xref: /OK3568_Linux_fs/kernel/drivers/tty/serial/sh-sci.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
4  *
5  *  Copyright (C) 2002 - 2011  Paul Mundt
6  *  Copyright (C) 2015 Glider bvba
7  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
8  *
9  * based off of the old drivers/char/sh-sci.c by:
10  *
11  *   Copyright (C) 1999, 2000  Niibe Yutaka
12  *   Copyright (C) 2000  Sugioka Toshinobu
13  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
14  *   Modified to support SecureEdge. David McCullough (2002)
15  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
16  *   Removed SH7300 support (Jul 2007).
17  */
18 #undef DEBUG
19 
20 #include <linux/clk.h>
21 #include <linux/console.h>
22 #include <linux/ctype.h>
23 #include <linux/cpufreq.h>
24 #include <linux/delay.h>
25 #include <linux/dmaengine.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/ioport.h>
32 #include <linux/ktime.h>
33 #include <linux/major.h>
34 #include <linux/module.h>
35 #include <linux/mm.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/scatterlist.h>
41 #include <linux/serial.h>
42 #include <linux/serial_sci.h>
43 #include <linux/sh_dma.h>
44 #include <linux/slab.h>
45 #include <linux/string.h>
46 #include <linux/sysrq.h>
47 #include <linux/timer.h>
48 #include <linux/tty.h>
49 #include <linux/tty_flip.h>
50 
51 #ifdef CONFIG_SUPERH
52 #include <asm/sh_bios.h>
53 #include <asm/platform_early.h>
54 #endif
55 
56 #include "serial_mctrl_gpio.h"
57 #include "sh-sci.h"
58 
59 /* Offsets into the sci_port->irqs array */
60 enum {
61 	SCIx_ERI_IRQ,
62 	SCIx_RXI_IRQ,
63 	SCIx_TXI_IRQ,
64 	SCIx_BRI_IRQ,
65 	SCIx_DRI_IRQ,
66 	SCIx_TEI_IRQ,
67 	SCIx_NR_IRQS,
68 
69 	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
70 };
71 
72 #define SCIx_IRQ_IS_MUXED(port)			\
73 	((port)->irqs[SCIx_ERI_IRQ] ==	\
74 	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
75 	((port)->irqs[SCIx_ERI_IRQ] &&	\
76 	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
77 
78 enum SCI_CLKS {
79 	SCI_FCK,		/* Functional Clock */
80 	SCI_SCK,		/* Optional External Clock */
81 	SCI_BRG_INT,		/* Optional BRG Internal Clock Source */
82 	SCI_SCIF_CLK,		/* Optional BRG External Clock Source */
83 	SCI_NUM_CLKS
84 };
85 
86 /* Bit x set means sampling rate x + 1 is supported */
87 #define SCI_SR(x)		BIT((x) - 1)
88 #define SCI_SR_RANGE(x, y)	GENMASK((y) - 1, (x) - 1)
89 
90 #define SCI_SR_SCIFAB		SCI_SR(5) | SCI_SR(7) | SCI_SR(11) | \
91 				SCI_SR(13) | SCI_SR(16) | SCI_SR(17) | \
92 				SCI_SR(19) | SCI_SR(27)
93 
94 #define min_sr(_port)		ffs((_port)->sampling_rate_mask)
95 #define max_sr(_port)		fls((_port)->sampling_rate_mask)
96 
97 /* Iterate over all supported sampling rates, from high to low */
98 #define for_each_sr(_sr, _port)						\
99 	for ((_sr) = max_sr(_port); (_sr) >= min_sr(_port); (_sr)--)	\
100 		if ((_port)->sampling_rate_mask & SCI_SR((_sr)))
101 
102 struct plat_sci_reg {
103 	u8 offset, size;
104 };
105 
106 struct sci_port_params {
107 	const struct plat_sci_reg regs[SCIx_NR_REGS];
108 	unsigned int fifosize;
109 	unsigned int overrun_reg;
110 	unsigned int overrun_mask;
111 	unsigned int sampling_rate_mask;
112 	unsigned int error_mask;
113 	unsigned int error_clear;
114 };
115 
116 struct sci_port {
117 	struct uart_port	port;
118 
119 	/* Platform configuration */
120 	const struct sci_port_params *params;
121 	const struct plat_sci_port *cfg;
122 	unsigned int		sampling_rate_mask;
123 	resource_size_t		reg_size;
124 	struct mctrl_gpios	*gpios;
125 
126 	/* Clocks */
127 	struct clk		*clks[SCI_NUM_CLKS];
128 	unsigned long		clk_rates[SCI_NUM_CLKS];
129 
130 	int			irqs[SCIx_NR_IRQS];
131 	char			*irqstr[SCIx_NR_IRQS];
132 
133 	struct dma_chan			*chan_tx;
134 	struct dma_chan			*chan_rx;
135 
136 #ifdef CONFIG_SERIAL_SH_SCI_DMA
137 	struct dma_chan			*chan_tx_saved;
138 	struct dma_chan			*chan_rx_saved;
139 	dma_cookie_t			cookie_tx;
140 	dma_cookie_t			cookie_rx[2];
141 	dma_cookie_t			active_rx;
142 	dma_addr_t			tx_dma_addr;
143 	unsigned int			tx_dma_len;
144 	struct scatterlist		sg_rx[2];
145 	void				*rx_buf[2];
146 	size_t				buf_len_rx;
147 	struct work_struct		work_tx;
148 	struct hrtimer			rx_timer;
149 	unsigned int			rx_timeout;	/* microseconds */
150 #endif
151 	unsigned int			rx_frame;
152 	int				rx_trigger;
153 	struct timer_list		rx_fifo_timer;
154 	int				rx_fifo_timeout;
155 	u16				hscif_tot;
156 
157 	bool has_rtscts;
158 	bool autorts;
159 };
160 
161 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
162 
163 static struct sci_port sci_ports[SCI_NPORTS];
164 static unsigned long sci_ports_in_use;
165 static struct uart_driver sci_uart_driver;
166 
167 static inline struct sci_port *
to_sci_port(struct uart_port * uart)168 to_sci_port(struct uart_port *uart)
169 {
170 	return container_of(uart, struct sci_port, port);
171 }
172 
173 static const struct sci_port_params sci_port_params[SCIx_NR_REGTYPES] = {
174 	/*
175 	 * Common SCI definitions, dependent on the port's regshift
176 	 * value.
177 	 */
178 	[SCIx_SCI_REGTYPE] = {
179 		.regs = {
180 			[SCSMR]		= { 0x00,  8 },
181 			[SCBRR]		= { 0x01,  8 },
182 			[SCSCR]		= { 0x02,  8 },
183 			[SCxTDR]	= { 0x03,  8 },
184 			[SCxSR]		= { 0x04,  8 },
185 			[SCxRDR]	= { 0x05,  8 },
186 		},
187 		.fifosize = 1,
188 		.overrun_reg = SCxSR,
189 		.overrun_mask = SCI_ORER,
190 		.sampling_rate_mask = SCI_SR(32),
191 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
192 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
193 	},
194 
195 	/*
196 	 * Common definitions for legacy IrDA ports.
197 	 */
198 	[SCIx_IRDA_REGTYPE] = {
199 		.regs = {
200 			[SCSMR]		= { 0x00,  8 },
201 			[SCBRR]		= { 0x02,  8 },
202 			[SCSCR]		= { 0x04,  8 },
203 			[SCxTDR]	= { 0x06,  8 },
204 			[SCxSR]		= { 0x08, 16 },
205 			[SCxRDR]	= { 0x0a,  8 },
206 			[SCFCR]		= { 0x0c,  8 },
207 			[SCFDR]		= { 0x0e, 16 },
208 		},
209 		.fifosize = 1,
210 		.overrun_reg = SCxSR,
211 		.overrun_mask = SCI_ORER,
212 		.sampling_rate_mask = SCI_SR(32),
213 		.error_mask = SCI_DEFAULT_ERROR_MASK | SCI_ORER,
214 		.error_clear = SCI_ERROR_CLEAR & ~SCI_ORER,
215 	},
216 
217 	/*
218 	 * Common SCIFA definitions.
219 	 */
220 	[SCIx_SCIFA_REGTYPE] = {
221 		.regs = {
222 			[SCSMR]		= { 0x00, 16 },
223 			[SCBRR]		= { 0x04,  8 },
224 			[SCSCR]		= { 0x08, 16 },
225 			[SCxTDR]	= { 0x20,  8 },
226 			[SCxSR]		= { 0x14, 16 },
227 			[SCxRDR]	= { 0x24,  8 },
228 			[SCFCR]		= { 0x18, 16 },
229 			[SCFDR]		= { 0x1c, 16 },
230 			[SCPCR]		= { 0x30, 16 },
231 			[SCPDR]		= { 0x34, 16 },
232 		},
233 		.fifosize = 64,
234 		.overrun_reg = SCxSR,
235 		.overrun_mask = SCIFA_ORER,
236 		.sampling_rate_mask = SCI_SR_SCIFAB,
237 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
238 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
239 	},
240 
241 	/*
242 	 * Common SCIFB definitions.
243 	 */
244 	[SCIx_SCIFB_REGTYPE] = {
245 		.regs = {
246 			[SCSMR]		= { 0x00, 16 },
247 			[SCBRR]		= { 0x04,  8 },
248 			[SCSCR]		= { 0x08, 16 },
249 			[SCxTDR]	= { 0x40,  8 },
250 			[SCxSR]		= { 0x14, 16 },
251 			[SCxRDR]	= { 0x60,  8 },
252 			[SCFCR]		= { 0x18, 16 },
253 			[SCTFDR]	= { 0x38, 16 },
254 			[SCRFDR]	= { 0x3c, 16 },
255 			[SCPCR]		= { 0x30, 16 },
256 			[SCPDR]		= { 0x34, 16 },
257 		},
258 		.fifosize = 256,
259 		.overrun_reg = SCxSR,
260 		.overrun_mask = SCIFA_ORER,
261 		.sampling_rate_mask = SCI_SR_SCIFAB,
262 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
263 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
264 	},
265 
266 	/*
267 	 * Common SH-2(A) SCIF definitions for ports with FIFO data
268 	 * count registers.
269 	 */
270 	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
271 		.regs = {
272 			[SCSMR]		= { 0x00, 16 },
273 			[SCBRR]		= { 0x04,  8 },
274 			[SCSCR]		= { 0x08, 16 },
275 			[SCxTDR]	= { 0x0c,  8 },
276 			[SCxSR]		= { 0x10, 16 },
277 			[SCxRDR]	= { 0x14,  8 },
278 			[SCFCR]		= { 0x18, 16 },
279 			[SCFDR]		= { 0x1c, 16 },
280 			[SCSPTR]	= { 0x20, 16 },
281 			[SCLSR]		= { 0x24, 16 },
282 		},
283 		.fifosize = 16,
284 		.overrun_reg = SCLSR,
285 		.overrun_mask = SCLSR_ORER,
286 		.sampling_rate_mask = SCI_SR(32),
287 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
288 		.error_clear = SCIF_ERROR_CLEAR,
289 	},
290 
291 	/*
292 	 * The "SCIFA" that is in RZ/T and RZ/A2.
293 	 * It looks like a normal SCIF with FIFO data, but with a
294 	 * compressed address space. Also, the break out of interrupts
295 	 * are different: ERI/BRI, RXI, TXI, TEI, DRI.
296 	 */
297 	[SCIx_RZ_SCIFA_REGTYPE] = {
298 		.regs = {
299 			[SCSMR]		= { 0x00, 16 },
300 			[SCBRR]		= { 0x02,  8 },
301 			[SCSCR]		= { 0x04, 16 },
302 			[SCxTDR]	= { 0x06,  8 },
303 			[SCxSR]		= { 0x08, 16 },
304 			[SCxRDR]	= { 0x0A,  8 },
305 			[SCFCR]		= { 0x0C, 16 },
306 			[SCFDR]		= { 0x0E, 16 },
307 			[SCSPTR]	= { 0x10, 16 },
308 			[SCLSR]		= { 0x12, 16 },
309 		},
310 		.fifosize = 16,
311 		.overrun_reg = SCLSR,
312 		.overrun_mask = SCLSR_ORER,
313 		.sampling_rate_mask = SCI_SR(32),
314 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
315 		.error_clear = SCIF_ERROR_CLEAR,
316 	},
317 
318 	/*
319 	 * Common SH-3 SCIF definitions.
320 	 */
321 	[SCIx_SH3_SCIF_REGTYPE] = {
322 		.regs = {
323 			[SCSMR]		= { 0x00,  8 },
324 			[SCBRR]		= { 0x02,  8 },
325 			[SCSCR]		= { 0x04,  8 },
326 			[SCxTDR]	= { 0x06,  8 },
327 			[SCxSR]		= { 0x08, 16 },
328 			[SCxRDR]	= { 0x0a,  8 },
329 			[SCFCR]		= { 0x0c,  8 },
330 			[SCFDR]		= { 0x0e, 16 },
331 		},
332 		.fifosize = 16,
333 		.overrun_reg = SCLSR,
334 		.overrun_mask = SCLSR_ORER,
335 		.sampling_rate_mask = SCI_SR(32),
336 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
337 		.error_clear = SCIF_ERROR_CLEAR,
338 	},
339 
340 	/*
341 	 * Common SH-4(A) SCIF(B) definitions.
342 	 */
343 	[SCIx_SH4_SCIF_REGTYPE] = {
344 		.regs = {
345 			[SCSMR]		= { 0x00, 16 },
346 			[SCBRR]		= { 0x04,  8 },
347 			[SCSCR]		= { 0x08, 16 },
348 			[SCxTDR]	= { 0x0c,  8 },
349 			[SCxSR]		= { 0x10, 16 },
350 			[SCxRDR]	= { 0x14,  8 },
351 			[SCFCR]		= { 0x18, 16 },
352 			[SCFDR]		= { 0x1c, 16 },
353 			[SCSPTR]	= { 0x20, 16 },
354 			[SCLSR]		= { 0x24, 16 },
355 		},
356 		.fifosize = 16,
357 		.overrun_reg = SCLSR,
358 		.overrun_mask = SCLSR_ORER,
359 		.sampling_rate_mask = SCI_SR(32),
360 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
361 		.error_clear = SCIF_ERROR_CLEAR,
362 	},
363 
364 	/*
365 	 * Common SCIF definitions for ports with a Baud Rate Generator for
366 	 * External Clock (BRG).
367 	 */
368 	[SCIx_SH4_SCIF_BRG_REGTYPE] = {
369 		.regs = {
370 			[SCSMR]		= { 0x00, 16 },
371 			[SCBRR]		= { 0x04,  8 },
372 			[SCSCR]		= { 0x08, 16 },
373 			[SCxTDR]	= { 0x0c,  8 },
374 			[SCxSR]		= { 0x10, 16 },
375 			[SCxRDR]	= { 0x14,  8 },
376 			[SCFCR]		= { 0x18, 16 },
377 			[SCFDR]		= { 0x1c, 16 },
378 			[SCSPTR]	= { 0x20, 16 },
379 			[SCLSR]		= { 0x24, 16 },
380 			[SCDL]		= { 0x30, 16 },
381 			[SCCKS]		= { 0x34, 16 },
382 		},
383 		.fifosize = 16,
384 		.overrun_reg = SCLSR,
385 		.overrun_mask = SCLSR_ORER,
386 		.sampling_rate_mask = SCI_SR(32),
387 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
388 		.error_clear = SCIF_ERROR_CLEAR,
389 	},
390 
391 	/*
392 	 * Common HSCIF definitions.
393 	 */
394 	[SCIx_HSCIF_REGTYPE] = {
395 		.regs = {
396 			[SCSMR]		= { 0x00, 16 },
397 			[SCBRR]		= { 0x04,  8 },
398 			[SCSCR]		= { 0x08, 16 },
399 			[SCxTDR]	= { 0x0c,  8 },
400 			[SCxSR]		= { 0x10, 16 },
401 			[SCxRDR]	= { 0x14,  8 },
402 			[SCFCR]		= { 0x18, 16 },
403 			[SCFDR]		= { 0x1c, 16 },
404 			[SCSPTR]	= { 0x20, 16 },
405 			[SCLSR]		= { 0x24, 16 },
406 			[HSSRR]		= { 0x40, 16 },
407 			[SCDL]		= { 0x30, 16 },
408 			[SCCKS]		= { 0x34, 16 },
409 			[HSRTRGR]	= { 0x54, 16 },
410 			[HSTTRGR]	= { 0x58, 16 },
411 		},
412 		.fifosize = 128,
413 		.overrun_reg = SCLSR,
414 		.overrun_mask = SCLSR_ORER,
415 		.sampling_rate_mask = SCI_SR_RANGE(8, 32),
416 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
417 		.error_clear = SCIF_ERROR_CLEAR,
418 	},
419 
420 	/*
421 	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
422 	 * register.
