_written = ia.write.out.size;
1259
1260 res += num_written;
1261 pos += num_written;
1262
1263 /* break out of the loop on short write */
1264 if (num_written != count)
1265 err = -EIO;
1266 }
1267 }
1268 kfree(ap->pages);
1269 } while (!err && iov_iter_count(ii));
1270
1271 if (res > 0)
1272 fuse_write_update_size(inode, pos);
1273
1274 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1275 fuse_invalidate_attr(inode);
1276
1277 return res > 0 ? res : err;
1278 }
1279
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1280 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1281 {
1282 struct file *file = iocb->ki_filp;
1283 struct address_space *mapping = file->f_mapping;
1284 ssize_t written = 0;
1285 ssize_t written_buffered = 0;
1286 struct inode *inode = mapping->host;
1287 ssize_t err;
1288 loff_t endbyte = 0;
1289
1290 if (get_fuse_conn(inode)->writeback_cache) {
1291 /* Update size (EOF optimization) and mode (SUID clearing) */
1292 err = fuse_update_attributes(mapping->host, file);
1293 if (err)
1294 return err;
1295
1296 return generic_file_write_iter(iocb, from);
1297 }
1298
1299 inode_lock(inode);
1300
1301 /* We can write back this queue in page reclaim */
1302 current->backing_dev_info = inode_to_bdi(inode);
1303
1304 err = generic_write_checks(iocb, from);
1305 if (err <= 0)
1306 goto out;
1307
1308 err = file_remove_privs(file);
1309 if (err)
1310 goto out;
1311
1312 err = file_update_time(file);
1313 if (err)
1314 goto out;
1315
1316 if (iocb->ki_flags & IOCB_DIRECT) {
1317 loff_t pos = iocb->ki_pos;
1318 written = generic_file_direct_write(iocb, from);
1319 if (written < 0 || !iov_iter_count(from))
1320 goto out;
1321
1322 pos += written;
1323
1324 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1325 if (written_buffered < 0) {
1326 err = written_buffered;
1327 goto out;
1328 }
1329 endbyte = pos + written_buffered - 1;
1330
1331 err = filemap_write_and_wait_range(file->f_mapping, pos,
1332 endbyte);
1333 if (err)
1334 goto out;
1335
1336 invalidate_mapping_pages(file->f_mapping,
1337 pos >> PAGE_SHIFT,
1338 endbyte >> PAGE_SHIFT);
1339
1340 written += written_buffered;
1341 iocb->ki_pos = pos + written_buffered;
1342 } else {
1343 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1344 if (written >= 0)
1345 iocb->ki_pos += written;
1346 }
1347 out:
1348 current->backing_dev_info = NULL;
1349 inode_unlock(inode);
1350 if (written > 0)
1351 written = generic_write_sync(iocb, written);
1352
1353 return written ? written : err;
1354 }
1355
fuse_page_descs_length_init(struct fuse_page_desc * descs,unsigned int index,unsigned int nr_pages)1356 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1357 unsigned int index,
1358 unsigned int nr_pages)
1359 {
1360 int i;
1361
1362 for (i = index; i < index + nr_pages; i++)
1363 descs[i].length = PAGE_SIZE - descs[i].offset;
1364 }
1365
fuse_get_user_addr(const struct iov_iter * ii)1366 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1367 {
1368 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1369 }
1370
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1371 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1372 size_t max_size)
1373 {
1374 return min(iov_iter_single_seg_count(ii), max_size);
1375 }
1376
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages)1377 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1378 size_t *nbytesp, int write,
1379 unsigned int max_pages)
1380 {
1381 size_t nbytes = 0; /* # bytes already packed in req */
1382 ssize_t ret = 0;
1383
1384 /* Special case for kernel I/O: can copy directly into the buffer */
1385 if (iov_iter_is_kvec(ii)) {
1386 unsigned long user_addr = fuse_get_user_addr(ii);
1387 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1388
1389 if (write)
1390 ap->args.in_args[1].value = (void *) user_addr;
1391 else
1392 ap->args.out_args[0].value = (void *) user_addr;
1393
1394 iov_iter_advance(ii, frag_size);
1395 *nbytesp = frag_size;
1396 return 0;
1397 }
1398
1399 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1400 unsigned npages;
1401 size_t start;
1402 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1403 *nbytesp - nbytes,
1404 max_pages - ap->num_pages,
1405 &start);
1406 if (ret < 0)
1407 break;
1408
1409 iov_iter_advance(ii, ret);
1410 nbytes += ret;
1411
1412 ret += start;
1413 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1414
1415 ap->descs[ap->num_pages].offset = start;
1416 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1417
1418 ap->num_pages += npages;
1419 ap->descs[ap->num_pages - 1].length -=
1420 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1421 }
1422
1423 ap->args.user_pages = true;
1424 if (write)
1425 ap->args.in_pages = true;
1426 else
1427 ap->args.out_pages = true;
1428
1429 *nbytesp = nbytes;
1430
1431 return ret < 0 ? ret : 0;
1432 }
1433
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1434 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1435 loff_t *ppos, int flags)
1436 {
1437 int write = flags & FUSE_DIO_WRITE;
1438 int cuse = flags & FUSE_DIO_CUSE;
1439 struct file *file = io->iocb->ki_filp;
1440 struct inode *inode = file->f_mapping->host;
1441 struct fuse_file *ff = file->private_data;
1442 struct fuse_conn *fc = ff->fm->fc;
1443 size_t nmax = write ? fc->max_write : fc->max_read;
1444 loff_t pos = *ppos;
1445 size_t count = iov_iter_count(iter);
1446 pgoff_t idx_from = pos >> PAGE_SHIFT;
1447 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1448 ssize_t res = 0;
1449 int err = 0;
1450 struct fuse_io_args *ia;
1451 unsigned int max_pages;
1452
1453 max_pages = iov_iter_npages(iter, fc->max_pages);
1454 ia = fuse_io_alloc(io, max_pages);
1455 if (!ia)
1456 return -ENOMEM;
1457
1458 ia->io = io;
1459 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1460 if (!write)
1461 inode_lock(inode);
1462 fuse_sync_writes(inode);
1463 if (!write)
1464 inode_unlock(inode);
1465 }
1466
1467 io->should_dirty = !write && iter_is_iovec(iter);
1468 while (count) {
1469 ssize_t nres;
1470 fl_owner_t owner = current->files;
1471 size_t nbytes = min(count, nmax);
1472
1473 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1474 max_pages);
1475 if (err && !nbytes)
1476 break;
1477
1478 if (write) {
1479 if (!capable(CAP_FSETID))
1480 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1481
1482 nres = fuse_send_write(ia, pos, nbytes, owner);
1483 } else {
1484 nres = fuse_send_read(ia, pos, nbytes, owner);
1485 }
1486
1487 if (!io->async || nres < 0) {
1488 fuse_release_user_pages(&ia->ap, io->should_dirty);
1489 fuse_io_free(ia);
1490 }
1491 ia = NULL;
1492 if (nres < 0) {
1493 iov_iter_revert(iter, nbytes);
1494 err = nres;
1495 break;
1496 }
1497 WARN_ON(nres > nbytes);
1498
1499 count -= nres;
1500 res += nres;
1501 pos += nres;
1502 if (nres != nbytes) {
1503 iov_iter_revert(iter, nbytes - nres);
1504 break;
1505 }
1506 if (count) {
1507 max_pages = iov_iter_npages(iter, fc->max_pages);
1508 ia = fuse_io_alloc(io, max_pages);
1509 if (!ia)
1510 break;
1511 }
1512 }
1513 if (ia)
1514 fuse_io_free(ia);
1515 if (res > 0)
1516 *ppos = pos;
1517
1518 return res > 0 ? res : err;
1519 }
1520 EXPORT_SYMBOL_GPL(fuse_direct_io);
1521
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1522 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1523 struct iov_iter *iter,
1524 loff_t *ppos)
1525 {
1526 ssize_t res;
1527 struct inode *inode = file_inode(io->iocb->ki_filp);
1528
1529 res = fuse_direct_io(io, iter, ppos, 0);
1530
1531 fuse_invalidate_atime(inode);
1532
1533 return res;
1534 }
1535
1536 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1537
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1538 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1539 {
1540 ssize_t res;
1541
1542 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1543 res = fuse_direct_IO(iocb, to);
1544 } else {
1545 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1546
1547 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1548 }
1549
1550 return res;
1551 }
1552
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1553 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1554 {
1555 struct inode *inode = file_inode(iocb->ki_filp);
1556 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1557 ssize_t res;
1558
1559 /* Don't allow parallel writes to the same file */
1560 inode_lock(inode);
1561 res = generic_write_checks(iocb, from);
1562 if (res > 0) {
1563 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1564 res = fuse_direct_IO(iocb, from);
