1 /*
2 * rk818 battery driver
3 *
4 * Copyright (C) 2016 Rockchip Electronics Co., Ltd
5 * chenjh <chenjh@rock-chips.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 */
17
18 #include <linux/delay.h>
19 #include <linux/fb.h>
20 #include <linux/gpio.h>
21 #include <linux/iio/consumer.h>
22 #include <linux/iio/iio.h>
23 #include <linux/irq.h>
24 #include <linux/irqdomain.h>
25 #include <linux/jiffies.h>
26 #include <linux/mfd/rk808.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/of_gpio.h>
30 #include <linux/platform_device.h>
31 #include <linux/power_supply.h>
32 #include <linux/power/rk_usbbc.h>
33 #include <linux/regmap.h>
34 #include <linux/rk_keys.h>
35 #include <linux/rtc.h>
36 #include <linux/timer.h>
37 #include <linux/wakelock.h>
38 #include <linux/workqueue.h>
39 #include "rk818_battery.h"
40
41 static int dbg_enable = 0;
42 module_param_named(dbg_level, dbg_enable, int, 0644);
43
44 #define DBG(args...) \
45 do { \
46 if (dbg_enable) { \
47 pr_info(args); \
48 } \
49 } while (0)
50
51 #define BAT_INFO(fmt, args...) pr_info("rk818-bat: "fmt, ##args)
52
53 /* default param */
54 #define DEFAULT_BAT_RES 135
55 #define DEFAULT_SLP_ENTER_CUR 300
56 #define DEFAULT_SLP_EXIT_CUR 300
57 #define DEFAULT_SLP_FILTER_CUR 100
58 #define DEFAULT_PWROFF_VOL_THRESD 3400
59 #define DEFAULT_MONITOR_SEC 5
60 #define DEFAULT_ALGR_VOL_THRESD1 3850
61 #define DEFAULT_ALGR_VOL_THRESD2 3950
62 #define DEFAULT_MAX_SOC_OFFSET 60
63 #define DEFAULT_FB_TEMP TEMP_105C
64 #define DEFAULT_ZERO_RESERVE_DSOC 10
65 #define DEFAULT_POFFSET 42
66 #define DEFAULT_COFFSET 0x832
67 #define DEFAULT_SAMPLE_RES 20
68 #define DEFAULT_ENERGY_MODE 0
69 #define INVALID_COFFSET_MIN 0x780
70 #define INVALID_COFFSET_MAX 0x980
71 #define INVALID_VOL_THRESD 2500
72
73 /* sample resistor and division */
74 #define SAMPLE_RES_10MR 10
75 #define SAMPLE_RES_20MR 20
76 #define SAMPLE_RES_DIV1 1
77 #define SAMPLE_RES_DIV2 2
78
79 /* virtual params */
80 #define VIRTUAL_CURRENT 1000
81 #define VIRTUAL_VOLTAGE 3888
82 #define VIRTUAL_SOC 66
83 #define VIRTUAL_PRESET 1
84 #define VIRTUAL_TEMPERATURE 188
85 #define VIRTUAL_STATUS POWER_SUPPLY_STATUS_CHARGING
86
87 /* charge */
88 #define FINISH_CHRG_CUR1 1000
89 #define FINISH_CHRG_CUR2 1500
90 #define FINISH_MAX_SOC_DELAY 20
91 #define TERM_CHRG_DSOC 88
92 #define TERM_CHRG_CURR 600
93 #define TERM_CHRG_K 650
94 #define SIMULATE_CHRG_INTV 8
95 #define SIMULATE_CHRG_CURR 400
96 #define SIMULATE_CHRG_K 1500
97 #define FULL_CHRG_K 400
98
99 /* zero algorithm */
100 #define PWROFF_THRESD 3400
101 #define MIN_ZERO_DSOC_ACCURACY 10 /*0.01%*/
102 #define MIN_ZERO_OVERCNT 100
103 #define MIN_ACCURACY 1
104 #define DEF_PWRPATH_RES 50
105 #define WAIT_DSOC_DROP_SEC 15
106 #define WAIT_SHTD_DROP_SEC 30
107 #define ZERO_GAP_XSOC1 10
108 #define ZERO_GAP_XSOC2 5
109 #define ZERO_GAP_XSOC3 3
110 #define ZERO_LOAD_LVL1 1400
111 #define ZERO_LOAD_LVL2 600
112 #define ZERO_GAP_CALIB 5
113
114 #define ADC_CALIB_THRESHOLD 4
115 #define ADC_CALIB_LMT_MIN 3
116 #define ADC_CALIB_CNT 5
117 #define NTC_CALC_FACTOR 7
118
119 /* time */
120 #define POWER_ON_SEC_BASE 1
121 #define MINUTE(x) ((x) * 60)
122
123 /* sleep */
124 #define SLP_CURR_MAX 40
125 #define SLP_CURR_MIN 6
126 #define DISCHRG_TIME_STEP1 MINUTE(10)
127 #define DISCHRG_TIME_STEP2 MINUTE(60)
128 #define SLP_DSOC_VOL_THRESD 3600
129 #define REBOOT_PERIOD_SEC 180
130 #define REBOOT_MAX_CNT 80
131
132 /* fcc */
133 #define MIN_FCC 500
134
135 /* TS detect battery temperature */
136 #define ADC_CUR_MSK 0x03
137 #define ADC_CUR_20UA 0x00
138 #define ADC_CUR_40UA 0x01
139 #define ADC_CUR_60UA 0x02
140 #define ADC_CUR_80UA 0x03
141
142 #define NTC_CALC_FACTOR_80UA 7
143 #define NTC_CALC_FACTOR_60UA 9
144 #define NTC_CALC_FACTOR_40UA 13
145 #define NTC_CALC_FACTOR_20UA 27
146 #define NTC_80UA_MAX_MEASURE 27500
147 #define NTC_60UA_MAX_MEASURE 36666
148 #define NTC_40UA_MAX_MEASURE 55000
149 #define NTC_20UA_MAX_MEASURE 110000
150
151 #define INPUT_CUR80MA (0x01)
152
153 static const char *bat_status[] = {
154 "charge off", "dead charge", "trickle charge", "cc cv",
155 "finish", "usb over vol", "bat temp error", "timer error",
156 };
157
158 struct rk818_battery {
159 struct platform_device *pdev;
160 struct rk808 *rk818;
161 struct regmap *regmap;
162 struct device *dev;
163 struct power_supply *bat;
164 struct power_supply *usb_psy;
165 struct power_supply *ac_psy;
166 struct battery_platform_data *pdata;
167 struct workqueue_struct *bat_monitor_wq;
168 struct delayed_work bat_delay_work;
169 struct delayed_work calib_delay_work;
170 struct wake_lock wake_lock;
171 struct notifier_block fb_nb;
172 struct timer_list caltimer;
173 time64_t rtc_base;
174 int bat_res;
175 int chrg_status;
176 bool is_initialized;
177 bool is_first_power_on;
178 u8 res_div;
179 int current_max;
180 int voltage_max;
181 int current_avg;
182 int voltage_avg;
183 int voltage_ocv;
184 int voltage_relax;
185 int voltage_k;
186 int voltage_b;
187 int remain_cap;
188 int design_cap;
189 int nac;
190 int fcc;
191 int qmax;
192 int dsoc;
193 int rsoc;
194 int poffset;
195 int age_ocv_soc;
196 bool age_allow_update;
197 int age_level;
198 int age_ocv_cap;
199 int age_voltage;
200 int age_adjust_cap;
201 unsigned long age_keep_sec;
202 int zero_timeout_cnt;
203 int zero_remain_cap;
204 int zero_dsoc;
205 int zero_linek;
206 u64 zero_drop_sec;
207 u64 shtd_drop_sec;
208 int sm_remain_cap;
209 int sm_linek;
210 int sm_chrg_dsoc;
211 int sm_dischrg_dsoc;
212 int algo_rest_val;
213 int algo_rest_mode;
214 int sleep_sum_cap;
215 int sleep_remain_cap;
216 unsigned long sleep_dischrg_sec;
217 unsigned long sleep_sum_sec;
218 bool sleep_chrg_online;
219 u8 sleep_chrg_status;
220 bool adc_allow_update;
221 int fb_blank;
222 bool s2r; /*suspend to resume*/
223 u32 work_mode;
224 int temperature;
225 u32 monitor_ms;
226 u32 pwroff_min;
227 u32 adc_calib_cnt;
228 unsigned long finish_base;
229 unsigned long boot_base;
230 unsigned long flat_match_sec;
231 unsigned long plug_in_base;
232 unsigned long plug_out_base;
233 u8 halt_cnt;
234 bool is_halt;
235 bool is_max_soc_offset;
236 bool is_sw_reset;
237 bool is_ocv_calib;
238 bool is_first_on;
239 bool is_force_calib;
240 int last_dsoc;
241 int ocv_pre_dsoc;
242 int ocv_new_dsoc;
243 int max_pre_dsoc;
244 int max_new_dsoc;
245 int force_pre_dsoc;
246 int force_new_dsoc;
247 int dbg_cap_low0;
248 int dbg_pwr_dsoc;
249 int dbg_pwr_rsoc;
250 int dbg_pwr_vol;
251 int dbg_chrg_min[10];
252 int dbg_meet_soc;
253 int dbg_calc_dsoc;
254 int dbg_calc_rsoc;
255 u8 ac_in;
256 u8 usb_in;
257 int is_charging;
258 unsigned long charge_count;
259 };
260
261 #define DIV(x) ((x) ? (x) : 1)
262
get_boot_sec(void)263 static u64 get_boot_sec(void)
264 {
265 struct timespec64 ts;
266
267 ktime_get_boottime_ts64(&ts);
268
269 return ts.tv_sec;
270 }
271
base2sec(unsigned long x)272 static unsigned long base2sec(unsigned long x)
273 {
274 if (x)
275 return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0;
276 else
277 return 0;
278 }
279
base2min(unsigned long x)280 static unsigned long base2min(unsigned long x)
281 {
282 return base2sec(x) / 60;
283 }
284
interpolate(int value,u32 * table,int size)285 static u32 interpolate(int value, u32 *table, int size)
286 {
287 u8 i;
288 u16 d;
289
290 for (i = 0; i < size; i++) {
291 if (value < table[i])
292 break;
293 }
294
295 if ((i > 0) && (i < size)) {
296 d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1));
297 d /= table[i] - table[i - 1];
298 d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1));
299 } else {
300 d = i * ((MAX_INTERPOLATE + size / 2) / size);
301 }
302
303 if (d > 1000)
304 d = 1000;
305
306 return d;
307 }
308
309 /* (a*b)/c */
ab_div_c(u32 a,u32 b,u32 c)310 static int32_t ab_div_c(u32 a, u32 b, u32 c)
311 {
312 bool sign;
313 u32 ans = MAX_INT;
314 int tmp;
315
316 sign = ((((a ^ b) ^ c) & 0x80000000) != 0);
317 if (c != 0) {
318 if (sign)
319 c = -c;
320 tmp = (a * b + (c >> 1)) / c;
321 if (tmp < MAX_INT)
322 ans = tmp;
323 }
324
325 if (sign)
326 ans = -ans;
327
328 return ans;
329 }
330
rk818_bat_read(struct rk818_battery * di,u8 reg)331 static int rk818_bat_read(struct rk818_battery *di, u8 reg)
332 {
333 int ret, val;
334
335 ret = regmap_read(di->regmap, reg, &val);
336 if (ret)
337 dev_err(di->dev, "read reg:0x%x failed\n", reg);
338
339 return val;
340 }
341
rk818_bat_write(struct rk818_battery * di,u8 reg,u8 buf)342 static int rk818_bat_write(struct rk818_battery *di, u8 reg, u8 buf)
343 {
344 int ret;
345
346 ret = regmap_write(di->regmap, reg, buf);
347 if (ret)
348 dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg);
349
350 return ret;
351 }
352
rk818_bat_set_bits(struct rk818_battery * di,u8 reg,u8 mask,u8 buf)353 static int rk818_bat_set_bits(struct rk818_battery *di, u8 reg, u8 mask, u8 buf)
354 {
355 int ret;
356
357 ret = regmap_update_bits(di->regmap, reg, mask, buf);
358 if (ret)
359 dev_err(di->dev, "write reg:0x%x failed\n", reg);
360
361 return ret;
362 }
363
rk818_bat_clear_bits(struct rk818_battery * di,u8 reg,u8 mask)364 static int rk818_bat_clear_bits(struct rk818_battery *di, u8 reg, u8 mask)
365 {
366 int ret;
367
368 ret = regmap_update_bits(di->regmap, reg, mask, 0);
369 if (ret)
370 dev_err(di->dev, "clr reg:0x%02x failed\n", reg);
371
372 return ret;
373 }
374
rk818_bat_dump_regs(struct rk818_battery * di,u8 start,u8 end)375 static void rk818_bat_dump_regs(struct rk818_battery *di, u8 start, u8 end)
376 {
377 int i;
378
379 if (!dbg_enable)
380 return;
381
382 DBG("dump regs from: 0x%x-->0x%x\n", start, end);
383 for (i = start; i < end; i++)
384 DBG("0x%x: 0x%0x\n", i, rk818_bat_read(di, i));
385 }
386
rk818_bat_chrg_online(struct rk818_battery * di)387 static bool rk818_bat_chrg_online(struct rk818_battery *di)
388 {
389 u8 buf;
390
391 buf = rk818_bat_read(di, RK818_VB_MON_REG);
392
393 return (buf & PLUG_IN_STS) ? true : false;
394 }
395
rk818_bat_get_coulomb_cap(struct rk818_battery * di)396 static int rk818_bat_get_coulomb_cap(struct rk818_battery *di)
397 {
398 int val = 0;
399
400 val |= rk818_bat_read(di, RK818_GASCNT3_REG) << 24;
401 val |= rk818_bat_read(di, RK818_GASCNT2_REG) << 16;
402 val |= rk818_bat_read(di, RK818_GASCNT1_REG) << 8;
403 val |= rk818_bat_read(di, RK818_GASCNT0_REG) << 0;
404
405 return (val / 2390) * di->res_div;
406 }
407
rk818_bat_get_rsoc(struct rk818_battery * di)408 static int rk818_bat_get_rsoc(struct rk818_battery *di)
409 {
410 int remain_cap;
411
412 remain_cap = rk818_bat_get_coulomb_cap(di);
413 return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc);
414 }
415
bat_info_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)416 static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr,
417 const char *buf, size_t count)
418 {
419 char cmd;
420 struct rk818_battery *di = dev_get_drvdata(dev);
421
422 sscanf(buf, "%c", &cmd);
423
424 if (cmd == 'n')
425 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
426 FG_RESET_NOW, FG_RESET_NOW);
427 else if (cmd == 'm')
428 rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
429 FG_RESET_LATE, FG_RESET_LATE);
430 else if (cmd == 'c')
431 rk818_bat_clear_bits(di, RK818_MISC_MARK_REG,
432 FG_RESET_LATE | FG_RESET_NOW);
433 else if (cmd == 'r')
434 BAT_INFO("0x%2x\n", rk818_bat_read(di, RK818_MISC_MARK_REG));
435 else
436 BAT_INFO("command error\n");
437
438 return count;
439 }
440
441 static struct device_attribute rk818_bat_attr[] = {
442 __ATTR(bat, 0664, NULL, bat_info_store),
443 };
444
rk818_bat_enable_gauge(struct rk818_battery * di)445 static void rk818_bat_enable_gauge(struct rk818_battery *di)
446 {
447 u8 buf;
448
449 buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
450 buf |= GG_EN;
451 rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
452 }
453
rk818_bat_save_age_level(struct rk818_battery * di,u8 level)454 static void rk818_bat_save_age_level(struct rk818_battery *di, u8 level)
455 {
456 rk818_bat_write(di, RK818_UPDAT_LEVE_REG, level);
457 }
458
rk818_bat_get_age_level(struct rk818_battery * di)459 static u8 rk818_bat_get_age_level(struct rk818_battery *di)
460 {
461 return rk818_bat_read(di, RK818_UPDAT_LEVE_REG);
462 }
463
rk818_bat_get_vcalib0(struct rk818_battery * di)464 static int rk818_bat_get_vcalib0(struct rk818_battery *di)
465 {
466 int val = 0;
467
468 val |= rk818_bat_read(di, RK818_VCALIB0_REGL) << 0;
469 val |= rk818_bat_read(di, RK818_VCALIB0_REGH) << 8;
470
471 DBG("<%s>. voffset0: 0x%x\n", __func__, val);
472 return val;
473 }
474
rk818_bat_get_vcalib1(struct rk818_battery * di)475 static int rk818_bat_get_vcalib1(struct rk818_battery *di)
476 {
477 int val = 0;
478
479 val |= rk818_bat_read(di, RK818_VCALIB1_REGL) << 0;
480 val |= rk818_bat_read(di, RK818_VCALIB1_REGH) << 8;
481
482 DBG("<%s>. voffset1: 0x%x\n", __func__, val);
483 return val;
484 }
485
rk818_bat_get_ioffset(struct rk818_battery * di)486 static int rk818_bat_get_ioffset(struct rk818_battery *di)
487 {
488 int val = 0;
489
490 val |= rk818_bat_read(di, RK818_IOFFSET_REGL) << 0;
491 val |= rk818_bat_read(di, RK818_IOFFSET_REGH) << 8;
492
493 DBG("<%s>. ioffset: 0x%x\n", __func__, val);
494 return val;
495 }
496
rk818_bat_get_coffset(struct rk818_battery * di)497 static int rk818_bat_get_coffset(struct rk818_battery *di)
498 {
499 int val = 0;
500
501 val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGL) << 0;
502 val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGH) << 8;
503
504 DBG("<%s>. coffset: 0x%x\n", __func__, val);
505 return val;
506 }
507
rk818_bat_set_coffset(struct rk818_battery * di,int val)508 static void rk818_bat_set_coffset(struct rk818_battery *di, int val)
509 {
510 u8 buf;
511
512 if ((val < INVALID_COFFSET_MIN) || (val > INVALID_COFFSET_MAX)) {
513 BAT_INFO("set invalid coffset=0x%x\n", val);
514 return;
515 }
516
517 buf = (val >> 8) & 0xff;
518 rk818_bat_write(di, RK818_CAL_OFFSET_REGH, buf);
519 buf = (val >> 0) & 0xff;
520 rk818_bat_write(di, RK818_CAL_OFFSET_REGL, buf);
521 DBG("<%s>. coffset: 0x%x\n", __func__, val);
522 }
523
rk818_bat_init_voltage_kb(struct rk818_battery * di)524 static void rk818_bat_init_voltage_kb(struct rk818_battery *di)
525 {
526 int vcalib0, vcalib1;
527
528 vcalib0 = rk818_bat_get_vcalib0(di);
529 vcalib1 = rk818_bat_get_vcalib1(di);
530 di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0);
531 di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000;
532
533 DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b);
534 }
535
rk818_bat_get_ocv_voltage(struct rk818_battery * di)536 static int rk818_bat_get_ocv_voltage(struct rk818_battery *di)
537 {
538 int vol, val = 0;
539
540 val |= rk818_bat_read(di, RK818_BAT_OCV_REGL) << 0;
541 val |= rk818_bat_read(di, RK818_BAT_OCV_REGH) << 8;
542
543 vol = di->voltage_k * val / 1000 + di->voltage_b;
544
545 return vol;
546 }
547
rk818_bat_get_avg_voltage(struct rk818_battery * di)548 static int rk818_bat_get_avg_voltage(struct rk818_battery *di)
549 {
550 int vol, val = 0;
551
552 val |= rk818_bat_read(di, RK818_BAT_VOL_REGL) << 0;
553 val |= rk818_bat_read(di, RK818_BAT_VOL_REGH) << 8;
554
555 vol = di->voltage_k * val / 1000 + di->voltage_b;
556
557 return vol;
558 }
559