423 	 */
424 	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
425 		.regs = {
426 			[SCSMR]		= { 0x00, 16 },
427 			[SCBRR]		= { 0x04,  8 },
428 			[SCSCR]		= { 0x08, 16 },
429 			[SCxTDR]	= { 0x0c,  8 },
430 			[SCxSR]		= { 0x10, 16 },
431 			[SCxRDR]	= { 0x14,  8 },
432 			[SCFCR]		= { 0x18, 16 },
433 			[SCFDR]		= { 0x1c, 16 },
434 			[SCLSR]		= { 0x24, 16 },
435 		},
436 		.fifosize = 16,
437 		.overrun_reg = SCLSR,
438 		.overrun_mask = SCLSR_ORER,
439 		.sampling_rate_mask = SCI_SR(32),
440 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
441 		.error_clear = SCIF_ERROR_CLEAR,
442 	},
443 
444 	/*
445 	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
446 	 * count registers.
447 	 */
448 	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
449 		.regs = {
450 			[SCSMR]		= { 0x00, 16 },
451 			[SCBRR]		= { 0x04,  8 },
452 			[SCSCR]		= { 0x08, 16 },
453 			[SCxTDR]	= { 0x0c,  8 },
454 			[SCxSR]		= { 0x10, 16 },
455 			[SCxRDR]	= { 0x14,  8 },
456 			[SCFCR]		= { 0x18, 16 },
457 			[SCFDR]		= { 0x1c, 16 },
458 			[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
459 			[SCRFDR]	= { 0x20, 16 },
460 			[SCSPTR]	= { 0x24, 16 },
461 			[SCLSR]		= { 0x28, 16 },
462 		},
463 		.fifosize = 16,
464 		.overrun_reg = SCLSR,
465 		.overrun_mask = SCLSR_ORER,
466 		.sampling_rate_mask = SCI_SR(32),
467 		.error_mask = SCIF_DEFAULT_ERROR_MASK,
468 		.error_clear = SCIF_ERROR_CLEAR,
469 	},
470 
471 	/*
472 	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
473 	 * registers.
474 	 */
475 	[SCIx_SH7705_SCIF_REGTYPE] = {
476 		.regs = {
477 			[SCSMR]		= { 0x00, 16 },
478 			[SCBRR]		= { 0x04,  8 },
479 			[SCSCR]		= { 0x08, 16 },
480 			[SCxTDR]	= { 0x20,  8 },
481 			[SCxSR]		= { 0x14, 16 },
482 			[SCxRDR]	= { 0x24,  8 },
483 			[SCFCR]		= { 0x18, 16 },
484 			[SCFDR]		= { 0x1c, 16 },
485 		},
486 		.fifosize = 64,
487 		.overrun_reg = SCxSR,
488 		.overrun_mask = SCIFA_ORER,
489 		.sampling_rate_mask = SCI_SR(16),
490 		.error_mask = SCIF_DEFAULT_ERROR_MASK | SCIFA_ORER,
491 		.error_clear = SCIF_ERROR_CLEAR & ~SCIFA_ORER,
492 	},
493 };
494 
495 #define sci_getreg(up, offset)		(&to_sci_port(up)->params->regs[offset])
496 
497 /*
498  * The "offset" here is rather misleading, in that it refers to an enum
499  * value relative to the port mapping rather than the fixed offset
500  * itself, which needs to be manually retrieved from the platform's
501  * register map for the given port.
502  */
sci_serial_in(struct uart_port * p,int offset)503 static unsigned int sci_serial_in(struct uart_port *p, int offset)
504 {
505 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
506 
507 	if (reg->size == 8)
508 		return ioread8(p->membase + (reg->offset << p->regshift));
509 	else if (reg->size == 16)
510 		return ioread16(p->membase + (reg->offset << p->regshift));
511 	else
512 		WARN(1, "Invalid register access\n");
513 
514 	return 0;
515 }
516 
sci_serial_out(struct uart_port * p,int offset,int value)517 static void sci_serial_out(struct uart_port *p, int offset, int value)
518 {
519 	const struct plat_sci_reg *reg = sci_getreg(p, offset);
520 
521 	if (reg->size == 8)
522 		iowrite8(value, p->membase + (reg->offset << p->regshift));
523 	else if (reg->size == 16)
524 		iowrite16(value, p->membase + (reg->offset << p->regshift));
525 	else
526 		WARN(1, "Invalid register access\n");
527 }
528 
sci_port_enable(struct sci_port * sci_port)529 static void sci_port_enable(struct sci_port *sci_port)
530 {
531 	unsigned int i;
532 
533 	if (!sci_port->port.dev)
534 		return;
535 
536 	pm_runtime_get_sync(sci_port->port.dev);
537 
538 	for (i = 0; i < SCI_NUM_CLKS; i++) {
539 		clk_prepare_enable(sci_port->clks[i]);
540 		sci_port->clk_rates[i] = clk_get_rate(sci_port->clks[i]);
541 	}
542 	sci_port->port.uartclk = sci_port->clk_rates[SCI_FCK];
543 }
544 
sci_port_disable(struct sci_port * sci_port)545 static void sci_port_disable(struct sci_port *sci_port)
546 {
547 	unsigned int i;
548 
549 	if (!sci_port->port.dev)
550 		return;
551 
552 	for (i = SCI_NUM_CLKS; i-- > 0; )
553 		clk_disable_unprepare(sci_port->clks[i]);
554 
555 	pm_runtime_put_sync(sci_port->port.dev);
556 }
557 
port_rx_irq_mask(struct uart_port * port)558 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
559 {
560 	/*
561 	 * Not all ports (such as SCIFA) will support REIE. Rather than
562 	 * special-casing the port type, we check the port initialization
563 	 * IRQ enable mask to see whether the IRQ is desired at all. If
564 	 * it's unset, it's logically inferred that there's no point in
565 	 * testing for it.
566 	 */
567 	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
568 }
569 
sci_start_tx(struct uart_port * port)570 static void sci_start_tx(struct uart_port *port)
571 {
572 	struct sci_port *s = to_sci_port(port);
573 	unsigned short ctrl;
574 
575 #ifdef CONFIG_SERIAL_SH_SCI_DMA
576 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
577 		u16 new, scr = serial_port_in(port, SCSCR);
578 		if (s->chan_tx)
579 			new = scr | SCSCR_TDRQE;
580 		else
581 			new = scr & ~SCSCR_TDRQE;
582 		if (new != scr)
583 			serial_port_out(port, SCSCR, new);
584 	}
585 
586 	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
587 	    dma_submit_error(s->cookie_tx)) {
588 		s->cookie_tx = 0;
589 		schedule_work(&s->work_tx);
590 	}
591 #endif
592 
593 	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
594 		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
595 		ctrl = serial_port_in(port, SCSCR);
596 		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
597 	}
598 }
599 
sci_stop_tx(struct uart_port * port)600 static void sci_stop_tx(struct uart_port *port)
601 {
602 	unsigned short ctrl;
603 
604 	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
605 	ctrl = serial_port_in(port, SCSCR);
606 
607 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
608 		ctrl &= ~SCSCR_TDRQE;
609 
610 	ctrl &= ~SCSCR_TIE;
611 
612 	serial_port_out(port, SCSCR, ctrl);
613 
614 #ifdef CONFIG_SERIAL_SH_SCI_DMA
615 	if (to_sci_port(port)->chan_tx &&
616 	    !dma_submit_error(to_sci_port(port)->cookie_tx)) {
617 		dmaengine_terminate_async(to_sci_port(port)->chan_tx);
618 		to_sci_port(port)->cookie_tx = -EINVAL;
619 	}
620 #endif
621 }
622 
sci_start_rx(struct uart_port * port)623 static void sci_start_rx(struct uart_port *port)
624 {
625 	unsigned short ctrl;
626 
627 	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
628 
629 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
630 		ctrl &= ~SCSCR_RDRQE;
631 
632 	serial_port_out(port, SCSCR, ctrl);
633 }
634 
sci_stop_rx(struct uart_port * port)635 static void sci_stop_rx(struct uart_port *port)
636 {
637 	unsigned short ctrl;
638 
639 	ctrl = serial_port_in(port, SCSCR);
640 
641 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
642 		ctrl &= ~SCSCR_RDRQE;
643 
644 	ctrl &= ~port_rx_irq_mask(port);
645 
646 	serial_port_out(port, SCSCR, ctrl);
647 }
648 
sci_clear_SCxSR(struct uart_port * port,unsigned int mask)649 static void sci_clear_SCxSR(struct uart_port *port, unsigned int mask)
650 {
651 	if (port->type == PORT_SCI) {
652 		/* Just store the mask */
653 		serial_port_out(port, SCxSR, mask);
654 	} else if (to_sci_port(port)->params->overrun_mask == SCIFA_ORER) {
655 		/* SCIFA/SCIFB and SCIF on SH7705/SH7720/SH7721 */
656 		/* Only clear the status bits we want to clear */
657 		serial_port_out(port, SCxSR,
658 				serial_port_in(port, SCxSR) & mask);
659 	} else {
660 		/* Store the mask, clear parity/framing errors */
661 		serial_port_out(port, SCxSR, mask & ~(SCIF_FERC | SCIF_PERC));
662 	}
663 }
664 
665 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
666     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
667 
668 #ifdef CONFIG_CONSOLE_POLL
sci_poll_get_char(struct uart_port * port)669 static int sci_poll_get_char(struct uart_port *port)
670 {
671 	unsigned short status;
672 	int c;
673 
674 	do {
675 		status = serial_port_in(port, SCxSR);
676 		if (status & SCxSR_ERRORS(port)) {
677 			sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
678 			continue;
679 		}
680 		break;
681 	} while (1);
682 
683 	if (!(status & SCxSR_RDxF(port)))
684 		return NO_POLL_CHAR;
685 
686 	c = serial_port_in(port, SCxRDR);
687 
688 	/* Dummy read */
689 	serial_port_in(port, SCxSR);
690 	sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
691 
692 	return c;
693 }
694 #endif
695 
sci_poll_put_char(struct uart_port * port,unsigned char c)696 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
697 {
698 	unsigned short status;
699 
700 	do {
701 		status = serial_port_in(port, SCxSR);
702 	} while (!(status & SCxSR_TDxE(port)));
703 
704 	serial_port_out(port, SCxTDR, c);
705 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
706 }
707 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE ||
708 	  CONFIG_SERIAL_SH_SCI_EARLYCON */
709 
sci_init_pins(struct uart_port * port,unsigned int cflag)710 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
711 {
712 	struct sci_port *s = to_sci_port(port);
713 
714 	/*
715 	 * Use port-specific handler if provided.
716 	 */
717 	if (s->cfg->ops && s->cfg->ops->init_pins) {
718 		s->cfg->ops->init_pins(port, cflag);
719 		return;
720 	}
721 
722 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
723 		u16 data = serial_port_in(port, SCPDR);
724 		u16 ctrl = serial_port_in(port, SCPCR);
725 
726 		/* Enable RXD and TXD pin functions */
727 		ctrl &= ~(SCPCR_RXDC | SCPCR_TXDC);
728 		if (to_sci_port(port)->has_rtscts) {
729 			/* RTS# is output, active low, unless autorts */
730 			if (!(port->mctrl & TIOCM_RTS)) {
731 				ctrl |= SCPCR_RTSC;
732 				data |= SCPDR_RTSD;
733 			} else if (!s->autorts) {
734 				ctrl |= SCPCR_RTSC;
735 				data &= ~SCPDR_RTSD;
736 			} else {
737 				/* Enable RTS# pin function */
738 				ctrl &= ~SCPCR_RTSC;
739 			}
740 			/* Enable CTS# pin function */
741 			ctrl &= ~SCPCR_CTSC;
742 		}
743 		serial_port_out(port, SCPDR, data);
744 		serial_port_out(port, SCPCR, ctrl);
745 	} else if (sci_getreg(port, SCSPTR)->size) {
746 		u16 status = serial_port_in(port, SCSPTR);
747 
748 		/* RTS# is always output; and active low, unless autorts */
749 		status |= SCSPTR_RTSIO;
750 		if (!(port->mctrl & TIOCM_RTS))
751 			status |= SCSPTR_RTSDT;
752 		else if (!s->autorts)
753 			status &= ~SCSPTR_RTSDT;
754 		/* CTS# and SCK are inputs */
755 		status &= ~(SCSPTR_CTSIO | SCSPTR_SCKIO);
756 		serial_port_out(port, SCSPTR, status);
757 	}
758 }
759 
sci_txfill(struct uart_port * port)760 static int sci_txfill(struct uart_port *port)
761 {
762 	struct sci_port *s = to_sci_port(port);
763 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
764 	const struct plat_sci_reg *reg;
765 
766 	reg = sci_getreg(port, SCTFDR);
767 	if (reg->size)
768 		return serial_port_in(port, SCTFDR) & fifo_mask;
769 
770 	reg = sci_getreg(port, SCFDR);
771 	if (reg->size)
772 		return serial_port_in(port, SCFDR) >> 8;
773 
774 	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
775 }
776 
sci_txroom(struct uart_port * port)777 static int sci_txroom(struct uart_port *port)
778 {
779 	return port->fifosize - sci_txfill(port);
780 }
781 
sci_rxfill(struct uart_port * port)782 static int sci_rxfill(struct uart_port *port)
783 {
784 	struct sci_port *s = to_sci_port(port);
785 	unsigned int fifo_mask = (s->params->fifosize << 1) - 1;
786 	const struct plat_sci_reg *reg;
787 
788 	reg = sci_getreg(port, SCRFDR);
789 	if (reg->size)
790 		return serial_port_in(port, SCRFDR) & fifo_mask;
791 
792 	reg = sci_getreg(port, SCFDR);
793 	if (reg->size)
794 		return serial_port_in(port, SCFDR) & fifo_mask;
795 
796 	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
797 }
798 
799 /* ********************************************************************** *
800  *                   the interrupt related routines                       *
801  * ********************************************************************** */
802 
sci_transmit_chars(struct uart_port * port)803 static void sci_transmit_chars(struct uart_port *port)
804 {
805 	struct circ_buf *xmit = &port->state->xmit;
806 	unsigned int stopped = uart_tx_stopped(port);
807 	unsigned short status;
808 	unsigned short ctrl;
809 	int count;
810 
811 	status = serial_port_in(port, SCxSR);
812 	if (!(status & SCxSR_TDxE(port))) {
813 		ctrl = serial_port_in(port, SCSCR);
814 		if (uart_circ_empty(xmit))
815 			ctrl &= ~SCSCR_TIE;
816 		else
817 			ctrl |= SCSCR_TIE;
818 		serial_port_out(port, SCSCR, ctrl);
819 		return;
820 	}
821 
822 	count = sci_txroom(port);
823 
824 	do {
825 		unsigned char c;
826 
827 		if (port->x_char) {
828 			c = port->x_char;
829 			port->x_char = 0;
830 		} else if (!uart_circ_empty(xmit) && !stopped) {
831 			c = xmit->buf[xmit->tail];
832 			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
833 		} else {
834 			break;
835 		}
836 
837 		serial_port_out(port, SCxTDR, c);
838 
839 		port->icount.tx++;
840 	} while (--count > 0);
841 
842 	sci_clear_SCxSR(port, SCxSR_TDxE_CLEAR(port));
843 
844 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
845 		uart_write_wakeup(port);
846 	if (uart_circ_empty(xmit))
847 		sci_stop_tx(port);
848 
849 }
850 
851 /* On SH3, SCIF may read end-of-break as a space->mark char */
852 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
853 
sci_receive_chars(struct uart_port * port)854 static void sci_receive_chars(struct uart_port *port)
855 {
856 	struct tty_port *tport = &port->state->port;
857 	int i, count, copied = 0;
858 	unsigned short status;
859 	unsigned char flag;
860 
861 	status = serial_port_in(port, SCxSR);
862 	if (!(status & SCxSR_RDxF(port)))
863 		return;
864 
865 	while (1) {
866 		/* Don't copy more bytes than there is room for in the buffer */
867 		count = tty_buffer_request_room(tport, sci_rxfill(port));
868 
869 		/* If for any reason we can't copy more data, we're done! */
870 		if (count == 0)
871 			break;
872 
873 		if (port->type == PORT_SCI) {
874 			char c = serial_port_in(port, SCxRDR);
875 			if (uart_handle_sysrq_char(port, c))
876 				count = 0;
877 			else
878 				tty_insert_flip_char(tport, c, TTY_NORMAL);
879 		} else {
880 			for (i = 0; i < count; i++) {
881 				char c;
882 
883 				if (port->type == PORT_SCIF ||
884 				    port->type == PORT_HSCIF) {
885 					status = serial_port_in(port, SCxSR);
886 					c = serial_port_in(port, SCxRDR);
887 				} else {
888 					c = serial_port_in(port, SCxRDR);
889 					status = serial_port_in(port, SCxSR);
890 				}
891 				if (uart_handle_sysrq_char(port, c)) {
892 					count--; i--;
893 					continue;
894 				}
895 
896 				/* Store data and status */
897 				if (status & SCxSR_FER(port)) {
898 					flag = TTY_FRAME;
899 					port->icount.frame++;
900 					dev_notice(port->dev, "frame error\n");
901 				} else if (status & SCxSR_PER(port)) {
902 					flag = TTY_PARITY;
903 					port->icount.parity++;
904 					dev_notice(port->dev, "parity error\n");
905 				} else
906 					flag = TTY_NORMAL;
907 
908 				tty_insert_flip_char(tport, c, flag);
