1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2015 MediaTek Inc.
4 * Author:
5 * Zhigang.Wei <zhigang.wei@mediatek.com>
6 * Chunfeng.Yun <chunfeng.yun@mediatek.com>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12
13 #include "xhci.h"
14 #include "xhci-mtk.h"
15
16 #define SSP_BW_BOUNDARY 130000
17 #define SS_BW_BOUNDARY 51000
18 /* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
19 #define HS_BW_BOUNDARY 6144
20 /* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
21 #define FS_PAYLOAD_MAX 188
22 /*
23 * max number of microframes for split transfer,
24 * for fs isoc in : 1 ss + 1 idle + 7 cs
25 */
26 #define TT_MICROFRAMES_MAX 9
27
28 #define DBG_BUF_EN 64
29
30 /* schedule error type */
31 #define ESCH_SS_Y6 1001
32 #define ESCH_SS_OVERLAP 1002
33 #define ESCH_CS_OVERFLOW 1003
34 #define ESCH_BW_OVERFLOW 1004
35 #define ESCH_FIXME 1005
36
37 /* mtk scheduler bitmasks */
38 #define EP_BPKTS(p) ((p) & 0x7f)
39 #define EP_BCSCOUNT(p) (((p) & 0x7) << 8)
40 #define EP_BBM(p) ((p) << 11)
41 #define EP_BOFFSET(p) ((p) & 0x3fff)
42 #define EP_BREPEAT(p) (((p) & 0x7fff) << 16)
43
sch_error_string(int err_num)44 static char *sch_error_string(int err_num)
45 {
46 switch (err_num) {
47 case ESCH_SS_Y6:
48 return "Can't schedule Start-Split in Y6";
49 case ESCH_SS_OVERLAP:
50 return "Can't find a suitable Start-Split location";
51 case ESCH_CS_OVERFLOW:
52 return "The last Complete-Split is greater than 7";
53 case ESCH_BW_OVERFLOW:
54 return "Bandwidth exceeds the maximum limit";
55 case ESCH_FIXME:
56 return "FIXME, to be resolved";
57 default:
58 return "Unknown";
59 }
60 }
61
is_fs_or_ls(enum usb_device_speed speed)62 static int is_fs_or_ls(enum usb_device_speed speed)
63 {
64 return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
65 }
66
67 static const char *
decode_ep(struct usb_host_endpoint * ep,enum usb_device_speed speed)68 decode_ep(struct usb_host_endpoint *ep, enum usb_device_speed speed)
69 {
70 static char buf[DBG_BUF_EN];
71 struct usb_endpoint_descriptor *epd = &ep->desc;
72 unsigned int interval;
73 const char *unit;
74
75 interval = usb_decode_interval(epd, speed);
76 if (interval % 1000) {
77 unit = "us";
78 } else {
79 unit = "ms";
80 interval /= 1000;
81 }
82
83 snprintf(buf, DBG_BUF_EN, "%s ep%d%s %s, mpkt:%d, interval:%d/%d%s\n",
84 usb_speed_string(speed), usb_endpoint_num(epd),
85 usb_endpoint_dir_in(epd) ? "in" : "out",
86 usb_ep_type_string(usb_endpoint_type(epd)),
87 usb_endpoint_maxp(epd), epd->bInterval, interval, unit);
88
89 return buf;
90 }
91
get_bw_boundary(enum usb_device_speed speed)92 static u32 get_bw_boundary(enum usb_device_speed speed)
93 {
94 u32 boundary;
95
96 switch (speed) {
97 case USB_SPEED_SUPER_PLUS:
98 boundary = SSP_BW_BOUNDARY;
99 break;
100 case USB_SPEED_SUPER:
101 boundary = SS_BW_BOUNDARY;
102 break;
103 default:
104 boundary = HS_BW_BOUNDARY;
105 break;
106 }
107
108 return boundary;
109 }
110
111 /*
112 * get the bandwidth domain which @ep belongs to.
113 *
114 * the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
115 * each HS root port is treated as a single bandwidth domain,
116 * but each SS root port is treated as two bandwidth domains, one for IN eps,
117 * one for OUT eps.
