1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227 #ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229 #endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245 u32 ofs;
246 char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283 };
284
285 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { u64 a; u64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS,
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461 rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
538 DUMP_PREFIX_ADDRESS,
539 16, 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
543 }
544 }
545 }
546 }
547
548 exit:
549 return;
550 }
551
552 /**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
igb_get_i2c_data(void * data)558 static int igb_get_i2c_data(void *data)
559 {
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
igb_set_i2c_data(void * data,int state)574 static void igb_set_i2c_data(void *data, int state)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state)
581 i2cctl |= E1000_I2C_DATA_OUT;
582 else
583 i2cctl &= ~E1000_I2C_DATA_OUT;
584
585 i2cctl &= ~E1000_I2C_DATA_OE_N;
586 i2cctl |= E1000_I2C_CLK_OE_N;
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589
590 }
591
592 /**
593 * igb_set_i2c_clk - Sets the I2C SCL clock
594 * @data: pointer to hardware structure
595 * @state: state to set clock
596 *
597 * Sets the I2C clock line to state
598 **/
igb_set_i2c_clk(void * data,int state)599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 struct igb_adapter *adapter = (struct igb_adapter *)data;
602 struct e1000_hw *hw = &adapter->hw;
603 s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605 if (state) {
606 i2cctl |= E1000_I2C_CLK_OUT;
607 i2cctl &= ~E1000_I2C_CLK_OE_N;
608 } else {
609 i2cctl &= ~E1000_I2C_CLK_OUT;
610 i2cctl &= ~E1000_I2C_CLK_OE_N;
611 }
612 wr32(E1000_I2CPARAMS, i2cctl);
613 wrfl();
614 }
615
616 /**
617 * igb_get_i2c_clk - Gets the I2C SCL clock state
618 * @data: pointer to hardware structure
619 *
620 * Gets the I2C clock state
621 **/
igb_get_i2c_clk(void * data)622 static int igb_get_i2c_clk(void *data)
623 {
624 struct igb_adapter *adapter = (struct igb_adapter *)data;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628 return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632 .setsda = igb_set_i2c_data,
633 .setscl = igb_set_i2c_clk,
634 .getsda = igb_get_i2c_data,
635 .getscl = igb_get_i2c_clk,
636 .udelay = 5,
637 .timeout = 20,
638 };
639
640 /**
641 * igb_get_hw_dev - return device
642 * @hw: pointer to hardware structure
643 *
644 * used by hardware layer to print debugging information
645 **/
igb_get_hw_dev(struct e1000_hw * hw)646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648 struct igb_adapter *adapter = hw->back;
649 return adapter->netdev;
650 }
651
652 /**
653 * igb_init_module - Driver Registration Routine
654 *
655 * igb_init_module is the first routine called when the driver is
656 * loaded. All it does is register with the PCI subsystem.
657 **/
igb_init_module(void)658 static int __init igb_init_module(void)
659 {
660 int ret;
661
662 pr_info("%s\n", igb_driver_string);
663 pr_info("%s\n", igb_copyright);
664
665 #ifdef CONFIG_IGB_DCA
666 dca_register_notify(&dca_notifier);
667 #endif
668 ret = pci_register_driver(&igb_driver);
669 return ret;
670 }
671
672 module_init(igb_init_module);
673
674 /**
675 * igb_exit_module - Driver Exit Cleanup Routine
676 *
677 * igb_exit_module is called just before the driver is removed
678 * from memory.
679 **/
igb_exit_module(void)680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683 dca_unregister_notify(&dca_notifier);
684 #endif
685 pci_unregister_driver(&igb_driver);
686 }
687
688 module_exit(igb_exit_module);
689
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692 * igb_cache_ring_register - Descriptor ring to register mapping
693 * @adapter: board private structure to initialize
694 *
695 * Once we know the feature-set enabled for the device, we'll cache
696 * the register offset the descriptor ring is assigned to.