909 			}
910 		}
911 
912 		serial_port_in(port, SCxSR); /* dummy read */
913 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
914 
915 		copied += count;
916 		port->icount.rx += count;
917 	}
918 
919 	if (copied) {
920 		/* Tell the rest of the system the news. New characters! */
921 		tty_flip_buffer_push(tport);
922 	} else {
923 		/* TTY buffers full; read from RX reg to prevent lockup */
924 		serial_port_in(port, SCxRDR);
925 		serial_port_in(port, SCxSR); /* dummy read */
926 		sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
927 	}
928 }
929 
sci_handle_errors(struct uart_port * port)930 static int sci_handle_errors(struct uart_port *port)
931 {
932 	int copied = 0;
933 	unsigned short status = serial_port_in(port, SCxSR);
934 	struct tty_port *tport = &port->state->port;
935 	struct sci_port *s = to_sci_port(port);
936 
937 	/* Handle overruns */
938 	if (status & s->params->overrun_mask) {
939 		port->icount.overrun++;
940 
941 		/* overrun error */
942 		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
943 			copied++;
944 
945 		dev_notice(port->dev, "overrun error\n");
946 	}
947 
948 	if (status & SCxSR_FER(port)) {
949 		/* frame error */
950 		port->icount.frame++;
951 
952 		if (tty_insert_flip_char(tport, 0, TTY_FRAME))
953 			copied++;
954 
955 		dev_notice(port->dev, "frame error\n");
956 	}
957 
958 	if (status & SCxSR_PER(port)) {
959 		/* parity error */
960 		port->icount.parity++;
961 
962 		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
963 			copied++;
964 
965 		dev_notice(port->dev, "parity error\n");
966 	}
967 
968 	if (copied)
969 		tty_flip_buffer_push(tport);
970 
971 	return copied;
972 }
973 
sci_handle_fifo_overrun(struct uart_port * port)974 static int sci_handle_fifo_overrun(struct uart_port *port)
975 {
976 	struct tty_port *tport = &port->state->port;
977 	struct sci_port *s = to_sci_port(port);
978 	const struct plat_sci_reg *reg;
979 	int copied = 0;
980 	u16 status;
981 
982 	reg = sci_getreg(port, s->params->overrun_reg);
983 	if (!reg->size)
984 		return 0;
985 
986 	status = serial_port_in(port, s->params->overrun_reg);
987 	if (status & s->params->overrun_mask) {
988 		status &= ~s->params->overrun_mask;
989 		serial_port_out(port, s->params->overrun_reg, status);
990 
991 		port->icount.overrun++;
992 
993 		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
994 		tty_flip_buffer_push(tport);
995 
996 		dev_dbg(port->dev, "overrun error\n");
997 		copied++;
998 	}
999 
1000 	return copied;
1001 }
1002 
sci_handle_breaks(struct uart_port * port)1003 static int sci_handle_breaks(struct uart_port *port)
1004 {
1005 	int copied = 0;
1006 	unsigned short status = serial_port_in(port, SCxSR);
1007 	struct tty_port *tport = &port->state->port;
1008 
1009 	if (uart_handle_break(port))
1010 		return 0;
1011 
1012 	if (status & SCxSR_BRK(port)) {
1013 		port->icount.brk++;
1014 
1015 		/* Notify of BREAK */
1016 		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
1017 			copied++;
1018 
1019 		dev_dbg(port->dev, "BREAK detected\n");
1020 	}
1021 
1022 	if (copied)
1023 		tty_flip_buffer_push(tport);
1024 
1025 	copied += sci_handle_fifo_overrun(port);
1026 
1027 	return copied;
1028 }
1029 
scif_set_rtrg(struct uart_port * port,int rx_trig)1030 static int scif_set_rtrg(struct uart_port *port, int rx_trig)
1031 {
1032 	unsigned int bits;
1033 
1034 	if (rx_trig >= port->fifosize)
1035 		rx_trig = port->fifosize - 1;
1036 	if (rx_trig < 1)
1037 		rx_trig = 1;
1038 
1039 	/* HSCIF can be set to an arbitrary level. */
1040 	if (sci_getreg(port, HSRTRGR)->size) {
1041 		serial_port_out(port, HSRTRGR, rx_trig);
1042 		return rx_trig;
1043 	}
1044 
1045 	switch (port->type) {
1046 	case PORT_SCIF:
1047 		if (rx_trig < 4) {
1048 			bits = 0;
1049 			rx_trig = 1;
1050 		} else if (rx_trig < 8) {
1051 			bits = SCFCR_RTRG0;
1052 			rx_trig = 4;
1053 		} else if (rx_trig < 14) {
1054 			bits = SCFCR_RTRG1;
1055 			rx_trig = 8;
1056 		} else {
1057 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1058 			rx_trig = 14;
1059 		}
1060 		break;
1061 	case PORT_SCIFA:
1062 	case PORT_SCIFB:
1063 		if (rx_trig < 16) {
1064 			bits = 0;
1065 			rx_trig = 1;
1066 		} else if (rx_trig < 32) {
1067 			bits = SCFCR_RTRG0;
1068 			rx_trig = 16;
1069 		} else if (rx_trig < 48) {
1070 			bits = SCFCR_RTRG1;
1071 			rx_trig = 32;
1072 		} else {
1073 			bits = SCFCR_RTRG0 | SCFCR_RTRG1;
1074 			rx_trig = 48;
1075 		}
1076 		break;
1077 	default:
1078 		WARN(1, "unknown FIFO configuration");
1079 		return 1;
1080 	}
1081 
1082 	serial_port_out(port, SCFCR,
1083 		(serial_port_in(port, SCFCR) &
1084 		~(SCFCR_RTRG1 | SCFCR_RTRG0)) | bits);
1085 
1086 	return rx_trig;
1087 }
1088 
scif_rtrg_enabled(struct uart_port * port)1089 static int scif_rtrg_enabled(struct uart_port *port)
1090 {
1091 	if (sci_getreg(port, HSRTRGR)->size)
1092 		return serial_port_in(port, HSRTRGR) != 0;
1093 	else
1094 		return (serial_port_in(port, SCFCR) &
1095 			(SCFCR_RTRG0 | SCFCR_RTRG1)) != 0;
1096 }
1097 
rx_fifo_timer_fn(struct timer_list * t)1098 static void rx_fifo_timer_fn(struct timer_list *t)
1099 {
1100 	struct sci_port *s = from_timer(s, t, rx_fifo_timer);
1101 	struct uart_port *port = &s->port;
1102 
1103 	dev_dbg(port->dev, "Rx timed out\n");
1104 	scif_set_rtrg(port, 1);
1105 }
1106 
rx_fifo_trigger_show(struct device * dev,struct device_attribute * attr,char * buf)1107 static ssize_t rx_fifo_trigger_show(struct device *dev,
1108 				    struct device_attribute *attr, char *buf)
1109 {
1110 	struct uart_port *port = dev_get_drvdata(dev);
1111 	struct sci_port *sci = to_sci_port(port);
1112 
1113 	return sprintf(buf, "%d\n", sci->rx_trigger);
1114 }
1115 
rx_fifo_trigger_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1116 static ssize_t rx_fifo_trigger_store(struct device *dev,
1117 				     struct device_attribute *attr,
1118 				     const char *buf, size_t count)
1119 {
1120 	struct uart_port *port = dev_get_drvdata(dev);
1121 	struct sci_port *sci = to_sci_port(port);
1122 	int ret;
1123 	long r;
1124 
1125 	ret = kstrtol(buf, 0, &r);
1126 	if (ret)
1127 		return ret;
1128 
1129 	sci->rx_trigger = scif_set_rtrg(port, r);
1130 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1131 		scif_set_rtrg(port, 1);
1132 
1133 	return count;
1134 }
1135 
1136 static DEVICE_ATTR_RW(rx_fifo_trigger);
1137 
rx_fifo_timeout_show(struct device * dev,struct device_attribute * attr,char * buf)1138 static ssize_t rx_fifo_timeout_show(struct device *dev,
1139 			       struct device_attribute *attr,
1140 			       char *buf)
1141 {
1142 	struct uart_port *port = dev_get_drvdata(dev);
1143 	struct sci_port *sci = to_sci_port(port);
1144 	int v;
1145 
1146 	if (port->type == PORT_HSCIF)
1147 		v = sci->hscif_tot >> HSSCR_TOT_SHIFT;
1148 	else
1149 		v = sci->rx_fifo_timeout;
1150 
1151 	return sprintf(buf, "%d\n", v);
1152 }
1153 
rx_fifo_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1154 static ssize_t rx_fifo_timeout_store(struct device *dev,
1155 				struct device_attribute *attr,
1156 				const char *buf,
1157 				size_t count)
1158 {
1159 	struct uart_port *port = dev_get_drvdata(dev);
1160 	struct sci_port *sci = to_sci_port(port);
1161 	int ret;
1162 	long r;
1163 
1164 	ret = kstrtol(buf, 0, &r);
1165 	if (ret)
1166 		return ret;
1167 
1168 	if (port->type == PORT_HSCIF) {
1169 		if (r < 0 || r > 3)
1170 			return -EINVAL;
1171 		sci->hscif_tot = r << HSSCR_TOT_SHIFT;
1172 	} else {
1173 		sci->rx_fifo_timeout = r;
1174 		scif_set_rtrg(port, 1);
1175 		if (r > 0)
1176 			timer_setup(&sci->rx_fifo_timer, rx_fifo_timer_fn, 0);
1177 	}
1178 
1179 	return count;
1180 }
1181 
1182 static DEVICE_ATTR_RW(rx_fifo_timeout);
1183 
1184 
1185 #ifdef CONFIG_SERIAL_SH_SCI_DMA
sci_dma_tx_complete(void * arg)1186 static void sci_dma_tx_complete(void *arg)
1187 {
1188 	struct sci_port *s = arg;
1189 	struct uart_port *port = &s->port;
1190 	struct circ_buf *xmit = &port->state->xmit;
1191 	unsigned long flags;
1192 
1193 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1194 
1195 	spin_lock_irqsave(&port->lock, flags);
1196 
1197 	xmit->tail += s->tx_dma_len;
1198 	xmit->tail &= UART_XMIT_SIZE - 1;
1199 
1200 	port->icount.tx += s->tx_dma_len;
1201 
1202 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1203 		uart_write_wakeup(port);
1204 
1205 	if (!uart_circ_empty(xmit)) {
1206 		s->cookie_tx = 0;
1207 		schedule_work(&s->work_tx);
1208 	} else {
1209 		s->cookie_tx = -EINVAL;
1210 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1211 			u16 ctrl = serial_port_in(port, SCSCR);
1212 			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1213 		}
1214 	}
1215 
1216 	spin_unlock_irqrestore(&port->lock, flags);
1217 }
1218 
1219 /* Locking: called with port lock held */
sci_dma_rx_push(struct sci_port * s,void * buf,size_t count)1220 static int sci_dma_rx_push(struct sci_port *s, void *buf, size_t count)
1221 {
1222 	struct uart_port *port = &s->port;
1223 	struct tty_port *tport = &port->state->port;
1224 	int copied;
1225 
1226 	copied = tty_insert_flip_string(tport, buf, count);
1227 	if (copied < count)
1228 		port->icount.buf_overrun++;
1229 
1230 	port->icount.rx += copied;
1231 
1232 	return copied;
1233 }
1234 
sci_dma_rx_find_active(struct sci_port * s)1235 static int sci_dma_rx_find_active(struct sci_port *s)
1236 {
1237 	unsigned int i;
1238 
1239 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1240 		if (s->active_rx == s->cookie_rx[i])
1241 			return i;
1242 
1243 	return -1;
1244 }
1245 
sci_dma_rx_chan_invalidate(struct sci_port * s)1246 static void sci_dma_rx_chan_invalidate(struct sci_port *s)
1247 {
1248 	unsigned int i;
1249 
1250 	s->chan_rx = NULL;
1251 	for (i = 0; i < ARRAY_SIZE(s->cookie_rx); i++)
1252 		s->cookie_rx[i] = -EINVAL;
1253 	s->active_rx = 0;
1254 }
1255 
sci_dma_rx_release(struct sci_port * s)1256 static void sci_dma_rx_release(struct sci_port *s)
1257 {
1258 	struct dma_chan *chan = s->chan_rx_saved;
1259 
1260 	s->chan_rx_saved = NULL;
1261 	sci_dma_rx_chan_invalidate(s);
1262 	dmaengine_terminate_sync(chan);
1263 	dma_free_coherent(chan->device->dev, s->buf_len_rx * 2, s->rx_buf[0],
1264 			  sg_dma_address(&s->sg_rx[0]));
1265 	dma_release_channel(chan);
1266 }
1267 
start_hrtimer_us(struct hrtimer * hrt,unsigned long usec)1268 static void start_hrtimer_us(struct hrtimer *hrt, unsigned long usec)
1269 {
1270 	long sec = usec / 1000000;
1271 	long nsec = (usec % 1000000) * 1000;
1272 	ktime_t t = ktime_set(sec, nsec);
1273 
1274 	hrtimer_start(hrt, t, HRTIMER_MODE_REL);
1275 }
1276 
sci_dma_rx_reenable_irq(struct sci_port * s)1277 static void sci_dma_rx_reenable_irq(struct sci_port *s)
1278 {
1279 	struct uart_port *port = &s->port;
1280 	u16 scr;
1281 
1282 	/* Direct new serial port interrupts back to CPU */
1283 	scr = serial_port_in(port, SCSCR);
1284 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1285 		scr &= ~SCSCR_RDRQE;
1286 		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1287 	}
1288 	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1289 }
1290 
sci_dma_rx_complete(void * arg)1291 static void sci_dma_rx_complete(void *arg)
1292 {
1293 	struct sci_port *s = arg;
1294 	struct dma_chan *chan = s->chan_rx;
1295 	struct uart_port *port = &s->port;
1296 	struct dma_async_tx_descriptor *desc;
1297 	unsigned long flags;
1298 	int active, count = 0;
1299 
1300 	dev_dbg(port->dev, "%s(%d) active cookie %d\n", __func__, port->line,
1301 		s->active_rx);
1302 
1303 	spin_lock_irqsave(&port->lock, flags);
1304 
1305 	active = sci_dma_rx_find_active(s);
1306 	if (active >= 0)
1307 		count = sci_dma_rx_push(s, s->rx_buf[active], s->buf_len_rx);
1308 
1309 	start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1310 
1311 	if (count)
1312 		tty_flip_buffer_push(&port->state->port);
1313 
1314 	desc = dmaengine_prep_slave_sg(s->chan_rx, &s->sg_rx[active], 1,
1315 				       DMA_DEV_TO_MEM,
1316 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1317 	if (!desc)
1318 		goto fail;
1319 
1320 	desc->callback = sci_dma_rx_complete;
1321 	desc->callback_param = s;
1322 	s->cookie_rx[active] = dmaengine_submit(desc);
1323 	if (dma_submit_error(s->cookie_rx[active]))
1324 		goto fail;
1325 
1326 	s->active_rx = s->cookie_rx[!active];
1327 
1328 	dma_async_issue_pending(chan);
1329 
1330 	spin_unlock_irqrestore(&port->lock, flags);
1331 	dev_dbg(port->dev, "%s: cookie %d #%d, new active cookie %d\n",
1332 		__func__, s->cookie_rx[active], active, s->active_rx);
1333 	return;
1334 
1335 fail:
1336 	spin_unlock_irqrestore(&port->lock, flags);
1337 	dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1338 	/* Switch to PIO */
1339 	spin_lock_irqsave(&port->lock, flags);
1340 	dmaengine_terminate_async(chan);
1341 	sci_dma_rx_chan_invalidate(s);
1342 	sci_dma_rx_reenable_irq(s);
1343 	spin_unlock_irqrestore(&port->lock, flags);
1344 }
1345 
sci_dma_tx_release(struct sci_port * s)1346 static void sci_dma_tx_release(struct sci_port *s)
1347 {
1348 	struct dma_chan *chan = s->chan_tx_saved;
1349 
1350 	cancel_work_sync(&s->work_tx);
1351 	s->chan_tx_saved = s->chan_tx = NULL;
1352 	s->cookie_tx = -EINVAL;
1353 	dmaengine_terminate_sync(chan);
1354 	dma_unmap_single(chan->device->dev, s->tx_dma_addr, UART_XMIT_SIZE,
1355 			 DMA_TO_DEVICE);
1356 	dma_release_channel(chan);
1357 }
1358 
sci_dma_rx_submit(struct sci_port * s,bool port_lock_held)1359 static int sci_dma_rx_submit(struct sci_port *s, bool port_lock_held)
1360 {
1361 	struct dma_chan *chan = s->chan_rx;
1362 	struct uart_port *port = &s->port;
1363 	unsigned long flags;
1364 	int i;
1365 
1366 	for (i = 0; i < 2; i++) {
1367 		struct scatterlist *sg = &s->sg_rx[i];
1368 		struct dma_async_tx_descriptor *desc;
1369 
1370 		desc = dmaengine_prep_slave_sg(chan,
1371 			sg, 1, DMA_DEV_TO_MEM,
1372 			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1373 		if (!desc)
1374 			goto fail;
1375 
1376 		desc->callback = sci_dma_rx_complete;
1377 		desc->callback_param = s;
1378 		s->cookie_rx[i] = dmaengine_submit(desc);
1379 		if (dma_submit_error(s->cookie_rx[i]))
1380 			goto fail;
1381 
1382 	}
1383 
1384 	s->active_rx = s->cookie_rx[0];
1385 
1386 	dma_async_issue_pending(chan);
1387 	return 0;
1388 
1389 fail:
1390 	/* Switch to PIO */
1391 	if (!port_lock_held)
1392 		spin_lock_irqsave(&port->lock, flags);
1393 	if (i)
1394 		dmaengine_terminate_async(chan);
1395 	sci_dma_rx_chan_invalidate(s);
1396 	sci_start_rx(port);
1397 	if (!port_lock_held)
1398 		spin_unlock_irqrestore(&port->lock, flags);
1399 	return -EAGAIN;
1400 }
1401 
sci_dma_tx_work_fn(struct work_struct * work)1402 static void sci_dma_tx_work_fn(struct work_struct *work)
1403 {
1404 	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1405 	struct dma_async_tx_descriptor *desc;
1406 	struct dma_chan *chan = s->chan_tx;
1407 	struct uart_port *port = &s->port;
1408 	struct circ_buf *xmit = &port->state->xmit;
1409 	unsigned long flags;
1410 	dma_addr_t buf;
1411 	int head, tail;
1412 
1413 	/*
1414 	 * DMA is idle now.