is_rk818_bat_relax_mode(struct rk818_battery * di)560 static bool is_rk818_bat_relax_mode(struct rk818_battery *di)
561 {
562 u8 status;
563
564 status = rk818_bat_read(di, RK818_GGSTS_REG);
565 if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD))
566 return false;
567 else
568 return true;
569 }
570
rk818_bat_get_relax_vol1(struct rk818_battery * di)571 static u16 rk818_bat_get_relax_vol1(struct rk818_battery *di)
572 {
573 u16 vol, val = 0;
574
575 val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGL) << 0;
576 val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGH) << 8;
577 vol = di->voltage_k * val / 1000 + di->voltage_b;
578
579 return vol;
580 }
581
rk818_bat_get_relax_vol2(struct rk818_battery * di)582 static u16 rk818_bat_get_relax_vol2(struct rk818_battery *di)
583 {
584 u16 vol, val = 0;
585
586 val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGL) << 0;
587 val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGH) << 8;
588 vol = di->voltage_k * val / 1000 + di->voltage_b;
589
590 return vol;
591 }
592
rk818_bat_get_relax_voltage(struct rk818_battery * di)593 static u16 rk818_bat_get_relax_voltage(struct rk818_battery *di)
594 {
595 u16 relax_vol1, relax_vol2;
596
597 if (!is_rk818_bat_relax_mode(di))
598 return 0;
599
600 relax_vol1 = rk818_bat_get_relax_vol1(di);
601 relax_vol2 = rk818_bat_get_relax_vol2(di);
602
603 return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2;
604 }
605
rk818_bat_get_avg_current(struct rk818_battery * di)606 static int rk818_bat_get_avg_current(struct rk818_battery *di)
607 {
608 int cur, val = 0;
609
610 val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
611 val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
612
613 if (val & 0x800)
614 val -= 4096;
615 cur = val * di->res_div * 1506 / 1000;
616
617 return cur;
618 }
619
rk818_bat_vol_to_ocvsoc(struct rk818_battery * di,int voltage)620 static int rk818_bat_vol_to_ocvsoc(struct rk818_battery *di, int voltage)
621 {
622 u32 *ocv_table, temp;
623 int ocv_size, ocv_soc;
624
625 ocv_table = di->pdata->ocv_table;
626 ocv_size = di->pdata->ocv_size;
627 temp = interpolate(voltage, ocv_table, ocv_size);
628 ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
629
630 return ocv_soc;
631 }
632
rk818_bat_vol_to_ocvcap(struct rk818_battery * di,int voltage)633 static int rk818_bat_vol_to_ocvcap(struct rk818_battery *di, int voltage)
634 {
635 u32 *ocv_table, temp;
636 int ocv_size, cap;
637
638 ocv_table = di->pdata->ocv_table;
639 ocv_size = di->pdata->ocv_size;
640 temp = interpolate(voltage, ocv_table, ocv_size);
641 cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
642
643 return cap;
644 }
645
rk818_bat_vol_to_zerosoc(struct rk818_battery * di,int voltage)646 static int rk818_bat_vol_to_zerosoc(struct rk818_battery *di, int voltage)
647 {
648 u32 *ocv_table, temp;
649 int ocv_size, ocv_soc;
650
651 ocv_table = di->pdata->zero_table;
652 ocv_size = di->pdata->ocv_size;
653 temp = interpolate(voltage, ocv_table, ocv_size);
654 ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
655
656 return ocv_soc;
657 }
658
rk818_bat_vol_to_zerocap(struct rk818_battery * di,int voltage)659 static int rk818_bat_vol_to_zerocap(struct rk818_battery *di, int voltage)
660 {
661 u32 *ocv_table, temp;
662 int ocv_size, cap;
663
664 ocv_table = di->pdata->zero_table;
665 ocv_size = di->pdata->ocv_size;
666 temp = interpolate(voltage, ocv_table, ocv_size);
667 cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
668
669 return cap;
670 }
671
rk818_bat_get_iadc(struct rk818_battery * di)672 static int rk818_bat_get_iadc(struct rk818_battery *di)
673 {
674 int val = 0;
675
676 val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
677 val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
678 if (val > 2047)
679 val -= 4096;
680
681 return val;
682 }
683
rk818_bat_adc_calib(struct rk818_battery * di)684 static bool rk818_bat_adc_calib(struct rk818_battery *di)
685 {
686 int i, ioffset, coffset, adc, save_coffset;
687
688 if ((di->chrg_status != CHARGE_FINISH) ||
689 (di->adc_calib_cnt > ADC_CALIB_CNT) ||
690 (base2min(di->boot_base) < ADC_CALIB_LMT_MIN) ||
691 (abs(di->current_avg) < ADC_CALIB_THRESHOLD))
692 return false;
693
694 di->adc_calib_cnt++;
695 save_coffset = rk818_bat_get_coffset(di);
696 for (i = 0; i < 5; i++) {
697 adc = rk818_bat_get_iadc(di);
698 if (!rk818_bat_chrg_online(di)) {
699 rk818_bat_set_coffset(di, save_coffset);
700 BAT_INFO("quit, charger plugout when calib adc\n");
701 return false;
702 }
703 coffset = rk818_bat_get_coffset(di);
704 rk818_bat_set_coffset(di, coffset + adc);
705 msleep(2000);
706 adc = rk818_bat_get_iadc(di);
707 if (abs(adc) < ADC_CALIB_THRESHOLD) {
708 coffset = rk818_bat_get_coffset(di);
709 ioffset = rk818_bat_get_ioffset(di);
710 di->poffset = coffset - ioffset;
711 rk818_bat_write(di, RK818_POFFSET_REG, di->poffset);
712 BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n",
713 coffset, ioffset, di->poffset);
714 return true;
715 } else {
716 BAT_INFO("coffset calib again %d.., max_cnt=%d\n",
717 i, di->adc_calib_cnt);
718 rk818_bat_set_coffset(di, coffset);
719 msleep(2000);
720 }
721 }
722
723 rk818_bat_set_coffset(di, save_coffset);
724
725 return false;
726 }
727
rk818_bat_set_ioffset_sample(struct rk818_battery * di)728 static void rk818_bat_set_ioffset_sample(struct rk818_battery *di)
729 {
730 u8 ggcon;
731
732 ggcon = rk818_bat_read(di, RK818_GGCON_REG);
733 ggcon &= ~ADC_CAL_MIN_MSK;
734 ggcon |= ADC_CAL_8MIN;
735 rk818_bat_write(di, RK818_GGCON_REG, ggcon);
736 }
737
rk818_bat_set_ocv_sample(struct rk818_battery * di)738 static void rk818_bat_set_ocv_sample(struct rk818_battery *di)
739 {
740 u8 ggcon;
741
742 ggcon = rk818_bat_read(di, RK818_GGCON_REG);
743 ggcon &= ~OCV_SAMP_MIN_MSK;
744 ggcon |= OCV_SAMP_8MIN;
745 rk818_bat_write(di, RK818_GGCON_REG, ggcon);
746 }
747
rk818_bat_restart_relax(struct rk818_battery * di)748 static void rk818_bat_restart_relax(struct rk818_battery *di)
749 {
750 u8 ggsts;
751
752 ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
753 ggsts &= ~RELAX_VOL12_UPD_MSK;
754 rk818_bat_write(di, RK818_GGSTS_REG, ggsts);
755 }
756
rk818_bat_set_relax_sample(struct rk818_battery * di)757 static void rk818_bat_set_relax_sample(struct rk818_battery *di)
758 {
759 u8 buf;
760 int enter_thres, exit_thres;
761 struct battery_platform_data *pdata = di->pdata;
762
763 enter_thres = pdata->sleep_enter_current * 1000 / 1506 / DIV(di->res_div);
764 exit_thres = pdata->sleep_exit_current * 1000 / 1506 / DIV(di->res_div);
765
766 /* set relax enter and exit threshold */
767 buf = enter_thres & 0xff;
768 rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGL, buf);
769 buf = (enter_thres >> 8) & 0xff;
770 rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGH, buf);
771
772 buf = exit_thres & 0xff;
773 rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGL, buf);
774 buf = (exit_thres >> 8) & 0xff;
775 rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGH, buf);
776
777 /* reset relax update state */
778 rk818_bat_restart_relax(di);
779 DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n",
780 __func__, pdata->sleep_enter_current, pdata->sleep_exit_current);
781 }
782
is_rk818_bat_exist(struct rk818_battery * di)783 static bool is_rk818_bat_exist(struct rk818_battery *di)
784 {
785 return (rk818_bat_read(di, RK818_SUP_STS_REG) & BAT_EXS) ? true : false;
786 }
787
is_rk818_bat_first_pwron(struct rk818_battery * di)788 static bool is_rk818_bat_first_pwron(struct rk818_battery *di)
789 {
790 u8 buf;
791
792 buf = rk818_bat_read(di, RK818_GGSTS_REG);
793 if (buf & BAT_CON) {
794 buf &= ~BAT_CON;
795 rk818_bat_write(di, RK818_GGSTS_REG, buf);
796 return true;
797 }
798
799 return false;
800 }
801
rk818_bat_get_pwroff_min(struct rk818_battery * di)802 static u8 rk818_bat_get_pwroff_min(struct rk818_battery *di)
803 {
804 u8 cur, last;
805
806 cur = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_REG);
807 last = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG);
808 rk818_bat_write(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG, cur);
809
810 return (cur != last) ? cur : 0;
811 }
812
is_rk818_bat_initialized(struct rk818_battery * di)813 static u8 is_rk818_bat_initialized(struct rk818_battery *di)
814 {
815 u8 val = rk818_bat_read(di, RK818_MISC_MARK_REG);
816
817 if (val & FG_INIT) {
818 val &= ~FG_INIT;
819 rk818_bat_write(di, RK818_MISC_MARK_REG, val);
820 return true;
821 } else {
822 return false;
823 }
824 }
825
is_rk818_bat_ocv_valid(struct rk818_battery * di)826 static bool is_rk818_bat_ocv_valid(struct rk818_battery *di)
827 {
828 return (!di->is_initialized && di->pwroff_min >= 30) ? true : false;
829 }
830
rk818_bat_init_age_algorithm(struct rk818_battery * di)831 static void rk818_bat_init_age_algorithm(struct rk818_battery *di)
832 {
833 int age_level, ocv_soc, ocv_cap, ocv_vol;
834
835 if (di->is_first_power_on || is_rk818_bat_ocv_valid(di)) {
836 DBG("<%s> enter.\n", __func__);
837 ocv_vol = rk818_bat_get_ocv_voltage(di);
838 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
839 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
840 if (ocv_soc < 20) {
841 di->age_voltage = ocv_vol;
842 di->age_ocv_cap = ocv_cap;
843 di->age_ocv_soc = ocv_soc;
844 di->age_adjust_cap = 0;
845
846 if (ocv_soc <= 0)
847 di->age_level = 100;
848 else if (ocv_soc < 5)
849 di->age_level = 95;
850 else if (ocv_soc < 10)
851 di->age_level = 90;
852 else
853 di->age_level = 80;
854
855 age_level = rk818_bat_get_age_level(di);
856 if (age_level > di->age_level) {
857 di->age_allow_update = false;
858 age_level -= 5;
859 if (age_level <= 80)
860 age_level = 80;
861 rk818_bat_save_age_level(di, age_level);
862 } else {
863 di->age_allow_update = true;
864 di->age_keep_sec = get_boot_sec();
865 }
866
867 BAT_INFO("init_age_algorithm: "
868 "age_vol:%d, age_ocv_cap:%d, "
869 "age_ocv_soc:%d, old_age_level:%d, "
870 "age_allow_update:%d, new_age_level:%d\n",
871 di->age_voltage, di->age_ocv_cap,
872 ocv_soc, age_level, di->age_allow_update,
873 di->age_level);
874 }
875 }
876 }
877
878 static enum power_supply_property rk818_bat_props[] = {
879 POWER_SUPPLY_PROP_CURRENT_NOW,
880 POWER_SUPPLY_PROP_VOLTAGE_NOW,
881 POWER_SUPPLY_PROP_PRESENT,
882 POWER_SUPPLY_PROP_HEALTH,
883 POWER_SUPPLY_PROP_CAPACITY,
884 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
885 POWER_SUPPLY_PROP_TEMP,
886 POWER_SUPPLY_PROP_STATUS,
887 POWER_SUPPLY_PROP_CHARGE_COUNTER,
888 POWER_SUPPLY_PROP_CHARGE_FULL,
889 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
890 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
891 POWER_SUPPLY_PROP_VOLTAGE_MAX,
892 POWER_SUPPLY_PROP_CURRENT_MAX,
893 };
894
rk818_bat_get_usb_psy(struct device * dev,void * data)895 static int rk818_bat_get_usb_psy(struct device *dev, void *data)
896 {
897 struct rk818_battery *di = data;
898 struct power_supply *psy = dev_get_drvdata(dev);
899
900 if (psy->desc->type == POWER_SUPPLY_TYPE_USB) {
901 di->usb_psy = psy;
902 return 1;
903 }
904
905 return 0;
906 }
907
rk818_bat_get_ac_psy(struct device * dev,void * data)908 static int rk818_bat_get_ac_psy(struct device *dev, void *data)
909 {
910 struct rk818_battery *di = data;
911 struct power_supply *psy = dev_get_drvdata(dev);
912
913 if (psy->desc->type == POWER_SUPPLY_TYPE_MAINS) {
914 di->ac_psy = psy;
915 return 1;
916 }
917
918 return 0;
919 }
920
rk818_bat_get_chrg_psy(struct rk818_battery * di)921 static void rk818_bat_get_chrg_psy(struct rk818_battery *di)
922 {
923 if (!di->usb_psy)
924 class_for_each_device(power_supply_class, NULL, (void *)di,
925 rk818_bat_get_usb_psy);
926 if (!di->ac_psy)
927 class_for_each_device(power_supply_class, NULL, (void *)di,
928 rk818_bat_get_ac_psy);
929 }
930
rk818_bat_get_charge_state(struct rk818_battery * di)931 static int rk818_bat_get_charge_state(struct rk818_battery *di)
932 {
933 union power_supply_propval val;
934 int ret;
935
936 if (!di->usb_psy || !di->ac_psy)
937 rk818_bat_get_chrg_psy(di);
938
939 if (di->usb_psy) {
940 ret = di->usb_psy->desc->get_property(di->usb_psy,
941 POWER_SUPPLY_PROP_ONLINE,
942 &val);
943 if (!ret)
944 di->usb_in = val.intval;
945 }
946
947 if (di->ac_psy) {
948 ret = di->ac_psy->desc->get_property(di->ac_psy,
949 POWER_SUPPLY_PROP_ONLINE,
950 &val);
951 if (!ret)
952 di->ac_in = val.intval;
953 }
954
955 DBG("%s: ac_online=%d, usb_online=%d\n",
956 __func__, di->ac_in, di->usb_in);
957
958 return (di->usb_in || di->ac_in);
959 }
960
rk818_get_capacity_leve(struct rk818_battery * di)961 static int rk818_get_capacity_leve(struct rk818_battery *di)
962 {
963 if (di->pdata->bat_mode == MODE_VIRTUAL)
964 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
965
966 if (di->dsoc < 1)
967 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
968 else if (di->dsoc <= 20)
969 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
970 else if (di->dsoc <= 70)
971 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
972 else if (di->dsoc <= 90)
973 return POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
974 else
975 return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
976 }
977
rk818_battery_time_to_full(struct rk818_battery * di)978 static int rk818_battery_time_to_full(struct rk818_battery *di)
979 {
980 int time_sec;
981 int cap_temp;
982
983 if (di->pdata->bat_mode == MODE_VIRTUAL) {
984 time_sec = 3600;
985 } else if (di->voltage_avg > 0) {
986 cap_temp = di->pdata->design_capacity - di->remain_cap;
987 if (cap_temp < 0)
988 cap_temp = 0;
989 time_sec = (3600 * cap_temp) / di->voltage_avg;
990 } else {
991 time_sec = 3600 * 24; /* One day */
992 }
993
994 return time_sec;
995 }
996
rk818_battery_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)997 static int rk818_battery_get_property(struct power_supply *psy,
998 enum power_supply_property psp,
999 union power_supply_propval *val)
1000 {
1001 struct rk818_battery *di = power_supply_get_drvdata(psy);
1002
1003 switch (psp) {
1004 case POWER_SUPPLY_PROP_CURRENT_NOW:
1005 val->intval = di->current_avg * 1000;/*uA*/
1006 if (di->pdata->bat_mode == MODE_VIRTUAL)
1007 val->intval = VIRTUAL_CURRENT * 1000;
1008 break;
1009 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1010 val->intval = di->voltage_avg * 1000;/*uV*/
1011 if (di->pdata->bat_mode == MODE_VIRTUAL)
1012 val->intval = VIRTUAL_VOLTAGE * 1000;
1013 break;
1014 case POWER_SUPPLY_PROP_PRESENT:
1015 val->intval = is_rk818_bat_exist(di);
1016 if (di->pdata->bat_mode == MODE_VIRTUAL)
1017 val->intval = VIRTUAL_PRESET;
1018 break;
1019 case POWER_SUPPLY_PROP_CAPACITY:
1020 val->intval = di->dsoc;
1021 if (di->pdata->bat_mode == MODE_VIRTUAL)
1022 val->intval = VIRTUAL_SOC;
1023 DBG("<%s>. report dsoc: %d\n", __func__, val->intval);
1024 break;
1025 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1026 val->intval = rk818_get_capacity_leve(di);
1027 break;
1028 case POWER_SUPPLY_PROP_HEALTH:
1029 val->intval = POWER_SUPPLY_HEALTH_GOOD;
1030 break;
1031 case POWER_SUPPLY_PROP_TEMP:
1032 val->intval = di->temperature;
1033 if (di->pdata->bat_mode == MODE_VIRTUAL)
1034 val->intval = VIRTUAL_TEMPERATURE;
1035 break;