697 **/
igb_cache_ring_register(struct igb_adapter * adapter)698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700 int i = 0, j = 0;
701 u32 rbase_offset = adapter->vfs_allocated_count;
702
703 switch (adapter->hw.mac.type) {
704 case e1000_82576:
705 /* The queues are allocated for virtualization such that VF 0
706 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 * In order to avoid collision we start at the first free queue
708 * and continue consuming queues in the same sequence
709 */
710 if (adapter->vfs_allocated_count) {
711 for (; i < adapter->rss_queues; i++)
712 adapter->rx_ring[i]->reg_idx = rbase_offset +
713 Q_IDX_82576(i);
714 }
715 fallthrough;
716 case e1000_82575:
717 case e1000_82580:
718 case e1000_i350:
719 case e1000_i354:
720 case e1000_i210:
721 case e1000_i211:
722 default:
723 for (; i < adapter->num_rx_queues; i++)
724 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 for (; j < adapter->num_tx_queues; j++)
726 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 break;
728 }
729 }
730
igb_rd32(struct e1000_hw * hw,u32 reg)731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 u32 value = 0;
736
737 if (E1000_REMOVED(hw_addr))
738 return ~value;
739
740 value = readl(&hw_addr[reg]);
741
742 /* reads should not return all F's */
743 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 struct net_device *netdev = igb->netdev;
745 hw->hw_addr = NULL;
746 netdev_err(netdev, "PCIe link lost\n");
747 WARN(pci_device_is_present(igb->pdev),
748 "igb: Failed to read reg 0x%x!\n", reg);
749 }
750
751 return value;
752 }
753
754 /**
755 * igb_write_ivar - configure ivar for given MSI-X vector
756 * @hw: pointer to the HW structure
757 * @msix_vector: vector number we are allocating to a given ring
758 * @index: row index of IVAR register to write within IVAR table
759 * @offset: column offset of in IVAR, should be multiple of 8
760 *
761 * This function is intended to handle the writing of the IVAR register
762 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
763 * each containing an cause allocation for an Rx and Tx ring, and a
764 * variable number of rows depending on the number of queues supported.
765 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 int index, int offset)
768 {
769 u32 ivar = array_rd32(E1000_IVAR0, index);
770
771 /* clear any bits that are currently set */
772 ivar &= ~((u32)0xFF << offset);
773
774 /* write vector and valid bit */
775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 struct igb_adapter *adapter = q_vector->adapter;
784 struct e1000_hw *hw = &adapter->hw;
785 int rx_queue = IGB_N0_QUEUE;
786 int tx_queue = IGB_N0_QUEUE;
787 u32 msixbm = 0;
788
789 if (q_vector->rx.ring)
790 rx_queue = q_vector->rx.ring->reg_idx;
791 if (q_vector->tx.ring)
792 tx_queue = q_vector->tx.ring->reg_idx;
793
794 switch (hw->mac.type) {
795 case e1000_82575:
796 /* The 82575 assigns vectors using a bitmask, which matches the
797 * bitmask for the EICR/EIMS/EIMC registers. To assign one
798 * or more queues to a vector, we write the appropriate bits
799 * into the MSIXBM register for that vector.
800 */
801 if (rx_queue > IGB_N0_QUEUE)
802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 if (tx_queue > IGB_N0_QUEUE)
804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 q_vector->eims_value = msixbm;
809 break;
810 case e1000_82576:
811 /* 82576 uses a table that essentially consists of 2 columns
812 * with 8 rows. The ordering is column-major so we use the
813 * lower 3 bits as the row index, and the 4th bit as the
814 * column offset.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 igb_write_ivar(hw, msix_vector,
818 rx_queue & 0x7,
819 (rx_queue & 0x8) << 1);
820 if (tx_queue > IGB_N0_QUEUE)
821 igb_write_ivar(hw, msix_vector,
822 tx_queue & 0x7,
823 ((tx_queue & 0x8) << 1) + 8);
824 q_vector->eims_value = BIT(msix_vector);
825 break;
826 case e1000_82580:
827 case e1000_i350:
828 case e1000_i354:
829 case e1000_i210:
830 case e1000_i211:
831 /* On 82580 and newer adapters the scheme is similar to 82576
832 * however instead of ordering column-major we have things
833 * ordered row-major. So we traverse the table by using
834 * bit 0 as the column offset, and the remaining bits as the
835 * row index.
836 */
837 if (rx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 rx_queue >> 1,
840 (rx_queue & 0x1) << 4);
841 if (tx_queue > IGB_N0_QUEUE)
842 igb_write_ivar(hw, msix_vector,
843 tx_queue >> 1,
844 ((tx_queue & 0x1) << 4) + 8);
845 q_vector->eims_value = BIT(msix_vector);
846 break;
847 default:
848 BUG();
849 break;
850 }
851
852 /* add q_vector eims value to global eims_enable_mask */
853 adapter->eims_enable_mask |= q_vector->eims_value;
854
855 /* configure q_vector to set itr on first interrupt */
856 q_vector->set_itr = 1;
857 }
858
859 /**
860 * igb_configure_msix - Configure MSI-X hardware
861 * @adapter: board private structure to initialize
862 *
863 * igb_configure_msix sets up the hardware to properly
864 * generate MSI-X interrupts.