1565 } else {
1566 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1567 FUSE_DIO_WRITE);
1568 }
1569 }
1570 fuse_invalidate_attr(inode);
1571 if (res > 0)
1572 fuse_write_update_size(inode, iocb->ki_pos);
1573 inode_unlock(inode);
1574
1575 return res;
1576 }
1577
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1578 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1579 {
1580 struct file *file = iocb->ki_filp;
1581 struct fuse_file *ff = file->private_data;
1582 struct inode *inode = file_inode(file);
1583
1584 if (fuse_is_bad(inode))
1585 return -EIO;
1586
1587 if (FUSE_IS_DAX(inode))
1588 return fuse_dax_read_iter(iocb, to);
1589
1590 if (ff->passthrough.filp)
1591 return fuse_passthrough_read_iter(iocb, to);
1592 else if (!(ff->open_flags & FOPEN_DIRECT_IO))
1593 return fuse_cache_read_iter(iocb, to);
1594 else
1595 return fuse_direct_read_iter(iocb, to);
1596 }
1597
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1598 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1599 {
1600 struct file *file = iocb->ki_filp;
1601 struct fuse_file *ff = file->private_data;
1602 struct inode *inode = file_inode(file);
1603
1604 if (fuse_is_bad(inode))
1605 return -EIO;
1606
1607 if (FUSE_IS_DAX(inode))
1608 return fuse_dax_write_iter(iocb, from);
1609
1610 if (ff->passthrough.filp)
1611 return fuse_passthrough_write_iter(iocb, from);
1612 else if (!(ff->open_flags & FOPEN_DIRECT_IO))
1613 return fuse_cache_write_iter(iocb, from);
1614 else
1615 return fuse_direct_write_iter(iocb, from);
1616 }
1617
fuse_writepage_free(struct fuse_writepage_args * wpa)1618 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1619 {
1620 struct fuse_args_pages *ap = &wpa->ia.ap;
1621 int i;
1622
1623 for (i = 0; i < ap->num_pages; i++)
1624 __free_page(ap->pages[i]);
1625
1626 if (wpa->ia.ff)
1627 fuse_file_put(wpa->ia.ff, false, false);
1628
1629 kfree(ap->pages);
1630 kfree(wpa);
1631 }
1632
fuse_writepage_finish(struct fuse_mount * fm,struct fuse_writepage_args * wpa)1633 static void fuse_writepage_finish(struct fuse_mount *fm,
1634 struct fuse_writepage_args *wpa)
1635 {
1636 struct fuse_args_pages *ap = &wpa->ia.ap;
1637 struct inode *inode = wpa->inode;
1638 struct fuse_inode *fi = get_fuse_inode(inode);
1639 struct backing_dev_info *bdi = inode_to_bdi(inode);
1640 int i;
1641
1642 for (i = 0; i < ap->num_pages; i++) {
1643 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1644 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1645 wb_writeout_inc(&bdi->wb);
1646 }
1647 wake_up(&fi->page_waitq);
1648 }
1649
1650 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_mount * fm,struct fuse_writepage_args * wpa,loff_t size)1651 static void fuse_send_writepage(struct fuse_mount *fm,
1652 struct fuse_writepage_args *wpa, loff_t size)
1653 __releases(fi->lock)
1654 __acquires(fi->lock)
1655 {
1656 struct fuse_writepage_args *aux, *next;
1657 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1658 struct fuse_write_in *inarg = &wpa->ia.write.in;
1659 struct fuse_args *args = &wpa->ia.ap.args;
1660 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1661 int err;
1662
1663 fi->writectr++;
1664 if (inarg->offset + data_size <= size) {
1665 inarg->size = data_size;
1666 } else if (inarg->offset < size) {
1667 inarg->size = size - inarg->offset;
1668 } else {
1669 /* Got truncated off completely */
1670 goto out_free;
1671 }
1672
1673 args->in_args[1].size = inarg->size;
1674 args->force = true;
1675 args->nocreds = true;
1676
1677 err = fuse_simple_background(fm, args, GFP_ATOMIC);
1678 if (err == -ENOMEM) {
1679 spin_unlock(&fi->lock);
1680 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1681 spin_lock(&fi->lock);
1682 }
1683
1684 /* Fails on broken connection only */
1685 if (unlikely(err))
1686 goto out_free;
1687
1688 return;
1689
1690 out_free:
1691 fi->writectr--;
1692 rb_erase(&wpa->writepages_entry, &fi->writepages);
1693 fuse_writepage_finish(fm, wpa);
1694 spin_unlock(&fi->lock);
1695
1696 /* After fuse_writepage_finish() aux request list is private */
1697 for (aux = wpa->next; aux; aux = next) {
1698 next = aux->next;
1699 aux->next = NULL;
1700 fuse_writepage_free(aux);
1701 }
1702
1703 fuse_writepage_free(wpa);
1704 spin_lock(&fi->lock);
1705 }
1706
1707 /*
1708 * If fi->writectr is positive (no truncate or fsync going on) send
1709 * all queued writepage requests.
1710 *
1711 * Called with fi->lock
1712 */
fuse_flush_writepages(struct inode * inode)1713 void fuse_flush_writepages(struct inode *inode)
1714 __releases(fi->lock)
1715 __acquires(fi->lock)
1716 {
1717 struct fuse_mount *fm = get_fuse_mount(inode);
1718 struct fuse_inode *fi = get_fuse_inode(inode);
1719 loff_t crop = i_size_read(inode);
1720 struct fuse_writepage_args *wpa;
1721
1722 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1723 wpa = list_entry(fi->queued_writes.next,
1724 struct fuse_writepage_args, queue_entry);
1725 list_del_init(&wpa->queue_entry);
1726 fuse_send_writepage(fm, wpa, crop);
1727 }
1728 }
1729
fuse_insert_writeback(struct rb_root * root,struct fuse_writepage_args * wpa)1730 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1731 struct fuse_writepage_args *wpa)
1732 {
1733 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1734 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1735 struct rb_node **p = &root->rb_node;
1736 struct rb_node *parent = NULL;
1737
1738 WARN_ON(!wpa->ia.ap.num_pages);
1739 while (*p) {
1740 struct fuse_writepage_args *curr;
1741 pgoff_t curr_index;
1742
1743 parent = *p;
1744 curr = rb_entry(parent, struct fuse_writepage_args,
1745 writepages_entry);
1746 WARN_ON(curr->inode != wpa->inode);
1747 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1748
1749 if (idx_from >= curr_index + curr->ia.ap.num_pages)
1750 p = &(*p)->rb_right;
1751 else if (idx_to < curr_index)
1752 p = &(*p)->rb_left;
1753 else
1754 return curr;
1755 }
1756
1757 rb_link_node(&wpa->writepages_entry, parent, p);
1758 rb_insert_color(&wpa->writepages_entry, root);
1759 return NULL;
1760 }
1761
tree_insert(struct rb_root * root,struct fuse_writepage_args * wpa)1762 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1763 {
1764 WARN_ON(fuse_insert_writeback(root, wpa));
1765 }
1766
fuse_writepage_end(struct fuse_mount * fm,struct fuse_args * args,int error)1767 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1768 int error)
1769 {
1770 struct fuse_writepage_args *wpa =
1771 container_of(args, typeof(*wpa), ia.ap.args);
1772 struct inode *inode = wpa->inode;
1773 struct fuse_inode *fi = get_fuse_inode(inode);
1774 struct fuse_conn *fc = get_fuse_conn(inode);
1775
1776 mapping_set_error(inode->i_mapping, error);
1777 /*
1778 * A writeback finished and this might have updated mtime/ctime on
1779 * server making local mtime/ctime stale. Hence invalidate attrs.
1780 * Do this only if writeback_cache is not enabled. If writeback_cache
1781 * is enabled, we trust local ctime/mtime.
1782 */
1783 if (!fc->writeback_cache)
1784 fuse_invalidate_attr(inode);
1785 spin_lock(&fi->lock);
1786 rb_erase(&wpa->writepages_entry, &fi->writepages);
1787 while (wpa->next) {
1788 struct fuse_mount *fm = get_fuse_mount(inode);
1789 struct fuse_write_in *inarg = &wpa->ia.write.in;
1790 struct fuse_writepage_args *next = wpa->next;
1791
1792 wpa->next = next->next;
1793 next->next = NULL;
1794 next->ia.ff = fuse_file_get(wpa->ia.ff);
1795 tree_insert(&fi->writepages, next);
1796
1797 /*
1798 * Skip fuse_flush_writepages() to make it easy to crop requests
1799 * based on primary request size.
1800 *
1801 * 1st case (trivial): there are no concurrent activities using
1802 * fuse_set/release_nowrite. Then we're on safe side because
1803 * fuse_flush_writepages() would call fuse_send_writepage()
1804 * anyway.
1805 *
1806 * 2nd case: someone called fuse_set_nowrite and it is waiting
1807 * now for completion of all in-flight requests. This happens
1808 * rarely and no more than once per page, so this should be
1809 * okay.
1810 *
1811 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1812 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1813 * that fuse_set_nowrite returned implies that all in-flight
1814 * requests were completed along with all of their secondary
1815 * requests. Further primary requests are blocked by negative
1816 * writectr. Hence there cannot be any in-flight requests and
1817 * no invocations of fuse_writepage_end() while we're in
1818 * fuse_set_nowrite..fuse_release_nowrite section.