1036 case POWER_SUPPLY_PROP_STATUS:
1037 if (di->pdata->bat_mode == MODE_VIRTUAL)
1038 val->intval = VIRTUAL_STATUS;
1039 else if (di->dsoc == 100)
1040 val->intval = POWER_SUPPLY_STATUS_FULL;
1041 else if (rk818_bat_get_charge_state(di))
1042 val->intval = POWER_SUPPLY_STATUS_CHARGING;
1043 else
1044 val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
1045 break;
1046 case POWER_SUPPLY_PROP_CHARGE_COUNTER:
1047 val->intval = di->charge_count;
1048 break;
1049 case POWER_SUPPLY_PROP_CHARGE_FULL:
1050 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1051 val->intval = di->pdata->design_capacity * 1000;/* uAh */
1052 break;
1053 case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
1054 val->intval = rk818_battery_time_to_full(di);
1055 break;
1056 case POWER_SUPPLY_PROP_VOLTAGE_MAX:
1057 val->intval = di->voltage_max;
1058 break;
1059 case POWER_SUPPLY_PROP_CURRENT_MAX:
1060 val->intval = di->current_max;
1061 break;
1062 default:
1063 return -EINVAL;
1064 }
1065
1066 return 0;
1067 }
1068
1069 static const struct power_supply_desc rk818_bat_desc = {
1070 .name = "battery",
1071 .type = POWER_SUPPLY_TYPE_BATTERY,
1072 .properties = rk818_bat_props,
1073 .num_properties = ARRAY_SIZE(rk818_bat_props),
1074 .get_property = rk818_battery_get_property,
1075 };
1076
rk818_bat_init_power_supply(struct rk818_battery * di)1077 static int rk818_bat_init_power_supply(struct rk818_battery *di)
1078 {
1079 struct power_supply_config psy_cfg = { .drv_data = di, };
1080
1081 di->bat = devm_power_supply_register(di->dev, &rk818_bat_desc, &psy_cfg);
1082 if (IS_ERR(di->bat)) {
1083 dev_err(di->dev, "register bat power supply fail\n");
1084 return PTR_ERR(di->bat);
1085 }
1086
1087 return 0;
1088 }
1089
rk818_bat_save_cap(struct rk818_battery * di,int cap)1090 static void rk818_bat_save_cap(struct rk818_battery *di, int cap)
1091 {
1092 u8 buf;
1093 static u32 old_cap;
1094
1095 if (cap >= di->qmax)
1096 cap = di->qmax;
1097 if (cap <= 0)
1098 cap = 0;
1099 if (old_cap == cap)
1100 return;
1101
1102 old_cap = cap;
1103 buf = (cap >> 24) & 0xff;
1104 rk818_bat_write(di, RK818_REMAIN_CAP_REG3, buf);
1105 buf = (cap >> 16) & 0xff;
1106 rk818_bat_write(di, RK818_REMAIN_CAP_REG2, buf);
1107 buf = (cap >> 8) & 0xff;
1108 rk818_bat_write(di, RK818_REMAIN_CAP_REG1, buf);
1109 buf = (cap >> 0) & 0xff;
1110 rk818_bat_write(di, RK818_REMAIN_CAP_REG0, buf);
1111 }
1112
rk818_bat_get_prev_cap(struct rk818_battery * di)1113 static int rk818_bat_get_prev_cap(struct rk818_battery *di)
1114 {
1115 int val = 0;
1116
1117 val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG3) << 24;
1118 val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG2) << 16;
1119 val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG1) << 8;
1120 val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG0) << 0;
1121
1122 return val;
1123 }
1124
rk818_bat_save_fcc(struct rk818_battery * di,u32 fcc)1125 static void rk818_bat_save_fcc(struct rk818_battery *di, u32 fcc)
1126 {
1127 u8 buf;
1128
1129 buf = (fcc >> 24) & 0xff;
1130 rk818_bat_write(di, RK818_NEW_FCC_REG3, buf);
1131 buf = (fcc >> 16) & 0xff;
1132 rk818_bat_write(di, RK818_NEW_FCC_REG2, buf);
1133 buf = (fcc >> 8) & 0xff;
1134 rk818_bat_write(di, RK818_NEW_FCC_REG1, buf);
1135 buf = (fcc >> 0) & 0xff;
1136 rk818_bat_write(di, RK818_NEW_FCC_REG0, buf);
1137
1138 BAT_INFO("save fcc: %d\n", fcc);
1139 }
1140
rk818_bat_get_fcc(struct rk818_battery * di)1141 static int rk818_bat_get_fcc(struct rk818_battery *di)
1142 {
1143 u32 fcc = 0;
1144
1145 fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG3) << 24;
1146 fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG2) << 16;
1147 fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG1) << 8;
1148 fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG0) << 0;
1149
1150 if (fcc < MIN_FCC) {
1151 BAT_INFO("invalid fcc(%d), use design cap", fcc);
1152 fcc = di->pdata->design_capacity;
1153 rk818_bat_save_fcc(di, fcc);
1154 } else if (fcc > di->pdata->design_qmax) {
1155 BAT_INFO("invalid fcc(%d), use qmax", fcc);
1156 fcc = di->pdata->design_qmax;
1157 rk818_bat_save_fcc(di, fcc);
1158 }
1159
1160 return fcc;
1161 }
1162
rk818_bat_init_coulomb_cap(struct rk818_battery * di,u32 capacity)1163 static void rk818_bat_init_coulomb_cap(struct rk818_battery *di, u32 capacity)
1164 {
1165 u8 buf;
1166 u32 cap;
1167
1168 cap = capacity * 2390 / DIV(di->res_div);
1169 buf = (cap >> 24) & 0xff;
1170 rk818_bat_write(di, RK818_GASCNT_CAL_REG3, buf);
1171 buf = (cap >> 16) & 0xff;
1172 rk818_bat_write(di, RK818_GASCNT_CAL_REG2, buf);
1173 buf = (cap >> 8) & 0xff;
1174 rk818_bat_write(di, RK818_GASCNT_CAL_REG1, buf);
1175 buf = ((cap >> 0) & 0xff);
1176 rk818_bat_write(di, RK818_GASCNT_CAL_REG0, buf);
1177
1178 DBG("<%s>. new coulomb cap = %d\n", __func__, capacity);
1179 di->remain_cap = capacity;
1180 di->rsoc = rk818_bat_get_rsoc(di);
1181 }
1182
rk818_bat_save_dsoc(struct rk818_battery * di,u8 save_soc)1183 static void rk818_bat_save_dsoc(struct rk818_battery *di, u8 save_soc)
1184 {
1185 static int last_soc = -1;
1186
1187 if (last_soc != save_soc) {
1188 rk818_bat_write(di, RK818_SOC_REG, save_soc);
1189 last_soc = save_soc;
1190 }
1191 }
1192
rk818_bat_get_prev_dsoc(struct rk818_battery * di)1193 static int rk818_bat_get_prev_dsoc(struct rk818_battery *di)
1194 {
1195 return rk818_bat_read(di, RK818_SOC_REG);
1196 }
1197
rk818_bat_save_reboot_cnt(struct rk818_battery * di,u8 save_cnt)1198 static void rk818_bat_save_reboot_cnt(struct rk818_battery *di, u8 save_cnt)
1199 {
1200 rk818_bat_write(di, RK818_REBOOT_CNT_REG, save_cnt);
1201 }
1202
rk818_bat_fb_notifier(struct notifier_block * nb,unsigned long event,void * data)1203 static int rk818_bat_fb_notifier(struct notifier_block *nb,
1204 unsigned long event, void *data)
1205 {
1206 struct rk818_battery *di;
1207 struct fb_event *evdata = data;
1208
1209 if (event != FB_EVENT_BLANK)
1210 return NOTIFY_DONE;
1211
1212 di = container_of(nb, struct rk818_battery, fb_nb);
1213 di->fb_blank = *(int *)evdata->data;
1214
1215 return NOTIFY_OK;
1216 }
1217
rk818_bat_register_fb_notify(struct rk818_battery * di)1218 static int rk818_bat_register_fb_notify(struct rk818_battery *di)
1219 {
1220 memset(&di->fb_nb, 0, sizeof(di->fb_nb));
1221 di->fb_nb.notifier_call = rk818_bat_fb_notifier;
1222
1223 return fb_register_client(&di->fb_nb);
1224 }
1225
rk818_bat_unregister_fb_notify(struct rk818_battery * di)1226 static int rk818_bat_unregister_fb_notify(struct rk818_battery *di)
1227 {
1228 return fb_unregister_client(&di->fb_nb);
1229 }
1230
rk818_bat_get_halt_cnt(struct rk818_battery * di)1231 static u8 rk818_bat_get_halt_cnt(struct rk818_battery *di)
1232 {
1233 return rk818_bat_read(di, RK818_HALT_CNT_REG);
1234 }
1235
rk818_bat_inc_halt_cnt(struct rk818_battery * di)1236 static void rk818_bat_inc_halt_cnt(struct rk818_battery *di)
1237 {
1238 u8 cnt;
1239
1240 cnt = rk818_bat_read(di, RK818_HALT_CNT_REG);
1241 rk818_bat_write(di, RK818_HALT_CNT_REG, ++cnt);
1242 }
1243
is_rk818_bat_last_halt(struct rk818_battery * di)1244 static bool is_rk818_bat_last_halt(struct rk818_battery *di)
1245 {
1246 int pre_cap = rk818_bat_get_prev_cap(di);
1247 int now_cap = rk818_bat_get_coulomb_cap(di);
1248
1249 /* over 10%: system halt last time */
1250 if (abs(now_cap - pre_cap) > (di->fcc / 10)) {
1251 rk818_bat_inc_halt_cnt(di);
1252 return true;
1253 } else {
1254 return false;
1255 }
1256 }
1257
rk818_bat_first_pwron(struct rk818_battery * di)1258 static void rk818_bat_first_pwron(struct rk818_battery *di)
1259 {
1260 int ocv_vol;
1261
1262 rk818_bat_save_fcc(di, di->design_cap);
1263 ocv_vol = rk818_bat_get_ocv_voltage(di);
1264 di->fcc = rk818_bat_get_fcc(di);
1265 di->nac = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1266 di->rsoc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1267 di->dsoc = di->rsoc;
1268 di->is_first_on = true;
1269
1270 BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n",
1271 di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol);
1272 }
1273
rk818_bat_not_first_pwron(struct rk818_battery * di)1274 static void rk818_bat_not_first_pwron(struct rk818_battery *di)
1275 {
1276 int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol;
1277
1278 di->fcc = rk818_bat_get_fcc(di);
1279 pre_soc = rk818_bat_get_prev_dsoc(di);
1280 pre_cap = rk818_bat_get_prev_cap(di);
1281 now_cap = rk818_bat_get_coulomb_cap(di);
1282 di->is_halt = is_rk818_bat_last_halt(di);
1283 di->halt_cnt = rk818_bat_get_halt_cnt(di);
1284 di->is_initialized = is_rk818_bat_initialized(di);
1285 di->is_ocv_calib = is_rk818_bat_ocv_valid(di);
1286
1287 if (di->is_initialized) {
1288 BAT_INFO("initialized yet..\n");
1289 goto finish;
1290 } else if (di->is_halt) {
1291 BAT_INFO("system halt last time... cap: pre=%d, now=%d\n",
1292 pre_cap, now_cap);
1293 if (now_cap < 0)
1294 now_cap = 0;
1295 rk818_bat_init_coulomb_cap(di, now_cap);
1296 pre_cap = now_cap;
1297 pre_soc = di->rsoc;
1298 goto finish;
1299 } else if (di->is_ocv_calib) {
1300 ocv_vol = rk818_bat_get_ocv_voltage(di);
1301 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1302 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1303 pre_cap = ocv_cap;
1304 di->ocv_pre_dsoc = pre_soc;
1305 di->ocv_new_dsoc = ocv_soc;
1306 if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) {
1307 di->ocv_pre_dsoc = pre_soc;
1308 di->ocv_new_dsoc = ocv_soc;
1309 di->is_max_soc_offset = true;
1310 BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n",
1311 pre_soc, ocv_soc);
1312 pre_soc = ocv_soc;
1313 }
1314 BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc);
1315 } else if (di->pwroff_min > 0) {
1316 ocv_vol = rk818_bat_get_ocv_voltage(di);
1317 ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
1318 ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
1319 di->force_pre_dsoc = pre_soc;
1320 di->force_new_dsoc = ocv_soc;
1321 if (abs(ocv_soc - pre_soc) >= 80) {
1322 di->is_force_calib = true;
1323 BAT_INFO("dsoc force calib: %d -> %d\n",
1324 pre_soc, ocv_soc);
1325 pre_soc = ocv_soc;
1326 pre_cap = ocv_cap;
1327 }
1328 }
1329
1330 finish:
1331 di->dsoc = pre_soc;
1332 di->nac = pre_cap;
1333 if (di->nac < 0)
1334 di->nac = 0;
1335
1336 BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n",
1337 di->dsoc, di->nac, rk818_bat_get_avg_voltage(di),
1338 rk818_bat_get_ocv_voltage(di), rk818_bat_get_relax_voltage(di),
1339 di->pwroff_min, rk818_bat_get_prev_dsoc(di),
1340 rk818_bat_get_prev_cap(di));
1341 }
1342
rk818_bat_ocv_sw_reset(struct rk818_battery * di)1343 static bool rk818_bat_ocv_sw_reset(struct rk818_battery *di)
1344 {
1345 u8 buf;
1346
1347 buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
1348 if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) ||
1349 (buf & FG_RESET_NOW)) {
1350 buf &= ~FG_RESET_LATE;
1351 buf &= ~FG_RESET_NOW;
1352 rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
1353 BAT_INFO("manual reset fuel gauge\n");
1354 return true;
1355 } else {
1356 return false;
1357 }
1358 }
1359
rk818_bat_init_rsoc(struct rk818_battery * di)1360 static void rk818_bat_init_rsoc(struct rk818_battery *di)
1361 {
1362 di->is_first_power_on = is_rk818_bat_first_pwron(di);
1363 di->is_sw_reset = rk818_bat_ocv_sw_reset(di);
1364 di->pwroff_min = rk818_bat_get_pwroff_min(di);
1365
1366 if (di->is_first_power_on || di->is_sw_reset)
1367 rk818_bat_first_pwron(di);
1368 else
1369 rk818_bat_not_first_pwron(di);
1370 }
1371
rk818_bat_get_chrg_status(struct rk818_battery * di)1372 static u8 rk818_bat_get_chrg_status(struct rk818_battery *di)
1373 {
1374 u8 status;
1375
1376 status = rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK;
1377 switch (status) {
1378 case CHARGE_OFF:
1379 DBG("CHARGE-OFF ...\n");
1380 break;
1381 case DEAD_CHARGE:
1382 BAT_INFO("DEAD CHARGE...\n");
1383 break;
1384 case TRICKLE_CHARGE:
1385 BAT_INFO("TRICKLE CHARGE...\n ");
1386 break;
1387 case CC_OR_CV:
1388 DBG("CC or CV...\n");
1389 break;
1390 case CHARGE_FINISH:
1391 DBG("CHARGE FINISH...\n");
1392 break;
1393 case USB_OVER_VOL:
1394 BAT_INFO("USB OVER VOL...\n");
1395 break;
1396 case BAT_TMP_ERR:
1397 BAT_INFO("BAT TMP ERROR...\n");
1398 break;
1399 case TIMER_ERR:
1400 BAT_INFO("TIMER ERROR...\n");
1401 break;
1402 case USB_EXIST:
1403 BAT_INFO("USB EXIST...\n");
1404 break;
1405 case USB_EFF:
1406 BAT_INFO("USB EFF...\n");
1407 break;
1408 default:
1409 return -EINVAL;
1410 }
1411
1412 return status;
1413 }
1414
rk818_bat_parse_fb_temperature(struct rk818_battery * di)1415 static u8 rk818_bat_parse_fb_temperature(struct rk818_battery *di)
1416 {
1417 u8 reg;
1418 int index, fb_temp;
1419
1420 reg = DEFAULT_FB_TEMP;
1421 fb_temp = di->pdata->fb_temp;
1422 for (index = 0; index < ARRAY_SIZE(feedback_temp_array); index++) {
1423 if (fb_temp < feedback_temp_array[index])
1424 break;
1425 reg = (index << FB_TEMP_SHIFT);
1426 }
1427
1428 return reg;
1429 }
1430
rk818_bat_parse_finish_ma(struct rk818_battery * di,int fcc)1431 static u8 rk818_bat_parse_finish_ma(struct rk818_battery *di, int fcc)
1432 {
1433 u8 ma;
1434
1435 if (di->pdata->sample_res == SAMPLE_RES_10MR)
1436 ma = FINISH_100MA;
1437 else if (fcc > 5000)
1438 ma = FINISH_250MA;
1439 else if (fcc >= 4000)
1440 ma = FINISH_200MA;
1441 else if (fcc >= 3000)
1442 ma = FINISH_150MA;
1443 else
1444 ma = FINISH_100MA;
1445
1446 return ma;
1447 }
1448
rk818_bat_init_chrg_config(struct rk818_battery * di)1449 static void rk818_bat_init_chrg_config(struct rk818_battery *di)
1450 {
1451 u8 usb_ctrl, chrg_ctrl2, chrg_ctrl3;
1452 u8 thermal, ggcon, finish_ma, fb_temp;
1453
1454 finish_ma = rk818_bat_parse_finish_ma(di, di->fcc);
1455 fb_temp = rk818_bat_parse_fb_temperature(di);
1456
1457 ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1458 thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1459 usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1460 chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1461 chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1462
1463 /* set charge finish current */
1464 chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL;
1465 chrg_ctrl2 &= ~FINISH_CUR_MSK;
1466 chrg_ctrl2 |= finish_ma;
1467
1468 /* disable cccv mode */
1469 chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN;
1470
1471 /* set feed back temperature */
1472 if (di->pdata->fb_temp)
1473 usb_ctrl |= CHRG_CT_EN;
1474 else
1475 usb_ctrl &= ~CHRG_CT_EN;
1476 thermal &= ~FB_TEMP_MSK;
1477 thermal |= fb_temp;
1478
1479 /* adc current mode */
1480 ggcon |= ADC_CUR_MODE;
1481
1482 rk818_bat_write(di, RK818_GGCON_REG, ggcon);
1483 rk818_bat_write(di, RK818_THERMAL_REG, thermal);
1484 rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
1485 rk818_bat_write(di, RK818_CHRG_CTRL_REG2, chrg_ctrl2);
1486 rk818_bat_write(di, RK818_CHRG_CTRL_REG3, chrg_ctrl3);
1487 }
1488
rk818_bat_init_coffset(struct rk818_battery * di)1489 static void rk818_bat_init_coffset(struct rk818_battery *di)
1490 {
1491 int coffset, ioffset;
1492
1493 ioffset = rk818_bat_get_ioffset(di);
1494 di->poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1495 if (!di->poffset)
1496 di->poffset = DEFAULT_POFFSET;
1497
1498 coffset = di->poffset + ioffset;