118 * @real_port value is defined as follow according to xHCI spec:
119 * 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc
120 * so the bandwidth domain array is organized as follow for simplification:
121 * SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY
122 */
123 static struct mu3h_sch_bw_info *
get_bw_info(struct xhci_hcd_mtk * mtk,struct usb_device * udev,struct usb_host_endpoint * ep)124 get_bw_info(struct xhci_hcd_mtk *mtk, struct usb_device *udev,
125 struct usb_host_endpoint *ep)
126 {
127 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
128 struct xhci_virt_device *virt_dev;
129 int bw_index;
130
131 virt_dev = xhci->devs[udev->slot_id];
132
133 if (udev->speed >= USB_SPEED_SUPER) {
134 if (usb_endpoint_dir_out(&ep->desc))
135 bw_index = (virt_dev->real_port - 1) * 2;
136 else
137 bw_index = (virt_dev->real_port - 1) * 2 + 1;
138 } else {
139 /* add one more for each SS port */
140 bw_index = virt_dev->real_port + xhci->usb3_rhub.num_ports - 1;
141 }
142
143 return &mtk->sch_array[bw_index];
144 }
145
get_esit(struct xhci_ep_ctx * ep_ctx)146 static u32 get_esit(struct xhci_ep_ctx *ep_ctx)
147 {
148 u32 esit;
149
150 esit = 1 << CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
151 if (esit > XHCI_MTK_MAX_ESIT)
152 esit = XHCI_MTK_MAX_ESIT;
153
154 return esit;
155 }
156
find_tt(struct usb_device * udev)157 static struct mu3h_sch_tt *find_tt(struct usb_device *udev)
158 {
159 struct usb_tt *utt = udev->tt;
160 struct mu3h_sch_tt *tt, **tt_index, **ptt;
161 bool allocated_index = false;
162
163 if (!utt)
164 return NULL; /* Not below a TT */
165
166 /*
167 * Find/create our data structure.
168 * For hubs with a single TT, we get it directly.
169 * For hubs with multiple TTs, there's an extra level of pointers.
170 */
171 tt_index = NULL;
172 if (utt->multi) {
173 tt_index = utt->hcpriv;
174 if (!tt_index) { /* Create the index array */
175 tt_index = kcalloc(utt->hub->maxchild,
176 sizeof(*tt_index), GFP_KERNEL);
177 if (!tt_index)
178 return ERR_PTR(-ENOMEM);
179 utt->hcpriv = tt_index;
180 allocated_index = true;
181 }
182 ptt = &tt_index[udev->ttport - 1];
183 } else {
184 ptt = (struct mu3h_sch_tt **) &utt->hcpriv;
185 }
186
187 tt = *ptt;
188 if (!tt) { /* Create the mu3h_sch_tt */
189 tt = kzalloc(sizeof(*tt), GFP_KERNEL);
190 if (!tt) {
191 if (allocated_index) {
192 utt->hcpriv = NULL;
193 kfree(tt_index);
194 }
195 return ERR_PTR(-ENOMEM);
196 }
197 INIT_LIST_HEAD(&tt->ep_list);
198 *ptt = tt;
199 }
200
201 return tt;
202 }
203
204 /* Release the TT above udev, if it's not in use */
drop_tt(struct usb_device * udev)205 static void drop_tt(struct usb_device *udev)
206 {
207 struct usb_tt *utt = udev->tt;
208 struct mu3h_sch_tt *tt, **tt_index, **ptt;
209 int i, cnt;
210
211 if (!utt || !utt->hcpriv)
212 return; /* Not below a TT, or never allocated */
213
214 cnt = 0;
215 if (utt->multi) {
216 tt_index = utt->hcpriv;
217 ptt = &tt_index[udev->ttport - 1];
218 /* How many entries are left in tt_index? */
219 for (i = 0; i < utt->hub->maxchild; ++i)
220 cnt += !!tt_index[i];
221 } else {
222 tt_index = NULL;
223 ptt = (struct mu3h_sch_tt **)&utt->hcpriv;
224 }
225
226 tt = *ptt;
227 if (!tt || !list_empty(&tt->ep_list))