865 **/
igb_configure_msix(struct igb_adapter * adapter)866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 u32 tmp;
869 int i, vector = 0;
870 struct e1000_hw *hw = &adapter->hw;
871
872 adapter->eims_enable_mask = 0;
873
874 /* set vector for other causes, i.e. link changes */
875 switch (hw->mac.type) {
876 case e1000_82575:
877 tmp = rd32(E1000_CTRL_EXT);
878 /* enable MSI-X PBA support*/
879 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881 /* Auto-Mask interrupts upon ICR read. */
882 tmp |= E1000_CTRL_EXT_EIAME;
883 tmp |= E1000_CTRL_EXT_IRCA;
884
885 wr32(E1000_CTRL_EXT, tmp);
886
887 /* enable msix_other interrupt */
888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 adapter->eims_other = E1000_EIMS_OTHER;
890
891 break;
892
893 case e1000_82576:
894 case e1000_82580:
895 case e1000_i350:
896 case e1000_i354:
897 case e1000_i210:
898 case e1000_i211:
899 /* Turn on MSI-X capability first, or our settings
900 * won't stick. And it will take days to debug.
901 */
902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 E1000_GPIE_NSICR);
905
906 /* enable msix_other interrupt */
907 adapter->eims_other = BIT(vector);
908 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910 wr32(E1000_IVAR_MISC, tmp);
911 break;
912 default:
913 /* do nothing, since nothing else supports MSI-X */
914 break;
915 } /* switch (hw->mac.type) */
916
917 adapter->eims_enable_mask |= adapter->eims_other;
918
919 for (i = 0; i < adapter->num_q_vectors; i++)
920 igb_assign_vector(adapter->q_vector[i], vector++);
921
922 wrfl();
923 }
924
925 /**
926 * igb_request_msix - Initialize MSI-X interrupts
927 * @adapter: board private structure to initialize
928 *
929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 * kernel.
931 **/
igb_request_msix(struct igb_adapter * adapter)932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 unsigned int num_q_vectors = adapter->num_q_vectors;
935 struct net_device *netdev = adapter->netdev;
936 int i, err = 0, vector = 0, free_vector = 0;
937
938 err = request_irq(adapter->msix_entries[vector].vector,
939 igb_msix_other, 0, netdev->name, adapter);
940 if (err)
941 goto err_out;
942
943 if (num_q_vectors > MAX_Q_VECTORS) {
944 num_q_vectors = MAX_Q_VECTORS;
945 dev_warn(&adapter->pdev->dev,
946 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
947 adapter->num_q_vectors, MAX_Q_VECTORS);
948 }
949 for (i = 0; i < num_q_vectors; i++) {
950 struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952 vector++;
953
954 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956 if (q_vector->rx.ring && q_vector->tx.ring)
957 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else if (q_vector->tx.ring)
960 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 q_vector->tx.ring->queue_index);
962 else if (q_vector->rx.ring)
963 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else
966 sprintf(q_vector->name, "%s-unused", netdev->name);
967
968 err = request_irq(adapter->msix_entries[vector].vector,
969 igb_msix_ring, 0, q_vector->name,
970 q_vector);
971 if (err)
972 goto err_free;
973 }
974
975 igb_configure_msix(adapter);
976 return 0;
977
978 err_free:
979 /* free already assigned IRQs */
980 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982 vector--;
983 for (i = 0; i < vector; i++) {
984 free_irq(adapter->msix_entries[free_vector++].vector,
985 adapter->q_vector[i]);
986 }
987 err_out:
988 return err;
989 }
990
991 /**
992 * igb_free_q_vector - Free memory allocated for specific interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be freed
995 *
996 * This function frees the memory allocated to the q_vector.
997 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002 adapter->q_vector[v_idx] = NULL;
1003
1004 /* igb_get_stats64() might access the rings on this vector,
1005 * we must wait a grace period before freeing it.
1006 */
1007 if (q_vector)
1008 kfree_rcu(q_vector, rcu);
1009 }
1010
1011 /**
1012 * igb_reset_q_vector - Reset config for interrupt vector
1013 * @adapter: board private structure to initialize
1014 * @v_idx: Index of vector to be reset
1015 *
1016 * If NAPI is enabled it will delete any references to the
1017 * NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 * allocated. So, q_vector is NULL so we should stop here.