1499 if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX)
1500 coffset = DEFAULT_COFFSET;
1501
1502 rk818_bat_set_coffset(di, coffset);
1503
1504 DBG("<%s>. offset: p=0x%x, i=0x%x, c=0x%x\n",
1505 __func__, di->poffset, ioffset, rk818_bat_get_coffset(di));
1506 }
1507
rk818_bat_caltimer_isr(struct timer_list * t)1508 static void rk818_bat_caltimer_isr(struct timer_list *t)
1509 {
1510 struct rk818_battery *di = from_timer(di, t, caltimer);
1511
1512 mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ);
1513 queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work,
1514 msecs_to_jiffies(10));
1515 }
1516
rk818_bat_internal_calib(struct work_struct * work)1517 static void rk818_bat_internal_calib(struct work_struct *work)
1518 {
1519 int ioffset, poffset;
1520 struct rk818_battery *di = container_of(work,
1521 struct rk818_battery, calib_delay_work.work);
1522
1523 /* calib coffset */
1524 poffset = rk818_bat_read(di, RK818_POFFSET_REG);
1525 if (poffset)
1526 di->poffset = poffset;
1527 else
1528 di->poffset = DEFAULT_POFFSET;
1529
1530 ioffset = rk818_bat_get_ioffset(di);
1531 rk818_bat_set_coffset(di, ioffset + di->poffset);
1532
1533 /* calib voltage kb */
1534 rk818_bat_init_voltage_kb(di);
1535 BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x, poffset=%d\n",
1536 ioffset, rk818_bat_get_coffset(di), di->poffset);
1537 }
1538
rk818_bat_init_caltimer(struct rk818_battery * di)1539 static void rk818_bat_init_caltimer(struct rk818_battery *di)
1540 {
1541 timer_setup(&di->caltimer, rk818_bat_caltimer_isr, 0);
1542 di->caltimer.expires = jiffies + MINUTE(8) * HZ;
1543 add_timer(&di->caltimer);
1544 INIT_DELAYED_WORK(&di->calib_delay_work, rk818_bat_internal_calib);
1545 }
1546
rk818_bat_init_zero_table(struct rk818_battery * di)1547 static void rk818_bat_init_zero_table(struct rk818_battery *di)
1548 {
1549 int i, diff, min, max;
1550 size_t ocv_size, length;
1551
1552 ocv_size = di->pdata->ocv_size;
1553 length = sizeof(di->pdata->zero_table) * ocv_size;
1554 di->pdata->zero_table =
1555 devm_kzalloc(di->dev, length, GFP_KERNEL);
1556 if (!di->pdata->zero_table) {
1557 di->pdata->zero_table = di->pdata->ocv_table;
1558 dev_err(di->dev, "malloc zero table fail\n");
1559 return;
1560 }
1561
1562 min = di->pdata->pwroff_vol,
1563 max = di->pdata->ocv_table[ocv_size - 4];
1564 diff = (max - min) / DIV(ocv_size - 1);
1565 for (i = 0; i < ocv_size; i++)
1566 di->pdata->zero_table[i] = min + (i * diff);
1567
1568 for (i = 0; i < ocv_size; i++)
1569 DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]);
1570
1571 for (i = 0; i < ocv_size; i++)
1572 DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]);
1573 }
1574
rk818_bat_calc_sm_linek(struct rk818_battery * di)1575 static void rk818_bat_calc_sm_linek(struct rk818_battery *di)
1576 {
1577 int linek, current_avg;
1578 u8 diff, delta;
1579
1580 delta = abs(di->dsoc - di->rsoc);
1581 diff = delta * 3;/* speed:3/4 */
1582 current_avg = rk818_bat_get_avg_current(di);
1583 if (current_avg >= 0) {
1584 if (di->dsoc < di->rsoc)
1585 linek = 1000 * (delta + diff) / DIV(diff);
1586 else if (di->dsoc > di->rsoc)
1587 linek = 1000 * diff / DIV(delta + diff);
1588 else
1589 linek = 1000;
1590 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1591 (di->dsoc + diff) : (di->rsoc + diff);
1592 } else {
1593 if (di->dsoc < di->rsoc)
1594 linek = -1000 * diff / DIV(delta + diff);
1595 else if (di->dsoc > di->rsoc)
1596 linek = -1000 * (delta + diff) / DIV(diff);
1597 else
1598 linek = -1000;
1599 di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
1600 (di->dsoc - diff) : (di->rsoc - diff);
1601 }
1602
1603 di->sm_linek = linek;
1604 di->sm_remain_cap = di->remain_cap;
1605 di->dbg_calc_dsoc = di->dsoc;
1606 di->dbg_calc_rsoc = di->rsoc;
1607
1608 DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg);
1609 }
1610
rk818_bat_calc_zero_linek(struct rk818_battery * di)1611 static void rk818_bat_calc_zero_linek(struct rk818_battery *di)
1612 {
1613 int dead_voltage, ocv_voltage;
1614 int voltage_avg, current_avg, vsys;
1615 int ocv_cap, dead_cap, xsoc;
1616 int ocv_soc, dead_soc;
1617 int pwroff_vol;
1618 int i, cnt = 0, vol_old, vol_now;
1619 int org_linek = 0, min_gap_xsoc;
1620
1621 if ((abs(di->current_avg) < 500) && (di->dsoc > 10))
1622 pwroff_vol = di->pdata->pwroff_vol + 50;
1623 else
1624 pwroff_vol = di->pdata->pwroff_vol;
1625
1626 do {
1627 vol_old = rk818_bat_get_avg_voltage(di);
1628 msleep(100);
1629 vol_now = rk818_bat_get_avg_voltage(di);
1630 cnt++;
1631 } while ((vol_old == vol_now) && (cnt < 11));
1632
1633 voltage_avg = 0;
1634 for (i = 0; i < 10; i++) {
1635 voltage_avg += rk818_bat_get_avg_voltage(di);
1636 msleep(100);
1637 }
1638
1639 /* calc estimate ocv voltage */
1640 voltage_avg /= 10;
1641 current_avg = rk818_bat_get_avg_current(di);
1642 vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000;
1643
1644 DBG("ZERO0: shtd_vol: org = %d, now = %d, zero_reserve_dsoc = %d\n",
1645 di->pdata->pwroff_vol, pwroff_vol, di->pdata->zero_reserve_dsoc);
1646
1647 dead_voltage = pwroff_vol - current_avg *
1648 (di->bat_res + DEF_PWRPATH_RES) / 1000;
1649 ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000;
1650 DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n",
1651 dead_voltage, ocv_voltage);
1652
1653 /* calc estimate soc and cap */
1654 dead_soc = rk818_bat_vol_to_zerosoc(di, dead_voltage);
1655 dead_cap = rk818_bat_vol_to_zerocap(di, dead_voltage);
1656 DBG("ZERO0: dead_soc = %d, dead_cap = %d\n",
1657 dead_soc, dead_cap);
1658
1659 ocv_soc = rk818_bat_vol_to_zerosoc(di, ocv_voltage);
1660 ocv_cap = rk818_bat_vol_to_zerocap(di, ocv_voltage);
1661 DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n",
1662 ocv_soc, ocv_cap);
1663
1664 /* xsoc: available rsoc */
1665 xsoc = ocv_soc - dead_soc;
1666
1667 /* min_gap_xsoc: reserve xsoc */
1668 if (abs(current_avg) > ZERO_LOAD_LVL1)
1669 min_gap_xsoc = ZERO_GAP_XSOC3;
1670 else if (abs(current_avg) > ZERO_LOAD_LVL2)
1671 min_gap_xsoc = ZERO_GAP_XSOC2;
1672 else
1673 min_gap_xsoc = ZERO_GAP_XSOC1;
1674
1675 if ((xsoc <= 30) && (di->dsoc >= di->pdata->zero_reserve_dsoc))
1676 min_gap_xsoc = min_gap_xsoc + ZERO_GAP_CALIB;
1677
1678 di->zero_remain_cap = di->remain_cap;
1679 di->zero_timeout_cnt = 0;
1680 if ((di->dsoc <= 1) && (xsoc > 0)) {
1681 di->zero_linek = 400;
1682 di->zero_drop_sec = 0;
1683 } else if (xsoc >= 0) {
1684 di->zero_drop_sec = 0;
1685 di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc);
1686 org_linek = di->zero_linek;
1687 /* battery energy mode to use up voltage */
1688 if ((di->pdata->energy_mode) &&
1689 (xsoc - di->dsoc >= ZERO_GAP_XSOC3) &&
1690 (di->dsoc <= 10) && (di->zero_linek < 300)) {
1691 di->zero_linek = 300;
1692 DBG("ZERO-new: zero_linek adjust step0...\n");
1693 /* reserve enough power yet, slow down any way */
1694 } else if ((xsoc - di->dsoc >= min_gap_xsoc) ||
1695 ((xsoc - di->dsoc >= ZERO_GAP_XSOC2) &&
1696 (di->dsoc <= 10) && (xsoc > 15))) {
1697 if (xsoc <= 20 &&
1698 di->dsoc >= di->pdata->zero_reserve_dsoc)
1699 di->zero_linek = 1200;
1700 else if (xsoc - di->dsoc >= 2 * min_gap_xsoc)
1701 di->zero_linek = 400;
1702 else if (xsoc - di->dsoc >= 3 + min_gap_xsoc)
1703 di->zero_linek = 600;
1704 else
1705 di->zero_linek = 800;
1706 DBG("ZERO-new: zero_linek adjust step1...\n");
1707 /* control zero mode beginning enter */
1708 } else if ((di->zero_linek > 1800) && (di->dsoc > 70)) {
1709 di->zero_linek = 1800;
1710 DBG("ZERO-new: zero_linek adjust step2...\n");
1711 /* dsoc close to xsoc: it must reserve power */
1712 } else if ((di->zero_linek > 1000) && (di->zero_linek < 1200)) {
1713 di->zero_linek = 1200;
1714 DBG("ZERO-new: zero_linek adjust step3...\n");
1715 /* dsoc[5~15], dsoc < xsoc */
1716 } else if ((di->dsoc <= 15 && di->dsoc > 5) &&
1717 (di->zero_linek <= 1200)) {
1718 /* slow down */
1719 if (xsoc - di->dsoc >= min_gap_xsoc)
1720 di->zero_linek = 800;
1721 /* reserve power */
1722 else
1723 di->zero_linek = 1200;
1724 DBG("ZERO-new: zero_linek adjust step4...\n");
1725 /* dsoc[5, 100], dsoc < xsoc */
1726 } else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) {
1727 if ((xsoc - di->dsoc) < min_gap_xsoc) {
1728 /* reserve power */
1729 di->zero_linek = 1200;
1730 } else {
1731 if (abs(di->current_avg) > 500)/* heavy */
1732 di->zero_linek = 900;
1733 else
1734 di->zero_linek = 1000;
1735 }
1736 DBG("ZERO-new: zero_linek adjust step5...\n");
1737 /* dsoc[0~5], dsoc < xsoc */
1738 } else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) {
1739 if ((xsoc - di->dsoc) <= 3)
1740 di->zero_linek = 1200;
1741 else
1742 di->zero_linek = 800;
1743 DBG("ZERO-new: zero_linek adjust step6...\n");
1744 }
1745 } else {
1746 /* xsoc < 0 */
1747 di->zero_linek = 1000;
1748 if (!di->zero_drop_sec)
1749 di->zero_drop_sec = get_boot_sec();
1750 if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) {
1751 DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec));
1752 di->zero_drop_sec = 0;
1753 di->dsoc--;
1754 di->zero_dsoc = (di->dsoc + 1) * 1000 -
1755 MIN_ACCURACY;
1756 }
1757 }
1758
1759 if (voltage_avg < pwroff_vol - 70) {
1760 if (!di->shtd_drop_sec)
1761 di->shtd_drop_sec = get_boot_sec();
1762 if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) {
1763 BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc);
1764 di->shtd_drop_sec = 0;
1765 di->dsoc = 0;
1766 }
1767 } else {
1768 di->shtd_drop_sec = 0;
1769 }
1770
1771 DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, "
1772 "rsoc=%d, gap=%d, v=%d, vsys=%d\n"
1773 "ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, "
1774 "sht_drop=%ld\n\n",
1775 org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc,
1776 min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap,
1777 base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec));
1778 }
1779
rk818_bat_finish_algo_prepare(struct rk818_battery * di)1780 static void rk818_bat_finish_algo_prepare(struct rk818_battery *di)
1781 {
1782 di->finish_base = get_boot_sec();
1783 if (!di->finish_base)
1784 di->finish_base = 1;
1785 }
1786
rk818_bat_smooth_algo_prepare(struct rk818_battery * di)1787 static void rk818_bat_smooth_algo_prepare(struct rk818_battery *di)
1788 {
1789 int tmp_soc;
1790
1791 tmp_soc = di->sm_chrg_dsoc / 1000;
1792 if (tmp_soc != di->dsoc)
1793 di->sm_chrg_dsoc = di->dsoc * 1000;
1794
1795 tmp_soc = di->sm_dischrg_dsoc / 1000;
1796 if (tmp_soc != di->dsoc)
1797 di->sm_dischrg_dsoc =
1798 (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1799
1800 DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n",
1801 __func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1802
1803 rk818_bat_calc_sm_linek(di);
1804 }
1805
rk818_bat_zero_algo_prepare(struct rk818_battery * di)1806 static void rk818_bat_zero_algo_prepare(struct rk818_battery *di)
1807 {
1808 int tmp_dsoc;
1809
1810 di->zero_timeout_cnt = 0;
1811 tmp_dsoc = di->zero_dsoc / 1000;
1812 if (tmp_dsoc != di->dsoc)
1813 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1814
1815 DBG("<%s>. first calc, reinit linek\n", __func__);
1816
1817 rk818_bat_calc_zero_linek(di);
1818 }
1819
rk818_bat_calc_zero_algorithm(struct rk818_battery * di)1820 static void rk818_bat_calc_zero_algorithm(struct rk818_battery *di)
1821 {
1822 int tmp_soc = 0, sm_delta_dsoc = 0;
1823
1824 tmp_soc = di->zero_dsoc / 1000;
1825 if (tmp_soc == di->dsoc)
1826 goto out;
1827
1828 DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
1829 /* when discharge slow down, take sm chrg into calc */
1830 if (di->dsoc < di->rsoc) {
1831 /* take sm charge rest into calc */
1832 tmp_soc = di->sm_chrg_dsoc / 1000;
1833 if (tmp_soc == di->dsoc) {
1834 sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
1835 di->sm_chrg_dsoc = di->dsoc * 1000;
1836 di->zero_dsoc += sm_delta_dsoc;
1837 DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc);
1838 }
1839 }
1840
1841 /* when discharge speed up, take sm dischrg into calc */
1842 if (di->dsoc > di->rsoc) {
1843 /* take sm discharge rest into calc */
1844 tmp_soc = di->sm_dischrg_dsoc / 1000;
1845 if (tmp_soc == di->dsoc) {
1846 sm_delta_dsoc = di->sm_dischrg_dsoc -
1847 ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
1848 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
1849 MIN_ACCURACY;
1850 di->zero_dsoc += sm_delta_dsoc;
1851 DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc);
1852 }
1853 }
1854
1855 /* check overflow */
1856 if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) {
1857 DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc);
1858 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1859 }
1860
1861 /* check new dsoc */
1862 tmp_soc = di->zero_dsoc / 1000;
1863 if (tmp_soc != di->dsoc) {
1864 /* avoid dsoc jump when heavy load */
1865 if ((di->dsoc - tmp_soc) > 1) {
1866 di->dsoc--;
1867 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
1868 DBG("ZERO1: heavy load...\n");
1869 } else {
1870 di->dsoc = tmp_soc;
1871 }
1872 di->zero_drop_sec = 0;
1873 }
1874
1875 out:
1876 DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n",
1877 di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc);
1878 DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
1879 di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1880 }
1881
rk818_bat_zero_algorithm(struct rk818_battery * di)1882 static void rk818_bat_zero_algorithm(struct rk818_battery *di)
1883 {
1884 int delta_cap = 0, delta_soc = 0;
1885
1886 di->zero_timeout_cnt++;
1887 delta_cap = di->zero_remain_cap - di->remain_cap;
1888 delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc);
1889
1890 DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n"
1891 "ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n"
1892 "ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n",
1893 di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc,
1894 delta_soc, delta_cap, di->zero_remain_cap,
1895 di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
1896
1897 if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) ||
1898 (di->zero_timeout_cnt > MIN_ZERO_OVERCNT) ||
1899 (di->zero_linek == 0)) {
1900 DBG("ZERO1:--------- enter calc -----------\n");
1901 di->zero_timeout_cnt = 0;
1902 di->zero_dsoc -= delta_soc;
1903 rk818_bat_calc_zero_algorithm(di);
1904 rk818_bat_calc_zero_linek(di);
1905 }
1906 }
1907
rk818_bat_dump_time_table(struct rk818_battery * di)1908 static void rk818_bat_dump_time_table(struct rk818_battery *di)
1909 {
1910 u8 i;
1911 static int old_index;
1912 static int old_min;
1913 int mod = di->dsoc % 10;
1914 int index = di->dsoc / 10;
1915 u32 time;
1916
1917 if (rk818_bat_chrg_online(di))
1918 time = base2min(di->plug_in_base);
1919 else
1920 time = base2min(di->plug_out_base);
1921
1922 if ((mod == 0) && (index > 0) && (old_index != index)) {
1923 di->dbg_chrg_min[index - 1] = time - old_min;
1924 old_min = time;
1925 old_index = index;
1926 }
1927
1928 for (i = 1; i < 11; i++)
1929 DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]);
1930 DBG("\n");
1931 }
1932
rk818_bat_debug_info(struct rk818_battery * di)1933 static void rk818_bat_debug_info(struct rk818_battery *di)
1934 {
1935 u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt;