228 return; /* never allocated , or still in use*/
229
230 *ptt = NULL;
231 kfree(tt);
232
233 if (cnt == 1) {
234 utt->hcpriv = NULL;
235 kfree(tt_index);
236 }
237 }
238
create_sch_ep(struct usb_device * udev,struct usb_host_endpoint * ep,struct xhci_ep_ctx * ep_ctx)239 static struct mu3h_sch_ep_info *create_sch_ep(struct usb_device *udev,
240 struct usb_host_endpoint *ep, struct xhci_ep_ctx *ep_ctx)
241 {
242 struct mu3h_sch_ep_info *sch_ep;
243 struct mu3h_sch_tt *tt = NULL;
244 u32 len_bw_budget_table;
245 size_t mem_size;
246
247 if (is_fs_or_ls(udev->speed))
248 len_bw_budget_table = TT_MICROFRAMES_MAX;
249 else if ((udev->speed >= USB_SPEED_SUPER)
250 && usb_endpoint_xfer_isoc(&ep->desc))
251 len_bw_budget_table = get_esit(ep_ctx);
252 else
253 len_bw_budget_table = 1;
254
255 mem_size = sizeof(struct mu3h_sch_ep_info) +
256 len_bw_budget_table * sizeof(u32);
257 sch_ep = kzalloc(mem_size, GFP_KERNEL);
258 if (!sch_ep)
259 return ERR_PTR(-ENOMEM);
260
261 if (is_fs_or_ls(udev->speed)) {
262 tt = find_tt(udev);
263 if (IS_ERR(tt)) {
264 kfree(sch_ep);
265 return ERR_PTR(-ENOMEM);
266 }
267 }
268
269 sch_ep->sch_tt = tt;
270 sch_ep->ep = ep;
271 sch_ep->speed = udev->speed;
272 INIT_LIST_HEAD(&sch_ep->endpoint);
273 INIT_LIST_HEAD(&sch_ep->tt_endpoint);
274
275 return sch_ep;
276 }
277
setup_sch_info(struct xhci_ep_ctx * ep_ctx,struct mu3h_sch_ep_info * sch_ep)278 static void setup_sch_info(struct xhci_ep_ctx *ep_ctx,
279 struct mu3h_sch_ep_info *sch_ep)
280 {
281 u32 ep_type;
282 u32 maxpkt;
283 u32 max_burst;
284 u32 mult;
285 u32 esit_pkts;
286 u32 max_esit_payload;
287 u32 *bwb_table = sch_ep->bw_budget_table;
288 int i;
289
290 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
291 maxpkt = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
292 max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
293 mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
294 max_esit_payload =
295 (CTX_TO_MAX_ESIT_PAYLOAD_HI(
296 le32_to_cpu(ep_ctx->ep_info)) << 16) |
297 CTX_TO_MAX_ESIT_PAYLOAD(le32_to_cpu(ep_ctx->tx_info));
298
299 sch_ep->esit = get_esit(ep_ctx);
300 sch_ep->ep_type = ep_type;
301 sch_ep->maxpkt = maxpkt;
302 sch_ep->offset = 0;
303 sch_ep->burst_mode = 0;
304 sch_ep->repeat = 0;
305
306 if (sch_ep->speed == USB_SPEED_HIGH) {
307 sch_ep->cs_count = 0;
308
309 /*
310 * usb_20 spec section5.9
311 * a single microframe is enough for HS synchromous endpoints
312 * in a interval
313 */
314 sch_ep->num_budget_microframes = 1;
315
316 /*
317 * xHCI spec section6.2.3.4
318 * @max_burst is the number of additional transactions
319 * opportunities per microframe
320 */
321 sch_ep->pkts = max_burst + 1;
322 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
323 bwb_table[0] = sch_ep->bw_cost_per_microframe;
324 } else if (sch_ep->speed >= USB_SPEED_SUPER) {
325 /* usb3_r1 spec section4.4.7 & 4.4.8 */
326 sch_ep->cs_count = 0;
327 sch_ep->burst_mode = 1;
328 /*
329 * some device's (d)wBytesPerInterval is set as 0,
330 * then max_esit_payload is 0, so evaluate esit_pkts from
331 * mult and burst
332 */
333 esit_pkts = DIV_ROUND_UP(max_esit_payload, maxpkt);
334 if (esit_pkts == 0)
335 esit_pkts = (mult + 1) * (max_burst + 1);
336
337 if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