1025 */
1026 if (!q_vector)
1027 return;
1028
1029 if (q_vector->tx.ring)
1030 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032 if (q_vector->rx.ring)
1033 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035 netif_napi_del(&q_vector->napi);
1036
1037 }
1038
igb_reset_interrupt_capability(struct igb_adapter * adapter)1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 int v_idx = adapter->num_q_vectors;
1042
1043 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 pci_disable_msix(adapter->pdev);
1045 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 pci_disable_msi(adapter->pdev);
1047
1048 while (v_idx--)
1049 igb_reset_q_vector(adapter, v_idx);
1050 }
1051
1052 /**
1053 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 * @adapter: board private structure to initialize
1055 *
1056 * This function frees the memory allocated to the q_vectors. In addition if
1057 * NAPI is enabled it will delete any references to the NAPI struct prior
1058 * to freeing the q_vector.
1059 **/
igb_free_q_vectors(struct igb_adapter * adapter)1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 int v_idx = adapter->num_q_vectors;
1063
1064 adapter->num_tx_queues = 0;
1065 adapter->num_rx_queues = 0;
1066 adapter->num_q_vectors = 0;
1067
1068 while (v_idx--) {
1069 igb_reset_q_vector(adapter, v_idx);
1070 igb_free_q_vector(adapter, v_idx);
1071 }
1072 }
1073
1074 /**
1075 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 * @adapter: board private structure to initialize
1077 *
1078 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 * MSI-X interrupts allocated.
1080 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 igb_free_q_vectors(adapter);
1084 igb_reset_interrupt_capability(adapter);
1085 }
1086
1087 /**
1088 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 * @adapter: board private structure to initialize
1090 * @msix: boolean value of MSIX capability
1091 *
1092 * Attempt to configure interrupts using the best available
1093 * capabilities of the hardware and kernel.
1094 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 int err;
1098 int numvecs, i;
1099
1100 if (!msix)
1101 goto msi_only;
1102 adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104 /* Number of supported queues. */
1105 adapter->num_rx_queues = adapter->rss_queues;
1106 if (adapter->vfs_allocated_count)
1107 adapter->num_tx_queues = 1;
1108 else
1109 adapter->num_tx_queues = adapter->rss_queues;
1110
1111 /* start with one vector for every Rx queue */
1112 numvecs = adapter->num_rx_queues;
1113
1114 /* if Tx handler is separate add 1 for every Tx queue */
1115 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 numvecs += adapter->num_tx_queues;
1117
1118 /* store the number of vectors reserved for queues */
1119 adapter->num_q_vectors = numvecs;
1120
1121 /* add 1 vector for link status interrupts */
1122 numvecs++;
1123 for (i = 0; i < numvecs; i++)
1124 adapter->msix_entries[i].entry = i;
1125
1126 err = pci_enable_msix_range(adapter->pdev,
1127 adapter->msix_entries,
1128 numvecs,
1129 numvecs);
1130 if (err > 0)
1131 return;
1132
1133 igb_reset_interrupt_capability(adapter);
1134
1135 /* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 /* disable SR-IOV for non MSI-X configurations */
1140 if (adapter->vf_data) {
1141 struct e1000_hw *hw = &adapter->hw;
1142 /* disable iov and allow time for transactions to clear */
1143 pci_disable_sriov(adapter->pdev);
1144 msleep(500);
1145
1146 kfree(adapter->vf_mac_list);
1147 adapter->vf_mac_list = NULL;
1148 kfree(adapter->vf_data);
1149 adapter->vf_data = NULL;
1150 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 wrfl();
1152 msleep(100);
1153 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 }
1155 #endif
1156 adapter->vfs_allocated_count = 0;
1157 adapter->rss_queues = 1;
1158 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 adapter->num_rx_queues = 1;
1160 adapter->num_tx_queues = 1;
1161 adapter->num_q_vectors = 1;
1162 if (!pci_enable_msi(adapter->pdev))
1163 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1166 static void igb_add_ring(struct igb_ring *ring,
1167 struct igb_ring_container *head)
1168 {
1169 head->ring = ring;
1170 head->count++;
1171 }
1172
1173 /**
1174 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 * @adapter: board private structure to initialize
1176 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 * @v_idx: index of vector in adapter struct
1178 * @txr_count: total number of Tx rings to allocate
1179 * @txr_idx: index of first Tx ring to allocate
1180 * @rxr_count: total number of Rx rings to allocate