1936 u8 usb_ctrl, chrg_ctrl1, thermal;
1937 u8 int_sts1, int_sts2;
1938 u8 int_msk1, int_msk2;
1939 u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en;
1940 char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"};
1941 char *bat_mode[] = {"BAT", "VIRTUAL"};
1942
1943 if (rk818_bat_chrg_online(di))
1944 di->plug_out_base = get_boot_sec();
1945 else
1946 di->plug_in_base = get_boot_sec();
1947
1948 rk818_bat_dump_time_table(di);
1949
1950 if (!dbg_enable)
1951 return;
1952
1953 ts_ctrl = rk818_bat_read(di, RK818_TS_CTRL_REG);
1954 misc = rk818_bat_read(di, RK818_MISC_MARK_REG);
1955 ggcon = rk818_bat_read(di, RK818_GGCON_REG);
1956 ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
1957 sup_tst = rk818_bat_read(di, RK818_SUP_STS_REG);
1958 vb_mod = rk818_bat_read(di, RK818_VB_MON_REG);
1959 usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
1960 chrg_ctrl1 = rk818_bat_read(di, RK818_CHRG_CTRL_REG1);
1961 chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
1962 chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
1963 rtc = rk818_bat_read(di, 0);
1964 thermal = rk818_bat_read(di, RK818_THERMAL_REG);
1965 int_sts1 = rk818_bat_read(di, RK818_INT_STS_REG1);
1966 int_sts2 = rk818_bat_read(di, RK818_INT_STS_REG2);
1967 int_msk1 = rk818_bat_read(di, RK818_INT_STS_MSK_REG1);
1968 int_msk2 = rk818_bat_read(di, RK818_INT_STS_MSK_REG2);
1969 dcdc_en = rk818_bat_read(di, RK818_DCDC_EN_REG);
1970 reboot_cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
1971
1972 DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n"
1973 "GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n"
1974 "SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n"
1975 "THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n"
1976 "CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n"
1977 "INT_STS: REG1=0x%2x, REG2=0x%2x\n"
1978 "INT_MSK: REG1=0x%2x, REG2=0x%2x\n",
1979 DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en,
1980 sup_tst, vb_mod, usb_ctrl,
1981 thermal, misc, ts_ctrl,
1982 chrg_ctrl1, chrg_ctrl2, chrg_ctrl3,
1983 int_sts1, int_sts2, int_msk1, int_msk2
1984 );
1985
1986 DBG("###############################################################\n"
1987 "Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n"
1988 "K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d\n"
1989 "fb_temp=%d, bat_temp=%d, sample_res=%d, USB=%d, DC=%d\n"
1990 "off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d, hot=%d\n"
1991 "adp:finish=%lu, boot_min=%lu, sleep_min=%lu, adc=%d, Vsys=%d\n"
1992 "bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n"
1993 "pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n"
1994 "ocv_c=%d: %d -> %d; max_c=%d: %d -> %d; force_c=%d: %d -> %d\n"
1995 "min=%d, init=%d, sw=%d, below0=%d, first=%d, changed=%d\n"
1996 "###############################################################\n",
1997 di->dsoc, di->rsoc, di->voltage_avg, di->current_avg,
1998 di->remain_cap, di->fcc, di->rsoc - di->dsoc,
1999 di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap,
2000 di->res_div * chrg_cur_sel_array[chrg_ctrl1 & 0x0f],
2001 chrg_cur_input_array[usb_ctrl & 0x0f],
2002 chrg_vol_sel_array[(chrg_ctrl1 & 0x70) >> 4],
2003 feedback_temp_array[(thermal & 0x0c) >> 2], di->temperature,
2004 di->pdata->sample_res, di->usb_in, di->ac_in,
2005 rk818_bat_get_ioffset(di),
2006 rk818_bat_get_coffset(di), di->poffset, di->bat_res,
2007 di->age_adjust_cap, di->fb_blank, !!(thermal & HOTDIE_STS),
2008 base2min(di->finish_base),
2009 base2min(di->boot_base), di->sleep_sum_sec / 60,
2010 di->adc_allow_update,
2011 di->voltage_avg + di->current_avg * DEF_PWRPATH_RES / 1000,
2012 bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc,
2013 di->dbg_calc_rsoc, di->voltage_ocv, di->dbg_pwr_dsoc,
2014 di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt,
2015 reboot_cnt, di->is_ocv_calib, di->ocv_pre_dsoc, di->ocv_new_dsoc,
2016 di->is_max_soc_offset, di->max_pre_dsoc, di->max_new_dsoc,
2017 di->is_force_calib, di->force_pre_dsoc, di->force_new_dsoc,
2018 di->pwroff_min, di->is_initialized, di->is_sw_reset,
2019 di->dbg_cap_low0, di->is_first_on, di->last_dsoc
2020 );
2021 }
2022
rk818_bat_init_capacity(struct rk818_battery * di,u32 cap)2023 static void rk818_bat_init_capacity(struct rk818_battery *di, u32 cap)
2024 {
2025 int delta_cap;
2026
2027 delta_cap = cap - di->remain_cap;
2028 if (!delta_cap)
2029 return;
2030
2031 di->age_adjust_cap += delta_cap;
2032 rk818_bat_init_coulomb_cap(di, cap);
2033 rk818_bat_smooth_algo_prepare(di);
2034 rk818_bat_zero_algo_prepare(di);
2035 }
2036
rk818_bat_update_age_fcc(struct rk818_battery * di)2037 static void rk818_bat_update_age_fcc(struct rk818_battery *di)
2038 {
2039 int fcc, remain_cap, age_keep_min, lock_fcc;
2040
2041 lock_fcc = rk818_bat_get_coulomb_cap(di);
2042 remain_cap = lock_fcc - di->age_ocv_cap - di->age_adjust_cap;
2043 age_keep_min = base2min(di->age_keep_sec);
2044
2045 DBG("%s: lock_fcc=%d, age_ocv_cap=%d, age_adjust_cap=%d, remain_cap=%d,"
2046 "age_allow_update=%d, age_keep_min=%d\n",
2047 __func__, lock_fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap,
2048 di->age_allow_update, age_keep_min);
2049
2050 if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) &&
2051 (age_keep_min < 1200)) {
2052 di->age_allow_update = false;
2053 fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc);
2054 BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, "
2055 "level=%d, fcc:%d->%d?\n",
2056 lock_fcc, remain_cap, di->age_ocv_soc,
2057 di->age_ocv_cap, di->age_level, di->fcc, fcc);
2058
2059 if ((fcc < di->qmax) && (fcc > MIN_FCC)) {
2060 BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc);
2061 di->fcc = fcc;
2062 rk818_bat_init_capacity(di, di->fcc);
2063 rk818_bat_save_fcc(di, di->fcc);
2064 rk818_bat_save_age_level(di, di->age_level);
2065 }
2066 }
2067 }
2068
rk818_bat_wait_finish_sig(struct rk818_battery * di)2069 static void rk818_bat_wait_finish_sig(struct rk818_battery *di)
2070 {
2071 int chrg_finish_vol = di->pdata->max_chrg_voltage;
2072
2073 if (!rk818_bat_chrg_online(di))
2074 return;
2075
2076 if ((di->chrg_status == CHARGE_FINISH) && (di->adc_allow_update) &&
2077 (di->voltage_avg > chrg_finish_vol - 150)) {
2078 rk818_bat_update_age_fcc(di);
2079 if (rk818_bat_adc_calib(di))
2080 di->adc_allow_update = false;
2081 }
2082 }
2083
rk818_bat_finish_algorithm(struct rk818_battery * di)2084 static void rk818_bat_finish_algorithm(struct rk818_battery *di)
2085 {
2086 unsigned long finish_sec, soc_sec;
2087 int plus_soc, finish_current, rest = 0;
2088
2089 /* rsoc */
2090 if ((di->remain_cap != di->fcc) &&
2091 (rk818_bat_get_chrg_status(di) == CHARGE_FINISH)) {
2092 di->age_adjust_cap += (di->fcc - di->remain_cap);
2093 rk818_bat_init_coulomb_cap(di, di->fcc);
2094 }
2095
2096 /* dsoc */
2097 if (di->dsoc < 100) {
2098 if (!di->finish_base)
2099 di->finish_base = get_boot_sec();
2100 finish_current = (di->rsoc - di->dsoc) > FINISH_MAX_SOC_DELAY ?
2101 FINISH_CHRG_CUR2 : FINISH_CHRG_CUR1;
2102 finish_sec = base2sec(di->finish_base);
2103 soc_sec = di->fcc * 3600 / 100 / DIV(finish_current);
2104 plus_soc = finish_sec / DIV(soc_sec);
2105 if (finish_sec > soc_sec) {
2106 rest = finish_sec % soc_sec;
2107 di->dsoc += plus_soc;
2108 di->finish_base = get_boot_sec();
2109 if (di->finish_base > rest)
2110 di->finish_base = get_boot_sec() - rest;
2111 }
2112 DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n"
2113 "soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n",
2114 __func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest);
2115 }
2116 }
2117
rk818_bat_calc_smooth_dischrg(struct rk818_battery * di)2118 static void rk818_bat_calc_smooth_dischrg(struct rk818_battery *di)
2119 {
2120 int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
2121
2122 tmp_soc = di->sm_dischrg_dsoc / 1000;
2123 if (tmp_soc == di->dsoc)
2124 goto out;
2125
2126 DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
2127 /* when dischrge slow down, take sm charge rest into calc */
2128 if (di->dsoc < di->rsoc) {
2129 tmp_soc = di->sm_chrg_dsoc / 1000;
2130 if (tmp_soc == di->dsoc) {
2131 sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
2132 di->sm_chrg_dsoc = di->dsoc * 1000;
2133 di->sm_dischrg_dsoc += sm_delta_dsoc;
2134 DBG("<%s>. take sm dischrg, delta=%d\n",
2135 __func__, sm_delta_dsoc);
2136 }
2137 }
2138
2139 /* when discharge speed up, take zero discharge rest into calc */
2140 if (di->dsoc > di->rsoc) {
2141 tmp_soc = di->zero_dsoc / 1000;
2142 if (tmp_soc == di->dsoc) {
2143 zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) *
2144 1000 - MIN_ACCURACY);
2145 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2146 di->sm_dischrg_dsoc += zero_delta_dsoc;
2147 DBG("<%s>. take zero schrg, delta=%d\n",
2148 __func__, zero_delta_dsoc);
2149 }
2150 }
2151
2152 /* check up overflow */
2153 if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) {
2154 DBG("<%s>. dischrg_dsoc up overflow\n", __func__);
2155 di->sm_dischrg_dsoc = (di->dsoc + 1) *
2156 1000 - MIN_ACCURACY;
2157 }
2158
2159 /* check new dsoc */
2160 tmp_soc = di->sm_dischrg_dsoc / 1000;
2161 if (tmp_soc != di->dsoc) {
2162 di->dsoc = tmp_soc;
2163 di->sm_chrg_dsoc = di->dsoc * 1000;
2164 }
2165 out:
2166 DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2167 __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2168 di->zero_dsoc);
2169
2170 }
2171
rk818_bat_calc_smooth_chrg(struct rk818_battery * di)2172 static void rk818_bat_calc_smooth_chrg(struct rk818_battery *di)
2173 {
2174 int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
2175
2176 tmp_soc = di->sm_chrg_dsoc / 1000;
2177 if (tmp_soc == di->dsoc)
2178 goto out;
2179
2180 DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
2181 /* when charge slow down, take zero & sm dischrg into calc */
2182 if (di->dsoc > di->rsoc) {
2183 /* take sm discharge rest into calc */
2184 tmp_soc = di->sm_dischrg_dsoc / 1000;
2185 if (tmp_soc == di->dsoc) {
2186 sm_delta_dsoc = di->sm_dischrg_dsoc -
2187 ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2188 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
2189 MIN_ACCURACY;
2190 di->sm_chrg_dsoc += sm_delta_dsoc;
2191 DBG("<%s>. take sm dischrg, delta=%d\n",
2192 __func__, sm_delta_dsoc);
2193 }
2194
2195 /* take zero discharge rest into calc */
2196 tmp_soc = di->zero_dsoc / 1000;
2197 if (tmp_soc == di->dsoc) {
2198 zero_delta_dsoc = di->zero_dsoc -
2199 ((di->dsoc + 1) * 1000 - MIN_ACCURACY);
2200 di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2201 di->sm_chrg_dsoc += zero_delta_dsoc;
2202 DBG("<%s>. take zero dischrg, delta=%d\n",
2203 __func__, zero_delta_dsoc);
2204 }
2205 }
2206
2207 /* check down overflow */
2208 if (di->sm_chrg_dsoc < di->dsoc * 1000) {
2209 DBG("<%s>. chrg_dsoc down overflow\n", __func__);
2210 di->sm_chrg_dsoc = di->dsoc * 1000;
2211 }
2212
2213 /* check new dsoc */
2214 tmp_soc = di->sm_chrg_dsoc / 1000;
2215 if (tmp_soc != di->dsoc) {
2216 di->dsoc = tmp_soc;
2217 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2218 }
2219 out:
2220 DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
2221 __func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
2222 di->zero_dsoc);
2223 }
2224
rk818_bat_smooth_algorithm(struct rk818_battery * di)2225 static void rk818_bat_smooth_algorithm(struct rk818_battery *di)
2226 {
2227 int ydsoc = 0, delta_cap = 0, old_cap = 0;
2228 unsigned long tgt_sec = 0;
2229
2230 di->remain_cap = rk818_bat_get_coulomb_cap(di);
2231
2232 /* full charge: slow down */
2233 if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV) &&
2234 (di->current_avg > 0)) {
2235 di->sm_linek = FULL_CHRG_K;
2236 /* terminal charge, slow down */
2237 } else if ((di->current_avg >= TERM_CHRG_CURR) &&
2238 (di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) {
2239 di->sm_linek = TERM_CHRG_K;
2240 DBG("<%s>. terminal mode..\n", __func__);
2241 /* simulate charge, speed up */
2242 } else if ((di->current_avg <= SIMULATE_CHRG_CURR) &&
2243 (di->current_avg > 0) && (di->chrg_status == CC_OR_CV) &&
2244 (di->dsoc < TERM_CHRG_DSOC) &&
2245 ((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) {
2246 di->sm_linek = SIMULATE_CHRG_K;
2247 DBG("<%s>. simulate mode..\n", __func__);
2248 } else {
2249 /* charge and discharge switch */
2250 if ((di->sm_linek * di->current_avg <= 0) ||
2251 (di->sm_linek == TERM_CHRG_K) ||
2252 (di->sm_linek == FULL_CHRG_K) ||
2253 (di->sm_linek == SIMULATE_CHRG_K)) {
2254 DBG("<%s>. linek mode, retinit sm linek..\n", __func__);
2255 rk818_bat_calc_sm_linek(di);
2256 }
2257 }
2258
2259 old_cap = di->sm_remain_cap;
2260 /*
2261 * when dsoc equal rsoc(not include full, term, simulate case),
2262 * sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1
2263 * right away, so change it after flat seconds
2264 */
2265 if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) &&
2266 (di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K &&
2267 di->sm_linek != SIMULATE_CHRG_K)) {
2268 if (!di->flat_match_sec)
2269 di->flat_match_sec = get_boot_sec();
2270 tgt_sec = di->fcc * 3600 / 100 / DIV(abs(di->current_avg)) / 3;
2271 if (base2sec(di->flat_match_sec) >= tgt_sec) {
2272 di->flat_match_sec = 0;
2273 di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000;
2274 }
2275 DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__,
2276 base2sec(di->flat_match_sec), tgt_sec, di->sm_linek);
2277 } else {
2278 di->flat_match_sec = 0;
2279 }
2280
2281 /* abs(k)=1000 or dsoc=100, stop calc */
2282 if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 &&
2283 di->chrg_status == CC_OR_CV && di->dsoc >= 100)) {
2284 DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek);
2285 if (abs(di->sm_linek) == 1000) {
2286 di->dsoc = di->rsoc;
2287 di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000;
2288 DBG("<%s>. dsoc == rsoc, sm_linek=%d\n",
2289 __func__, di->sm_linek);
2290 }
2291 di->sm_remain_cap = di->remain_cap;
2292 di->sm_chrg_dsoc = di->dsoc * 1000;
2293 di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
2294 DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
2295 __func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
2296 } else {
2297 delta_cap = di->remain_cap - di->sm_remain_cap;
2298 if (delta_cap == 0) {
2299 DBG("<%s>. delta_cap = 0\n", __func__);
2300 return;
2301 }
2302 ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc);
2303 if (ydsoc == 0) {
2304 DBG("<%s>. ydsoc = 0\n", __func__);
2305 return;
2306 }
2307 di->sm_remain_cap = di->remain_cap;
2308
2309 DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n",
2310 __func__, di->sm_linek, ydsoc, old_cap,
2311 di->sm_remain_cap, delta_cap);
2312
2313 /* discharge mode */
2314 if (ydsoc < 0) {
2315 di->sm_dischrg_dsoc += ydsoc;
2316 rk818_bat_calc_smooth_dischrg(di);
2317 /* charge mode */
2318 } else {
2319 di->sm_chrg_dsoc += ydsoc;
2320 rk818_bat_calc_smooth_chrg(di);
2321 }
2322
2323 if (di->s2r) {
2324 di->s2r = false;
2325 rk818_bat_calc_sm_linek(di);
2326 }
2327 }
2328 }
2329
2330 /*
2331 * cccv and finish switch all the time will cause dsoc freeze,
2332 * if so, do finish chrg, 100ma is less than min finish_ma.