1415 	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1416 	 * offsets and lengths. Since it is a circular buffer, we have to
1417 	 * transmit till the end, and then the rest. Take the port lock to get a
1418 	 * consistent xmit buffer state.
1419 	 */
1420 	spin_lock_irq(&port->lock);
1421 	head = xmit->head;
1422 	tail = xmit->tail;
1423 	buf = s->tx_dma_addr + (tail & (UART_XMIT_SIZE - 1));
1424 	s->tx_dma_len = min_t(unsigned int,
1425 		CIRC_CNT(head, tail, UART_XMIT_SIZE),
1426 		CIRC_CNT_TO_END(head, tail, UART_XMIT_SIZE));
1427 	if (!s->tx_dma_len) {
1428 		/* Transmit buffer has been flushed */
1429 		spin_unlock_irq(&port->lock);
1430 		return;
1431 	}
1432 
1433 	desc = dmaengine_prep_slave_single(chan, buf, s->tx_dma_len,
1434 					   DMA_MEM_TO_DEV,
1435 					   DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1436 	if (!desc) {
1437 		spin_unlock_irq(&port->lock);
1438 		dev_warn(port->dev, "Failed preparing Tx DMA descriptor\n");
1439 		goto switch_to_pio;
1440 	}
1441 
1442 	dma_sync_single_for_device(chan->device->dev, buf, s->tx_dma_len,
1443 				   DMA_TO_DEVICE);
1444 
1445 	desc->callback = sci_dma_tx_complete;
1446 	desc->callback_param = s;
1447 	s->cookie_tx = dmaengine_submit(desc);
1448 	if (dma_submit_error(s->cookie_tx)) {
1449 		spin_unlock_irq(&port->lock);
1450 		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1451 		goto switch_to_pio;
1452 	}
1453 
1454 	spin_unlock_irq(&port->lock);
1455 	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1456 		__func__, xmit->buf, tail, head, s->cookie_tx);
1457 
1458 	dma_async_issue_pending(chan);
1459 	return;
1460 
1461 switch_to_pio:
1462 	spin_lock_irqsave(&port->lock, flags);
1463 	s->chan_tx = NULL;
1464 	sci_start_tx(port);
1465 	spin_unlock_irqrestore(&port->lock, flags);
1466 	return;
1467 }
1468 
sci_dma_rx_timer_fn(struct hrtimer * t)1469 static enum hrtimer_restart sci_dma_rx_timer_fn(struct hrtimer *t)
1470 {
1471 	struct sci_port *s = container_of(t, struct sci_port, rx_timer);
1472 	struct dma_chan *chan = s->chan_rx;
1473 	struct uart_port *port = &s->port;
1474 	struct dma_tx_state state;
1475 	enum dma_status status;
1476 	unsigned long flags;
1477 	unsigned int read;
1478 	int active, count;
1479 
1480 	dev_dbg(port->dev, "DMA Rx timed out\n");
1481 
1482 	spin_lock_irqsave(&port->lock, flags);
1483 
1484 	active = sci_dma_rx_find_active(s);
1485 	if (active < 0) {
1486 		spin_unlock_irqrestore(&port->lock, flags);
1487 		return HRTIMER_NORESTART;
1488 	}
1489 
1490 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1491 	if (status == DMA_COMPLETE) {
1492 		spin_unlock_irqrestore(&port->lock, flags);
1493 		dev_dbg(port->dev, "Cookie %d #%d has already completed\n",
1494 			s->active_rx, active);
1495 
1496 		/* Let packet complete handler take care of the packet */
1497 		return HRTIMER_NORESTART;
1498 	}
1499 
1500 	dmaengine_pause(chan);
1501 
1502 	/*
1503 	 * sometimes DMA transfer doesn't stop even if it is stopped and
1504 	 * data keeps on coming until transaction is complete so check
1505 	 * for DMA_COMPLETE again
1506 	 * Let packet complete handler take care of the packet
1507 	 */
1508 	status = dmaengine_tx_status(s->chan_rx, s->active_rx, &state);
1509 	if (status == DMA_COMPLETE) {
1510 		spin_unlock_irqrestore(&port->lock, flags);
1511 		dev_dbg(port->dev, "Transaction complete after DMA engine was stopped");
1512 		return HRTIMER_NORESTART;
1513 	}
1514 
1515 	/* Handle incomplete DMA receive */
1516 	dmaengine_terminate_async(s->chan_rx);
1517 	read = sg_dma_len(&s->sg_rx[active]) - state.residue;
1518 
1519 	if (read) {
1520 		count = sci_dma_rx_push(s, s->rx_buf[active], read);
1521 		if (count)
1522 			tty_flip_buffer_push(&port->state->port);
1523 	}
1524 
1525 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1526 		sci_dma_rx_submit(s, true);
1527 
1528 	sci_dma_rx_reenable_irq(s);
1529 
1530 	spin_unlock_irqrestore(&port->lock, flags);
1531 
1532 	return HRTIMER_NORESTART;
1533 }
1534 
sci_request_dma_chan(struct uart_port * port,enum dma_transfer_direction dir)1535 static struct dma_chan *sci_request_dma_chan(struct uart_port *port,
1536 					     enum dma_transfer_direction dir)
1537 {
1538 	struct dma_chan *chan;
1539 	struct dma_slave_config cfg;
1540 	int ret;
1541 
1542 	chan = dma_request_slave_channel(port->dev,
1543 					 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1544 	if (!chan) {
1545 		dev_dbg(port->dev, "dma_request_slave_channel failed\n");
1546 		return NULL;
1547 	}
1548 
1549 	memset(&cfg, 0, sizeof(cfg));
1550 	cfg.direction = dir;
1551 	if (dir == DMA_MEM_TO_DEV) {
1552 		cfg.dst_addr = port->mapbase +
1553 			(sci_getreg(port, SCxTDR)->offset << port->regshift);
1554 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1555 	} else {
1556 		cfg.src_addr = port->mapbase +
1557 			(sci_getreg(port, SCxRDR)->offset << port->regshift);
1558 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1559 	}
1560 
1561 	ret = dmaengine_slave_config(chan, &cfg);
1562 	if (ret) {
1563 		dev_warn(port->dev, "dmaengine_slave_config failed %d\n", ret);
1564 		dma_release_channel(chan);
1565 		return NULL;
1566 	}
1567 
1568 	return chan;
1569 }
1570 
sci_request_dma(struct uart_port * port)1571 static void sci_request_dma(struct uart_port *port)
1572 {
1573 	struct sci_port *s = to_sci_port(port);
1574 	struct dma_chan *chan;
1575 
1576 	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1577 
1578 	/*
1579 	 * DMA on console may interfere with Kernel log messages which use
1580 	 * plain putchar(). So, simply don't use it with a console.
1581 	 */
1582 	if (uart_console(port))
1583 		return;
1584 
1585 	if (!port->dev->of_node)
1586 		return;
1587 
1588 	s->cookie_tx = -EINVAL;
1589 
1590 	/*
1591 	 * Don't request a dma channel if no channel was specified
1592 	 * in the device tree.
1593 	 */
1594 	if (!of_find_property(port->dev->of_node, "dmas", NULL))
1595 		return;
1596 
1597 	chan = sci_request_dma_chan(port, DMA_MEM_TO_DEV);
1598 	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1599 	if (chan) {
1600 		/* UART circular tx buffer is an aligned page. */
1601 		s->tx_dma_addr = dma_map_single(chan->device->dev,
1602 						port->state->xmit.buf,
1603 						UART_XMIT_SIZE,
1604 						DMA_TO_DEVICE);
1605 		if (dma_mapping_error(chan->device->dev, s->tx_dma_addr)) {
1606 			dev_warn(port->dev, "Failed mapping Tx DMA descriptor\n");
1607 			dma_release_channel(chan);
1608 		} else {
1609 			dev_dbg(port->dev, "%s: mapped %lu@%p to %pad\n",
1610 				__func__, UART_XMIT_SIZE,
1611 				port->state->xmit.buf, &s->tx_dma_addr);
1612 
1613 			INIT_WORK(&s->work_tx, sci_dma_tx_work_fn);
1614 			s->chan_tx_saved = s->chan_tx = chan;
1615 		}
1616 	}
1617 
1618 	chan = sci_request_dma_chan(port, DMA_DEV_TO_MEM);
1619 	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1620 	if (chan) {
1621 		unsigned int i;
1622 		dma_addr_t dma;
1623 		void *buf;
1624 
1625 		s->buf_len_rx = 2 * max_t(size_t, 16, port->fifosize);
1626 		buf = dma_alloc_coherent(chan->device->dev, s->buf_len_rx * 2,
1627 					 &dma, GFP_KERNEL);
1628 		if (!buf) {
1629 			dev_warn(port->dev,
1630 				 "Failed to allocate Rx dma buffer, using PIO\n");
1631 			dma_release_channel(chan);
1632 			return;
1633 		}
1634 
1635 		for (i = 0; i < 2; i++) {
1636 			struct scatterlist *sg = &s->sg_rx[i];
1637 
1638 			sg_init_table(sg, 1);
1639 			s->rx_buf[i] = buf;
1640 			sg_dma_address(sg) = dma;
1641 			sg_dma_len(sg) = s->buf_len_rx;
1642 
1643 			buf += s->buf_len_rx;
1644 			dma += s->buf_len_rx;
1645 		}
1646 
1647 		hrtimer_init(&s->rx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1648 		s->rx_timer.function = sci_dma_rx_timer_fn;
1649 
1650 		s->chan_rx_saved = s->chan_rx = chan;
1651 
1652 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1653 			sci_dma_rx_submit(s, false);
1654 	}
1655 }
1656 
sci_free_dma(struct uart_port * port)1657 static void sci_free_dma(struct uart_port *port)
1658 {
1659 	struct sci_port *s = to_sci_port(port);
1660 
1661 	if (s->chan_tx_saved)
1662 		sci_dma_tx_release(s);
1663 	if (s->chan_rx_saved)
1664 		sci_dma_rx_release(s);
1665 }
1666 
sci_flush_buffer(struct uart_port * port)1667 static void sci_flush_buffer(struct uart_port *port)
1668 {
1669 	struct sci_port *s = to_sci_port(port);
1670 
1671 	/*
1672 	 * In uart_flush_buffer(), the xmit circular buffer has just been
1673 	 * cleared, so we have to reset tx_dma_len accordingly, and stop any
1674 	 * pending transfers
1675 	 */
1676 	s->tx_dma_len = 0;
1677 	if (s->chan_tx) {
1678 		dmaengine_terminate_async(s->chan_tx);
1679 		s->cookie_tx = -EINVAL;
1680 	}
1681 }
1682 #else /* !CONFIG_SERIAL_SH_SCI_DMA */
sci_request_dma(struct uart_port * port)1683 static inline void sci_request_dma(struct uart_port *port)
1684 {
1685 }
1686 
sci_free_dma(struct uart_port * port)1687 static inline void sci_free_dma(struct uart_port *port)
1688 {
1689 }
1690 
1691 #define sci_flush_buffer	NULL
1692 #endif /* !CONFIG_SERIAL_SH_SCI_DMA */
1693 
sci_rx_interrupt(int irq,void * ptr)1694 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
1695 {
1696 	struct uart_port *port = ptr;
1697 	struct sci_port *s = to_sci_port(port);
1698 
1699 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1700 	if (s->chan_rx) {
1701 		u16 scr = serial_port_in(port, SCSCR);
1702 		u16 ssr = serial_port_in(port, SCxSR);
1703 
1704 		/* Disable future Rx interrupts */
1705 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1706 			disable_irq_nosync(irq);
1707 			scr |= SCSCR_RDRQE;
1708 		} else {
1709 			if (sci_dma_rx_submit(s, false) < 0)
1710 				goto handle_pio;
1711 
1712 			scr &= ~SCSCR_RIE;
1713 		}
1714 		serial_port_out(port, SCSCR, scr);
1715 		/* Clear current interrupt */
1716 		serial_port_out(port, SCxSR,
1717 				ssr & ~(SCIF_DR | SCxSR_RDxF(port)));
1718 		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u us\n",
1719 			jiffies, s->rx_timeout);
1720 		start_hrtimer_us(&s->rx_timer, s->rx_timeout);
1721 
1722 		return IRQ_HANDLED;
1723 	}
1724 
1725 handle_pio:
1726 #endif
1727 
1728 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0) {
1729 		if (!scif_rtrg_enabled(port))
1730 			scif_set_rtrg(port, s->rx_trigger);
1731 
1732 		mod_timer(&s->rx_fifo_timer, jiffies + DIV_ROUND_UP(
1733 			  s->rx_frame * HZ * s->rx_fifo_timeout, 1000000));
1734 	}
1735 
1736 	/* I think sci_receive_chars has to be called irrespective
1737 	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
1738 	 * to be disabled?