1819 */
1820 fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1821 }
1822 fi->writectr--;
1823 fuse_writepage_finish(fm, wpa);
1824 spin_unlock(&fi->lock);
1825 fuse_writepage_free(wpa);
1826 }
1827
__fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1828 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1829 struct fuse_inode *fi)
1830 {
1831 struct fuse_file *ff = NULL;
1832
1833 spin_lock(&fi->lock);
1834 if (!list_empty(&fi->write_files)) {
1835 ff = list_entry(fi->write_files.next, struct fuse_file,
1836 write_entry);
1837 fuse_file_get(ff);
1838 }
1839 spin_unlock(&fi->lock);
1840
1841 return ff;
1842 }
1843
fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1844 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1845 struct fuse_inode *fi)
1846 {
1847 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1848 WARN_ON(!ff);
1849 return ff;
1850 }
1851
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1852 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1853 {
1854 struct fuse_conn *fc = get_fuse_conn(inode);
1855 struct fuse_inode *fi = get_fuse_inode(inode);
1856 struct fuse_file *ff;
1857 int err;
1858
1859 /*
1860 * Inode is always written before the last reference is dropped and
1861 * hence this should not be reached from reclaim.
1862 *
1863 * Writing back the inode from reclaim can deadlock if the request
1864 * processing itself needs an allocation. Allocations triggering
1865 * reclaim while serving a request can't be prevented, because it can
1866 * involve any number of unrelated userspace processes.
1867 */
1868 WARN_ON(wbc->for_reclaim);
1869
1870 ff = __fuse_write_file_get(fc, fi);
1871 err = fuse_flush_times(inode, ff);
1872 if (ff)
1873 fuse_file_put(ff, false, false);
1874
1875 return err;
1876 }
1877
fuse_writepage_args_alloc(void)1878 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1879 {
1880 struct fuse_writepage_args *wpa;
1881 struct fuse_args_pages *ap;
1882
1883 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1884 if (wpa) {
1885 ap = &wpa->ia.ap;
1886 ap->num_pages = 0;
1887 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1888 if (!ap->pages) {
1889 kfree(wpa);
1890 wpa = NULL;
1891 }
1892 }
1893 return wpa;
1894
1895 }
1896
fuse_writepage_locked(struct page * page)1897 static int fuse_writepage_locked(struct page *page)
1898 {
1899 struct address_space *mapping = page->mapping;
1900 struct inode *inode = mapping->host;
1901 struct fuse_conn *fc = get_fuse_conn(inode);
1902 struct fuse_inode *fi = get_fuse_inode(inode);
1903 struct fuse_writepage_args *wpa;
1904 struct fuse_args_pages *ap;
1905 struct page *tmp_page;
1906 int error = -ENOMEM;
1907
1908 set_page_writeback(page);
1909
1910 wpa = fuse_writepage_args_alloc();
1911 if (!wpa)
1912 goto err;
1913 ap = &wpa->ia.ap;
1914
1915 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1916 if (!tmp_page)
1917 goto err_free;
1918
1919 error = -EIO;
1920 wpa->ia.ff = fuse_write_file_get(fc, fi);
1921 if (!wpa->ia.ff)
1922 goto err_nofile;
1923
1924 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1925
1926 copy_highpage(tmp_page, page);
1927 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1928 wpa->next = NULL;
1929 ap->args.in_pages = true;
1930 ap->num_pages = 1;
1931 ap->pages[0] = tmp_page;
1932 ap->descs[0].offset = 0;
1933 ap->descs[0].length = PAGE_SIZE;
1934 ap->args.end = fuse_writepage_end;
1935 wpa->inode = inode;
1936
1937 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1938 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1939
1940 spin_lock(&fi->lock);
1941 tree_insert(&fi->writepages, wpa);
1942 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1943 fuse_flush_writepages(inode);
1944 spin_unlock(&fi->lock);
1945
1946 end_page_writeback(page);
1947
1948 return 0;
1949
1950 err_nofile:
1951 __free_page(tmp_page);
1952 err_free:
1953 kfree(wpa);
1954 err:
1955 mapping_set_error(page->mapping, error);
1956 end_page_writeback(page);
1957 return error;
1958 }
1959
fuse_writepage(struct page * page,struct writeback_control * wbc)1960 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1961 {
1962 int err;
1963
1964 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1965 /*
1966 * ->writepages() should be called for sync() and friends. We
1967 * should only get here on direct reclaim and then we are
1968 * allowed to skip a page which is already in flight
1969 */
1970 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1971
1972 redirty_page_for_writepage(wbc, page);
1973 unlock_page(page);
1974 return 0;
1975 }
1976
1977 err = fuse_writepage_locked(page);
1978 unlock_page(page);
1979
1980 return err;
1981 }
1982
1983 struct fuse_fill_wb_data {
1984 struct fuse_writepage_args *wpa;
1985 struct fuse_file *ff;
1986 struct inode *inode;
1987 struct page **orig_pages;
1988 unsigned int max_pages;
1989 };
1990
fuse_pages_realloc(struct fuse_fill_wb_data * data)1991 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1992 {
1993 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1994 struct fuse_conn *fc = get_fuse_conn(data->inode);
1995 struct page **pages;
1996 struct fuse_page_desc *descs;
1997 unsigned int npages = min_t(unsigned int,
1998 max_t(unsigned int, data->max_pages * 2,
1999 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2000 fc->max_pages);
2001 WARN_ON(npages <= data->max_pages);
2002
2003 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2004 if (!pages)
2005 return false;
2006
2007 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2008 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2009 kfree(ap->pages);
2010 ap->pages = pages;
2011 ap->descs = descs;
2012 data->max_pages = npages;
2013
2014 return true;
2015 }
2016
fuse_writepages_send(struct fuse_fill_wb_data * data)2017 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2018 {
2019 struct fuse_writepage_args *wpa = data->wpa;
2020 struct inode *inode = data->inode;
2021 struct fuse_inode *fi = get_fuse_inode(inode);
2022 int num_pages = wpa->ia.ap.num_pages;
2023 int i;
2024
2025 wpa->ia.ff = fuse_file_get(data->ff);
2026 spin_lock(&fi->lock);
2027 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2028 fuse_flush_writepages(inode);
2029 spin_unlock(&fi->lock);
2030
2031 for (i = 0; i < num_pages; i++)
2032 end_page_writeback(data->orig_pages[i]);
2033 }
2034
2035 /*
2036 * Check under fi->lock if the page is under writeback, and insert it onto the
2037 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2038 * one already added for a page at this offset. If there's none, then insert
2039 * this new request onto the auxiliary list, otherwise reuse the existing one by
2040 * swapping the new temp page with the old one.
2041 */
fuse_writepage_add(struct fuse_writepage_args * new_wpa,struct page * page)2042 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2043 struct page *page)
2044 {
2045 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2046 struct fuse_writepage_args *tmp;
2047 struct fuse_writepage_args *old_wpa;
2048 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2049
2050 WARN_ON(new_ap->num_pages != 0);
2051 new_ap->num_pages = 1;
2052
2053 spin_lock(&fi->lock);
2054 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2055 if (!old_wpa) {
2056 spin_unlock(&fi->lock);
2057 return true;
2058 }
2059
2060 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2061 pgoff_t curr_index;
2062
2063 WARN_ON(tmp->inode != new_wpa->inode);
2064 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2065 if (curr_index == page->index) {
2066 WARN_ON(tmp->ia.ap.num_pages != 1);
2067 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2068 break;
2069 }
2070 }
2071
2072 if (!tmp) {
2073 new_wpa->next = old_wpa->next;
2074 old_wpa->next = new_wpa;
2075 }
2076
2077 spin_unlock(&fi->lock);
2078
2079 if (tmp) {
2080 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2081
2082 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2083 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2084 wb_writeout_inc(&bdi->wb);
2085 fuse_writepage_free(new_wpa);
2086 }
2087
2088 return false;
2089 }
2090
fuse_writepage_need_send(struct fuse_conn * fc,struct page * page,struct fuse_args_pages * ap,struct fuse_fill_wb_data * data)2091 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2092 struct fuse_args_pages *ap,
2093 struct fuse_fill_wb_data *data)
2094 {
2095 WARN_ON(!ap->num_pages);
2096
2097 /*
2098 * Being under writeback is unlikely but possible. For example direct
2099 * read to an mmaped fuse file will set the page dirty twice; once when
2100 * the pages are faulted with get_user_pages(), and then after the read
2101 * completed.