2333 */
rk818_bat_fake_finish_mode(struct rk818_battery * di)2334 static bool rk818_bat_fake_finish_mode(struct rk818_battery *di)
2335 {
2336 if ((di->rsoc == 100) && (rk818_bat_get_chrg_status(di) == CC_OR_CV) &&
2337 (abs(di->current_avg) <= 100))
2338 return true;
2339 else
2340 return false;
2341 }
2342
rk818_bat_display_smooth(struct rk818_battery * di)2343 static void rk818_bat_display_smooth(struct rk818_battery *di)
2344 {
2345 /* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */
2346 if (di->s2r && !di->sleep_chrg_online) {
2347 DBG("s2r: discharge, reset algorithm...\n");
2348 di->s2r = false;
2349 rk818_bat_zero_algo_prepare(di);
2350 rk818_bat_smooth_algo_prepare(di);
2351 return;
2352 }
2353
2354 if (di->work_mode == MODE_FINISH) {
2355 DBG("step1: charge finish...\n");
2356 rk818_bat_finish_algorithm(di);
2357 if ((rk818_bat_get_chrg_status(di) != CHARGE_FINISH) &&
2358 !rk818_bat_fake_finish_mode(di)) {
2359 if ((di->current_avg < 0) &&
2360 (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2361 DBG("step1: change to zero mode...\n");
2362 rk818_bat_zero_algo_prepare(di);
2363 di->work_mode = MODE_ZERO;
2364 } else {
2365 DBG("step1: change to smooth mode...\n");
2366 rk818_bat_smooth_algo_prepare(di);
2367 di->work_mode = MODE_SMOOTH;
2368 }
2369 }
2370 } else if (di->work_mode == MODE_ZERO) {
2371 DBG("step2: zero algorithm...\n");
2372 rk818_bat_zero_algorithm(di);
2373 if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) ||
2374 (di->current_avg >= 0)) {
2375 DBG("step2: change to smooth mode...\n");
2376 rk818_bat_smooth_algo_prepare(di);
2377 di->work_mode = MODE_SMOOTH;
2378 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2379 rk818_bat_fake_finish_mode(di)) {
2380 DBG("step2: change to finish mode...\n");
2381 rk818_bat_finish_algo_prepare(di);
2382 di->work_mode = MODE_FINISH;
2383 }
2384 } else {
2385 DBG("step3: smooth algorithm...\n");
2386 rk818_bat_smooth_algorithm(di);
2387 if ((di->current_avg < 0) &&
2388 (di->voltage_avg < di->pdata->zero_algorithm_vol)) {
2389 DBG("step3: change to zero mode...\n");
2390 rk818_bat_zero_algo_prepare(di);
2391 di->work_mode = MODE_ZERO;
2392 } else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
2393 rk818_bat_fake_finish_mode(di)) {
2394 DBG("step3: change to finish mode...\n");
2395 rk818_bat_finish_algo_prepare(di);
2396 di->work_mode = MODE_FINISH;
2397 }
2398 }
2399 }
2400
rk818_bat_relax_vol_calib(struct rk818_battery * di)2401 static void rk818_bat_relax_vol_calib(struct rk818_battery *di)
2402 {
2403 int soc, cap, vol;
2404
2405 vol = di->voltage_relax;
2406 soc = rk818_bat_vol_to_ocvsoc(di, vol);
2407 cap = rk818_bat_vol_to_ocvcap(di, vol);
2408 rk818_bat_init_capacity(di, cap);
2409 BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap);
2410 }
2411
rk818_bat_relife_age_flag(struct rk818_battery * di)2412 static void rk818_bat_relife_age_flag(struct rk818_battery *di)
2413 {
2414 u8 ocv_soc, ocv_cap, soc_level;
2415
2416 if (di->voltage_relax <= 0)
2417 return;
2418
2419 ocv_soc = rk818_bat_vol_to_ocvsoc(di, di->voltage_relax);
2420 ocv_cap = rk818_bat_vol_to_ocvcap(di, di->voltage_relax);
2421 DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__,
2422 ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax);
2423
2424 /* sleep enough time and ocv_soc enough low */
2425 if (!di->age_allow_update && ocv_soc <= 10) {
2426 di->age_voltage = di->voltage_relax;
2427 di->age_ocv_cap = ocv_cap;
2428 di->age_ocv_soc = ocv_soc;
2429 di->age_adjust_cap = 0;
2430
2431 if (ocv_soc <= 1)
2432 di->age_level = 100;
2433 else if (ocv_soc < 5)
2434 di->age_level = 90;
2435 else
2436 di->age_level = 80;
2437
2438 soc_level = rk818_bat_get_age_level(di);
2439 if (soc_level > di->age_level) {
2440 di->age_allow_update = false;
2441 } else {
2442 di->age_allow_update = true;
2443 di->age_keep_sec = get_boot_sec();
2444 }
2445
2446 BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, "
2447 "soc_level:%d, age_allow_update:%d, "
2448 "age_level:%d\n",
2449 di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level,
2450 di->age_allow_update, di->age_level);
2451 }
2452 }
2453
rk818_bat_sleep_dischrg(struct rk818_battery * di)2454 static int rk818_bat_sleep_dischrg(struct rk818_battery *di)
2455 {
2456 bool ocv_soc_updated = false;
2457 int tgt_dsoc, gap_soc, sleep_soc = 0;
2458 int pwroff_vol = di->pdata->pwroff_vol;
2459 unsigned long sleep_sec = di->sleep_dischrg_sec;
2460
2461 DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n",
2462 __func__, di->dsoc, di->rsoc, di->voltage_relax,
2463 di->voltage_avg, sleep_sec / 60);
2464
2465 if (di->voltage_relax >= di->voltage_avg) {
2466 rk818_bat_relax_vol_calib(di);
2467 rk818_bat_restart_relax(di);
2468 rk818_bat_relife_age_flag(di);
2469 ocv_soc_updated = true;
2470 }
2471
2472 /* handle dsoc */
2473 if (di->dsoc <= di->rsoc) {
2474 di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600);
2475 sleep_soc = di->sleep_sum_cap * 100 / DIV(di->fcc);
2476 tgt_dsoc = di->dsoc - sleep_soc;
2477 if (sleep_soc > 0) {
2478 BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n",
2479 di->rsoc, di->dsoc, sleep_soc);
2480 if (di->dsoc < 5) {
2481 di->dsoc--;
2482 } else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) {
2483 if (di->dsoc == 5)
2484 di->dsoc--;
2485 else
2486 di->dsoc = 5;
2487 } else if (tgt_dsoc > 5) {
2488 di->dsoc = tgt_dsoc;
2489 }
2490 }
2491
2492 DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n",
2493 __func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc);
2494 } else {
2495 /* di->dsoc > di->rsoc */
2496 di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600);
2497 sleep_soc = di->sleep_sum_cap / DIV(di->fcc / 100);
2498 gap_soc = di->dsoc - di->rsoc;
2499
2500 BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n",
2501 di->rsoc, di->dsoc, sleep_soc);
2502 if (gap_soc > sleep_soc) {
2503 if ((gap_soc - 5) > (sleep_soc * 2))
2504 di->dsoc -= (sleep_soc * 2);
2505 else
2506 di->dsoc -= sleep_soc;
2507 } else {
2508 di->dsoc = di->rsoc;
2509 }
2510
2511 DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n",
2512 __func__, di->sleep_sum_cap, sleep_soc, gap_soc);
2513 }
2514
2515 if (di->voltage_avg <= pwroff_vol - 70) {
2516 di->dsoc = 0;
2517 rk_send_wakeup_key();
2518 BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc);
2519 }
2520
2521 if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 &&
2522 di->dsoc < 40) {
2523 di->dsoc--;
2524 BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc);
2525 }
2526
2527 if (di->dsoc <= 0) {
2528 di->dsoc = 0;
2529 rk_send_wakeup_key();
2530 BAT_INFO("sleep dsoc is %d...\n", di->dsoc);
2531 }
2532
2533 DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n",
2534 __func__, di->dsoc, di->rsoc, di->sleep_sum_cap);
2535
2536 return sleep_soc;
2537 }
2538
rk818_bat_power_supply_changed(struct rk818_battery * di)2539 static void rk818_bat_power_supply_changed(struct rk818_battery *di)
2540 {
2541 u8 status, thermal;
2542 static int old_soc = -1;
2543
2544 if (di->dsoc > 100)
2545 di->dsoc = 100;
2546 else if (di->dsoc < 0)
2547 di->dsoc = 0;
2548
2549 if (di->dsoc == old_soc)
2550 return;
2551
2552 thermal = rk818_bat_read(di, RK818_THERMAL_REG);
2553 status = rk818_bat_read(di, RK818_SUP_STS_REG);
2554 status = (status & CHRG_STATUS_MSK) >> 4;
2555 old_soc = di->dsoc;
2556 di->last_dsoc = di->dsoc;
2557 power_supply_changed(di->bat);
2558 BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, ov=%d c=%d, "
2559 "cap=%d, f=%d, st=%s, hotdie=%d\n",
2560 di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv,
2561 di->current_avg, di->remain_cap, di->fcc, bat_status[status],
2562 !!(thermal & HOTDIE_STS));
2563
2564 BAT_INFO("dl=%d, rl=%d, v=%d, halt=%d, halt_n=%d, max=%d, "
2565 "init=%d, sw=%d, calib=%d, below0=%d, force=%d\n",
2566 di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol,
2567 di->is_halt, di->halt_cnt, di->is_max_soc_offset,
2568 di->is_initialized, di->is_sw_reset, di->is_ocv_calib,
2569 di->dbg_cap_low0, di->is_force_calib);
2570 }
2571
rk818_bat_check_reboot(struct rk818_battery * di)2572 static u8 rk818_bat_check_reboot(struct rk818_battery *di)
2573 {
2574 u8 cnt;
2575
2576 cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
2577 cnt++;
2578
2579 if (cnt >= REBOOT_MAX_CNT) {
2580 BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc);
2581 di->dsoc = di->rsoc;
2582 if (di->dsoc > 100)
2583 di->dsoc = 100;
2584 else if (di->dsoc < 0)
2585 di->dsoc = 0;
2586 rk818_bat_save_dsoc(di, di->dsoc);
2587 cnt = REBOOT_MAX_CNT;
2588 }
2589
2590 rk818_bat_save_reboot_cnt(di, cnt);
2591 DBG("reboot cnt: %d\n", cnt);
2592
2593 return cnt;
2594 }
2595
rk818_bat_rsoc_daemon(struct rk818_battery * di)2596 static void rk818_bat_rsoc_daemon(struct rk818_battery *di)
2597 {
2598 int est_vol, remain_cap;
2599 static unsigned long sec;
2600
2601 if ((di->remain_cap < 0) && (di->fb_blank != 0)) {
2602 if (!sec)
2603 sec = get_boot_sec();
2604 wake_lock_timeout(&di->wake_lock,
2605 (di->pdata->monitor_sec + 1) * HZ);
2606
2607 DBG("sec=%ld, hold_sec=%ld\n", sec, base2sec(sec));
2608 if (base2sec(sec) >= 60) {
2609 sec = 0;
2610 di->dbg_cap_low0++;
2611 est_vol = di->voltage_avg -
2612 (di->bat_res * di->current_avg) / 1000;
2613 remain_cap = rk818_bat_vol_to_ocvcap(di, est_vol);
2614 rk818_bat_init_capacity(di, remain_cap);
2615 BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n",
2616 di->remain_cap, di->rsoc);
2617 wake_unlock(&di->wake_lock);
2618 }
2619 } else {
2620 sec = 0;
2621 }
2622 }
2623
rk818_bat_update_info(struct rk818_battery * di)2624 static void rk818_bat_update_info(struct rk818_battery *di)
2625 {
2626 int is_charging;
2627
2628 di->voltage_avg = rk818_bat_get_avg_voltage(di);
2629 di->current_avg = rk818_bat_get_avg_current(di);
2630 di->voltage_relax = rk818_bat_get_relax_voltage(di);
2631 di->rsoc = rk818_bat_get_rsoc(di);
2632 di->remain_cap = rk818_bat_get_coulomb_cap(di);
2633 di->chrg_status = rk818_bat_get_chrg_status(di);
2634 is_charging = rk818_bat_get_charge_state(di);
2635 if (is_charging != di->is_charging) {
2636 di->is_charging = is_charging;
2637 if (is_charging)
2638 di->charge_count++;
2639 }
2640 if (di->voltage_avg > di->voltage_max)
2641 di->voltage_max = di->voltage_avg;
2642 if (di->current_avg > di->current_max)
2643 di->current_max = di->current_avg;
2644
2645 /* smooth charge */
2646 if (di->remain_cap > di->fcc) {
2647 di->sm_remain_cap -= (di->remain_cap - di->fcc);
2648 DBG("<%s>. cap: remain=%d, sm_remain=%d\n",
2649 __func__, di->remain_cap, di->sm_remain_cap);
2650 rk818_bat_init_coulomb_cap(di, di->fcc);
2651 }
2652
2653 if (di->chrg_status != CHARGE_FINISH)
2654 di->finish_base = get_boot_sec();
2655
2656 /*
2657 * we need update fcc in continuous charging state, if discharge state
2658 * keep at least 2 hour, we decide not to update fcc, so clear the
2659 * fcc update flag: age_allow_update.
2660 */
2661 if (base2min(di->plug_out_base) > 120)
2662 di->age_allow_update = false;
2663
2664 /* do adc calib: status must from cccv mode to finish mode */
2665 if (di->chrg_status == CC_OR_CV) {
2666 di->adc_allow_update = true;
2667 di->adc_calib_cnt = 0;
2668 }
2669 }
2670
rk818_bat_init_ts1_detect(struct rk818_battery * di)2671 static void rk818_bat_init_ts1_detect(struct rk818_battery *di)
2672 {
2673 u8 buf;
2674 u32 *ntc_table = di->pdata->ntc_table;
2675
2676 if (!di->pdata->ntc_size)
2677 return;
2678
2679 /* select ua */
2680 buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
2681 buf &= ~TS1_CUR_MSK;
2682 /* chose suitable UA for temperature detect */
2683 if (ntc_table[0] < NTC_80UA_MAX_MEASURE) {
2684 di->pdata->ntc_factor = NTC_CALC_FACTOR_80UA;
2685 di->pdata->ntc_uA = 80;
2686 buf |= ADC_CUR_80UA;
2687 } else if (ntc_table[0] < NTC_60UA_MAX_MEASURE) {
2688 di->pdata->ntc_factor = NTC_CALC_FACTOR_60UA;
2689 di->pdata->ntc_uA = 60;
2690 buf |= ADC_CUR_60UA;
2691 } else if (ntc_table[0] < NTC_40UA_MAX_MEASURE) {
2692 di->pdata->ntc_factor = NTC_CALC_FACTOR_40UA;
2693 di->pdata->ntc_uA = 40;
2694 buf |= ADC_CUR_40UA;
2695 } else {
2696 di->pdata->ntc_factor = NTC_CALC_FACTOR_20UA;
2697 di->pdata->ntc_uA = 20;
2698 buf |= ADC_CUR_20UA;
2699 }
2700 rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
2701
2702 /* enable ADC_TS1_EN */
2703 buf = rk818_bat_read(di, RK818_ADC_CTRL_REG);
2704 buf |= ADC_TS1_EN;
2705 rk818_bat_write(di, RK818_ADC_CTRL_REG, buf);
2706 }
2707
2708 /*
2709 * Due to hardware design issue, Vdelta = "(R_sample + R_other) * I_avg" will be
2710 * included into TS1 adc value. We must subtract it to get correct adc value.