1739 	 */
1740 	sci_receive_chars(port);
1741 
1742 	return IRQ_HANDLED;
1743 }
1744 
sci_tx_interrupt(int irq,void * ptr)1745 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
1746 {
1747 	struct uart_port *port = ptr;
1748 	unsigned long flags;
1749 
1750 	spin_lock_irqsave(&port->lock, flags);
1751 	sci_transmit_chars(port);
1752 	spin_unlock_irqrestore(&port->lock, flags);
1753 
1754 	return IRQ_HANDLED;
1755 }
1756 
sci_br_interrupt(int irq,void * ptr)1757 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
1758 {
1759 	struct uart_port *port = ptr;
1760 
1761 	/* Handle BREAKs */
1762 	sci_handle_breaks(port);
1763 
1764 	/* drop invalid character received before break was detected */
1765 	serial_port_in(port, SCxRDR);
1766 
1767 	sci_clear_SCxSR(port, SCxSR_BREAK_CLEAR(port));
1768 
1769 	return IRQ_HANDLED;
1770 }
1771 
sci_er_interrupt(int irq,void * ptr)1772 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
1773 {
1774 	struct uart_port *port = ptr;
1775 	struct sci_port *s = to_sci_port(port);
1776 
1777 	if (s->irqs[SCIx_ERI_IRQ] == s->irqs[SCIx_BRI_IRQ]) {
1778 		/* Break and Error interrupts are muxed */
1779 		unsigned short ssr_status = serial_port_in(port, SCxSR);
1780 
1781 		/* Break Interrupt */
1782 		if (ssr_status & SCxSR_BRK(port))
1783 			sci_br_interrupt(irq, ptr);
1784 
1785 		/* Break only? */
1786 		if (!(ssr_status & SCxSR_ERRORS(port)))
1787 			return IRQ_HANDLED;
1788 	}
1789 
1790 	/* Handle errors */
1791 	if (port->type == PORT_SCI) {
1792 		if (sci_handle_errors(port)) {
1793 			/* discard character in rx buffer */
1794 			serial_port_in(port, SCxSR);
1795 			sci_clear_SCxSR(port, SCxSR_RDxF_CLEAR(port));
1796 		}
1797 	} else {
1798 		sci_handle_fifo_overrun(port);
1799 		if (!s->chan_rx)
1800 			sci_receive_chars(port);
1801 	}
1802 
1803 	sci_clear_SCxSR(port, SCxSR_ERROR_CLEAR(port));
1804 
1805 	/* Kick the transmission */
1806 	if (!s->chan_tx)
1807 		sci_tx_interrupt(irq, ptr);
1808 
1809 	return IRQ_HANDLED;
1810 }
1811 
sci_mpxed_interrupt(int irq,void * ptr)1812 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1813 {
1814 	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1815 	struct uart_port *port = ptr;
1816 	struct sci_port *s = to_sci_port(port);
1817 	irqreturn_t ret = IRQ_NONE;
1818 
1819 	ssr_status = serial_port_in(port, SCxSR);
1820 	scr_status = serial_port_in(port, SCSCR);
1821 	if (s->params->overrun_reg == SCxSR)
1822 		orer_status = ssr_status;
1823 	else if (sci_getreg(port, s->params->overrun_reg)->size)
1824 		orer_status = serial_port_in(port, s->params->overrun_reg);
1825 
1826 	err_enabled = scr_status & port_rx_irq_mask(port);
1827 
1828 	/* Tx Interrupt */
1829 	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1830 	    !s->chan_tx)
1831 		ret = sci_tx_interrupt(irq, ptr);
1832 
1833 	/*
1834 	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1835 	 * DR flags
1836 	 */
1837 	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1838 	    (scr_status & SCSCR_RIE))
1839 		ret = sci_rx_interrupt(irq, ptr);
1840 
1841 	/* Error Interrupt */
1842 	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1843 		ret = sci_er_interrupt(irq, ptr);
1844 
1845 	/* Break Interrupt */
1846 	if (s->irqs[SCIx_ERI_IRQ] != s->irqs[SCIx_BRI_IRQ] &&
1847 	    (ssr_status & SCxSR_BRK(port)) && err_enabled)
1848 		ret = sci_br_interrupt(irq, ptr);
1849 
1850 	/* Overrun Interrupt */
1851 	if (orer_status & s->params->overrun_mask) {
1852 		sci_handle_fifo_overrun(port);
1853 		ret = IRQ_HANDLED;
1854 	}
1855 
1856 	return ret;
1857 }
1858 
1859 static const struct sci_irq_desc {
1860 	const char	*desc;
1861 	irq_handler_t	handler;
1862 } sci_irq_desc[] = {
1863 	/*
1864 	 * Split out handlers, the default case.
1865 	 */
1866 	[SCIx_ERI_IRQ] = {
1867 		.desc = "rx err",
1868 		.handler = sci_er_interrupt,
1869 	},
1870 
1871 	[SCIx_RXI_IRQ] = {
1872 		.desc = "rx full",
1873 		.handler = sci_rx_interrupt,
1874 	},
1875 
1876 	[SCIx_TXI_IRQ] = {
1877 		.desc = "tx empty",
1878 		.handler = sci_tx_interrupt,
1879 	},
1880 
1881 	[SCIx_BRI_IRQ] = {
1882 		.desc = "break",
1883 		.handler = sci_br_interrupt,
1884 	},
1885 
1886 	[SCIx_DRI_IRQ] = {
1887 		.desc = "rx ready",
1888 		.handler = sci_rx_interrupt,
1889 	},
1890 
1891 	[SCIx_TEI_IRQ] = {
1892 		.desc = "tx end",
1893 		.handler = sci_tx_interrupt,
1894 	},
1895 
1896 	/*
1897 	 * Special muxed handler.
1898 	 */
1899 	[SCIx_MUX_IRQ] = {
1900 		.desc = "mux",
1901 		.handler = sci_mpxed_interrupt,
1902 	},
1903 };
1904 
sci_request_irq(struct sci_port * port)1905 static int sci_request_irq(struct sci_port *port)
1906 {
1907 	struct uart_port *up = &port->port;
1908 	int i, j, w, ret = 0;
1909 
1910 	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1911 		const struct sci_irq_desc *desc;
1912 		int irq;
1913 
1914 		/* Check if already registered (muxed) */
1915 		for (w = 0; w < i; w++)
1916 			if (port->irqs[w] == port->irqs[i])
1917 				w = i + 1;
1918 		if (w > i)
1919 			continue;
1920 
1921 		if (SCIx_IRQ_IS_MUXED(port)) {
1922 			i = SCIx_MUX_IRQ;
1923 			irq = up->irq;
1924 		} else {
1925 			irq = port->irqs[i];
1926 
1927 			/*
1928 			 * Certain port types won't support all of the
1929 			 * available interrupt sources.
1930 			 */
1931 			if (unlikely(irq < 0))
1932 				continue;
1933 		}
1934 
1935 		desc = sci_irq_desc + i;
1936 		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1937 					    dev_name(up->dev), desc->desc);
1938 		if (!port->irqstr[j]) {
1939 			ret = -ENOMEM;
1940 			goto out_nomem;
1941 		}
1942 
1943 		ret = request_irq(irq, desc->handler, up->irqflags,
1944 				  port->irqstr[j], port);
1945 		if (unlikely(ret)) {
1946 			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1947 			goto out_noirq;
1948 		}
1949 	}
1950 
1951 	return 0;
1952 
1953 out_noirq:
1954 	while (--i >= 0)
1955 		free_irq(port->irqs[i], port);
1956 
1957 out_nomem:
1958 	while (--j >= 0)
1959 		kfree(port->irqstr[j]);
1960 
1961 	return ret;
1962 }
1963 
sci_free_irq(struct sci_port * port)1964 static void sci_free_irq(struct sci_port *port)
1965 {
1966 	int i, j;
1967 
1968 	/*
1969 	 * Intentionally in reverse order so we iterate over the muxed
1970 	 * IRQ first.
1971 	 */
1972 	for (i = 0; i < SCIx_NR_IRQS; i++) {
1973 		int irq = port->irqs[i];
1974 
1975 		/*
1976 		 * Certain port types won't support all of the available
1977 		 * interrupt sources.
1978 		 */
1979 		if (unlikely(irq < 0))
1980 			continue;
1981 
1982 		/* Check if already freed (irq was muxed) */
1983 		for (j = 0; j < i; j++)
1984 			if (port->irqs[j] == irq)
1985 				j = i + 1;
1986 		if (j > i)
1987 			continue;
1988 
1989 		free_irq(port->irqs[i], port);
1990 		kfree(port->irqstr[i]);
1991 
1992 		if (SCIx_IRQ_IS_MUXED(port)) {
1993 			/* If there's only one IRQ, we're done. */
1994 			return;
1995 		}
1996 	}
1997 }
1998 
sci_tx_empty(struct uart_port * port)1999 static unsigned int sci_tx_empty(struct uart_port *port)
2000 {
2001 	unsigned short status = serial_port_in(port, SCxSR);
2002 	unsigned short in_tx_fifo = sci_txfill(port);
2003 
2004 	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
2005 }
2006 
sci_set_rts(struct uart_port * port,bool state)2007 static void sci_set_rts(struct uart_port *port, bool state)
2008 {
2009 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2010 		u16 data = serial_port_in(port, SCPDR);
2011 
2012 		/* Active low */
2013 		if (state)
2014 			data &= ~SCPDR_RTSD;
2015 		else
2016 			data |= SCPDR_RTSD;
2017 		serial_port_out(port, SCPDR, data);
2018 
2019 		/* RTS# is output */
2020 		serial_port_out(port, SCPCR,
2021 				serial_port_in(port, SCPCR) | SCPCR_RTSC);
2022 	} else if (sci_getreg(port, SCSPTR)->size) {
2023 		u16 ctrl = serial_port_in(port, SCSPTR);
2024 
2025 		/* Active low */
2026 		if (state)
2027 			ctrl &= ~SCSPTR_RTSDT;
2028 		else
2029 			ctrl |= SCSPTR_RTSDT;
2030 		serial_port_out(port, SCSPTR, ctrl);
2031 	}
2032 }
2033 
sci_get_cts(struct uart_port * port)2034 static bool sci_get_cts(struct uart_port *port)
2035 {
2036 	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2037 		/* Active low */
2038 		return !(serial_port_in(port, SCPDR) & SCPDR_CTSD);
2039 	} else if (sci_getreg(port, SCSPTR)->size) {
2040 		/* Active low */
2041 		return !(serial_port_in(port, SCSPTR) & SCSPTR_CTSDT);
2042 	}
2043 
2044 	return true;
2045 }
2046 
2047 /*
2048  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
2049  * CTS/RTS is supported in hardware by at least one port and controlled
2050  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
2051  * handled via the ->init_pins() op, which is a bit of a one-way street,
2052  * lacking any ability to defer pin control -- this will later be
2053  * converted over to the GPIO framework).
2054  *
2055  * Other modes (such as loopback) are supported generically on certain
2056  * port types, but not others. For these it's sufficient to test for the
2057  * existence of the support register and simply ignore the port type.
2058  */
sci_set_mctrl(struct uart_port * port,unsigned int mctrl)2059 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
2060 {
2061 	struct sci_port *s = to_sci_port(port);
2062 
2063 	if (mctrl & TIOCM_LOOP) {
2064 		const struct plat_sci_reg *reg;
2065 
2066 		/*
2067 		 * Standard loopback mode for SCFCR ports.
2068 		 */
2069 		reg = sci_getreg(port, SCFCR);
2070 		if (reg->size)
2071 			serial_port_out(port, SCFCR,
2072 					serial_port_in(port, SCFCR) |
2073 					SCFCR_LOOP);
2074 	}
2075 
2076 	mctrl_gpio_set(s->gpios, mctrl);
2077 
2078 	if (!s->has_rtscts)
2079 		return;
2080 
2081 	if (!(mctrl & TIOCM_RTS)) {
2082 		/* Disable Auto RTS */
2083 		serial_port_out(port, SCFCR,
2084 				serial_port_in(port, SCFCR) & ~SCFCR_MCE);
2085 
2086 		/* Clear RTS */
2087 		sci_set_rts(port, 0);
2088 	} else if (s->autorts) {
2089 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
2090 			/* Enable RTS# pin function */
2091 			serial_port_out(port, SCPCR,
2092 				serial_port_in(port, SCPCR) & ~SCPCR_RTSC);
2093 		}
2094 
2095 		/* Enable Auto RTS */
2096 		serial_port_out(port, SCFCR,
2097 				serial_port_in(port, SCFCR) | SCFCR_MCE);
2098 	} else {
2099 		/* Set RTS */
2100 		sci_set_rts(port, 1);
2101 	}
2102 }
2103 
sci_get_mctrl(struct uart_port * port)2104 static unsigned int sci_get_mctrl(struct uart_port *port)
2105 {
2106 	struct sci_port *s = to_sci_port(port);
2107 	struct mctrl_gpios *gpios = s->gpios;
2108 	unsigned int mctrl = 0;
2109 
2110 	mctrl_gpio_get(gpios, &mctrl);
2111 
2112 	/*
2113 	 * CTS/RTS is handled in hardware when supported, while nothing
2114 	 * else is wired up.
2115 	 */
2116 	if (s->autorts) {
2117 		if (sci_get_cts(port))
2118 			mctrl |= TIOCM_CTS;
2119 	} else if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_CTS)) {
2120 		mctrl |= TIOCM_CTS;
2121 	}
2122 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DSR))
2123 		mctrl |= TIOCM_DSR;
2124 	if (!mctrl_gpio_to_gpiod(gpios, UART_GPIO_DCD))
2125 		mctrl |= TIOCM_CAR;
2126 
2127 	return mctrl;
2128 }
2129 
sci_enable_ms(struct uart_port * port)2130 static void sci_enable_ms(struct uart_port *port)
2131 {
2132 	mctrl_gpio_enable_ms(to_sci_port(port)->gpios);
2133 }
2134 
sci_break_ctl(struct uart_port * port,int break_state)2135 static void sci_break_ctl(struct uart_port *port, int break_state)
2136 {
2137 	unsigned short scscr, scsptr;
2138 	unsigned long flags;
2139 
2140 	/* check wheter the port has SCSPTR */
2141 	if (!sci_getreg(port, SCSPTR)->size) {
2142 		/*
2143 		 * Not supported by hardware. Most parts couple break and rx
2144 		 * interrupts together, with break detection always enabled.
2145 		 */
2146 		return;
2147 	}
2148 
2149 	spin_lock_irqsave(&port->lock, flags);
2150 	scsptr = serial_port_in(port, SCSPTR);
2151 	scscr = serial_port_in(port, SCSCR);
2152 
2153 	if (break_state == -1) {
2154 		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
2155 		scscr &= ~SCSCR_TE;
2156 	} else {
2157 		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
2158 		scscr |= SCSCR_TE;
2159 	}
2160 
2161 	serial_port_out(port, SCSPTR, scsptr);
2162 	serial_port_out(port, SCSCR, scscr);
2163 	spin_unlock_irqrestore(&port->lock, flags);
2164 }
2165 
sci_startup(struct uart_port * port)2166 static int sci_startup(struct uart_port *port)
2167 {
2168 	struct sci_port *s = to_sci_port(port);
2169 	int ret;
2170 
2171 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2172 
2173 	sci_request_dma(port);
2174 
2175 	ret = sci_request_irq(s);
2176 	if (unlikely(ret < 0)) {
2177 		sci_free_dma(port);
2178 		return ret;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
sci_shutdown(struct uart_port * port)2184 static void sci_shutdown(struct uart_port *port)
2185 {
2186 	struct sci_port *s = to_sci_port(port);
2187 	unsigned long flags;
2188 	u16 scr;
2189 
2190 	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
2191 
2192 	s->autorts = false;
2193 	mctrl_gpio_disable_ms(to_sci_port(port)->gpios);
2194 
2195 	spin_lock_irqsave(&port->lock, flags);
2196 	sci_stop_rx(port);
2197 	sci_stop_tx(port);
2198 	/*
2199 	 * Stop RX and TX, disable related interrupts, keep clock source
2200 	 * and HSCIF TOT bits
2201 	 */
2202 	scr = serial_port_in(port, SCSCR);
2203 	serial_port_out(port, SCSCR, scr &
2204 			(SCSCR_CKE1 | SCSCR_CKE0 | s->hscif_tot));
2205 	spin_unlock_irqrestore(&port->lock, flags);
2206 
2207 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2208 	if (s->chan_rx_saved) {
2209 		dev_dbg(port->dev, "%s(%d) deleting rx_timer\n", __func__,
2210 			port->line);
2211 		hrtimer_cancel(&s->rx_timer);
2212 	}
2213 #endif
2214 
2215 	if (s->rx_trigger > 1 && s->rx_fifo_timeout > 0)
2216 		del_timer_sync(&s->rx_fifo_timer);
2217 	sci_free_irq(s);
2218 	sci_free_dma(port);
2219 }
2220 
sci_sck_calc(struct sci_port * s,unsigned int bps,unsigned int * srr)2221 static int sci_sck_calc(struct sci_port *s, unsigned int bps,
2222 			unsigned int *srr)
2223 {
2224 	unsigned long freq = s->clk_rates[SCI_SCK];
2225 	int err, min_err = INT_MAX;
2226 	unsigned int sr;
2227 
2228 	if (s->port.type != PORT_HSCIF)
2229 		freq *= 2;
2230 
2231 	for_each_sr(sr, s) {
2232 		err = DIV_ROUND_CLOSEST(freq, sr) - bps;
2233 		if (abs(err) >= abs(min_err))
2234 			continue;
2235 
2236 		min_err = err;
2237 		*srr = sr - 1;
2238 
2239 		if (!err)
2240 			break;
2241 	}
2242 
2243 	dev_dbg(s->port.dev, "SCK: %u%+d bps using SR %u\n", bps, min_err,
2244 		*srr + 1);
2245 	return min_err;
2246 }
2247 
sci_brg_calc(struct sci_port * s,unsigned int bps,unsigned long freq,unsigned int * dlr,unsigned int * srr)2248 static int sci_brg_calc(struct sci_port *s, unsigned int bps,
2249 			unsigned long freq, unsigned int *dlr,
2250 			unsigned int *srr)
2251 {
2252 	int err, min_err = INT_MAX;
2253 	unsigned int sr, dl;
2254 
2255 	if (s->port.type != PORT_HSCIF)
2256 		freq *= 2;
2257 
2258 	for_each_sr(sr, s) {
2259 		dl = DIV_ROUND_CLOSEST(freq, sr * bps);
2260 		dl = clamp(dl, 1U, 65535U);
2261 
2262 		err = DIV_ROUND_CLOSEST(freq, sr * dl) - bps;
2263 		if (abs(err) >= abs(min_err))
2264 			continue;
2265 
2266 		min_err = err;
2267 		*dlr = dl;
2268 		*srr = sr - 1;
2269 
2270 		if (!err)
2271 			break;
2272 	}
2273 
2274 	dev_dbg(s->port.dev, "BRG: %u%+d bps using DL %u SR %u\n", bps,
2275 		min_err, *dlr, *srr + 1);
2276 	return min_err;
2277 }
2278 
2279 /* calculate sample rate, BRR, and clock select */
sci_scbrr_calc(struct sci_port * s,unsigned int bps,unsigned int * brr,unsigned int * srr,unsigned int * cks)2280 static int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
2281 			  unsigned int *brr, unsigned int *srr,
2282 			  unsigned int *cks)
2283 {
2284 	unsigned long freq = s->clk_rates[SCI_FCK];
2285 	unsigned int sr, br, prediv, scrate, c;
2286 	int err, min_err = INT_MAX;
2287 
2288 	if (s->port.type != PORT_HSCIF)
2289 		freq *= 2;
2290 
2291 	/*
2292 	 * Find the combination of sample rate and clock select with the
2293 	 * smallest deviation from the desired baud rate.