2102 */
2103 if (fuse_page_is_writeback(data->inode, page->index))
2104 return true;
2105
2106 /* Reached max pages */
2107 if (ap->num_pages == fc->max_pages)
2108 return true;
2109
2110 /* Reached max write bytes */
2111 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2112 return true;
2113
2114 /* Discontinuity */
2115 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2116 return true;
2117
2118 /* Need to grow the pages array? If so, did the expansion fail? */
2119 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2120 return true;
2121
2122 return false;
2123 }
2124
fuse_writepages_fill(struct page * page,struct writeback_control * wbc,void * _data)2125 static int fuse_writepages_fill(struct page *page,
2126 struct writeback_control *wbc, void *_data)
2127 {
2128 struct fuse_fill_wb_data *data = _data;
2129 struct fuse_writepage_args *wpa = data->wpa;
2130 struct fuse_args_pages *ap = &wpa->ia.ap;
2131 struct inode *inode = data->inode;
2132 struct fuse_inode *fi = get_fuse_inode(inode);
2133 struct fuse_conn *fc = get_fuse_conn(inode);
2134 struct page *tmp_page;
2135 int err;
2136
2137 if (!data->ff) {
2138 err = -EIO;
2139 data->ff = fuse_write_file_get(fc, fi);
2140 if (!data->ff)
2141 goto out_unlock;
2142 }
2143
2144 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2145 fuse_writepages_send(data);
2146 data->wpa = NULL;
2147 }
2148
2149 err = -ENOMEM;
2150 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2151 if (!tmp_page)
2152 goto out_unlock;
2153
2154 /*
2155 * The page must not be redirtied until the writeout is completed
2156 * (i.e. userspace has sent a reply to the write request). Otherwise
2157 * there could be more than one temporary page instance for each real
2158 * page.
2159 *
2160 * This is ensured by holding the page lock in page_mkwrite() while
2161 * checking fuse_page_is_writeback(). We already hold the page lock
2162 * since clear_page_dirty_for_io() and keep it held until we add the
2163 * request to the fi->writepages list and increment ap->num_pages.
2164 * After this fuse_page_is_writeback() will indicate that the page is
2165 * under writeback, so we can release the page lock.
2166 */
2167 if (data->wpa == NULL) {
2168 err = -ENOMEM;
2169 wpa = fuse_writepage_args_alloc();
2170 if (!wpa) {
2171 __free_page(tmp_page);
2172 goto out_unlock;
2173 }
2174 data->max_pages = 1;
2175
2176 ap = &wpa->ia.ap;
2177 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2178 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2179 wpa->next = NULL;
2180 ap->args.in_pages = true;
2181 ap->args.end = fuse_writepage_end;
2182 ap->num_pages = 0;
2183 wpa->inode = inode;
2184 }
2185 set_page_writeback(page);
2186
2187 copy_highpage(tmp_page, page);
2188 ap->pages[ap->num_pages] = tmp_page;
2189 ap->descs[ap->num_pages].offset = 0;
2190 ap->descs[ap->num_pages].length = PAGE_SIZE;
2191 data->orig_pages[ap->num_pages] = page;
2192
2193 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2194 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2195
2196 err = 0;
2197 if (data->wpa) {
2198 /*
2199 * Protected by fi->lock against concurrent access by
2200 * fuse_page_is_writeback().
2201 */
2202 spin_lock(&fi->lock);
2203 ap->num_pages++;
2204 spin_unlock(&fi->lock);
2205 } else if (fuse_writepage_add(wpa, page)) {
2206 data->wpa = wpa;
2207 } else {
2208 end_page_writeback(page);
2209 }
2210 out_unlock:
2211 unlock_page(page);
2212
2213 return err;
2214 }
2215
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2216 static int fuse_writepages(struct address_space *mapping,
2217 struct writeback_control *wbc)
2218 {
2219 struct inode *inode = mapping->host;
2220 struct fuse_conn *fc = get_fuse_conn(inode);
2221 struct fuse_fill_wb_data data;
2222 int err;
2223
2224 err = -EIO;
2225 if (fuse_is_bad(inode))
2226 goto out;
2227
2228 data.inode = inode;
2229 data.wpa = NULL;
2230 data.ff = NULL;
2231
2232 err = -ENOMEM;
2233 data.orig_pages = kcalloc(fc->max_pages,
2234 sizeof(struct page *),
2235 GFP_NOFS);
2236 if (!data.orig_pages)
2237 goto out;
2238
2239 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2240 if (data.wpa) {
2241 WARN_ON(!data.wpa->ia.ap.num_pages);
2242 fuse_writepages_send(&data);
2243 }
2244 if (data.ff)
2245 fuse_file_put(data.ff, false, false);
2246
2247 kfree(data.orig_pages);
2248 out:
2249 return err;
2250 }
2251
2252 /*
2253 * It's worthy to make sure that space is reserved on disk for the write,
2254 * but how to implement it without killing performance need more thinking.
2255 */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2256 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2257 loff_t pos, unsigned len, unsigned flags,
2258 struct page **pagep, void **fsdata)
2259 {
2260 pgoff_t index = pos >> PAGE_SHIFT;
2261 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2262 struct page *page;
2263 loff_t fsize;
2264 int err = -ENOMEM;
2265
2266 WARN_ON(!fc->writeback_cache);
2267
2268 page = grab_cache_page_write_begin(mapping, index, flags);
2269 if (!page)
2270 goto error;
2271
2272 fuse_wait_on_page_writeback(mapping->host, page->index);
2273
2274 if (PageUptodate(page) || len == PAGE_SIZE)
2275 goto success;
2276 /*
2277 * Check if the start this page comes after the end of file, in which
2278 * case the readpage can be optimized away.
2279 */
2280 fsize = i_size_read(mapping->host);
2281 if (fsize <= (pos & PAGE_MASK)) {
2282 size_t off = pos & ~PAGE_MASK;
2283 if (off)
2284 zero_user_segment(page, 0, off);
2285 goto success;
2286 }
2287 err = fuse_do_readpage(file, page);
2288 if (err)
2289 goto cleanup;
2290 success:
2291 *pagep = page;
2292 return 0;
2293
2294 cleanup:
2295 unlock_page(page);
2296 put_page(page);
2297 error:
2298 return err;
2299 }
2300
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2301 static int fuse_write_end(struct file *file, struct address_space *mapping,
2302 loff_t pos, unsigned len, unsigned copied,
2303 struct page *page, void *fsdata)
2304 {
2305 struct inode *inode = page->mapping->host;
2306
2307 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2308 if (!copied)
2309 goto unlock;
2310
2311 if (!PageUptodate(page)) {
2312 /* Zero any unwritten bytes at the end of the page */
2313 size_t endoff = (pos + copied) & ~PAGE_MASK;
2314 if (endoff)
2315 zero_user_segment(page, endoff, PAGE_SIZE);
2316 SetPageUptodate(page);
2317 }
2318
2319 fuse_write_update_size(inode, pos + copied);
2320 set_page_dirty(page);
2321
2322 unlock:
2323 unlock_page(page);
2324 put_page(page);
2325
2326 return copied;
2327 }
2328
fuse_launder_page(struct page * page)2329 static int fuse_launder_page(struct page *page)
2330 {
2331 int err = 0;
2332 if (clear_page_dirty_for_io(page)) {
2333 struct inode *inode = page->mapping->host;
2334 err = fuse_writepage_locked(page);
2335 if (!err)
2336 fuse_wait_on_page_writeback(inode, page->index);
2337 }
2338 return err;
2339 }
2340
2341 /*
2342 * Write back dirty pages now, because there may not be any suitable
2343 * open files later
2344 */
fuse_vma_close(struct vm_area_struct * vma)2345 static void fuse_vma_close(struct vm_area_struct *vma)
2346 {
2347 filemap_write_and_wait(vma->vm_file->f_mapping);
2348 }
2349
2350 /*
2351 * Wait for writeback against this page to complete before allowing it
2352 * to be marked dirty again, and hence written back again, possibly
2353 * before the previous writepage completed.
2354 *
2355 * Block here, instead of in ->writepage(), so that the userspace fs
2356 * can only block processes actually operating on the filesystem.
2357 *
2358 * Otherwise unprivileged userspace fs would be able to block
2359 * unrelated:
2360 *
2361 * - page migration
2362 * - sync(2)
2363 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2364 */
fuse_page_mkwrite(struct vm_fault * vmf)2365 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2366 {
2367 struct page *page = vmf->page;
2368 struct inode *inode = file_inode(vmf->vma->vm_file);
2369
2370 file_update_time(vmf->vma->vm_file);
2371 lock_page(page);
2372 if (page->mapping != inode->i_mapping) {
2373 unlock_page(page);
2374 return VM_FAULT_NOPAGE;
2375 }
2376
2377 fuse_wait_on_page_writeback(inode, page->index);
2378 return VM_FAULT_LOCKED;
2379 }
2380
2381 static const struct vm_operations_struct fuse_file_vm_ops = {
2382 .close = fuse_vma_close,
2383 .fault = filemap_fault,
2384 .map_pages = filemap_map_pages,
2385 .page_mkwrite = fuse_page_mkwrite,
2386 };
2387
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2388 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2389 {
2390 struct fuse_file *ff = file->private_data;
2391
2392 /* DAX mmap is superior to direct_io mmap */
2393 if (FUSE_IS_DAX(file_inode(file)))
2394 return fuse_dax_mmap(file, vma);
2395
2396 if (ff->passthrough.filp)
2397 return fuse_passthrough_mmap(file, vma);
2398
2399 if (ff->open_flags & FOPEN_DIRECT_IO) {
2400 /* Can't provide the coherency needed for MAP_SHARED */
2401 if (vma->vm_flags & VM_MAYSHARE)
2402 return -ENODEV;
2403
2404 invalidate_inode_pages2(file->f_mapping);
2405
2406 return generic_file_mmap(file, vma);
2407 }
2408
2409 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2410 fuse_link_write_file(file);
2411
2412 file_accessed(file);
2413 vma->vm_ops = &fuse_file_vm_ops;
2414 return 0;
2415 }
2416
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2417 static int convert_fuse_file_lock(struct fuse_conn *fc,
2418 const struct fuse_file_lock *ffl,
2419 struct file_lock *fl)
2420 {
2421 switch (ffl->type) {
2422 case F_UNLCK:
2423 break;
2424
2425 case F_RDLCK:
2426 case F_WRLCK:
2427 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2428 ffl->end < ffl->start)
2429 return -EIO;
2430
2431 fl->fl_start = ffl->start;
2432 fl->fl_end = ffl->end;
2433
2434 /*
2435 * Convert pid into init's pid namespace. The locks API will
2436 * translate it into the caller's pid namespace.