338 sch_ep->pkts = esit_pkts;
339 sch_ep->num_budget_microframes = 1;
340 bwb_table[0] = maxpkt * sch_ep->pkts;
341 }
342
343 if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
344
345 if (sch_ep->esit == 1)
346 sch_ep->pkts = esit_pkts;
347 else if (esit_pkts <= sch_ep->esit)
348 sch_ep->pkts = 1;
349 else
350 sch_ep->pkts = roundup_pow_of_two(esit_pkts)
351 / sch_ep->esit;
352
353 sch_ep->num_budget_microframes =
354 DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
355
356 sch_ep->repeat = !!(sch_ep->num_budget_microframes > 1);
357 sch_ep->bw_cost_per_microframe = maxpkt * sch_ep->pkts;
358
359 for (i = 0; i < sch_ep->num_budget_microframes - 1; i++)
360 bwb_table[i] = sch_ep->bw_cost_per_microframe;
361
362 /* last one <= bw_cost_per_microframe */
363 bwb_table[i] = maxpkt * esit_pkts
364 - i * sch_ep->bw_cost_per_microframe;
365 }
366 } else if (is_fs_or_ls(sch_ep->speed)) {
367 sch_ep->pkts = 1; /* at most one packet for each microframe */
368
369 /*
370 * num_budget_microframes and cs_count will be updated when
371 * check TT for INT_OUT_EP, ISOC/INT_IN_EP type
372 */
373 sch_ep->cs_count = DIV_ROUND_UP(maxpkt, FS_PAYLOAD_MAX);
374 sch_ep->num_budget_microframes = sch_ep->cs_count;
375 sch_ep->bw_cost_per_microframe =
376 (maxpkt < FS_PAYLOAD_MAX) ? maxpkt : FS_PAYLOAD_MAX;
377
378 /* init budget table */
379 if (ep_type == ISOC_OUT_EP) {
380 for (i = 0; i < sch_ep->num_budget_microframes; i++)
381 bwb_table[i] = sch_ep->bw_cost_per_microframe;
382 } else if (ep_type == INT_OUT_EP) {
383 /* only first one consumes bandwidth, others as zero */
384 bwb_table[0] = sch_ep->bw_cost_per_microframe;
385 } else { /* INT_IN_EP or ISOC_IN_EP */
386 bwb_table[0] = 0; /* start split */
387 bwb_table[1] = 0; /* idle */
388 /*
389 * due to cs_count will be updated according to cs
390 * position, assign all remainder budget array
391 * elements as @bw_cost_per_microframe, but only first
392 * @num_budget_microframes elements will be used later
393 */
394 for (i = 2; i < TT_MICROFRAMES_MAX; i++)
395 bwb_table[i] = sch_ep->bw_cost_per_microframe;
396 }
397 }
398 }
399
400 /* Get maximum bandwidth when we schedule at offset slot. */
get_max_bw(struct mu3h_sch_bw_info * sch_bw,struct mu3h_sch_ep_info * sch_ep,u32 offset)401 static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
402 struct mu3h_sch_ep_info *sch_ep, u32 offset)
403 {
404 u32 num_esit;
405 u32 max_bw = 0;
406 u32 bw;
407 int i;
408 int j;
409
410 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
411 for (i = 0; i < num_esit; i++) {
412 u32 base = offset + i * sch_ep->esit;
413
414 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
415 bw = sch_bw->bus_bw[base + j] +
416 sch_ep->bw_budget_table[j];
417 if (bw > max_bw)
418 max_bw = bw;
419 }
420 }
421 return max_bw;
422 }
423
update_bus_bw(struct mu3h_sch_bw_info * sch_bw,struct mu3h_sch_ep_info * sch_ep,bool used)424 static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
425 struct mu3h_sch_ep_info *sch_ep, bool used)
426 {
427 u32 num_esit;
428 u32 base;
429 int i;
430 int j;
431
432 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
433 for (i = 0; i < num_esit; i++) {
434 base = sch_ep->offset + i * sch_ep->esit;