2294 	 * Prefer high sample rates to maximise the receive margin.
2295 	 *
2296 	 * M: Receive margin (%)
2297 	 * N: Ratio of bit rate to clock (N = sampling rate)
2298 	 * D: Clock duty (D = 0 to 1.0)
2299 	 * L: Frame length (L = 9 to 12)
2300 	 * F: Absolute value of clock frequency deviation
2301 	 *
2302 	 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
2303 	 *      (|D - 0.5| / N * (1 + F))|
2304 	 *  NOTE: Usually, treat D for 0.5, F is 0 by this calculation.
2305 	 */
2306 	for_each_sr(sr, s) {
2307 		for (c = 0; c <= 3; c++) {
2308 			/* integerized formulas from HSCIF documentation */
2309 			prediv = sr * (1 << (2 * c + 1));
2310 
2311 			/*
2312 			 * We need to calculate:
2313 			 *
2314 			 *     br = freq / (prediv * bps) clamped to [1..256]
2315 			 *     err = freq / (br * prediv) - bps
2316 			 *
2317 			 * Watch out for overflow when calculating the desired
2318 			 * sampling clock rate!
2319 			 */
2320 			if (bps > UINT_MAX / prediv)
2321 				break;
2322 
2323 			scrate = prediv * bps;
2324 			br = DIV_ROUND_CLOSEST(freq, scrate);
2325 			br = clamp(br, 1U, 256U);
2326 
2327 			err = DIV_ROUND_CLOSEST(freq, br * prediv) - bps;
2328 			if (abs(err) >= abs(min_err))
2329 				continue;
2330 
2331 			min_err = err;
2332 			*brr = br - 1;
2333 			*srr = sr - 1;
2334 			*cks = c;
2335 
2336 			if (!err)
2337 				goto found;
2338 		}
2339 	}
2340 
2341 found:
2342 	dev_dbg(s->port.dev, "BRR: %u%+d bps using N %u SR %u cks %u\n", bps,
2343 		min_err, *brr, *srr + 1, *cks);
2344 	return min_err;
2345 }
2346 
sci_reset(struct uart_port * port)2347 static void sci_reset(struct uart_port *port)
2348 {
2349 	const struct plat_sci_reg *reg;
2350 	unsigned int status;
2351 	struct sci_port *s = to_sci_port(port);
2352 
2353 	serial_port_out(port, SCSCR, s->hscif_tot);	/* TE=0, RE=0, CKE1=0 */
2354 
2355 	reg = sci_getreg(port, SCFCR);
2356 	if (reg->size)
2357 		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
2358 
2359 	sci_clear_SCxSR(port,
2360 			SCxSR_RDxF_CLEAR(port) & SCxSR_ERROR_CLEAR(port) &
2361 			SCxSR_BREAK_CLEAR(port));
2362 	if (sci_getreg(port, SCLSR)->size) {
2363 		status = serial_port_in(port, SCLSR);
2364 		status &= ~(SCLSR_TO | SCLSR_ORER);
2365 		serial_port_out(port, SCLSR, status);
2366 	}
2367 
2368 	if (s->rx_trigger > 1) {
2369 		if (s->rx_fifo_timeout) {
2370 			scif_set_rtrg(port, 1);
2371 			timer_setup(&s->rx_fifo_timer, rx_fifo_timer_fn, 0);
2372 		} else {
2373 			if (port->type == PORT_SCIFA ||
2374 			    port->type == PORT_SCIFB)
2375 				scif_set_rtrg(port, 1);
2376 			else
2377 				scif_set_rtrg(port, s->rx_trigger);
2378 		}
2379 	}
2380 }
2381 
sci_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)2382 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
2383 			    struct ktermios *old)
2384 {
2385 	unsigned int baud, smr_val = SCSMR_ASYNC, scr_val = 0, i, bits;
2386 	unsigned int brr = 255, cks = 0, srr = 15, dl = 0, sccks = 0;
2387 	unsigned int brr1 = 255, cks1 = 0, srr1 = 15, dl1 = 0;
2388 	struct sci_port *s = to_sci_port(port);
2389 	const struct plat_sci_reg *reg;
2390 	int min_err = INT_MAX, err;
2391 	unsigned long max_freq = 0;
2392 	int best_clk = -1;
2393 	unsigned long flags;
2394 
2395 	if ((termios->c_cflag & CSIZE) == CS7) {
2396 		smr_val |= SCSMR_CHR;
2397 	} else {
2398 		termios->c_cflag &= ~CSIZE;
2399 		termios->c_cflag |= CS8;
2400 	}
2401 	if (termios->c_cflag & PARENB)
2402 		smr_val |= SCSMR_PE;
2403 	if (termios->c_cflag & PARODD)
2404 		smr_val |= SCSMR_PE | SCSMR_ODD;
2405 	if (termios->c_cflag & CSTOPB)
2406 		smr_val |= SCSMR_STOP;
2407 
2408 	/*
2409 	 * earlyprintk comes here early on with port->uartclk set to zero.
2410 	 * the clock framework is not up and running at this point so here
2411 	 * we assume that 115200 is the maximum baud rate. please note that
2412 	 * the baud rate is not programmed during earlyprintk - it is assumed
2413 	 * that the previous boot loader has enabled required clocks and
2414 	 * setup the baud rate generator hardware for us already.
2415 	 */
2416 	if (!port->uartclk) {
2417 		baud = uart_get_baud_rate(port, termios, old, 0, 115200);
2418 		goto done;
2419 	}
2420 
2421 	for (i = 0; i < SCI_NUM_CLKS; i++)
2422 		max_freq = max(max_freq, s->clk_rates[i]);
2423 
2424 	baud = uart_get_baud_rate(port, termios, old, 0, max_freq / min_sr(s));
2425 	if (!baud)
2426 		goto done;
2427 
2428 	/*
2429 	 * There can be multiple sources for the sampling clock.  Find the one
2430 	 * that gives us the smallest deviation from the desired baud rate.
2431 	 */
2432 
2433 	/* Optional Undivided External Clock */
2434 	if (s->clk_rates[SCI_SCK] && port->type != PORT_SCIFA &&
2435 	    port->type != PORT_SCIFB) {
2436 		err = sci_sck_calc(s, baud, &srr1);
2437 		if (abs(err) < abs(min_err)) {
2438 			best_clk = SCI_SCK;
2439 			scr_val = SCSCR_CKE1;
2440 			sccks = SCCKS_CKS;
2441 			min_err = err;
2442 			srr = srr1;
2443 			if (!err)
2444 				goto done;
2445 		}
2446 	}
2447 
2448 	/* Optional BRG Frequency Divided External Clock */
2449 	if (s->clk_rates[SCI_SCIF_CLK] && sci_getreg(port, SCDL)->size) {
2450 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_SCIF_CLK], &dl1,
2451 				   &srr1);
2452 		if (abs(err) < abs(min_err)) {
2453 			best_clk = SCI_SCIF_CLK;
2454 			scr_val = SCSCR_CKE1;
2455 			sccks = 0;
2456 			min_err = err;
2457 			dl = dl1;
2458 			srr = srr1;
2459 			if (!err)
2460 				goto done;
2461 		}
2462 	}
2463 
2464 	/* Optional BRG Frequency Divided Internal Clock */
2465 	if (s->clk_rates[SCI_BRG_INT] && sci_getreg(port, SCDL)->size) {
2466 		err = sci_brg_calc(s, baud, s->clk_rates[SCI_BRG_INT], &dl1,
2467 				   &srr1);
2468 		if (abs(err) < abs(min_err)) {
2469 			best_clk = SCI_BRG_INT;
2470 			scr_val = SCSCR_CKE1;
2471 			sccks = SCCKS_XIN;
2472 			min_err = err;
2473 			dl = dl1;
2474 			srr = srr1;
2475 			if (!min_err)
2476 				goto done;
2477 		}
2478 	}
2479 
2480 	/* Divided Functional Clock using standard Bit Rate Register */
2481 	err = sci_scbrr_calc(s, baud, &brr1, &srr1, &cks1);
2482 	if (abs(err) < abs(min_err)) {
2483 		best_clk = SCI_FCK;
2484 		scr_val = 0;
2485 		min_err = err;
2486 		brr = brr1;
2487 		srr = srr1;
2488 		cks = cks1;
2489 	}
2490 
2491 done:
2492 	if (best_clk >= 0)
2493 		dev_dbg(port->dev, "Using clk %pC for %u%+d bps\n",
2494 			s->clks[best_clk], baud, min_err);
2495 
2496 	sci_port_enable(s);
2497 
2498 	/*
2499 	 * Program the optional External Baud Rate Generator (BRG) first.
2500 	 * It controls the mux to select (H)SCK or frequency divided clock.
2501 	 */
2502 	if (best_clk >= 0 && sci_getreg(port, SCCKS)->size) {
2503 		serial_port_out(port, SCDL, dl);
2504 		serial_port_out(port, SCCKS, sccks);
2505 	}
2506 
2507 	spin_lock_irqsave(&port->lock, flags);
2508 
2509 	sci_reset(port);
2510 
2511 	uart_update_timeout(port, termios->c_cflag, baud);
2512 
2513 	/* byte size and parity */
2514 	switch (termios->c_cflag & CSIZE) {
2515 	case CS5:
2516 		bits = 7;
2517 		break;
2518 	case CS6:
2519 		bits = 8;
2520 		break;
2521 	case CS7:
2522 		bits = 9;
2523 		break;
2524 	default:
2525 		bits = 10;
2526 		break;
2527 	}
2528 
2529 	if (termios->c_cflag & CSTOPB)
2530 		bits++;
2531 	if (termios->c_cflag & PARENB)
2532 		bits++;
2533 
2534 	if (best_clk >= 0) {
2535 		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
2536 			switch (srr + 1) {
2537 			case 5:  smr_val |= SCSMR_SRC_5;  break;
2538 			case 7:  smr_val |= SCSMR_SRC_7;  break;
2539 			case 11: smr_val |= SCSMR_SRC_11; break;
2540 			case 13: smr_val |= SCSMR_SRC_13; break;
2541 			case 16: smr_val |= SCSMR_SRC_16; break;
2542 			case 17: smr_val |= SCSMR_SRC_17; break;
2543 			case 19: smr_val |= SCSMR_SRC_19; break;
2544 			case 27: smr_val |= SCSMR_SRC_27; break;
2545 			}
2546 		smr_val |= cks;
2547 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2548 		serial_port_out(port, SCSMR, smr_val);
2549 		serial_port_out(port, SCBRR, brr);
2550 		if (sci_getreg(port, HSSRR)->size) {
2551 			unsigned int hssrr = srr | HSCIF_SRE;
2552 			/* Calculate deviation from intended rate at the
2553 			 * center of the last stop bit in sampling clocks.
2554 			 */
2555 			int last_stop = bits * 2 - 1;
2556 			int deviation = DIV_ROUND_CLOSEST(min_err * last_stop *
2557 							  (int)(srr + 1),
2558 							  2 * (int)baud);
2559 
2560 			if (abs(deviation) >= 2) {
2561 				/* At least two sampling clocks off at the
2562 				 * last stop bit; we can increase the error
2563 				 * margin by shifting the sampling point.
2564 				 */
2565 				int shift = clamp(deviation / 2, -8, 7);
2566 
2567 				hssrr |= (shift << HSCIF_SRHP_SHIFT) &
2568 					 HSCIF_SRHP_MASK;
2569 				hssrr |= HSCIF_SRDE;
2570 			}
2571 			serial_port_out(port, HSSRR, hssrr);
2572 		}
2573 
2574 		/* Wait one bit interval */
2575 		udelay((1000000 + (baud - 1)) / baud);
2576 	} else {
2577 		/* Don't touch the bit rate configuration */
2578 		scr_val = s->cfg->scscr & (SCSCR_CKE1 | SCSCR_CKE0);
2579 		smr_val |= serial_port_in(port, SCSMR) &
2580 			   (SCSMR_CKEDG | SCSMR_SRC_MASK | SCSMR_CKS);
2581 		serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2582 		serial_port_out(port, SCSMR, smr_val);
2583 	}
2584 
2585 	sci_init_pins(port, termios->c_cflag);
2586 
2587 	port->status &= ~UPSTAT_AUTOCTS;
2588 	s->autorts = false;
2589 	reg = sci_getreg(port, SCFCR);
2590 	if (reg->size) {
2591 		unsigned short ctrl = serial_port_in(port, SCFCR);
2592 
2593 		if ((port->flags & UPF_HARD_FLOW) &&
2594 		    (termios->c_cflag & CRTSCTS)) {
2595 			/* There is no CTS interrupt to restart the hardware */
2596 			port->status |= UPSTAT_AUTOCTS;
2597 			/* MCE is enabled when RTS is raised */
2598 			s->autorts = true;
2599 		}
2600 
2601 		/*
2602 		 * As we've done a sci_reset() above, ensure we don't
2603 		 * interfere with the FIFOs while toggling MCE. As the
2604 		 * reset values could still be set, simply mask them out.
2605 		 */
2606 		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
2607 
2608 		serial_port_out(port, SCFCR, ctrl);
2609 	}
2610 	if (port->flags & UPF_HARD_FLOW) {
2611 		/* Refresh (Auto) RTS */
2612 		sci_set_mctrl(port, port->mctrl);
2613 	}
2614 
2615 	scr_val |= SCSCR_RE | SCSCR_TE |
2616 		   (s->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0));
2617 	serial_port_out(port, SCSCR, scr_val | s->hscif_tot);
2618 	if ((srr + 1 == 5) &&
2619 	    (port->type == PORT_SCIFA || port->type == PORT_SCIFB)) {
2620 		/*
2621 		 * In asynchronous mode, when the sampling rate is 1/5, first
2622 		 * received data may become invalid on some SCIFA and SCIFB.
2623 		 * To avoid this problem wait more than 1 serial data time (1
2624 		 * bit time x serial data number) after setting SCSCR.RE = 1.
2625 		 */
2626 		udelay(DIV_ROUND_UP(10 * 1000000, baud));
2627 	}
2628 
2629 	/*
2630 	 * Calculate delay for 2 DMA buffers (4 FIFO).
2631 	 * See serial_core.c::uart_update_timeout().
2632 	 * With 10 bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above
2633 	 * function calculates 1 jiffie for the data plus 5 jiffies for the
2634 	 * "slop(e)." Then below we calculate 5 jiffies (20ms) for 2 DMA
2635 	 * buffers (4 FIFO sizes), but when performing a faster transfer, the
2636 	 * value obtained by this formula is too small. Therefore, if the value
2637 	 * is smaller than 20ms, use 20ms as the timeout value for DMA.