2437 */
2438 rcu_read_lock();
2439 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2440 rcu_read_unlock();
2441 break;
2442
2443 default:
2444 return -EIO;
2445 }
2446 fl->fl_type = ffl->type;
2447 return 0;
2448 }
2449
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2450 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2451 const struct file_lock *fl, int opcode, pid_t pid,
2452 int flock, struct fuse_lk_in *inarg)
2453 {
2454 struct inode *inode = file_inode(file);
2455 struct fuse_conn *fc = get_fuse_conn(inode);
2456 struct fuse_file *ff = file->private_data;
2457
2458 memset(inarg, 0, sizeof(*inarg));
2459 inarg->fh = ff->fh;
2460 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2461 inarg->lk.start = fl->fl_start;
2462 inarg->lk.end = fl->fl_end;
2463 inarg->lk.type = fl->fl_type;
2464 inarg->lk.pid = pid;
2465 if (flock)
2466 inarg->lk_flags |= FUSE_LK_FLOCK;
2467 args->opcode = opcode;
2468 args->nodeid = get_node_id(inode);
2469 args->in_numargs = 1;
2470 args->in_args[0].size = sizeof(*inarg);
2471 args->in_args[0].value = inarg;
2472 }
2473
fuse_getlk(struct file * file,struct file_lock * fl)2474 static int fuse_getlk(struct file *file, struct file_lock *fl)
2475 {
2476 struct inode *inode = file_inode(file);
2477 struct fuse_mount *fm = get_fuse_mount(inode);
2478 FUSE_ARGS(args);
2479 struct fuse_lk_in inarg;
2480 struct fuse_lk_out outarg;
2481 int err;
2482
2483 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2484 args.out_numargs = 1;
2485 args.out_args[0].size = sizeof(outarg);
2486 args.out_args[0].value = &outarg;
2487 err = fuse_simple_request(fm, &args);
2488 if (!err)
2489 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2490
2491 return err;
2492 }
2493
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2494 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2495 {
2496 struct inode *inode = file_inode(file);
2497 struct fuse_mount *fm = get_fuse_mount(inode);
2498 FUSE_ARGS(args);
2499 struct fuse_lk_in inarg;
2500 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2501 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2502 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2503 int err;
2504
2505 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2506 /* NLM needs asynchronous locks, which we don't support yet */
2507 return -ENOLCK;
2508 }
2509
2510 /* Unlock on close is handled by the flush method */
2511 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2512 return 0;
2513
2514 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2515 err = fuse_simple_request(fm, &args);
2516
2517 /* locking is restartable */
2518 if (err == -EINTR)
2519 err = -ERESTARTSYS;
2520
2521 return err;
2522 }
2523
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2524 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2525 {
2526 struct inode *inode = file_inode(file);
2527 struct fuse_conn *fc = get_fuse_conn(inode);
2528 int err;
2529
2530 if (cmd == F_CANCELLK) {
2531 err = 0;
2532 } else if (cmd == F_GETLK) {
2533 if (fc->no_lock) {
2534 posix_test_lock(file, fl);
2535 err = 0;
2536 } else
2537 err = fuse_getlk(file, fl);
2538 } else {
2539 if (fc->no_lock)
2540 err = posix_lock_file(file, fl, NULL);
2541 else
2542 err = fuse_setlk(file, fl, 0);
2543 }
2544 return err;
2545 }
2546
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2547 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2548 {
2549 struct inode *inode = file_inode(file);
2550 struct fuse_conn *fc = get_fuse_conn(inode);
2551 int err;
2552
2553 if (fc->no_flock) {
2554 err = locks_lock_file_wait(file, fl);
2555 } else {
2556 struct fuse_file *ff = file->private_data;
2557
2558 /* emulate flock with POSIX locks */
2559 ff->flock = true;
2560 err = fuse_setlk(file, fl, 1);
2561 }
2562
2563 return err;
2564 }
2565
fuse_bmap(struct address_space * mapping,sector_t block)2566 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2567 {
2568 struct inode *inode = mapping->host;
2569 struct fuse_mount *fm = get_fuse_mount(inode);
2570 FUSE_ARGS(args);
2571 struct fuse_bmap_in inarg;
2572 struct fuse_bmap_out outarg;
2573 int err;
2574
2575 if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2576 return 0;
2577
2578 memset(&inarg, 0, sizeof(inarg));
2579 inarg.block = block;
2580 inarg.blocksize = inode->i_sb->s_blocksize;
2581 args.opcode = FUSE_BMAP;
2582 args.nodeid = get_node_id(inode);
2583 args.in_numargs = 1;
2584 args.in_args[0].size = sizeof(inarg);
2585 args.in_args[0].value = &inarg;
2586 args.out_numargs = 1;
2587 args.out_args[0].size = sizeof(outarg);
2588 args.out_args[0].value = &outarg;
2589 err = fuse_simple_request(fm, &args);
2590 if (err == -ENOSYS)
2591 fm->fc->no_bmap = 1;
2592
2593 return err ? 0 : outarg.block;
2594 }
2595
fuse_lseek(struct file * file,loff_t offset,int whence)2596 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2597 {
2598 struct inode *inode = file->f_mapping->host;
2599 struct fuse_mount *fm = get_fuse_mount(inode);
2600 struct fuse_file *ff = file->private_data;
2601 FUSE_ARGS(args);
2602 struct fuse_lseek_in inarg = {
2603 .fh = ff->fh,
2604 .offset = offset,
2605 .whence = whence
2606 };
2607 struct fuse_lseek_out outarg;
2608 int err;
2609
2610 if (fm->fc->no_lseek)
2611 goto fallback;
2612
2613 args.opcode = FUSE_LSEEK;
2614 args.nodeid = ff->nodeid;
2615 args.in_numargs = 1;
2616 args.in_args[0].size = sizeof(inarg);
2617 args.in_args[0].value = &inarg;
2618 args.out_numargs = 1;
2619 args.out_args[0].size = sizeof(outarg);
2620 args.out_args[0].value = &outarg;
2621 err = fuse_simple_request(fm, &args);
2622 if (err) {
2623 if (err == -ENOSYS) {
2624 fm->fc->no_lseek = 1;
2625 goto fallback;
2626 }
2627 return err;
2628 }
2629
2630 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2631
2632 fallback:
2633 err = fuse_update_attributes(inode, file);
2634 if (!err)
2635 return generic_file_llseek(file, offset, whence);
2636 else
2637 return err;
2638 }
2639
fuse_file_llseek(struct file * file,loff_t offset,int whence)2640 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2641 {
2642 loff_t retval;
2643 struct inode *inode = file_inode(file);
2644
2645 switch (whence) {
2646 case SEEK_SET:
2647 case SEEK_CUR:
2648 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2649 retval = generic_file_llseek(file, offset, whence);
2650 break;
2651 case SEEK_END:
2652 inode_lock(inode);
2653 retval = fuse_update_attributes(inode, file);
2654 if (!retval)
2655 retval = generic_file_llseek(file, offset, whence);
2656 inode_unlock(inode);
2657 break;
2658 case SEEK_HOLE:
2659 case SEEK_DATA:
2660 inode_lock(inode);
2661 retval = fuse_lseek(file, offset, whence);
2662 inode_unlock(inode);
2663 break;
2664 default:
2665 retval = -EINVAL;
2666 }
2667
2668 return retval;
2669 }
2670
2671 /*
2672 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2673 * ABI was defined to be 'struct iovec' which is different on 32bit
2674 * and 64bit. Fortunately we can determine which structure the server
2675 * used from the size of the reply.