435 for (j = 0; j < sch_ep->num_budget_microframes; j++) {
436 if (used)
437 sch_bw->bus_bw[base + j] +=
438 sch_ep->bw_budget_table[j];
439 else
440 sch_bw->bus_bw[base + j] -=
441 sch_ep->bw_budget_table[j];
442 }
443 }
444 }
445
check_fs_bus_bw(struct mu3h_sch_ep_info * sch_ep,int offset)446 static int check_fs_bus_bw(struct mu3h_sch_ep_info *sch_ep, int offset)
447 {
448 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
449 u32 num_esit, tmp;
450 int base;
451 int i, j;
452 u8 uframes = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
453
454 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
455
456 if (sch_ep->ep_type == INT_IN_EP || sch_ep->ep_type == ISOC_IN_EP)
457 offset++;
458
459 for (i = 0; i < num_esit; i++) {
460 base = offset + i * sch_ep->esit;
461
462 for (j = 0; j < uframes; j++) {
463 tmp = tt->fs_bus_bw[base + j] + sch_ep->bw_cost_per_microframe;
464 if (tmp > FS_PAYLOAD_MAX)
465 return -ESCH_BW_OVERFLOW;
466 }
467 }
468
469 return 0;
470 }
471
check_sch_tt(struct mu3h_sch_ep_info * sch_ep,u32 offset)472 static int check_sch_tt(struct mu3h_sch_ep_info *sch_ep, u32 offset)
473 {
474 u32 extra_cs_count;
475 u32 start_ss, last_ss;
476 u32 start_cs, last_cs;
477
478 start_ss = offset % 8;
479
480 if (sch_ep->ep_type == ISOC_OUT_EP) {
481 last_ss = start_ss + sch_ep->cs_count - 1;
482
483 /*
484 * usb_20 spec section11.18:
485 * must never schedule Start-Split in Y6
486 */
487 if (!(start_ss == 7 || last_ss < 6))
488 return -ESCH_SS_Y6;
489
490 } else {
491 u32 cs_count = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
492
493 /*
494 * usb_20 spec section11.18:
495 * must never schedule Start-Split in Y6
496 */
497 if (start_ss == 6)
498 return -ESCH_SS_Y6;
499
500 /* one uframe for ss + one uframe for idle */
501 start_cs = (start_ss + 2) % 8;
502 last_cs = start_cs + cs_count - 1;
503
504 if (last_cs > 7)
505 return -ESCH_CS_OVERFLOW;
506
507 if (sch_ep->ep_type == ISOC_IN_EP)
508 extra_cs_count = (last_cs == 7) ? 1 : 2;
509 else /* ep_type : INTR IN / INTR OUT */
510 extra_cs_count = 1;
511
512 cs_count += extra_cs_count;
513 if (cs_count > 7)
514 cs_count = 7; /* HW limit */
515
516 sch_ep->cs_count = cs_count;
517 /* one for ss, the other for idle */
518 sch_ep->num_budget_microframes = cs_count + 2;
519
520 /*
521 * if interval=1, maxp >752, num_budge_micoframe is larger
522 * than sch_ep->esit, will overstep boundary
523 */
524 if (sch_ep->num_budget_microframes > sch_ep->esit)
525 sch_ep->num_budget_microframes = sch_ep->esit;
526 }
527
528 return check_fs_bus_bw(sch_ep, offset);
529 }
530
update_sch_tt(struct mu3h_sch_ep_info * sch_ep,bool used)531 static void update_sch_tt(struct mu3h_sch_ep_info *sch_ep, bool used)
532 {
533 struct mu3h_sch_tt *tt = sch_ep->sch_tt;
534 u32 base, num_esit;
535 int bw_updated;
536 int i, j;
537 int offset = sch_ep->offset;
538 u8 uframes = DIV_ROUND_UP(sch_ep->maxpkt, FS_PAYLOAD_MAX);
539
540 num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
541
542 if (used)
543 bw_updated = sch_ep->bw_cost_per_microframe;
544 else
545 bw_updated = -sch_ep->bw_cost_per_microframe;
546
547 if (sch_ep->ep_type == INT_IN_EP || sch_ep->ep_type == ISOC_IN_EP)
548 offset++;
549
550 for (i = 0; i < num_esit; i++) {