2638 	 */
2639 	s->rx_frame = (10000 * bits) / (baud / 100);
2640 #ifdef CONFIG_SERIAL_SH_SCI_DMA
2641 	s->rx_timeout = s->buf_len_rx * 2 * s->rx_frame;
2642 	if (s->rx_timeout < 20)
2643 		s->rx_timeout = 20;
2644 #endif
2645 
2646 	if ((termios->c_cflag & CREAD) != 0)
2647 		sci_start_rx(port);
2648 
2649 	spin_unlock_irqrestore(&port->lock, flags);
2650 
2651 	sci_port_disable(s);
2652 
2653 	if (UART_ENABLE_MS(port, termios->c_cflag))
2654 		sci_enable_ms(port);
2655 }
2656 
sci_pm(struct uart_port * port,unsigned int state,unsigned int oldstate)2657 static void sci_pm(struct uart_port *port, unsigned int state,
2658 		   unsigned int oldstate)
2659 {
2660 	struct sci_port *sci_port = to_sci_port(port);
2661 
2662 	switch (state) {
2663 	case UART_PM_STATE_OFF:
2664 		sci_port_disable(sci_port);
2665 		break;
2666 	default:
2667 		sci_port_enable(sci_port);
2668 		break;
2669 	}
2670 }
2671 
sci_type(struct uart_port * port)2672 static const char *sci_type(struct uart_port *port)
2673 {
2674 	switch (port->type) {
2675 	case PORT_IRDA:
2676 		return "irda";
2677 	case PORT_SCI:
2678 		return "sci";
2679 	case PORT_SCIF:
2680 		return "scif";
2681 	case PORT_SCIFA:
2682 		return "scifa";
2683 	case PORT_SCIFB:
2684 		return "scifb";
2685 	case PORT_HSCIF:
2686 		return "hscif";
2687 	}
2688 
2689 	return NULL;
2690 }
2691 
sci_remap_port(struct uart_port * port)2692 static int sci_remap_port(struct uart_port *port)
2693 {
2694 	struct sci_port *sport = to_sci_port(port);
2695 
2696 	/*
2697 	 * Nothing to do if there's already an established membase.
2698 	 */
2699 	if (port->membase)
2700 		return 0;
2701 
2702 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2703 		port->membase = ioremap(port->mapbase, sport->reg_size);
2704 		if (unlikely(!port->membase)) {
2705 			dev_err(port->dev, "can't remap port#%d\n", port->line);
2706 			return -ENXIO;
2707 		}
2708 	} else {
2709 		/*
2710 		 * For the simple (and majority of) cases where we don't
2711 		 * need to do any remapping, just cast the cookie
2712 		 * directly.
2713 		 */
2714 		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2715 	}
2716 
2717 	return 0;
2718 }
2719 
sci_release_port(struct uart_port * port)2720 static void sci_release_port(struct uart_port *port)
2721 {
2722 	struct sci_port *sport = to_sci_port(port);
2723 
2724 	if (port->dev->of_node || (port->flags & UPF_IOREMAP)) {
2725 		iounmap(port->membase);
2726 		port->membase = NULL;
2727 	}
2728 
2729 	release_mem_region(port->mapbase, sport->reg_size);
2730 }
2731 
sci_request_port(struct uart_port * port)2732 static int sci_request_port(struct uart_port *port)
2733 {
2734 	struct resource *res;
2735 	struct sci_port *sport = to_sci_port(port);
2736 	int ret;
2737 
2738 	res = request_mem_region(port->mapbase, sport->reg_size,
2739 				 dev_name(port->dev));
2740 	if (unlikely(res == NULL)) {
2741 		dev_err(port->dev, "request_mem_region failed.");
2742 		return -EBUSY;
2743 	}
2744 
2745 	ret = sci_remap_port(port);
2746 	if (unlikely(ret != 0)) {
2747 		release_resource(res);
2748 		return ret;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
sci_config_port(struct uart_port * port,int flags)2754 static void sci_config_port(struct uart_port *port, int flags)
2755 {
2756 	if (flags & UART_CONFIG_TYPE) {
2757 		struct sci_port *sport = to_sci_port(port);
2758 
2759 		port->type = sport->cfg->type;
2760 		sci_request_port(port);
2761 	}
2762 }
2763 
sci_verify_port(struct uart_port * port,struct serial_struct * ser)2764 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2765 {
2766 	if (ser->baud_base < 2400)
2767 		/* No paper tape reader for Mitch.. */
2768 		return -EINVAL;
2769 
2770 	return 0;
2771 }
2772 
2773 static const struct uart_ops sci_uart_ops = {
2774 	.tx_empty	= sci_tx_empty,
2775 	.set_mctrl	= sci_set_mctrl,
2776 	.get_mctrl	= sci_get_mctrl,
2777 	.start_tx	= sci_start_tx,
2778 	.stop_tx	= sci_stop_tx,
2779 	.stop_rx	= sci_stop_rx,
2780 	.enable_ms	= sci_enable_ms,
2781 	.break_ctl	= sci_break_ctl,
2782 	.startup	= sci_startup,
2783 	.shutdown	= sci_shutdown,
2784 	.flush_buffer	= sci_flush_buffer,
2785 	.set_termios	= sci_set_termios,
2786 	.pm		= sci_pm,
2787 	.type		= sci_type,
2788 	.release_port	= sci_release_port,
2789 	.request_port	= sci_request_port,
2790 	.config_port	= sci_config_port,
2791 	.verify_port	= sci_verify_port,
2792 #ifdef CONFIG_CONSOLE_POLL
2793 	.poll_get_char	= sci_poll_get_char,
2794 	.poll_put_char	= sci_poll_put_char,
2795 #endif
2796 };
2797 
sci_init_clocks(struct sci_port * sci_port,struct device * dev)2798 static int sci_init_clocks(struct sci_port *sci_port, struct device *dev)
2799 {
2800 	const char *clk_names[] = {
2801 		[SCI_FCK] = "fck",
2802 		[SCI_SCK] = "sck",
2803 		[SCI_BRG_INT] = "brg_int",
2804 		[SCI_SCIF_CLK] = "scif_clk",
2805 	};
2806 	struct clk *clk;
2807 	unsigned int i;
2808 
2809 	if (sci_port->cfg->type == PORT_HSCIF)
2810 		clk_names[SCI_SCK] = "hsck";
2811 
2812 	for (i = 0; i < SCI_NUM_CLKS; i++) {
2813 		clk = devm_clk_get(dev, clk_names[i]);
2814 		if (PTR_ERR(clk) == -EPROBE_DEFER)
2815 			return -EPROBE_DEFER;
2816 
2817 		if (IS_ERR(clk) && i == SCI_FCK) {
2818 			/*
2819 			 * "fck" used to be called "sci_ick", and we need to
2820 			 * maintain DT backward compatibility.
2821 			 */
2822 			clk = devm_clk_get(dev, "sci_ick");
2823 			if (PTR_ERR(clk) == -EPROBE_DEFER)
2824 				return -EPROBE_DEFER;
2825 
2826 			if (!IS_ERR(clk))
2827 				goto found;
2828 
2829 			/*
2830 			 * Not all SH platforms declare a clock lookup entry
2831 			 * for SCI devices, in which case we need to get the
2832 			 * global "peripheral_clk" clock.
2833 			 */
2834 			clk = devm_clk_get(dev, "peripheral_clk");
2835 			if (!IS_ERR(clk))
2836 				goto found;
2837 
2838 			dev_err(dev, "failed to get %s (%ld)\n", clk_names[i],
2839 				PTR_ERR(clk));
2840 			return PTR_ERR(clk);
2841 		}
2842 
2843 found:
2844 		if (IS_ERR(clk))
2845 			dev_dbg(dev, "failed to get %s (%ld)\n", clk_names[i],
2846 				PTR_ERR(clk));
2847 		else
2848 			dev_dbg(dev, "clk %s is %pC rate %lu\n", clk_names[i],
2849 				clk, clk_get_rate(clk));
2850 		sci_port->clks[i] = IS_ERR(clk) ? NULL : clk;
2851 	}
2852 	return 0;
2853 }
2854 
2855 static const struct sci_port_params *
sci_probe_regmap(const struct plat_sci_port * cfg)2856 sci_probe_regmap(const struct plat_sci_port *cfg)
2857 {
2858 	unsigned int regtype;
2859 
2860 	if (cfg->regtype != SCIx_PROBE_REGTYPE)
2861 		return &sci_port_params[cfg->regtype];
2862 
2863 	switch (cfg->type) {
2864 	case PORT_SCI:
2865 		regtype = SCIx_SCI_REGTYPE;
2866 		break;
2867 	case PORT_IRDA:
2868 		regtype = SCIx_IRDA_REGTYPE;
2869 		break;
2870 	case PORT_SCIFA:
2871 		regtype = SCIx_SCIFA_REGTYPE;
2872 		break;
2873 	case PORT_SCIFB:
2874 		regtype = SCIx_SCIFB_REGTYPE;
2875 		break;
2876 	case PORT_SCIF:
2877 		/*
2878 		 * The SH-4 is a bit of a misnomer here, although that's
2879 		 * where this particular port layout originated. This
2880 		 * configuration (or some slight variation thereof)
2881 		 * remains the dominant model for all SCIFs.
2882 		 */
2883 		regtype = SCIx_SH4_SCIF_REGTYPE;
2884 		break;
2885 	case PORT_HSCIF:
2886 		regtype = SCIx_HSCIF_REGTYPE;
2887 		break;
2888 	default:
2889 		pr_err("Can't probe register map for given port\n");
2890 		return NULL;
2891 	}
2892 
2893 	return &sci_port_params[regtype];
2894 }
2895 
sci_init_single(struct platform_device * dev,struct sci_port * sci_port,unsigned int index,const struct plat_sci_port * p,bool early)2896 static int sci_init_single(struct platform_device *dev,
2897 			   struct sci_port *sci_port, unsigned int index,
2898 			   const struct plat_sci_port *p, bool early)
2899 {
2900 	struct uart_port *port = &sci_port->port;
2901 	const struct resource *res;
2902 	unsigned int i;
2903 	int ret;
2904 
2905 	sci_port->cfg	= p;
2906 
2907 	port->ops	= &sci_uart_ops;
2908 	port->iotype	= UPIO_MEM;
2909 	port->line	= index;
2910 	port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_SH_SCI_CONSOLE);
2911 
2912 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2913 	if (res == NULL)
2914 		return -ENOMEM;
2915 
2916 	port->mapbase = res->start;
2917 	sci_port->reg_size = resource_size(res);
2918 
2919 	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i) {
2920 		if (i)
2921 			sci_port->irqs[i] = platform_get_irq_optional(dev, i);
2922 		else
2923 			sci_port->irqs[i] = platform_get_irq(dev, i);
2924 	}
2925 
2926 	/* The SCI generates several interrupts. They can be muxed together or
2927 	 * connected to different interrupt lines. In the muxed case only one
2928 	 * interrupt resource is specified as there is only one interrupt ID.
2929 	 * In the non-muxed case, up to 6 interrupt signals might be generated
2930 	 * from the SCI, however those signals might have their own individual
2931 	 * interrupt ID numbers, or muxed together with another interrupt.
2932 	 */
2933 	if (sci_port->irqs[0] < 0)
2934 		return -ENXIO;
2935 
2936 	if (sci_port->irqs[1] < 0)
2937 		for (i = 1; i < ARRAY_SIZE(sci_port->irqs); i++)
2938 			sci_port->irqs[i] = sci_port->irqs[0];
2939 
2940 	sci_port->params = sci_probe_regmap(p);
2941 	if (unlikely(sci_port->params == NULL))
2942 		return -EINVAL;
2943 
2944 	switch (p->type) {
2945 	case PORT_SCIFB:
2946 		sci_port->rx_trigger = 48;
2947 		break;
2948 	case PORT_HSCIF:
2949 		sci_port->rx_trigger = 64;
2950 		break;
2951 	case PORT_SCIFA:
2952 		sci_port->rx_trigger = 32;
2953 		break;
2954 	case PORT_SCIF:
2955 		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE)
2956 			/* RX triggering not implemented for this IP */
2957 			sci_port->rx_trigger = 1;
2958 		else
2959 			sci_port->rx_trigger = 8;
2960 		break;
2961 	default:
2962 		sci_port->rx_trigger = 1;
2963 		break;
2964 	}
2965 
2966 	sci_port->rx_fifo_timeout = 0;
2967 	sci_port->hscif_tot = 0;
2968 
2969 	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2970 	 * match the SoC datasheet, this should be investigated. Let platform
2971 	 * data override the sampling rate for now.
2972 	 */
2973 	sci_port->sampling_rate_mask = p->sampling_rate
2974 				     ? SCI_SR(p->sampling_rate)
2975 				     : sci_port->params->sampling_rate_mask;
2976 
2977 	if (!early) {
2978 		ret = sci_init_clocks(sci_port, &dev->dev);
2979 		if (ret < 0)
2980 			return ret;
2981 
2982 		port->dev = &dev->dev;
2983 
2984 		pm_runtime_enable(&dev->dev);
2985 	}
2986 
2987 	port->type		= p->type;
2988 	port->flags		= UPF_FIXED_PORT | UPF_BOOT_AUTOCONF | p->flags;
2989 	port->fifosize		= sci_port->params->fifosize;
2990 
2991 	if (port->type == PORT_SCI) {
2992 		if (sci_port->reg_size >= 0x20)
2993 			port->regshift = 2;
2994 		else
2995 			port->regshift = 1;
2996 	}
2997 
2998 	/*
2999 	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
3000 	 * for the multi-IRQ ports, which is where we are primarily
3001 	 * concerned with the shutdown path synchronization.
3002 	 *
3003 	 * For the muxed case there's nothing more to do.
3004 	 */
3005 	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
3006 	port->irqflags		= 0;
3007 
3008 	port->serial_in		= sci_serial_in;
3009 	port->serial_out	= sci_serial_out;
3010 
3011 	return 0;
3012 }
3013 
sci_cleanup_single(struct sci_port * port)3014 static void sci_cleanup_single(struct sci_port *port)
3015 {
3016 	pm_runtime_disable(port->port.dev);
3017 }
3018 
3019 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) || \
3020     defined(CONFIG_SERIAL_SH_SCI_EARLYCON)
serial_console_putchar(struct uart_port * port,int ch)3021 static void serial_console_putchar(struct uart_port *port, int ch)
3022 {
3023 	sci_poll_put_char(port, ch);
3024 }
3025 
3026 /*
3027  *	Print a string to the serial port trying not to disturb
3028  *	any possible real use of the port...
3029  */
serial_console_write(struct console * co,const char * s,unsigned count)3030 static void serial_console_write(struct console *co, const char *s,
3031 				 unsigned count)
3032 {
3033 	struct sci_port *sci_port = &sci_ports[co->index];
3034 	struct uart_port *port = &sci_port->port;
3035 	unsigned short bits, ctrl, ctrl_temp;
3036 	unsigned long flags;
3037 	int locked = 1;
3038 
3039 	if (port->sysrq)
3040 		locked = 0;
3041 	else if (oops_in_progress)
3042 		locked = spin_trylock_irqsave(&port->lock, flags);
3043 	else
3044 		spin_lock_irqsave(&port->lock, flags);
3045 
3046 	/* first save SCSCR then disable interrupts, keep clock source */
3047 	ctrl = serial_port_in(port, SCSCR);
3048 	ctrl_temp = SCSCR_RE | SCSCR_TE |
3049 		    (sci_port->cfg->scscr & ~(SCSCR_CKE1 | SCSCR_CKE0)) |
3050 		    (ctrl & (SCSCR_CKE1 | SCSCR_CKE0));
3051 	serial_port_out(port, SCSCR, ctrl_temp | sci_port->hscif_tot);
3052 
3053 	uart_console_write(port, s, count, serial_console_putchar);
3054 
3055 	/* wait until fifo is empty and last bit has been transmitted */
3056 	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
3057 	while ((serial_port_in(port, SCxSR) & bits) != bits)
3058 		cpu_relax();
3059 
3060 	/* restore the SCSCR */
3061 	serial_port_out(port, SCSCR, ctrl);
3062 
3063 	if (locked)
3064 		spin_unlock_irqrestore(&port->lock, flags);
3065 }
3066 
serial_console_setup(struct console * co,char * options)3067 static int serial_console_setup(struct console *co, char *options)
3068 {
3069 	struct sci_port *sci_port;
3070 	struct uart_port *port;
3071 	int baud = 115200;
3072 	int bits = 8;
3073 	int parity = 'n';
3074 	int flow = 'n';
3075 	int ret;
3076 
3077 	/*
3078 	 * Refuse to handle any bogus ports.
3079 	 */
3080 	if (co->index < 0 || co->index >= SCI_NPORTS)
3081 		return -ENODEV;
3082 
3083 	sci_port = &sci_ports[co->index];
3084 	port = &sci_port->port;
3085 
3086 	/*
3087 	 * Refuse to handle uninitialized ports.