1181 * @rxr_idx: index of first Rx ring to allocate
1182 *
1183 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1184 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 int v_count, int v_idx,
1187 int txr_count, int txr_idx,
1188 int rxr_count, int rxr_idx)
1189 {
1190 struct igb_q_vector *q_vector;
1191 struct igb_ring *ring;
1192 int ring_count;
1193 size_t size;
1194
1195 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196 if (txr_count > 1 || rxr_count > 1)
1197 return -ENOMEM;
1198
1199 ring_count = txr_count + rxr_count;
1200 size = struct_size(q_vector, ring, ring_count);
1201
1202 /* allocate q_vector and rings */
1203 q_vector = adapter->q_vector[v_idx];
1204 if (!q_vector) {
1205 q_vector = kzalloc(size, GFP_KERNEL);
1206 } else if (size > ksize(q_vector)) {
1207 kfree_rcu(q_vector, rcu);
1208 q_vector = kzalloc(size, GFP_KERNEL);
1209 } else {
1210 memset(q_vector, 0, size);
1211 }
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
1263 ring->cbs_enable = false;
1264 ring->idleslope = 0;
1265 ring->sendslope = 0;
1266 ring->hicredit = 0;
1267 ring->locredit = 0;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314 /**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362 err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371 }
1372
1373 /**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400 }
1401
1402 /**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
igb_request_irq(struct igb_adapter * adapter)1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453 request_done:
1454 return err;
1455 }
1456
igb_free_irq(struct igb_adapter * adapter)1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470 }
1471
1472 /**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
igb_irq_disable(struct igb_adapter * adapter)1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504 }
1505
1506 /**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
igb_irq_enable(struct igb_adapter * adapter)1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533 }
1534
igb_update_mng_vlan(struct igb_adapter * adapter)1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556 }
1557
1558 /**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
igb_release_hw_control(struct igb_adapter * adapter)1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
igb_get_hw_control(struct igb_adapter * adapter)1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
enable_fqtss(struct igb_adapter * adapter,bool enable)1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 struct net_device *netdev = adapter->netdev;
1599 struct e1000_hw *hw = &adapter->hw;
1600
1601 WARN_ON(hw->mac.type != e1000_i210);
1602
1603 if (enable)
1604 adapter->flags |= IGB_FLAG_FQTSS;
1605 else
1606 adapter->flags &= ~IGB_FLAG_FQTSS;
1607
1608 if (netif_running(netdev))
1609 schedule_work(&adapter->reset_task);
1610 }
1611
is_fqtss_enabled(struct igb_adapter * adapter)1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 enum tx_queue_prio prio)
1619 {
1620 u32 val;
1621
1622 WARN_ON(hw->mac.type != e1000_i210);
1623 WARN_ON(queue < 0 || queue > 4);
1624
1625 val = rd32(E1000_I210_TXDCTL(queue));
1626
1627 if (prio == TX_QUEUE_PRIO_HIGH)
1628 val |= E1000_TXDCTL_PRIORITY;
1629 else
1630 val &= ~E1000_TXDCTL_PRIORITY;
1631
1632 wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 u32 val;
1638
1639 WARN_ON(hw->mac.type != e1000_i210);
1640 WARN_ON(queue < 0 || queue > 1);
1641
1642 val = rd32(E1000_I210_TQAVCC(queue));
1643
1644 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 val |= E1000_TQAVCC_QUEUEMODE;
1646 else
1647 val &= ~E1000_TQAVCC_QUEUEMODE;
1648
1649 wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651
is_any_cbs_enabled(struct igb_adapter * adapter)1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 int i;
1655
1656 for (i = 0; i < adapter->num_tx_queues; i++) {
1657 if (adapter->tx_ring[i]->cbs_enable)
1658 return true;
1659 }
1660
1661 return false;
1662 }
1663
is_any_txtime_enabled(struct igb_adapter * adapter)1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 int i;
1667
1668 for (i = 0; i < adapter->num_tx_queues; i++) {
1669 if (adapter->tx_ring[i]->launchtime_enable)
1670 return true;
1671 }
1672
1673 return false;
1674 }
1675
1676 /**
1677 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678 * @adapter: pointer to adapter struct
1679 * @queue: queue number
1680 *
1681 * Configure CBS and Launchtime for a given hardware queue.
1682 * Parameters are retrieved from the correct Tx ring, so
1683 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1684 * for setting those correctly prior to this function being called.