551 base = offset + i * sch_ep->esit;
552
553 for (j = 0; j < uframes; j++)
554 tt->fs_bus_bw[base + j] += bw_updated;
555 }
556
557 if (used)
558 list_add_tail(&sch_ep->tt_endpoint, &tt->ep_list);
559 else
560 list_del(&sch_ep->tt_endpoint);
561 }
562
load_ep_bw(struct mu3h_sch_bw_info * sch_bw,struct mu3h_sch_ep_info * sch_ep,bool loaded)563 static int load_ep_bw(struct mu3h_sch_bw_info *sch_bw,
564 struct mu3h_sch_ep_info *sch_ep, bool loaded)
565 {
566 if (sch_ep->sch_tt)
567 update_sch_tt(sch_ep, loaded);
568
569 /* update bus bandwidth info */
570 update_bus_bw(sch_bw, sch_ep, loaded);
571 sch_ep->allocated = loaded;
572
573 return 0;
574 }
575
get_esit_boundary(struct mu3h_sch_ep_info * sch_ep)576 static u32 get_esit_boundary(struct mu3h_sch_ep_info *sch_ep)
577 {
578 u32 boundary = sch_ep->esit;
579
580 if (sch_ep->sch_tt) { /* LS/FS with TT */
581 /*
582 * tune for CS, normally esit >= 8 for FS/LS,
583 * not add one for other types to avoid access array
584 * out of boundary
585 */
586 if (sch_ep->ep_type == ISOC_OUT_EP && boundary > 1)
587 boundary--;
588 }
589
590 return boundary;
591 }
592
check_sch_bw(struct mu3h_sch_bw_info * sch_bw,struct mu3h_sch_ep_info * sch_ep)593 static int check_sch_bw(struct mu3h_sch_bw_info *sch_bw,
594 struct mu3h_sch_ep_info *sch_ep)
595 {
596 u32 offset;
597 u32 min_bw;
598 u32 min_index;
599 u32 worst_bw;
600 u32 bw_boundary;
601 u32 esit_boundary;
602 u32 min_num_budget;
603 u32 min_cs_count;
604 int ret = 0;
605
606 /*
607 * Search through all possible schedule microframes.
608 * and find a microframe where its worst bandwidth is minimum.
609 */
610 min_bw = ~0;
611 min_index = 0;
612 min_cs_count = sch_ep->cs_count;
613 min_num_budget = sch_ep->num_budget_microframes;
614 esit_boundary = get_esit_boundary(sch_ep);
615 for (offset = 0; offset < sch_ep->esit; offset++) {
616 if (sch_ep->sch_tt) {
617 ret = check_sch_tt(sch_ep, offset);
618 if (ret)
619 continue;
620 }
621
622 if ((offset + sch_ep->num_budget_microframes) > esit_boundary)
623 break;
624
625 worst_bw = get_max_bw(sch_bw, sch_ep, offset);
626 if (min_bw > worst_bw) {
627 min_bw = worst_bw;
628 min_index = offset;
629 min_cs_count = sch_ep->cs_count;
630 min_num_budget = sch_ep->num_budget_microframes;
631 }
632 if (min_bw == 0)
633 break;
634 }
635
636 bw_boundary = get_bw_boundary(sch_ep->speed);
637 /* check bandwidth */
638 if (min_bw > bw_boundary)
639 return ret ? ret : -ESCH_BW_OVERFLOW;
640
641 sch_ep->offset = min_index;
642 sch_ep->cs_count = min_cs_count;
643 sch_ep->num_budget_microframes = min_num_budget;
644
645 return load_ep_bw(sch_bw, sch_ep, true);
646 }
647
destroy_sch_ep(struct usb_device * udev,struct mu3h_sch_bw_info * sch_bw,struct mu3h_sch_ep_info * sch_ep)648 static void destroy_sch_ep(struct usb_device *udev,
649 struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep)
650 {
651 /* only release ep bw check passed by check_sch_bw() */
652 if (sch_ep->allocated)
653 load_ep_bw(sch_bw, sch_ep, false);
654
655 if (sch_ep->sch_tt)
656 drop_tt(udev);
657
658 list_del(&sch_ep->endpoint);
659 kfree(sch_ep);
660 }
661
need_bw_sch(struct usb_host_endpoint * ep,enum usb_device_speed speed,int has_tt)662 static bool need_bw_sch(struct usb_host_endpoint *ep,