3088 	 */
3089 	if (!port->ops)
3090 		return -ENODEV;
3091 
3092 	ret = sci_remap_port(port);
3093 	if (unlikely(ret != 0))
3094 		return ret;
3095 
3096 	if (options)
3097 		uart_parse_options(options, &baud, &parity, &bits, &flow);
3098 
3099 	return uart_set_options(port, co, baud, parity, bits, flow);
3100 }
3101 
3102 static struct console serial_console = {
3103 	.name		= "ttySC",
3104 	.device		= uart_console_device,
3105 	.write		= serial_console_write,
3106 	.setup		= serial_console_setup,
3107 	.flags		= CON_PRINTBUFFER,
3108 	.index		= -1,
3109 	.data		= &sci_uart_driver,
3110 };
3111 
3112 #ifdef CONFIG_SUPERH
3113 static struct console early_serial_console = {
3114 	.name           = "early_ttySC",
3115 	.write          = serial_console_write,
3116 	.flags          = CON_PRINTBUFFER,
3117 	.index		= -1,
3118 };
3119 
3120 static char early_serial_buf[32];
3121 
sci_probe_earlyprintk(struct platform_device * pdev)3122 static int sci_probe_earlyprintk(struct platform_device *pdev)
3123 {
3124 	const struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
3125 
3126 	if (early_serial_console.data)
3127 		return -EEXIST;
3128 
3129 	early_serial_console.index = pdev->id;
3130 
3131 	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
3132 
3133 	serial_console_setup(&early_serial_console, early_serial_buf);
3134 
3135 	if (!strstr(early_serial_buf, "keep"))
3136 		early_serial_console.flags |= CON_BOOT;
3137 
3138 	register_console(&early_serial_console);
3139 	return 0;
3140 }
3141 #endif
3142 
3143 #define SCI_CONSOLE	(&serial_console)
3144 
3145 #else
sci_probe_earlyprintk(struct platform_device * pdev)3146 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
3147 {
3148 	return -EINVAL;
3149 }
3150 
3151 #define SCI_CONSOLE	NULL
3152 
3153 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE || CONFIG_SERIAL_SH_SCI_EARLYCON */
3154 
3155 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
3156 
3157 static DEFINE_MUTEX(sci_uart_registration_lock);
3158 static struct uart_driver sci_uart_driver = {
3159 	.owner		= THIS_MODULE,
3160 	.driver_name	= "sci",
3161 	.dev_name	= "ttySC",
3162 	.major		= SCI_MAJOR,
3163 	.minor		= SCI_MINOR_START,
3164 	.nr		= SCI_NPORTS,
3165 	.cons		= SCI_CONSOLE,
3166 };
3167 
sci_remove(struct platform_device * dev)3168 static int sci_remove(struct platform_device *dev)
3169 {
3170 	struct sci_port *port = platform_get_drvdata(dev);
3171 	unsigned int type = port->port.type;	/* uart_remove_... clears it */
3172 
3173 	sci_ports_in_use &= ~BIT(port->port.line);
3174 	uart_remove_one_port(&sci_uart_driver, &port->port);
3175 
3176 	sci_cleanup_single(port);
3177 
3178 	if (port->port.fifosize > 1)
3179 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3180 	if (type == PORT_SCIFA || type == PORT_SCIFB || type == PORT_HSCIF)
3181 		device_remove_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3182 
3183 	return 0;
3184 }
3185 
3186 
3187 #define SCI_OF_DATA(type, regtype)	(void *)((type) << 16 | (regtype))
3188 #define SCI_OF_TYPE(data)		((unsigned long)(data) >> 16)
3189 #define SCI_OF_REGTYPE(data)		((unsigned long)(data) & 0xffff)
3190 
3191 static const struct of_device_id of_sci_match[] = {
3192 	/* SoC-specific types */
3193 	{
3194 		.compatible = "renesas,scif-r7s72100",
3195 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH2_SCIF_FIFODATA_REGTYPE),
3196 	},
3197 	{
3198 		.compatible = "renesas,scif-r7s9210",
3199 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_RZ_SCIFA_REGTYPE),
3200 	},
3201 	/* Family-specific types */
3202 	{
3203 		.compatible = "renesas,rcar-gen1-scif",
3204 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3205 	}, {
3206 		.compatible = "renesas,rcar-gen2-scif",
3207 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3208 	}, {
3209 		.compatible = "renesas,rcar-gen3-scif",
3210 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_BRG_REGTYPE),
3211 	},
3212 	/* Generic types */
3213 	{
3214 		.compatible = "renesas,scif",
3215 		.data = SCI_OF_DATA(PORT_SCIF, SCIx_SH4_SCIF_REGTYPE),
3216 	}, {
3217 		.compatible = "renesas,scifa",
3218 		.data = SCI_OF_DATA(PORT_SCIFA, SCIx_SCIFA_REGTYPE),
3219 	}, {
3220 		.compatible = "renesas,scifb",
3221 		.data = SCI_OF_DATA(PORT_SCIFB, SCIx_SCIFB_REGTYPE),
3222 	}, {
3223 		.compatible = "renesas,hscif",
3224 		.data = SCI_OF_DATA(PORT_HSCIF, SCIx_HSCIF_REGTYPE),
3225 	}, {
3226 		.compatible = "renesas,sci",
3227 		.data = SCI_OF_DATA(PORT_SCI, SCIx_SCI_REGTYPE),
3228 	}, {
3229 		/* Terminator */
3230 	},
3231 };
3232 MODULE_DEVICE_TABLE(of, of_sci_match);
3233 
sci_parse_dt(struct platform_device * pdev,unsigned int * dev_id)3234 static struct plat_sci_port *sci_parse_dt(struct platform_device *pdev,
3235 					  unsigned int *dev_id)
3236 {
3237 	struct device_node *np = pdev->dev.of_node;
3238 	struct plat_sci_port *p;
3239 	struct sci_port *sp;
3240 	const void *data;
3241 	int id;
3242 
3243 	if (!IS_ENABLED(CONFIG_OF) || !np)
3244 		return NULL;
3245 
3246 	data = of_device_get_match_data(&pdev->dev);
3247 
3248 	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
3249 	if (!p)
3250 		return NULL;
3251 
3252 	/* Get the line number from the aliases node. */
3253 	id = of_alias_get_id(np, "serial");
3254 	if (id < 0 && ~sci_ports_in_use)
3255 		id = ffz(sci_ports_in_use);
3256 	if (id < 0) {
3257 		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
3258 		return NULL;
3259 	}
3260 	if (id >= ARRAY_SIZE(sci_ports)) {
3261 		dev_err(&pdev->dev, "serial%d out of range\n", id);
3262 		return NULL;
3263 	}
3264 
3265 	sp = &sci_ports[id];
3266 	*dev_id = id;
3267 
3268 	p->type = SCI_OF_TYPE(data);
3269 	p->regtype = SCI_OF_REGTYPE(data);
3270 
3271 	sp->has_rtscts = of_property_read_bool(np, "uart-has-rtscts");
3272 
3273 	return p;
3274 }
3275 
sci_probe_single(struct platform_device * dev,unsigned int index,struct plat_sci_port * p,struct sci_port * sciport)3276 static int sci_probe_single(struct platform_device *dev,
3277 				      unsigned int index,
3278 				      struct plat_sci_port *p,
3279 				      struct sci_port *sciport)
3280 {
3281 	int ret;
3282 
3283 	/* Sanity check */
3284 	if (unlikely(index >= SCI_NPORTS)) {
3285 		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
3286 			   index+1, SCI_NPORTS);
3287 		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
3288 		return -EINVAL;
3289 	}
3290 	BUILD_BUG_ON(SCI_NPORTS > sizeof(sci_ports_in_use) * 8);
3291 	if (sci_ports_in_use & BIT(index))
3292 		return -EBUSY;
3293 
3294 	mutex_lock(&sci_uart_registration_lock);
3295 	if (!sci_uart_driver.state) {
3296 		ret = uart_register_driver(&sci_uart_driver);
3297 		if (ret) {
3298 			mutex_unlock(&sci_uart_registration_lock);
3299 			return ret;
3300 		}
3301 	}
3302 	mutex_unlock(&sci_uart_registration_lock);
3303 
3304 	ret = sci_init_single(dev, sciport, index, p, false);
3305 	if (ret)
3306 		return ret;
3307 
3308 	sciport->gpios = mctrl_gpio_init(&sciport->port, 0);
3309 	if (IS_ERR(sciport->gpios))
3310 		return PTR_ERR(sciport->gpios);
3311 
3312 	if (sciport->has_rtscts) {
3313 		if (mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_CTS) ||
3314 		    mctrl_gpio_to_gpiod(sciport->gpios, UART_GPIO_RTS)) {
3315 			dev_err(&dev->dev, "Conflicting RTS/CTS config\n");
3316 			return -EINVAL;
3317 		}
3318 		sciport->port.flags |= UPF_HARD_FLOW;
3319 	}
3320 
3321 	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
3322 	if (ret) {
3323 		sci_cleanup_single(sciport);
3324 		return ret;
3325 	}
3326 
3327 	return 0;
3328 }
3329 
sci_probe(struct platform_device * dev)3330 static int sci_probe(struct platform_device *dev)
3331 {
3332 	struct plat_sci_port *p;
3333 	struct sci_port *sp;
3334 	unsigned int dev_id;
3335 	int ret;
3336 
3337 	/*
3338 	 * If we've come here via earlyprintk initialization, head off to
3339 	 * the special early probe. We don't have sufficient device state
3340 	 * to make it beyond this yet.
3341 	 */
3342 #ifdef CONFIG_SUPERH
3343 	if (is_sh_early_platform_device(dev))
3344 		return sci_probe_earlyprintk(dev);
3345 #endif
3346 
3347 	if (dev->dev.of_node) {
3348 		p = sci_parse_dt(dev, &dev_id);
3349 		if (p == NULL)
3350 			return -EINVAL;
3351 	} else {
3352 		p = dev->dev.platform_data;
3353 		if (p == NULL) {
3354 			dev_err(&dev->dev, "no platform data supplied\n");
3355 			return -EINVAL;
3356 		}
3357 
3358 		dev_id = dev->id;
3359 	}
3360 
3361 	sp = &sci_ports[dev_id];
3362 	platform_set_drvdata(dev, sp);
3363 
3364 	ret = sci_probe_single(dev, dev_id, p, sp);
3365 	if (ret)
3366 		return ret;
3367 
3368 	if (sp->port.fifosize > 1) {
3369 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_trigger);
3370 		if (ret)
3371 			return ret;
3372 	}
3373 	if (sp->port.type == PORT_SCIFA || sp->port.type == PORT_SCIFB ||
3374 	    sp->port.type == PORT_HSCIF) {
3375 		ret = device_create_file(&dev->dev, &dev_attr_rx_fifo_timeout);
3376 		if (ret) {
3377 			if (sp->port.fifosize > 1) {
3378 				device_remove_file(&dev->dev,
3379 						   &dev_attr_rx_fifo_trigger);
3380 			}
3381 			return ret;
3382 		}
3383 	}
3384 
3385 #ifdef CONFIG_SH_STANDARD_BIOS
3386 	sh_bios_gdb_detach();
3387 #endif
3388 
3389 	sci_ports_in_use |= BIT(dev_id);
3390 	return 0;
3391 }
3392 
sci_suspend(struct device * dev)3393 static __maybe_unused int sci_suspend(struct device *dev)
3394 {
3395 	struct sci_port *sport = dev_get_drvdata(dev);
3396 
3397 	if (sport)
3398 		uart_suspend_port(&sci_uart_driver, &sport->port);
3399 
3400 	return 0;
3401 }
3402 
sci_resume(struct device * dev)3403 static __maybe_unused int sci_resume(struct device *dev)
3404 {
3405 	struct sci_port *sport = dev_get_drvdata(dev);
3406 
3407 	if (sport)
3408 		uart_resume_port(&sci_uart_driver, &sport->port);
3409 
3410 	return 0;
3411 }
3412 
3413 static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
3414 
3415 static struct platform_driver sci_driver = {
3416 	.probe		= sci_probe,
3417 	.remove		= sci_remove,
3418 	.driver		= {
3419 		.name	= "sh-sci",
3420 		.pm	= &sci_dev_pm_ops,
3421 		.of_match_table = of_match_ptr(of_sci_match),
3422 	},
3423 };
3424 
sci_init(void)3425 static int __init sci_init(void)
3426 {
3427 	pr_info("%s\n", banner);
3428 
3429 	return platform_driver_register(&sci_driver);
3430 }
3431 
sci_exit(void)3432 static void __exit sci_exit(void)
3433 {
3434 	platform_driver_unregister(&sci_driver);
3435 
3436 	if (sci_uart_driver.state)
3437 		uart_unregister_driver(&sci_uart_driver);
3438 }
3439 
3440 #if defined(CONFIG_SUPERH) && defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
3441 sh_early_platform_init_buffer("earlyprintk", &sci_driver,
3442 			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
3443 #endif
3444 #ifdef CONFIG_SERIAL_SH_SCI_EARLYCON
3445 static struct plat_sci_port port_cfg __initdata;
3446 
early_console_setup(struct earlycon_device * device,int type)3447 static int __init early_console_setup(struct earlycon_device *device,
3448 				      int type)
3449 {
3450 	if (!device->port.membase)
3451 		return -ENODEV;
3452 
3453 	device->port.serial_in = sci_serial_in;
3454 	device->port.serial_out	= sci_serial_out;
3455 	device->port.type = type;
3456 	memcpy(&sci_ports[0].port, &device->port, sizeof(struct uart_port));
3457 	port_cfg.type = type;
3458 	sci_ports[0].cfg = &port_cfg;
3459 	sci_ports[0].params = sci_probe_regmap(&port_cfg);
3460 	port_cfg.scscr = sci_serial_in(&sci_ports[0].port, SCSCR);
3461 	sci_serial_out(&sci_ports[0].port, SCSCR,
3462 		       SCSCR_RE | SCSCR_TE | port_cfg.scscr);
3463 
3464 	device->con->write = serial_console_write;
3465 	return 0;
3466 }
sci_early_console_setup(struct earlycon_device * device,const char * opt)3467 static int __init sci_early_console_setup(struct earlycon_device *device,
3468 					  const char *opt)
3469 {
3470 	return early_console_setup(device, PORT_SCI);
3471 }
scif_early_console_setup(struct earlycon_device * device,const char * opt)3472 static int __init scif_early_console_setup(struct earlycon_device *device,
3473 					  const char *opt)
3474 {
3475 	return early_console_setup(device, PORT_SCIF);
3476 }
rzscifa_early_console_setup(struct earlycon_device * device,const char * opt)3477 static int __init rzscifa_early_console_setup(struct earlycon_device *device,
3478 					  const char *opt)
3479 {
3480 	port_cfg.regtype = SCIx_RZ_SCIFA_REGTYPE;
3481 	return early_console_setup(device, PORT_SCIF);
3482 }
scifa_early_console_setup(struct earlycon_device * device,const char * opt)3483 static int __init scifa_early_console_setup(struct earlycon_device *device,
3484 					  const char *opt)
3485 {
3486 	return early_console_setup(device, PORT_SCIFA);
3487 }
scifb_early_console_setup(struct earlycon_device * device,const char * opt)3488 static int __init scifb_early_console_setup(struct earlycon_device *device,
3489 					  const char *opt)
3490 {
3491 	return early_console_setup(device, PORT_SCIFB);
3492 }
hscif_early_console_setup(struct earlycon_device * device,const char * opt)3493 static int __init hscif_early_console_setup(struct earlycon_device *device,
3494 					  const char *opt)
3495 {
3496 	return early_console_setup(device, PORT_HSCIF);
3497 }
3498 
3499 OF_EARLYCON_DECLARE(sci, "renesas,sci", sci_early_console_setup);
3500 OF_EARLYCON_DECLARE(scif, "renesas,scif", scif_early_console_setup);
3501 OF_EARLYCON_DECLARE(scif, "renesas,scif-r7s9210", rzscifa_early_console_setup);
3502 OF_EARLYCON_DECLARE(scifa, "renesas,scifa", scifa_early_console_setup);
3503 OF_EARLYCON_DECLARE(scifb, "renesas,scifb", scifb_early_console_setup);
3504 OF_EARLYCON_DECLARE(hscif, "renesas,hscif", hscif_early_console_setup);
3505 #endif /* CONFIG_SERIAL_SH_SCI_EARLYCON */
3506 
3507 module_init(sci_init);
3508 module_exit(sci_exit);
3509 
3510 MODULE_LICENSE("GPL");
3511 MODULE_ALIAS("platform:sh-sci");
3512 MODULE_AUTHOR("Paul Mundt");
3513 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
3514