2676 */
fuse_copy_ioctl_iovec_old(struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2677 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2678 size_t transferred, unsigned count,
2679 bool is_compat)
2680 {
2681 #ifdef CONFIG_COMPAT
2682 if (count * sizeof(struct compat_iovec) == transferred) {
2683 struct compat_iovec *ciov = src;
2684 unsigned i;
2685
2686 /*
2687 * With this interface a 32bit server cannot support
2688 * non-compat (i.e. ones coming from 64bit apps) ioctl
2689 * requests
2690 */
2691 if (!is_compat)
2692 return -EINVAL;
2693
2694 for (i = 0; i < count; i++) {
2695 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2696 dst[i].iov_len = ciov[i].iov_len;
2697 }
2698 return 0;
2699 }
2700 #endif
2701
2702 if (count * sizeof(struct iovec) != transferred)
2703 return -EIO;
2704
2705 memcpy(dst, src, transferred);
2706 return 0;
2707 }
2708
2709 /* Make sure iov_length() won't overflow */
fuse_verify_ioctl_iov(struct fuse_conn * fc,struct iovec * iov,size_t count)2710 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2711 size_t count)
2712 {
2713 size_t n;
2714 u32 max = fc->max_pages << PAGE_SHIFT;
2715
2716 for (n = 0; n < count; n++, iov++) {
2717 if (iov->iov_len > (size_t) max)
2718 return -ENOMEM;
2719 max -= iov->iov_len;
2720 }
2721 return 0;
2722 }
2723
fuse_copy_ioctl_iovec(struct fuse_conn * fc,struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2724 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2725 void *src, size_t transferred, unsigned count,
2726 bool is_compat)
2727 {
2728 unsigned i;
2729 struct fuse_ioctl_iovec *fiov = src;
2730
2731 if (fc->minor < 16) {
2732 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2733 count, is_compat);
2734 }
2735
2736 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2737 return -EIO;
2738
2739 for (i = 0; i < count; i++) {
2740 /* Did the server supply an inappropriate value? */
2741 if (fiov[i].base != (unsigned long) fiov[i].base ||
2742 fiov[i].len != (unsigned long) fiov[i].len)
2743 return -EIO;
2744
2745 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2746 dst[i].iov_len = (size_t) fiov[i].len;
2747
2748 #ifdef CONFIG_COMPAT
2749 if (is_compat &&
2750 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2751 (compat_size_t) dst[i].iov_len != fiov[i].len))
2752 return -EIO;
2753 #endif
2754 }
2755
2756 return 0;
2757 }
2758
2759
2760 /*
2761 * For ioctls, there is no generic way to determine how much memory
2762 * needs to be read and/or written. Furthermore, ioctls are allowed
2763 * to dereference the passed pointer, so the parameter requires deep
2764 * copying but FUSE has no idea whatsoever about what to copy in or
2765 * out.
2766 *
2767 * This is solved by allowing FUSE server to retry ioctl with
2768 * necessary in/out iovecs. Let's assume the ioctl implementation
2769 * needs to read in the following structure.
2770 *
2771 * struct a {
2772 * char *buf;
2773 * size_t buflen;
2774 * }
2775 *
2776 * On the first callout to FUSE server, inarg->in_size and
2777 * inarg->out_size will be NULL; then, the server completes the ioctl
2778 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2779 * the actual iov array to
2780 *
2781 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2782 *
2783 * which tells FUSE to copy in the requested area and retry the ioctl.
2784 * On the second round, the server has access to the structure and
2785 * from that it can tell what to look for next, so on the invocation,
2786 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2787 *
2788 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2789 * { .iov_base = a.buf, .iov_len = a.buflen } }
2790 *
2791 * FUSE will copy both struct a and the pointed buffer from the
2792 * process doing the ioctl and retry ioctl with both struct a and the
2793 * buffer.
2794 *
2795 * This time, FUSE server has everything it needs and completes ioctl
2796 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2797 *
2798 * Copying data out works the same way.
2799 *
2800 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2801 * automatically initializes in and out iovs by decoding @cmd with
2802 * _IOC_* macros and the server is not allowed to request RETRY. This
2803 * limits ioctl data transfers to well-formed ioctls and is the forced
2804 * behavior for all FUSE servers.
2805 */
fuse_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2806 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2807 unsigned int flags)
2808 {
2809 struct fuse_file *ff = file->private_data;
2810 struct fuse_mount *fm = ff->fm;
2811 struct fuse_ioctl_in inarg = {
2812 .fh = ff->fh,
2813 .cmd = cmd,
2814 .arg = arg,
2815 .flags = flags
2816 };
2817 struct fuse_ioctl_out outarg;
2818 struct iovec *iov_page = NULL;
2819 struct iovec *in_iov = NULL, *out_iov = NULL;
2820 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2821 size_t in_size, out_size, c;
2822 ssize_t transferred;
2823 int err, i;
2824 struct iov_iter ii;
2825 struct fuse_args_pages ap = {};
2826
2827 #if BITS_PER_LONG == 32
2828 inarg.flags |= FUSE_IOCTL_32BIT;
2829 #else
2830 if (flags & FUSE_IOCTL_COMPAT) {
2831 inarg.flags |= FUSE_IOCTL_32BIT;
2832 #ifdef CONFIG_X86_X32
2833 if (in_x32_syscall())
2834 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2835 #endif
2836 }
2837 #endif
2838
2839 /* assume all the iovs returned by client always fits in a page */
2840 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2841
2842 err = -ENOMEM;
2843 ap.pages = fuse_pages_alloc(fm->fc->max_pages, GFP_KERNEL, &ap.descs);
2844 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2845 if (!ap.pages || !iov_page)
2846 goto out;
2847
2848 fuse_page_descs_length_init(ap.descs, 0, fm->fc->max_pages);
2849
2850 /*
2851 * If restricted, initialize IO parameters as encoded in @cmd.
2852 * RETRY from server is not allowed.
2853 */
2854 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2855 struct iovec *iov = iov_page;
2856
2857 iov->iov_base = (void __user *)arg;
2858
2859 switch (cmd) {
2860 case FS_IOC_GETFLAGS:
2861 case FS_IOC_SETFLAGS:
2862 iov->iov_len = sizeof(int);
2863 break;
2864 default:
2865 iov->iov_len = _IOC_SIZE(cmd);
2866 break;
2867 }
2868
2869 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2870 in_iov = iov;
2871 in_iovs = 1;
2872 }
2873
2874 if (_IOC_DIR(cmd) & _IOC_READ) {
2875 out_iov = iov;
2876 out_iovs = 1;
2877 }
2878 }
2879
2880 retry:
2881 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2882 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2883
2884 /*
2885 * Out data can be used either for actual out data or iovs,
2886 * make sure there always is at least one page.
2887 */
2888 out_size = max_t(size_t, out_size, PAGE_SIZE);
2889 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2890
2891 /* make sure there are enough buffer pages and init request with them */
2892 err = -ENOMEM;
2893 if (max_pages > fm->fc->max_pages)
2894 goto out;
2895 while (ap.num_pages < max_pages) {
2896 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2897 if (!ap.pages[ap.num_pages])
2898 goto out;
2899 ap.num_pages++;
2900 }
2901
2902
2903 /* okay, let's send it to the client */
2904 ap.args.opcode = FUSE_IOCTL;
2905 ap.args.nodeid = ff->nodeid;
2906 ap.args.in_numargs = 1;
2907 ap.args.in_args[0].size = sizeof(inarg);
2908 ap.args.in_args[0].value = &inarg;
2909 if (in_size) {
2910 ap.args.in_numargs++;
2911 ap.args.in_args[1].size = in_size;
2912 ap.args.in_pages = true;
2913
2914 err = -EFAULT;
2915 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2916 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2917 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2918 if (c != PAGE_SIZE && iov_iter_count(&ii))
2919 goto out;
2920 }
2921 }
2922
2923 ap.args.out_numargs = 2;
2924 ap.args.out_args[0].size = sizeof(outarg);
2925 ap.args.out_args[0].value = &outarg;
2926 ap.args.out_args[1].size = out_size;
2927 ap.args.out_pages = true;
2928 ap.args.out_argvar = true;
2929
2930 transferred = fuse_simple_request(fm, &ap.args);
2931 err = transferred;
2932 if (transferred < 0)
2933 goto out;
2934
2935 /* did it ask for retry? */
2936 if (outarg.flags & FUSE_IOCTL_RETRY) {
2937 void *vaddr;
2938
2939 /* no retry if in restricted mode */
2940 err = -EIO;
2941 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2942 goto out;
2943
2944 in_iovs = outarg.in_iovs;
2945 out_iovs = outarg.out_iovs;
2946
2947 /*
2948 * Make sure things are in boundary, separate checks
2949 * are to protect against overflow.