1685 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 struct net_device *netdev = adapter->netdev;
1689 struct e1000_hw *hw = &adapter->hw;
1690 struct igb_ring *ring;
1691 u32 tqavcc, tqavctrl;
1692 u16 value;
1693
1694 WARN_ON(hw->mac.type != e1000_i210);
1695 WARN_ON(queue < 0 || queue > 1);
1696 ring = adapter->tx_ring[queue];
1697
1698 /* If any of the Qav features is enabled, configure queues as SR and
1699 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1700 * as SP.
1701 */
1702 if (ring->cbs_enable || ring->launchtime_enable) {
1703 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1704 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1705 } else {
1706 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1707 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1708 }
1709
1710 /* If CBS is enabled, set DataTranARB and config its parameters. */
1711 if (ring->cbs_enable || queue == 0) {
1712 /* i210 does not allow the queue 0 to be in the Strict
1713 * Priority mode while the Qav mode is enabled, so,
1714 * instead of disabling strict priority mode, we give
1715 * queue 0 the maximum of credits possible.
1716 *
1717 * See section 8.12.19 of the i210 datasheet, "Note:
1718 * Queue0 QueueMode must be set to 1b when
1719 * TransmitMode is set to Qav."
1720 */
1721 if (queue == 0 && !ring->cbs_enable) {
1722 /* max "linkspeed" idleslope in kbps */
1723 ring->idleslope = 1000000;
1724 ring->hicredit = ETH_FRAME_LEN;
1725 }
1726
1727 /* Always set data transfer arbitration to credit-based
1728 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1729 * the queues.
1730 */
1731 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1732 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1733 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1734
1735 /* According to i210 datasheet section 7.2.7.7, we should set
1736 * the 'idleSlope' field from TQAVCC register following the
1737 * equation:
1738 *
1739 * For 100 Mbps link speed:
1740 *
1741 * value = BW * 0x7735 * 0.2 (E1)
1742 *
1743 * For 1000Mbps link speed:
1744 *
1745 * value = BW * 0x7735 * 2 (E2)
1746 *
1747 * E1 and E2 can be merged into one equation as shown below.
1748 * Note that 'link-speed' is in Mbps.
1749 *
1750 * value = BW * 0x7735 * 2 * link-speed
1751 * -------------- (E3)
1752 * 1000
1753 *
1754 * 'BW' is the percentage bandwidth out of full link speed
1755 * which can be found with the following equation. Note that
1756 * idleSlope here is the parameter from this function which
1757 * is in kbps.
1758 *
1759 * BW = idleSlope
1760 * ----------------- (E4)
1761 * link-speed * 1000
1762 *
1763 * That said, we can come up with a generic equation to
1764 * calculate the value we should set it TQAVCC register by
1765 * replacing 'BW' in E3 by E4. The resulting equation is:
1766 *
1767 * value = idleSlope * 0x7735 * 2 * link-speed
1768 * ----------------- -------------- (E5)
1769 * link-speed * 1000 1000
1770 *
1771 * 'link-speed' is present in both sides of the fraction so
1772 * it is canceled out. The final equation is the following:
1773 *
1774 * value = idleSlope * 61034
1775 * ----------------- (E6)
1776 * 1000000
1777 *
1778 * NOTE: For i210, given the above, we can see that idleslope
1779 * is represented in 16.38431 kbps units by the value at
1780 * the TQAVCC register (1Gbps / 61034), which reduces
1781 * the granularity for idleslope increments.
1782 * For instance, if you want to configure a 2576kbps
1783 * idleslope, the value to be written on the register
1784 * would have to be 157.23. If rounded down, you end
1785 * up with less bandwidth available than originally
1786 * required (~2572 kbps). If rounded up, you end up
1787 * with a higher bandwidth (~2589 kbps). Below the
1788 * approach we take is to always round up the
1789 * calculated value, so the resulting bandwidth might
1790 * be slightly higher for some configurations.
1791 */
1792 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1793
1794 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1795 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1796 tqavcc |= value;
1797 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798
1799 wr32(E1000_I210_TQAVHC(queue),
1800 0x80000000 + ring->hicredit * 0x7735);
1801 } else {
1802
1803 /* Set idleSlope to zero. */
1804 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1805 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1806 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1807
1808 /* Set hiCredit to zero. */
1809 wr32(E1000_I210_TQAVHC(queue), 0);
1810
1811 /* If CBS is not enabled for any queues anymore, then return to
1812 * the default state of Data Transmission Arbitration on
1813 * TQAVCTRL.