663 enum usb_device_speed speed, int has_tt)
664 {
665 /* only for periodic endpoints */
666 if (usb_endpoint_xfer_control(&ep->desc)
667 || usb_endpoint_xfer_bulk(&ep->desc))
668 return false;
669
670 /*
671 * for LS & FS periodic endpoints which its device is not behind
672 * a TT are also ignored, root-hub will schedule them directly,
673 * but need set @bpkts field of endpoint context to 1.
674 */
675 if (is_fs_or_ls(speed) && !has_tt)
676 return false;
677
678 /* skip endpoint with zero maxpkt */
679 if (usb_endpoint_maxp(&ep->desc) == 0)
680 return false;
681
682 return true;
683 }
684
xhci_mtk_sch_init(struct xhci_hcd_mtk * mtk)685 int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
686 {
687 struct xhci_hcd *xhci = hcd_to_xhci(mtk->hcd);
688 struct mu3h_sch_bw_info *sch_array;
689 int num_usb_bus;
690 int i;
691
692 /* ss IN and OUT are separated */
693 num_usb_bus = xhci->usb3_rhub.num_ports * 2 + xhci->usb2_rhub.num_ports;
694
695 sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
696 if (sch_array == NULL)
697 return -ENOMEM;
698
699 for (i = 0; i < num_usb_bus; i++)
700 INIT_LIST_HEAD(&sch_array[i].bw_ep_list);
701
702 mtk->sch_array = sch_array;
703
704 INIT_LIST_HEAD(&mtk->bw_ep_chk_list);
705
706 return 0;
707 }
708
xhci_mtk_sch_exit(struct xhci_hcd_mtk * mtk)709 void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
710 {
711 kfree(mtk->sch_array);
712 }
713
add_ep_quirk(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)714 static int add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
715 struct usb_host_endpoint *ep)
716 {
717 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
718 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719 struct xhci_ep_ctx *ep_ctx;
720 struct xhci_virt_device *virt_dev;
721 struct mu3h_sch_ep_info *sch_ep;
722 unsigned int ep_index;
723
724 virt_dev = xhci->devs[udev->slot_id];
725 ep_index = xhci_get_endpoint_index(&ep->desc);
726 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
727
728 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
729
730 if (!need_bw_sch(ep, udev->speed, !!virt_dev->tt_info)) {
731 /*
732 * set @bpkts to 1 if it is LS or FS periodic endpoint, and its
733 * device does not connected through an external HS hub
734 */
735 if (usb_endpoint_xfer_int(&ep->desc)
736 || usb_endpoint_xfer_isoc(&ep->desc))
737 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(1));
738
739 return 0;
740 }
741
742 sch_ep = create_sch_ep(udev, ep, ep_ctx);
743 if (IS_ERR_OR_NULL(sch_ep))
744 return -ENOMEM;
745
746 setup_sch_info(ep_ctx, sch_ep);
747
748 list_add_tail(&sch_ep->endpoint, &mtk->bw_ep_chk_list);
749
750 return 0;
751 }
752
drop_ep_quirk(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)753 static void drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
754 struct usb_host_endpoint *ep)
755 {
756 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
757 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
758 struct xhci_virt_device *virt_dev;
759 struct mu3h_sch_bw_info *sch_bw;
760 struct mu3h_sch_ep_info *sch_ep, *tmp;
761
762 virt_dev = xhci->devs[udev->slot_id];
763
764 xhci_dbg(xhci, "%s %s\n", __func__, decode_ep(ep, udev->speed));
765