2950 */
2951 err = -ENOMEM;
2952 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2953 out_iovs > FUSE_IOCTL_MAX_IOV ||
2954 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2955 goto out;
2956
2957 vaddr = kmap_atomic(ap.pages[0]);
2958 err = fuse_copy_ioctl_iovec(fm->fc, iov_page, vaddr,
2959 transferred, in_iovs + out_iovs,
2960 (flags & FUSE_IOCTL_COMPAT) != 0);
2961 kunmap_atomic(vaddr);
2962 if (err)
2963 goto out;
2964
2965 in_iov = iov_page;
2966 out_iov = in_iov + in_iovs;
2967
2968 err = fuse_verify_ioctl_iov(fm->fc, in_iov, in_iovs);
2969 if (err)
2970 goto out;
2971
2972 err = fuse_verify_ioctl_iov(fm->fc, out_iov, out_iovs);
2973 if (err)
2974 goto out;
2975
2976 goto retry;
2977 }
2978
2979 err = -EIO;
2980 if (transferred > inarg.out_size)
2981 goto out;
2982
2983 err = -EFAULT;
2984 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2985 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2986 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2987 if (c != PAGE_SIZE && iov_iter_count(&ii))
2988 goto out;
2989 }
2990 err = 0;
2991 out:
2992 free_page((unsigned long) iov_page);
2993 while (ap.num_pages)
2994 __free_page(ap.pages[--ap.num_pages]);
2995 kfree(ap.pages);
2996
2997 return err ? err : outarg.result;
2998 }
2999 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
3000
fuse_ioctl_common(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)3001 long fuse_ioctl_common(struct file *file, unsigned int cmd,
3002 unsigned long arg, unsigned int flags)
3003 {
3004 struct inode *inode = file_inode(file);
3005 struct fuse_conn *fc = get_fuse_conn(inode);
3006
3007 if (!fuse_allow_current_process(fc))
3008 return -EACCES;
3009
3010 if (fuse_is_bad(inode))
3011 return -EIO;
3012
3013 return fuse_do_ioctl(file, cmd, arg, flags);
3014 }
3015
fuse_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3016 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
3017 unsigned long arg)
3018 {
3019 return fuse_ioctl_common(file, cmd, arg, 0);
3020 }
3021
fuse_file_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3022 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
3023 unsigned long arg)
3024 {
3025 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
3026 }
3027
3028 /*
3029 * All files which have been polled are linked to RB tree
3030 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
3031 * find the matching one.
3032 */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)3033 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
3034 struct rb_node **parent_out)
3035 {
3036 struct rb_node **link = &fc->polled_files.rb_node;
3037 struct rb_node *last = NULL;
3038
3039 while (*link) {
3040 struct fuse_file *ff;
3041
3042 last = *link;
3043 ff = rb_entry(last, struct fuse_file, polled_node);
3044
3045 if (kh < ff->kh)
3046 link = &last->rb_left;
3047 else if (kh > ff->kh)
3048 link = &last->rb_right;
3049 else
3050 return link;
3051 }
3052
3053 if (parent_out)
3054 *parent_out = last;
3055 return link;
3056 }
3057
3058 /*
3059 * The file is about to be polled. Make sure it's on the polled_files
3060 * RB tree. Note that files once added to the polled_files tree are
3061 * not removed before the file is released. This is because a file
3062 * polled once is likely to be polled again.
3063 */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)3064 static void fuse_register_polled_file(struct fuse_conn *fc,
3065 struct fuse_file *ff)
3066 {
3067 spin_lock(&fc->lock);
3068 if (RB_EMPTY_NODE(&ff->polled_node)) {
3069 struct rb_node **link, *parent;
3070
3071 link = fuse_find_polled_node(fc, ff->kh, &parent);
3072 BUG_ON(*link);
3073 rb_link_node(&ff->polled_node, parent, link);
3074 rb_insert_color(&ff->polled_node, &fc->polled_files);
3075 }
3076 spin_unlock(&fc->lock);
3077 }
3078
fuse_file_poll(struct file * file,poll_table * wait)3079 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3080 {
3081 struct fuse_file *ff = file->private_data;
3082 struct fuse_mount *fm = ff->fm;
3083 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3084 struct fuse_poll_out outarg;
3085 FUSE_ARGS(args);
3086 int err;
3087
3088 if (fm->fc->no_poll)
3089 return DEFAULT_POLLMASK;
3090
3091 poll_wait(file, &ff->poll_wait, wait);
3092 inarg.events = mangle_poll(poll_requested_events(wait));
3093
3094 /*
3095 * Ask for notification iff there's someone waiting for it.
3096 * The client may ignore the flag and always notify.
3097 */
3098 if (waitqueue_active(&ff->poll_wait)) {
3099 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3100 fuse_register_polled_file(fm->fc, ff);
3101 }
3102
3103 args.opcode = FUSE_POLL;
3104 args.nodeid = ff->nodeid;
3105 args.in_numargs = 1;
3106 args.in_args[0].size = sizeof(inarg);
3107 args.in_args[0].value = &inarg;
3108 args.out_numargs = 1;
3109 args.out_args[0].size = sizeof(outarg);
3110 args.out_args[0].value = &outarg;
3111 err = fuse_simple_request(fm, &args);
3112
3113 if (!err)
3114 return demangle_poll(outarg.revents);
3115 if (err == -ENOSYS) {
3116 fm->fc->no_poll = 1;
3117 return DEFAULT_POLLMASK;
3118 }
3119 return EPOLLERR;
3120 }
3121 EXPORT_SYMBOL_GPL(fuse_file_poll);
3122
3123 /*
3124 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3125 * wakes up the poll waiters.
3126 */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3127 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3128 struct fuse_notify_poll_wakeup_out *outarg)
3129 {
3130 u64 kh = outarg->kh;
3131 struct rb_node **link;
3132
3133 spin_lock(&fc->lock);
3134
3135 link = fuse_find_polled_node(fc, kh, NULL);
3136 if (*link) {
3137 struct fuse_file *ff;
3138
3139 ff = rb_entry(*link, struct fuse_file, polled_node);
3140 wake_up_interruptible_sync(&ff->poll_wait);
3141 }
3142
3143 spin_unlock(&fc->lock);
3144 return 0;
3145 }
3146
fuse_do_truncate(struct file * file)3147 static void fuse_do_truncate(struct file *file)
3148 {
3149 struct inode *inode = file->f_mapping->host;
3150 struct iattr attr;
3151
3152 attr.ia_valid = ATTR_SIZE;
3153 attr.ia_size = i_size_read(inode);
3154
3155 attr.ia_file = file;
3156 attr.ia_valid |= ATTR_FILE;
3157
3158 fuse_do_setattr(file_dentry(file), &attr, file);
3159 }
3160
fuse_round_up(struct fuse_conn * fc,loff_t off)3161 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3162 {
3163 return round_up(off, fc->max_pages << PAGE_SHIFT);
3164 }
3165
3166 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3167 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3168 {
3169 DECLARE_COMPLETION_ONSTACK(wait);
3170 ssize_t ret = 0;
3171 struct file *file = iocb->ki_filp;
3172 struct fuse_file *ff = file->private_data;
3173 loff_t pos = 0;
3174 struct inode *inode;
3175 loff_t i_size;
3176 size_t count = iov_iter_count(iter), shortened = 0;
3177 loff_t offset = iocb->ki_pos;
3178 struct fuse_io_priv *io;
3179
3180 pos = offset;
3181 inode = file->f_mapping->host;
3182 i_size = i_size_read(inode);
3183
3184 if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3185 return 0;
3186
3187 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3188 if (!io)
3189 return -ENOMEM;
3190 spin_lock_init(&io->lock);
3191 kref_init(&io->refcnt);
3192 io->reqs = 1;
3193 io->bytes = -1;
3194 io->size = 0;
3195 io->offset = offset;
3196 io->write = (iov_iter_rw(iter) == WRITE);
3197 io->err = 0;
3198 /*
3199 * By default, we want to optimize all I/Os with async request
3200 * submission to the client filesystem if supported.
3201 */
3202 io->async = ff->fm->fc->async_dio;
3203 io->iocb = iocb;
3204 io->blocking = is_sync_kiocb(iocb);
3205
3206 /* optimization for short read */
3207 if (io->async && !io->write && offset + count > i_size) {
3208 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3209 shortened = count - iov_iter_count(iter);
3210 count -= shortened;
3211 }
3212
3213 /*
3214 * We cannot asynchronously extend the size of a file.
3215 * In such case the aio will behave exactly like sync io.