1814 */
1815 if (!is_any_cbs_enabled(adapter)) {
1816 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1818 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1819 }
1820 }
1821
1822 /* If LaunchTime is enabled, set DataTranTIM. */
1823 if (ring->launchtime_enable) {
1824 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1825 * for any of the SR queues, and configure fetchtime delta.
1826 * XXX NOTE:
1827 * - LaunchTime will be enabled for all SR queues.
1828 * - A fixed offset can be added relative to the launch
1829 * time of all packets if configured at reg LAUNCH_OS0.
1830 * We are keeping it as 0 for now (default value).
1831 */
1832 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1833 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1834 E1000_TQAVCTRL_FETCHTIME_DELTA;
1835 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1836 } else {
1837 /* If Launchtime is not enabled for any SR queues anymore,
1838 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1839 * effectively disabling Launchtime.
1840 */
1841 if (!is_any_txtime_enabled(adapter)) {
1842 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1843 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1844 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1845 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1846 }
1847 }
1848
1849 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1850 * CBS are not configurable by software so we don't do any 'controller
1851 * configuration' in respect to these parameters.
1852 */
1853
1854 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1855 ring->cbs_enable ? "enabled" : "disabled",
1856 ring->launchtime_enable ? "enabled" : "disabled",
1857 queue,
1858 ring->idleslope, ring->sendslope,
1859 ring->hicredit, ring->locredit);
1860 }
1861
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863 bool enable)
1864 {
1865 struct igb_ring *ring;
1866
1867 if (queue < 0 || queue > adapter->num_tx_queues)
1868 return -EINVAL;
1869
1870 ring = adapter->tx_ring[queue];
1871 ring->launchtime_enable = enable;
1872
1873 return 0;
1874 }
1875
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877 bool enable, int idleslope, int sendslope,
1878 int hicredit, int locredit)
1879 {
1880 struct igb_ring *ring;
1881
1882 if (queue < 0 || queue > adapter->num_tx_queues)
1883 return -EINVAL;
1884
1885 ring = adapter->tx_ring[queue];
1886
1887 ring->cbs_enable = enable;
1888 ring->idleslope = idleslope;
1889 ring->sendslope = sendslope;
1890 ring->hicredit = hicredit;
1891 ring->locredit = locredit;
1892
1893 return 0;
1894 }
1895
1896 /**
1897 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898 * @adapter: pointer to adapter struct
1899 *
1900 * Configure TQAVCTRL register switching the controller's Tx mode
1901 * if FQTSS mode is enabled or disabled. Additionally, will issue
1902 * a call to igb_config_tx_modes() per queue so any previously saved
1903 * Tx parameters are applied.
1904 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907 struct net_device *netdev = adapter->netdev;
1908 struct e1000_hw *hw = &adapter->hw;
1909 u32 val;
1910
1911 /* Only i210 controller supports changing the transmission mode. */
1912 if (hw->mac.type != e1000_i210)
1913 return;
1914
1915 if (is_fqtss_enabled(adapter)) {
1916 int i, max_queue;
1917
1918 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920 * so SP queues wait for SR ones.
1921 */
1922 val = rd32(E1000_I210_TQAVCTRL);
1923 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925 wr32(E1000_I210_TQAVCTRL, val);
1926
1927 /* Configure Tx and Rx packet buffers sizes as described in
1928 * i210 datasheet section 7.2.7.7.
1929 */
1930 val = rd32(E1000_TXPBS);
1931 val &= ~I210_TXPBSIZE_MASK;
1932 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1933 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1934 wr32(E1000_TXPBS, val);
1935
1936 val = rd32(E1000_RXPBS);
1937 val &= ~I210_RXPBSIZE_MASK;
1938 val |= I210_RXPBSIZE_PB_30KB;
1939 wr32(E1000_RXPBS, val);
1940
1941 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942 * register should not exceed the buffer size programmed in
1943 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945 * 4kB / 64.
1946 *
1947 * However, when we do so, no frame from queue 2 and 3 are
1948 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1949 * or _equal_ to the buffer size programmed in TXPBS. For this
1950 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 */
1952 val = (4096 - 1) / 64;
1953 wr32(E1000_I210_DTXMXPKTSZ, val);
1954
1955 /* Since FQTSS mode is enabled, apply any CBS configuration
1956 * previously set. If no previous CBS configuration has been
1957 * done, then the initial configuration is applied, which means
1958 * CBS is disabled.