766 if (!need_bw_sch(ep, udev->speed, !!virt_dev->tt_info))
767 return;
768
769 sch_bw = get_bw_info(mtk, udev, ep);
770
771 list_for_each_entry_safe(sch_ep, tmp, &sch_bw->bw_ep_list, endpoint) {
772 if (sch_ep->ep == ep) {
773 destroy_sch_ep(udev, sch_bw, sch_ep);
774 break;
775 }
776 }
777 }
778
xhci_mtk_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)779 int xhci_mtk_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
780 {
781 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
782 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
783 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
784 struct mu3h_sch_bw_info *sch_bw;
785 struct mu3h_sch_ep_info *sch_ep, *tmp;
786 int ret;
787
788 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
789
790 list_for_each_entry(sch_ep, &mtk->bw_ep_chk_list, endpoint) {
791 sch_bw = get_bw_info(mtk, udev, sch_ep->ep);
792
793 ret = check_sch_bw(sch_bw, sch_ep);
794 if (ret) {
795 xhci_err(xhci, "Not enough bandwidth! (%s)\n",
796 sch_error_string(-ret));
797 return -ENOSPC;
798 }
799 }
800
801 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) {
802 struct xhci_ep_ctx *ep_ctx;
803 struct usb_host_endpoint *ep = sch_ep->ep;
804 unsigned int ep_index = xhci_get_endpoint_index(&ep->desc);
805
806 sch_bw = get_bw_info(mtk, udev, ep);
807 list_move_tail(&sch_ep->endpoint, &sch_bw->bw_ep_list);
808
809 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
810 ep_ctx->reserved[0] = cpu_to_le32(EP_BPKTS(sch_ep->pkts)
811 | EP_BCSCOUNT(sch_ep->cs_count)
812 | EP_BBM(sch_ep->burst_mode));
813 ep_ctx->reserved[1] = cpu_to_le32(EP_BOFFSET(sch_ep->offset)
814 | EP_BREPEAT(sch_ep->repeat));
815
816 xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
817 sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
818 sch_ep->offset, sch_ep->repeat);
819 }
820
821 return xhci_check_bandwidth(hcd, udev);
822 }
823
xhci_mtk_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)824 void xhci_mtk_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
825 {
826 struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
827 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
828 struct mu3h_sch_bw_info *sch_bw;
829 struct mu3h_sch_ep_info *sch_ep, *tmp;
830
831 xhci_dbg(xhci, "%s() udev %s\n", __func__, dev_name(&udev->dev));
832
833 list_for_each_entry_safe(sch_ep, tmp, &mtk->bw_ep_chk_list, endpoint) {
834 sch_bw = get_bw_info(mtk, udev, sch_ep->ep);
835 destroy_sch_ep(udev, sch_bw, sch_ep);
836 }
837
838 xhci_reset_bandwidth(hcd, udev);
839 }
840
xhci_mtk_add_ep(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)841 int xhci_mtk_add_ep(struct usb_hcd *hcd, struct usb_device *udev,
842 struct usb_host_endpoint *ep)
843 {
844 int ret;
845
846 ret = xhci_add_endpoint(hcd, udev, ep);
847 if (ret)
848 return ret;
849
850 if (ep->hcpriv)
851 ret = add_ep_quirk(hcd, udev, ep);
852
853 return ret;
854 }
855
xhci_mtk_drop_ep(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)856 int xhci_mtk_drop_ep(struct usb_hcd *hcd, struct usb_device *udev,
857 struct usb_host_endpoint *ep)
858 {
859 int ret;
860
861 ret = xhci_drop_endpoint(hcd, udev, ep);
862 if (ret)
863 return ret;
864
865 if (ep->hcpriv)
866 drop_ep_quirk(hcd, udev, ep);
867
868 return 0;
869 }
870