2711 * The solution:
2712 *
2713 * (1) calculate Vdelta:
2714 *
2715 * adc1 - Vdelta ua1 (adc2 * ua1) - (adc1 * ua2)
2716 * ------------- = ----- ==> equals: Vdelta = -----------------------------
2717 * adc2 - Vdelta ua2 ua1 - ua2
2718 *
2719 *
2720 * (2) calculate correct ADC value:
2721 *
2722 * charging: ADC = adc1 - abs(Vdelta);
2723 * discharging: ADC = adc1 + abs(Vdelta);
2724 */
rk818_bat_get_ntc_res(struct rk818_battery * di)2725 static int rk818_bat_get_ntc_res(struct rk818_battery *di)
2726 {
2727 int adc1 = 0, adc2 = 0;
2728 int ua1, ua2, v_delta, res, val;
2729 u8 buf;
2730
2731 /* read sample ua1 */
2732 buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
2733 DBG("<%s>. read adc1, sample uA=%d\n",
2734 __func__, ((buf & 0x03) + 1) * 20);
2735
2736 /* read adc adc1 */
2737 ua1 = di->pdata->ntc_uA;
2738 adc1 |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
2739 adc1 |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
2740
2741 /* chose reference UA for adc2 */
2742 ua2 = (ua1 != 20) ? 20 : 40;
2743 buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
2744 buf &= ~TS1_CUR_MSK;
2745 buf |= ((ua2 - 20) / 20);
2746 rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
2747
2748 /* read adc adc2 */
2749 msleep(1000);
2750
2751 /* read sample ua2 */
2752 buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
2753 DBG("<%s>. read adc2, sample uA=%d\n",
2754 __func__, ((buf & 0x03) + 1) * 20);
2755
2756 adc2 |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
2757 adc2 |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
2758
2759 DBG("<%s>. ua1=%d, ua2=%d, adc1=%d, adc2=%d\n",
2760 __func__, ua1, ua2, adc1, adc2);
2761
2762 /* calculate delta voltage */
2763 if (adc2 != adc1)
2764 v_delta = abs((adc2 * ua1 - adc1 * ua2) / (ua2 - ua1));
2765 else
2766 v_delta = 0;
2767
2768 /* considering current avg direction, calcuate real adc value */
2769 val = (di->current_avg >= 0) ? (adc1 - v_delta) : (adc1 + v_delta);
2770
2771 DBG("<%s>. Iavg=%d, Vdelta=%d, Vadc=%d\n",
2772 __func__, di->current_avg, v_delta, val);
2773
2774 res = val * di->pdata->ntc_factor;
2775
2776 DBG("<%s>. val=%d, ntc_res=%d, ntc_factor=%d, Rdelta=%d\n",
2777 __func__, val, res, di->pdata->ntc_factor,
2778 v_delta * di->pdata->ntc_factor);
2779
2780 DBG("<%s>. t=[%d'C(%d) ~ %dC(%d)]\n", __func__,
2781 di->pdata->ntc_degree_from, di->pdata->ntc_table[0],
2782 di->pdata->ntc_degree_from + di->pdata->ntc_size - 1,
2783 di->pdata->ntc_table[di->pdata->ntc_size - 1]);
2784
2785 rk818_bat_init_ts1_detect(di);
2786
2787 return res;
2788 }
2789
rk818_bat_set_input_current(struct rk818_battery * di,int input_current)2790 static void rk818_bat_set_input_current(struct rk818_battery *di,
2791 int input_current)
2792 {
2793 u8 usb_ctrl;
2794
2795 usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
2796 usb_ctrl &= ~0x0f;
2797 usb_ctrl |= (input_current);
2798 rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
2799 }
2800
2801 static BLOCKING_NOTIFIER_HEAD(rk818_bat_notifier_chain);
2802
rk818_bat_temp_notifier_register(struct notifier_block * nb)2803 int rk818_bat_temp_notifier_register(struct notifier_block *nb)
2804 {
2805 return blocking_notifier_chain_register(&rk818_bat_notifier_chain, nb);
2806 }
2807 EXPORT_SYMBOL_GPL(rk818_bat_temp_notifier_register);
2808
rk818_bat_temp_notifier_unregister(struct notifier_block * nb)2809 int rk818_bat_temp_notifier_unregister(struct notifier_block *nb)
2810 {
2811 return blocking_notifier_chain_unregister(&rk818_bat_notifier_chain, nb);
2812 }
2813 EXPORT_SYMBOL_GPL(rk818_bat_temp_notifier_unregister);
2814
rk818_bat_temp_notifier_callback(int temp)2815 static void rk818_bat_temp_notifier_callback(int temp)
2816 {
2817 blocking_notifier_call_chain(&rk818_bat_notifier_chain, temp, NULL);
2818 }
2819
rk818_bat_update_temperature(struct rk818_battery * di)2820 static void rk818_bat_update_temperature(struct rk818_battery *di)
2821 {
2822 static int old_temp, first_time = 1;
2823 u32 ntc_size, *ntc_table;
2824 int i, res, temp;
2825
2826 ntc_table = di->pdata->ntc_table;
2827 ntc_size = di->pdata->ntc_size;
2828 di->temperature = VIRTUAL_TEMPERATURE;
2829
2830 if (ntc_size) {
2831 res = rk818_bat_get_ntc_res(di);
2832 if (res < ntc_table[ntc_size - 1]) {
2833 di->temperature = di->pdata->ntc_degree_from +
2834 di->pdata->ntc_size - 1;
2835 if (di->pdata->bat_mode != MODE_VIRTUAL)
2836 rk818_bat_set_input_current(di, INPUT_CUR80MA);
2837 BAT_INFO("bat ntc upper max degree: R=%d\n", res);
2838 } else if (res > ntc_table[0]) {
2839 di->temperature = di->pdata->ntc_degree_from;
2840 if (di->pdata->bat_mode != MODE_VIRTUAL)
2841 rk818_bat_set_input_current(di, INPUT_CUR80MA);
2842 BAT_INFO("bat ntc lower min degree: R=%d\n", res);
2843 } else {
2844 for (i = 0; i < ntc_size; i++) {
2845 if (res >= ntc_table[i])
2846 break;
2847 }
2848
2849 /* if first in, init old_temp */
2850 temp = (i + di->pdata->ntc_degree_from) * 10;
2851 if (first_time == 1) {
2852 di->temperature = temp;
2853 old_temp = temp;
2854 first_time = 0;
2855 }
2856
2857 /*
2858 * compare with old one, it's invalid when over 50
2859 * and we should use old data.
2860 */
2861 if (abs(temp - old_temp) > 50)
2862 temp = old_temp;
2863 else
2864 old_temp = temp;
2865
2866 di->temperature = temp;
2867 DBG("<%s>. temperature = %d\n",
2868 __func__, di->temperature);
2869 rk818_bat_temp_notifier_callback(di->temperature / 10);
2870 }
2871 }
2872 }
2873
rk818_bat_init_dsoc_algorithm(struct rk818_battery * di)2874 static void rk818_bat_init_dsoc_algorithm(struct rk818_battery *di)
2875 {
2876 u8 buf;
2877 int16_t rest = 0;
2878 unsigned long soc_sec;
2879 const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2880 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2881
2882 /* get rest */
2883 rest |= rk818_bat_read(di, RK818_CALC_REST_REGH) << 8;
2884 rest |= rk818_bat_read(di, RK818_CALC_REST_REGL) << 0;
2885
2886 /* get mode */
2887 buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
2888 di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT;
2889
2890 if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2891 if (di->algo_rest_mode == MODE_FINISH) {
2892 soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR1;
2893 if ((rest / DIV(soc_sec)) > 0) {
2894 if (di->dsoc < 100) {
2895 di->dsoc++;
2896 di->algo_rest_val = rest % soc_sec;
2897 BAT_INFO("algorithm rest(%d) dsoc "
2898 "inc: %d\n",
2899 rest, di->dsoc);
2900 } else {
2901 di->algo_rest_val = 0;
2902 }
2903 } else {
2904 di->algo_rest_val = rest;
2905 }
2906 } else {
2907 di->algo_rest_val = rest;
2908 }
2909 } else {
2910 /* charge speed up */
2911 if ((rest / 1000) > 0 && rk818_bat_chrg_online(di)) {
2912 if (di->dsoc < di->rsoc) {
2913 di->dsoc++;
2914 di->algo_rest_val = rest % 1000;
2915 BAT_INFO("algorithm rest(%d) dsoc inc: %d\n",
2916 rest, di->dsoc);
2917 } else {
2918 di->algo_rest_val = 0;
2919 }
2920 /* discharge speed up */
2921 } else if (((rest / 1000) < 0) && !rk818_bat_chrg_online(di)) {
2922 if (di->dsoc > di->rsoc) {
2923 di->dsoc--;
2924 di->algo_rest_val = rest % 1000;
2925 BAT_INFO("algorithm rest(%d) dsoc sub: %d\n",
2926 rest, di->dsoc);
2927 } else {
2928 di->algo_rest_val = 0;
2929 }
2930 } else {
2931 di->algo_rest_val = rest;
2932 }
2933 }
2934
2935 if (di->dsoc >= 100)
2936 di->dsoc = 100;
2937 else if (di->dsoc <= 0)
2938 di->dsoc = 0;
2939
2940 /* init current mode */
2941 di->voltage_avg = rk818_bat_get_avg_voltage(di);
2942 di->current_avg = rk818_bat_get_avg_current(di);
2943 if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
2944 rk818_bat_finish_algo_prepare(di);
2945 di->work_mode = MODE_FINISH;
2946 } else {
2947 rk818_bat_smooth_algo_prepare(di);
2948 di->work_mode = MODE_SMOOTH;
2949 }
2950
2951 DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; "
2952 "doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n",
2953 __func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode],
2954 di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc,
2955 di->finish_base);
2956 }
2957
rk818_bat_save_algo_rest(struct rk818_battery * di)2958 static void rk818_bat_save_algo_rest(struct rk818_battery *di)
2959 {
2960 u8 buf, mode;
2961 int16_t algo_rest = 0;
2962 int tmp_soc;
2963 int zero_rest = 0, sm_chrg_rest = 0;
2964 int sm_dischrg_rest = 0, finish_rest = 0;
2965 const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
2966 "MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
2967
2968 /* zero dischrg */
2969 tmp_soc = (di->zero_dsoc) / 1000;
2970 if (tmp_soc == di->dsoc)
2971 zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 -
2972 MIN_ACCURACY);
2973
2974 /* sm chrg */
2975 tmp_soc = di->sm_chrg_dsoc / 1000;
2976 if (tmp_soc == di->dsoc)
2977 sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000;
2978
2979 /* sm dischrg */
2980 tmp_soc = (di->sm_dischrg_dsoc) / 1000;
2981 if (tmp_soc == di->dsoc)
2982 sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 -
2983 MIN_ACCURACY);
2984
2985 /* last time is also finish chrg, then add last rest */
2986 if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val)
2987 finish_rest = base2sec(di->finish_base) + di->algo_rest_val;
2988 else
2989 finish_rest = base2sec(di->finish_base);
2990
2991 /* total calc */
2992 if ((rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) ||
2993 (!rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) ||
2994 (di->dsoc == di->rsoc)) {
2995 di->algo_rest_val = 0;
2996 algo_rest = 0;
2997 DBG("<%s>. step1..\n", __func__);
2998 } else if (di->work_mode == MODE_FINISH) {
2999 algo_rest = finish_rest;
3000 DBG("<%s>. step2..\n", __func__);
3001 } else if (di->algo_rest_mode == MODE_FINISH) {
3002 algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest;
3003 DBG("<%s>. step3..\n", __func__);
3004 } else {
3005 if (rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc))
3006 algo_rest = sm_chrg_rest + di->algo_rest_val;
3007 else if (!rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc))
3008 algo_rest = zero_rest + sm_dischrg_rest +
3009 di->algo_rest_val;
3010 else
3011 algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest +
3012 di->algo_rest_val;
3013 DBG("<%s>. step4..\n", __func__);
3014 }
3015
3016 /* check mode */
3017 if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) {
3018 mode = di->work_mode;
3019 } else {/* MODE_SMOOTH */
3020 if (di->sm_linek > 0)
3021 mode = MODE_SMOOTH_CHRG;
3022 else
3023 mode = MODE_SMOOTH_DISCHRG;
3024 }
3025
3026 /* save mode */
3027 buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
3028 buf &= ~ALGO_REST_MODE_MSK;
3029 buf |= (mode << ALGO_REST_MODE_SHIFT);
3030 rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
3031
3032 /* save rest */
3033 buf = (algo_rest >> 8) & 0xff;
3034 rk818_bat_write(di, RK818_CALC_REST_REGH, buf);
3035 buf = (algo_rest >> 0) & 0xff;
3036 rk818_bat_write(di, RK818_CALC_REST_REGL, buf);
3037
3038 DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, "
3039 "chrg=%d, dischrg=%d, finish=%lu\n",
3040 __func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest,
3041 sm_chrg_rest, sm_dischrg_rest, base2sec(di->finish_base));
3042 }
3043
rk818_bat_save_data(struct rk818_battery * di)3044 static void rk818_bat_save_data(struct rk818_battery *di)
3045 {
3046 rk818_bat_save_dsoc(di, di->dsoc);
3047 rk818_bat_save_cap(di, di->remain_cap);
3048 rk818_bat_save_algo_rest(di);
3049 }
3050
rk818_battery_work(struct work_struct * work)3051 static void rk818_battery_work(struct work_struct *work)
3052 {
3053 struct rk818_battery *di =
3054 container_of(work, struct rk818_battery, bat_delay_work.work);
3055
3056 rk818_bat_update_info(di);
3057 rk818_bat_wait_finish_sig(di);
3058 rk818_bat_rsoc_daemon(di);
3059 rk818_bat_update_temperature(di);
3060 rk818_bat_display_smooth(di);
3061 rk818_bat_power_supply_changed(di);
3062 rk818_bat_save_data(di);
3063 rk818_bat_debug_info(di);
3064
3065 queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3066 msecs_to_jiffies(di->monitor_ms));
3067 }
3068
rk818_vb_low_irq(int irq,void * bat)3069 static irqreturn_t rk818_vb_low_irq(int irq, void *bat)
3070 {
3071 struct rk818_battery *di = (struct rk818_battery *)bat;
3072
3073 di->dsoc = 0;
3074 rk_send_wakeup_key();
3075 BAT_INFO("lower power yet, power off system! v=%d, c=%d, dsoc=%d\n",
3076 di->voltage_avg, di->current_avg, di->dsoc);
3077
3078 return IRQ_HANDLED;
3079 }
3080
rk818_bat_init_sysfs(struct rk818_battery * di)3081 static void rk818_bat_init_sysfs(struct rk818_battery *di)
3082 {
3083 int i, ret;
3084
3085 for (i = 0; i < ARRAY_SIZE(rk818_bat_attr); i++) {
3086 ret = sysfs_create_file(&di->dev->kobj,
3087 &rk818_bat_attr[i].attr);
3088 if (ret)
3089 dev_err(di->dev, "create bat node(%s) error\n",
3090 rk818_bat_attr[i].attr.name);
3091 }
3092 }
3093
rk818_bat_init_irqs(struct rk818_battery * di)3094 static int rk818_bat_init_irqs(struct rk818_battery *di)
3095 {
3096 struct rk808 *rk818 = di->rk818;
3097 struct platform_device *pdev = di->pdev;
3098 int ret, vb_lo_irq;
3099
3100 vb_lo_irq = regmap_irq_get_virq(rk818->irq_data, RK818_IRQ_VB_LO);
3101 if (vb_lo_irq < 0) {
3102 dev_err(di->dev, "vb_lo_irq request failed!\n");
3103 return vb_lo_irq;
3104 }
3105
3106 ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL,
3107 rk818_vb_low_irq,
3108 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3109 "rk818_vb_low", di);
3110 if (ret) {
3111 dev_err(&pdev->dev, "vb_lo_irq request failed!\n");
3112 return ret;
3113 }
3114 enable_irq_wake(vb_lo_irq);
3115
3116 return 0;
3117 }
3118
rk818_bat_init_info(struct rk818_battery * di)3119 static void rk818_bat_init_info(struct rk818_battery *di)
3120 {
3121 di->design_cap = di->pdata->design_capacity;
3122 di->qmax = di->pdata->design_qmax;
3123 di->bat_res = di->pdata->bat_res;
3124 di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS;
3125 di->boot_base = POWER_ON_SEC_BASE;
3126 di->res_div = (di->pdata->sample_res == SAMPLE_RES_20MR) ?