3216 */
3217 if ((offset + count > i_size) && io->write)
3218 io->blocking = true;
3219
3220 if (io->async && io->blocking) {
3221 /*
3222 * Additional reference to keep io around after
3223 * calling fuse_aio_complete()
3224 */
3225 kref_get(&io->refcnt);
3226 io->done = &wait;
3227 }
3228
3229 if (iov_iter_rw(iter) == WRITE) {
3230 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3231 fuse_invalidate_attr(inode);
3232 } else {
3233 ret = __fuse_direct_read(io, iter, &pos);
3234 }
3235 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3236
3237 if (io->async) {
3238 bool blocking = io->blocking;
3239
3240 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3241
3242 /* we have a non-extending, async request, so return */
3243 if (!blocking)
3244 return -EIOCBQUEUED;
3245
3246 wait_for_completion(&wait);
3247 ret = fuse_get_res_by_io(io);
3248 }
3249
3250 kref_put(&io->refcnt, fuse_io_release);
3251
3252 if (iov_iter_rw(iter) == WRITE) {
3253 if (ret > 0)
3254 fuse_write_update_size(inode, pos);
3255 else if (ret < 0 && offset + count > i_size)
3256 fuse_do_truncate(file);
3257 }
3258
3259 return ret;
3260 }
3261
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3262 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3263 {
3264 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3265
3266 if (!err)
3267 fuse_sync_writes(inode);
3268
3269 return err;
3270 }
3271
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3272 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3273 loff_t length)
3274 {
3275 struct fuse_file *ff = file->private_data;
3276 struct inode *inode = file_inode(file);
3277 struct fuse_inode *fi = get_fuse_inode(inode);
3278 struct fuse_mount *fm = ff->fm;
3279 FUSE_ARGS(args);
3280 struct fuse_fallocate_in inarg = {
3281 .fh = ff->fh,
3282 .offset = offset,
3283 .length = length,
3284 .mode = mode
3285 };
3286 int err;
3287 bool block_faults = FUSE_IS_DAX(inode) &&
3288 (!(mode & FALLOC_FL_KEEP_SIZE) ||
3289 (mode & FALLOC_FL_PUNCH_HOLE));
3290
3291 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3292 return -EOPNOTSUPP;
3293
3294 if (fm->fc->no_fallocate)
3295 return -EOPNOTSUPP;
3296
3297 inode_lock(inode);
3298 if (block_faults) {
3299 down_write(&fi->i_mmap_sem);
3300 err = fuse_dax_break_layouts(inode, 0, 0);
3301 if (err)
3302 goto out;
3303 }
3304
3305 if (mode & FALLOC_FL_PUNCH_HOLE) {
3306 loff_t endbyte = offset + length - 1;
3307
3308 err = fuse_writeback_range(inode, offset, endbyte);
3309 if (err)
3310 goto out;
3311 }
3312
3313 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3314 offset + length > i_size_read(inode)) {
3315 err = inode_newsize_ok(inode, offset + length);
3316 if (err)
3317 goto out;
3318 }
3319
3320 err = file_modified(file);
3321 if (err)
3322 goto out;
3323
3324 if (!(mode & FALLOC_FL_KEEP_SIZE))
3325 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3326
3327 args.opcode = FUSE_FALLOCATE;
3328 args.nodeid = ff->nodeid;
3329 args.in_numargs = 1;
3330 args.in_args[0].size = sizeof(inarg);
3331 args.in_args[0].value = &inarg;
3332 err = fuse_simple_request(fm, &args);
3333 if (err == -ENOSYS) {
3334 fm->fc->no_fallocate = 1;
3335 err = -EOPNOTSUPP;
3336 }
3337 if (err)
3338 goto out;
3339
3340 /* we could have extended the file */
3341 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3342 bool changed = fuse_write_update_size(inode, offset + length);
3343
3344 if (changed && fm->fc->writeback_cache)
3345 file_update_time(file);
3346 }
3347
3348 if (mode & FALLOC_FL_PUNCH_HOLE)
3349 truncate_pagecache_range(inode, offset, offset + length - 1);
3350
3351 fuse_invalidate_attr(inode);
3352
3353 out:
3354 if (!(mode & FALLOC_FL_KEEP_SIZE))
3355 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3356
3357 if (block_faults)
3358 up_write(&fi->i_mmap_sem);
3359
3360 inode_unlock(inode);
3361
3362 fuse_flush_time_update(inode);
3363
3364 return err;
3365 }
3366
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3367 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3368 struct file *file_out, loff_t pos_out,
3369 size_t len, unsigned int flags)
3370 {
3371 struct fuse_file *ff_in = file_in->private_data;
3372 struct fuse_file *ff_out = file_out->private_data;
3373 struct inode *inode_in = file_inode(file_in);
3374 struct inode *inode_out = file_inode(file_out);
3375 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3376 struct fuse_mount *fm = ff_in->fm;
3377 struct fuse_conn *fc = fm->fc;
3378 FUSE_ARGS(args);
3379 struct fuse_copy_file_range_in inarg = {
3380 .fh_in = ff_in->fh,
3381 .off_in = pos_in,
3382 .nodeid_out = ff_out->nodeid,
3383 .fh_out = ff_out->fh,
3384 .off_out = pos_out,
3385 .len = len,
3386 .flags = flags
3387 };
3388 struct fuse_write_out outarg;
3389 ssize_t err;
3390 /* mark unstable when write-back is not used, and file_out gets
3391 * extended */
3392 bool is_unstable = (!fc->writeback_cache) &&
3393 ((pos_out + len) > inode_out->i_size);
3394
3395 if (fc->no_copy_file_range)
3396 return -EOPNOTSUPP;
3397
3398 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3399 return -EXDEV;
3400
3401 inode_lock(inode_in);
3402 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3403 inode_unlock(inode_in);
3404 if (err)
3405 return err;
3406
3407 inode_lock(inode_out);
3408
3409 err = file_modified(file_out);
3410 if (err)
3411 goto out;
3412
3413 /*
3414 * Write out dirty pages in the destination file before sending the COPY
3415 * request to userspace. After the request is completed, truncate off
3416 * pages (including partial ones) from the cache that have been copied,
3417 * since these contain stale data at that point.
3418 *
3419 * This should be mostly correct, but if the COPY writes to partial
3420 * pages (at the start or end) and the parts not covered by the COPY are
3421 * written through a memory map after calling fuse_writeback_range(),
3422 * then these partial page modifications will be lost on truncation.
3423 *
3424 * It is unlikely that someone would rely on such mixed style
3425 * modifications. Yet this does give less guarantees than if the
3426 * copying was performed with write(2).
3427 *
3428 * To fix this a i_mmap_sem style lock could be used to prevent new
3429 * faults while the copy is ongoing.
3430 */
3431 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3432 if (err)
3433 goto out;
3434
3435 if (is_unstable)
3436 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3437
3438 args.opcode = FUSE_COPY_FILE_RANGE;
3439 args.nodeid = ff_in->nodeid;
3440 args.in_numargs = 1;
3441 args.in_args[0].size = sizeof(inarg);
3442 args.in_args[0].value = &inarg;
3443 args.out_numargs = 1;
3444 args.out_args[0].size = sizeof(outarg);
3445 args.out_args[0].value = &outarg;
3446 err = fuse_simple_request(fm, &args);
3447 if (err == -ENOSYS) {
3448 fc->no_copy_file_range = 1;
3449 err = -EOPNOTSUPP;
3450 }
3451 if (err)
3452 goto out;
3453
3454 truncate_inode_pages_range(inode_out->i_mapping,
3455 ALIGN_DOWN(pos_out, PAGE_SIZE),
3456 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3457
3458 if (fc->writeback_cache) {
3459 fuse_write_update_size(inode_out, pos_out + outarg.size);
3460 file_update_time(file_out);
3461 }
3462
3463 fuse_invalidate_attr(inode_out);
3464
3465 err = outarg.size;
3466 out:
3467 if (is_unstable)
3468 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3469
3470 inode_unlock(inode_out);
3471 file_accessed(file_in);
3472
3473 fuse_flush_time_update(inode_out);
3474
3475 return err;
3476 }
3477
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3478 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3479 struct file *dst_file, loff_t dst_off,
3480 size_t len, unsigned int flags)
3481 {
3482 ssize_t ret;
3483
3484 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3485 len, flags);
3486
3487 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3488 ret = generic_copy_file_range(src_file, src_off, dst_file,
3489 dst_off, len, flags);
3490 return ret;
3491 }
3492
3493 static const struct file_operations fuse_file_operations = {
3494 .llseek = fuse_file_llseek,
3495 .read_iter = fuse_file_read_iter,
3496 .write_iter = fuse_file_write_iter,
3497 .mmap = fuse_file_mmap,
3498 .open = fuse_open,
3499 .flush = fuse_flush,
3500 .release = fuse_release,
3501 .fsync = fuse_fsync,
3502 .lock = fuse_file_lock,
3503 .get_unmapped_area = thp_get_unmapped_area,
3504 .flock = fuse_file_flock,
3505 .splice_read = generic_file_splice_read,
3506 .splice_write = iter_file_splice_write,
3507 .unlocked_ioctl = fuse_file_ioctl,
3508 .compat_ioctl = fuse_file_compat_ioctl,
3509 .poll = fuse_file_poll,
3510 .fallocate = fuse_file_fallocate,
3511 .copy_file_range = fuse_copy_file_range,
3512 };
3513
3514 static const struct address_space_operations fuse_file_aops = {
3515 .readpage = fuse_readpage,
3516 .readahead = fuse_readahead,
3517 .writepage = fuse_writepage,
3518 .writepages = fuse_writepages,
3519 .launder_page = fuse_launder_page,
3520 .set_page_dirty = __set_page_dirty_nobuffers,
3521 .bmap = fuse_bmap,
3522 .direct_IO = fuse_direct_IO,
3523 .write_begin = fuse_write_begin,
3524 .write_end = fuse_write_end,
3525 };
3526
fuse_init_file_inode(struct inode * inode)3527 void fuse_init_file_inode(struct inode *inode)
3528 {
3529 struct fuse_inode *fi = get_fuse_inode(inode);
3530
3531 inode->i_fop = &fuse_file_operations;
3532 inode->i_data.a_ops = &fuse_file_aops;
3533
3534 INIT_LIST_HEAD(&fi->write_files);
3535 INIT_LIST_HEAD(&fi->queued_writes);
3536 fi->writectr = 0;
3537 init_waitqueue_head(&fi->page_waitq);
3538 fi->writepages = RB_ROOT;
3539
3540 if (IS_ENABLED(CONFIG_FUSE_DAX))
3541 fuse_dax_inode_init(inode);
3542 }
3543