3127 SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2;
3128 }
3129
rk818_get_rtc_sec(void)3130 static time64_t rk818_get_rtc_sec(void)
3131 {
3132 int err;
3133 struct rtc_time tm;
3134 struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
3135
3136 err = rtc_read_time(rtc, &tm);
3137 if (err) {
3138 dev_err(rtc->dev.parent, "read hardware clk failed\n");
3139 return 0;
3140 }
3141
3142 err = rtc_valid_tm(&tm);
3143 if (err) {
3144 dev_err(rtc->dev.parent, "invalid date time\n");
3145 return 0;
3146 }
3147
3148 return rtc_tm_to_time64(&tm);
3149 }
3150
rk818_bat_rtc_sleep_sec(struct rk818_battery * di)3151 static int rk818_bat_rtc_sleep_sec(struct rk818_battery *di)
3152 {
3153 int interval_sec;
3154
3155 interval_sec = rk818_get_rtc_sec() - di->rtc_base;
3156
3157 return (interval_sec > 0) ? interval_sec : 0;
3158 }
3159
rk818_bat_set_shtd_vol(struct rk818_battery * di)3160 static void rk818_bat_set_shtd_vol(struct rk818_battery *di)
3161 {
3162 u8 val;
3163
3164 /* set vbat lowest 3.0v shutdown */
3165 val = rk818_bat_read(di, RK818_VB_MON_REG);
3166 val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
3167 val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
3168 rk818_bat_write(di, RK818_VB_MON_REG, val);
3169
3170 /* disable low irq */
3171 rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
3172 VB_LOW_INT_EN, VB_LOW_INT_EN);
3173 }
3174
rk818_bat_init_fg(struct rk818_battery * di)3175 static void rk818_bat_init_fg(struct rk818_battery *di)
3176 {
3177 rk818_bat_enable_gauge(di);
3178 rk818_bat_init_voltage_kb(di);
3179 rk818_bat_init_coffset(di);
3180 rk818_bat_set_relax_sample(di);
3181 rk818_bat_set_ioffset_sample(di);
3182 rk818_bat_set_ocv_sample(di);
3183 rk818_bat_init_ts1_detect(di);
3184 rk818_bat_init_rsoc(di);
3185 rk818_bat_init_coulomb_cap(di, di->nac);
3186 rk818_bat_init_age_algorithm(di);
3187 rk818_bat_init_chrg_config(di);
3188 rk818_bat_set_shtd_vol(di);
3189 rk818_bat_init_zero_table(di);
3190 rk818_bat_init_caltimer(di);
3191 rk818_bat_init_dsoc_algorithm(di);
3192
3193 di->voltage_avg = rk818_bat_get_avg_voltage(di);
3194 di->voltage_ocv = rk818_bat_get_ocv_voltage(di);
3195 di->voltage_relax = rk818_bat_get_relax_voltage(di);
3196 di->current_avg = rk818_bat_get_avg_current(di);
3197 di->remain_cap = rk818_bat_get_coulomb_cap(di);
3198 di->dbg_pwr_dsoc = di->dsoc;
3199 di->dbg_pwr_rsoc = di->rsoc;
3200 di->dbg_pwr_vol = di->voltage_avg;
3201
3202 rk818_bat_dump_regs(di, 0x99, 0xee);
3203 DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n",
3204 di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg,
3205 di->voltage_relax, di->dsoc, di->rsoc, di->current_avg);
3206 }
3207
3208 #ifdef CONFIG_OF
rk818_bat_parse_dt(struct rk818_battery * di)3209 static int rk818_bat_parse_dt(struct rk818_battery *di)
3210 {
3211 u32 out_value;
3212 int length, ret;
3213 size_t size;
3214 struct device_node *np = di->dev->of_node;
3215 struct battery_platform_data *pdata;
3216 struct device *dev = di->dev;
3217
3218 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3219 if (!pdata)
3220 return -ENOMEM;
3221
3222 di->pdata = pdata;
3223 /* init default param */
3224 pdata->bat_res = DEFAULT_BAT_RES;
3225 pdata->monitor_sec = DEFAULT_MONITOR_SEC;
3226 pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD;
3227 pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR;
3228 pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR;
3229 pdata->bat_mode = MODE_BATTARY;
3230 pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET;
3231 pdata->sample_res = DEFAULT_SAMPLE_RES;
3232 pdata->energy_mode = DEFAULT_ENERGY_MODE;
3233 pdata->fb_temp = DEFAULT_FB_TEMP;
3234 pdata->zero_reserve_dsoc = DEFAULT_ZERO_RESERVE_DSOC;
3235
3236 /* parse necessary param */
3237 if (!of_find_property(np, "ocv_table", &length)) {
3238 dev_err(dev, "ocv_table not found!\n");
3239 return -EINVAL;
3240 }
3241
3242 pdata->ocv_size = length / sizeof(u32);
3243 if (pdata->ocv_size <= 0) {
3244 dev_err(dev, "invalid ocv table\n");
3245 return -EINVAL;
3246 }
3247
3248 size = sizeof(*pdata->ocv_table) * pdata->ocv_size;
3249 pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
3250 if (!pdata->ocv_table)
3251 return -ENOMEM;
3252
3253 ret = of_property_read_u32_array(np, "ocv_table",
3254 pdata->ocv_table,
3255 pdata->ocv_size);
3256 if (ret < 0)
3257 return ret;
3258
3259 ret = of_property_read_u32(np, "design_capacity", &out_value);
3260 if (ret < 0) {
3261 dev_err(dev, "design_capacity not found!\n");
3262 return ret;
3263 }
3264 pdata->design_capacity = out_value;
3265
3266 ret = of_property_read_u32(np, "design_qmax", &out_value);
3267 if (ret < 0) {
3268 dev_err(dev, "design_qmax not found!\n");
3269 return ret;
3270 }
3271 pdata->design_qmax = out_value;
3272 ret = of_property_read_u32(np, "max_chrg_voltage", &out_value);
3273 if (ret < 0) {
3274 dev_err(dev, "max_chrg_voltage missing!\n");
3275 return ret;
3276 }
3277 pdata->max_chrg_voltage = out_value;
3278 if (out_value >= 4300)
3279 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2;
3280 else
3281 pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1;
3282
3283 ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp);
3284 if (ret < 0)
3285 dev_err(dev, "fb_temperature missing!\n");
3286
3287 ret = of_property_read_u32(np, "sample_res", &pdata->sample_res);
3288 if (ret < 0)
3289 dev_err(dev, "sample_res missing!\n");
3290
3291 ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode);
3292 if (ret < 0)
3293 dev_err(dev, "energy_mode missing!\n");
3294
3295 ret = of_property_read_u32(np, "max_soc_offset",
3296 &pdata->max_soc_offset);
3297 if (ret < 0)
3298 dev_err(dev, "max_soc_offset missing!\n");
3299
3300 ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec);
3301 if (ret < 0)
3302 dev_err(dev, "monitor_sec missing!\n");
3303
3304 ret = of_property_read_u32(np, "zero_algorithm_vol",
3305 &pdata->zero_algorithm_vol);
3306 if (ret < 0)
3307 dev_err(dev, "zero_algorithm_vol missing!\n");
3308
3309 ret = of_property_read_u32(np, "zero_reserve_dsoc",
3310 &pdata->zero_reserve_dsoc);
3311
3312 ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode);
3313 if (ret < 0)
3314 dev_err(dev, "virtual_power missing!\n");
3315
3316 ret = of_property_read_u32(np, "bat_res", &pdata->bat_res);
3317 if (ret < 0)
3318 dev_err(dev, "bat_res missing!\n");
3319
3320 ret = of_property_read_u32(np, "sleep_enter_current",
3321 &pdata->sleep_enter_current);
3322 if (ret < 0)
3323 dev_err(dev, "sleep_enter_current missing!\n");
3324
3325 ret = of_property_read_u32(np, "sleep_exit_current",
3326 &pdata->sleep_exit_current);
3327 if (ret < 0)
3328 dev_err(dev, "sleep_exit_current missing!\n");
3329
3330 ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol);
3331 if (ret < 0)
3332 dev_err(dev, "power_off_thresd missing!\n");
3333
3334 if (!of_find_property(np, "ntc_table", &length)) {
3335 pdata->ntc_size = 0;
3336 } else {
3337 /* get ntc degree base value */
3338 ret = of_property_read_s32(np, "ntc_degree_from_v2",
3339 &pdata->ntc_degree_from);
3340 if (ret) {
3341 dev_err(dev, "invalid ntc_degree_from_v2\n");
3342 return -EINVAL;
3343 }
3344
3345 pdata->ntc_size = length / sizeof(u32);
3346 }
3347
3348 if (pdata->ntc_size) {
3349 size = sizeof(*pdata->ntc_table) * pdata->ntc_size;
3350 pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
3351 if (!pdata->ntc_table)
3352 return -ENOMEM;
3353
3354 ret = of_property_read_u32_array(np, "ntc_table",
3355 pdata->ntc_table,
3356 pdata->ntc_size);
3357 if (ret < 0)
3358 return ret;
3359 }
3360
3361 DBG("the battery dts info dump:\n"
3362 "bat_res:%d\n"
3363 "design_capacity:%d\n"
3364 "design_qmax :%d\n"
3365 "sleep_enter_current:%d\n"
3366 "sleep_exit_current:%d\n"
3367 "zero_algorithm_vol:%d\n"
3368 "zero_reserve_dsoc:%d\n"
3369 "monitor_sec:%d\n"
3370 "max_soc_offset:%d\n"
3371 "virtual_power:%d\n"
3372 "pwroff_vol:%d\n"
3373 "sample_res:%d\n"
3374 "ntc_size=%d\n"
3375 "ntc_degree_from_v2:%d\n"
3376 "ntc_degree_to:%d\n",
3377 pdata->bat_res, pdata->design_capacity, pdata->design_qmax,
3378 pdata->sleep_enter_current, pdata->sleep_exit_current,
3379 pdata->zero_algorithm_vol, pdata->zero_reserve_dsoc,
3380 pdata->monitor_sec,
3381 pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol,
3382 pdata->sample_res, pdata->ntc_size, pdata->ntc_degree_from,
3383 pdata->ntc_degree_from + pdata->ntc_size - 1
3384 );
3385
3386 return 0;
3387 }
3388 #else
rk818_bat_parse_dt(struct rk818_battery * di)3389 static int rk818_bat_parse_dt(struct rk818_battery *di)
3390 {
3391 return -ENODEV;
3392 }
3393 #endif
3394
3395 static const struct of_device_id rk818_battery_of_match[] = {
3396 {.compatible = "rk818-battery",},
3397 { },
3398 };
3399
rk818_battery_probe(struct platform_device * pdev)3400 static int rk818_battery_probe(struct platform_device *pdev)
3401 {
3402 const struct of_device_id *of_id =
3403 of_match_device(rk818_battery_of_match, &pdev->dev);
3404 struct rk818_battery *di;
3405 struct rk808 *rk818 = dev_get_drvdata(pdev->dev.parent);
3406 int ret;
3407
3408 if (!of_id) {
3409 dev_err(&pdev->dev, "Failed to find matching dt id\n");
3410 return -ENODEV;
3411 }
3412
3413 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3414 if (!di)
3415 return -ENOMEM;
3416
3417 di->rk818 = rk818;
3418 di->pdev = pdev;
3419 di->dev = &pdev->dev;
3420 di->regmap = rk818->regmap;
3421 platform_set_drvdata(pdev, di);
3422
3423 ret = rk818_bat_parse_dt(di);
3424 if (ret < 0) {
3425 dev_err(di->dev, "rk818 battery parse dt failed!\n");
3426 return ret;
3427 }
3428
3429 if (!is_rk818_bat_exist(di)) {
3430 di->pdata->bat_mode = MODE_VIRTUAL;
3431 dev_err(di->dev, "no battery, virtual power mode\n");
3432 }
3433
3434 ret = rk818_bat_init_irqs(di);
3435 if (ret != 0) {
3436 dev_err(di->dev, "rk818 bat init irqs failed!\n");
3437 return ret;
3438 }
3439
3440 ret = rk818_bat_init_power_supply(di);
3441 if (ret) {
3442 dev_err(di->dev, "rk818 power supply register failed!\n");
3443 return ret;
3444 }
3445
3446 rk818_bat_init_info(di);
3447 rk818_bat_init_fg(di);
3448 rk818_bat_init_sysfs(di);
3449 rk818_bat_register_fb_notify(di);
3450 wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk818_bat_lock");
3451 di->bat_monitor_wq = alloc_ordered_workqueue("%s",
3452 WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk818-bat-monitor-wq");
3453 INIT_DELAYED_WORK(&di->bat_delay_work, rk818_battery_work);
3454 queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3455 msecs_to_jiffies(TIMER_MS_COUNTS * 5));
3456
3457 BAT_INFO("driver version %s\n", DRIVER_VERSION);
3458
3459 return ret;
3460 }
3461
rk818_battery_suspend(struct platform_device * dev,pm_message_t state)3462 static int rk818_battery_suspend(struct platform_device *dev,
3463 pm_message_t state)
3464 {
3465 struct rk818_battery *di = platform_get_drvdata(dev);
3466 u8 val, st;
3467
3468 cancel_delayed_work_sync(&di->bat_delay_work);
3469
3470 di->s2r = false;
3471 di->sleep_chrg_online = rk818_bat_chrg_online(di);
3472 di->sleep_chrg_status = rk818_bat_get_chrg_status(di);
3473 di->current_avg = rk818_bat_get_avg_current(di);
3474 di->remain_cap = rk818_bat_get_coulomb_cap(di);
3475 di->rsoc = rk818_bat_get_rsoc(di);
3476 di->rtc_base = rk818_get_rtc_sec();
3477 rk818_bat_save_data(di);
3478 st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3479
3480 /* if not CHARGE_FINISH, reinit finish_base.
3481 * avoid sleep loop between suspend and resume
3482 */
3483 if (di->sleep_chrg_status != CHARGE_FINISH)
3484 di->finish_base = get_boot_sec();
3485
3486 /* avoid: enter suspend from MODE_ZERO: load from heavy to light */
3487 if ((di->work_mode == MODE_ZERO) &&
3488 (di->sleep_chrg_online) && (di->current_avg >= 0)) {
3489 DBG("suspend: MODE_ZERO exit...\n");
3490 /* it need't do prepare for mode finish and smooth, it will
3491 * be done in display_smooth
3492 */
3493 if (di->sleep_chrg_status == CHARGE_FINISH) {
3494 di->work_mode = MODE_FINISH;
3495 di->finish_base = get_boot_sec();
3496 } else {
3497 di->work_mode = MODE_SMOOTH;
3498 rk818_bat_smooth_algo_prepare(di);
3499 }
3500 }
3501
3502 /* set vbat low than 3.4v to generate a wakeup irq */
3503 val = rk818_bat_read(di, RK818_VB_MON_REG);
3504 val &= (~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK));
3505 val |= (RK818_VBAT_LOW_3V4 | EN_VBAT_LOW_IRQ);
3506 rk818_bat_write(di, RK818_VB_MON_REG, val);
3507 rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, 0);
3508
3509 BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld ch=%d st=%s\n",
3510 di->dsoc, di->rsoc, di->current_avg,
3511 rk818_bat_get_avg_voltage(di), rk818_bat_get_coulomb_cap(di),
3512 di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3513
3514 return 0;
3515 }
3516
rk818_battery_resume(struct platform_device * dev)3517 static int rk818_battery_resume(struct platform_device *dev)
3518 {
3519 struct rk818_battery *di = platform_get_drvdata(dev);
3520 int interval_sec, time_step = 0, pwroff_vol;
3521 u8 val, st;
3522
3523 di->s2r = true;
3524 di->current_avg = rk818_bat_get_avg_current(di);
3525 di->voltage_relax = rk818_bat_get_relax_voltage(di);
3526 di->voltage_avg = rk818_bat_get_avg_voltage(di);
3527 di->remain_cap = rk818_bat_get_coulomb_cap(di);
3528 di->rsoc = rk818_bat_get_rsoc(di);
3529 interval_sec = rk818_bat_rtc_sleep_sec(di);
3530 di->sleep_sum_sec += interval_sec;
3531 pwroff_vol = di->pdata->pwroff_vol;
3532 st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
3533
3534 if (!di->sleep_chrg_online) {
3535 /* only add up discharge sleep seconds */
3536 di->sleep_dischrg_sec += interval_sec;
3537 if (di->voltage_avg <= pwroff_vol + 50)
3538 time_step = DISCHRG_TIME_STEP1;
3539 else
3540 time_step = DISCHRG_TIME_STEP2;
3541 }
3542
3543 BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d "
3544 "cap=%d dt=%d at=%ld ch=%d st=%s\n",
3545 di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3546 di->voltage_relax, rk818_bat_get_coulomb_cap(di), interval_sec,
3547 di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
3548
3549 /* sleep: enough time and discharge */
3550 if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) {
3551 if (rk818_bat_sleep_dischrg(di))
3552 di->sleep_dischrg_sec = 0;
3553 }
3554
3555 rk818_bat_save_data(di);
3556
3557 /* set vbat lowest 3.0v shutdown */
3558 val = rk818_bat_read(di, RK818_VB_MON_REG);
3559 val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
3560 val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
3561 rk818_bat_write(di, RK818_VB_MON_REG, val);
3562 rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
3563 VB_LOW_INT_EN, VB_LOW_INT_EN);
3564
3565 /* charge/lowpower lock: for battery work to update dsoc and rsoc */
3566 if ((di->sleep_chrg_online) ||
3567 (!di->sleep_chrg_online && di->voltage_avg < di->pdata->pwroff_vol))
3568 wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000));
3569
3570 queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
3571 msecs_to_jiffies(1000));
3572
3573 return 0;
3574 }
3575
rk818_battery_shutdown(struct platform_device * dev)3576 static void rk818_battery_shutdown(struct platform_device *dev)
3577 {
3578 u8 cnt = 0;
3579 struct rk818_battery *di = platform_get_drvdata(dev);
3580
3581 cancel_delayed_work_sync(&di->bat_delay_work);
3582 cancel_delayed_work_sync(&di->calib_delay_work);
3583 rk818_bat_unregister_fb_notify(di);
3584 del_timer(&di->caltimer);
3585 if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC)
3586 cnt = rk818_bat_check_reboot(di);
3587 else
3588 rk818_bat_save_reboot_cnt(di, 0);
3589
3590 BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d n=%d "
3591 "mode=%d rest=%d\n",
3592 di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
3593 di->remain_cap, di->fcc, rk818_bat_chrg_online(di), cnt,
3594 di->algo_rest_mode, di->algo_rest_val);
3595 }
3596
3597 static struct platform_driver rk818_battery_driver = {
3598 .probe = rk818_battery_probe,
3599 .suspend = rk818_battery_suspend,
3600 .resume = rk818_battery_resume,
3601 .shutdown = rk818_battery_shutdown,
3602 .driver = {
3603 .name = "rk818-battery",
3604 .of_match_table = rk818_battery_of_match,
3605 },
3606 };
3607
battery_init(void)3608 static int __init battery_init(void)
3609 {
3610 return platform_driver_register(&rk818_battery_driver);
3611 }
3612 fs_initcall_sync(battery_init);
3613
battery_exit(void)3614 static void __exit battery_exit(void)
3615 {
3616 platform_driver_unregister(&rk818_battery_driver);
3617 }
3618 module_exit(battery_exit);
3619
3620 MODULE_LICENSE("GPL");
3621 MODULE_ALIAS("platform:rk818-battery");
3622 MODULE_AUTHOR("chenjh<chenjh@rock-chips.com>");
3623