1959 */
1960 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962
1963 for (i = 0; i < max_queue; i++) {
1964 igb_config_tx_modes(adapter, i);
1965 }
1966 } else {
1967 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970
1971 val = rd32(E1000_I210_TQAVCTRL);
1972 /* According to Section 8.12.21, the other flags we've set when
1973 * enabling FQTSS are not relevant when disabling FQTSS so we
1974 * don't set they here.
1975 */
1976 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977 wr32(E1000_I210_TQAVCTRL, val);
1978 }
1979
1980 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981 "enabled" : "disabled");
1982 }
1983
1984 /**
1985 * igb_configure - configure the hardware for RX and TX
1986 * @adapter: private board structure
1987 **/
igb_configure(struct igb_adapter * adapter)1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990 struct net_device *netdev = adapter->netdev;
1991 int i;
1992
1993 igb_get_hw_control(adapter);
1994 igb_set_rx_mode(netdev);
1995 igb_setup_tx_mode(adapter);
1996
1997 igb_restore_vlan(adapter);
1998
1999 igb_setup_tctl(adapter);
2000 igb_setup_mrqc(adapter);
2001 igb_setup_rctl(adapter);
2002
2003 igb_nfc_filter_restore(adapter);
2004 igb_configure_tx(adapter);
2005 igb_configure_rx(adapter);
2006
2007 igb_rx_fifo_flush_82575(&adapter->hw);
2008
2009 /* call igb_desc_unused which always leaves
2010 * at least 1 descriptor unused to make sure
2011 * next_to_use != next_to_clean
2012 */
2013 for (i = 0; i < adapter->num_rx_queues; i++) {
2014 struct igb_ring *ring = adapter->rx_ring[i];
2015 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016 }
2017 }
2018
2019 /**
2020 * igb_power_up_link - Power up the phy/serdes link
2021 * @adapter: address of board private structure
2022 **/
igb_power_up_link(struct igb_adapter * adapter)2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025 igb_reset_phy(&adapter->hw);
2026
2027 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028 igb_power_up_phy_copper(&adapter->hw);
2029 else
2030 igb_power_up_serdes_link_82575(&adapter->hw);
2031
2032 igb_setup_link(&adapter->hw);
2033 }
2034
2035 /**
2036 * igb_power_down_link - Power down the phy/serdes link
2037 * @adapter: address of board private structure
2038 */
igb_power_down_link(struct igb_adapter * adapter)2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042 igb_power_down_phy_copper_82575(&adapter->hw);
2043 else
2044 igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046
2047 /**
2048 * Detect and switch function for Media Auto Sense
2049 * @adapter: address of the board private structure
2050 **/
igb_check_swap_media(struct igb_adapter * adapter)2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053 struct e1000_hw *hw = &adapter->hw;
2054 u32 ctrl_ext, connsw;
2055 bool swap_now = false;
2056
2057 ctrl_ext = rd32(E1000_CTRL_EXT);
2058 connsw = rd32(E1000_CONNSW);
2059
2060 /* need to live swap if current media is copper and we have fiber/serdes
2061 * to go to.
2062 */
2063
2064 if ((hw->phy.media_type == e1000_media_type_copper) &&
2065 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 swap_now = true;
2067 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2068 !(connsw & E1000_CONNSW_SERDESD)) {
2069 /* copper signal takes time to appear */
2070 if (adapter->copper_tries < 4) {
2071 adapter->copper_tries++;
2072 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2073 wr32(E1000_CONNSW, connsw);
2074 return;
2075 } else {
2076 adapter->copper_tries = 0;
2077 if ((connsw & E1000_CONNSW_PHYSD) &&
2078 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2079 swap_now = true;
2080 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2081 wr32(E1000_CONNSW, connsw);
2082 }
2083 }
2084 }
2085
2086 if (!swap_now)
2087 return;
2088
2089 switch (hw->phy.media_type) {
2090 case e1000_media_type_copper:
2091 netdev_info(adapter->netdev,
2092 "MAS: changing media to fiber/serdes\n");
2093 ctrl_ext |=
2094 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096 adapter->copper_tries = 0;
2097 break;
2098 case e1000_media_type_internal_serdes:
2099 case e1000_media_type_fiber:
2100 netdev_info(adapter->netdev,
2101 "MAS: changing media to copper\n");
2102 ctrl_ext &=
2103 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2104 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2105 break;
2106 default:
2107 /* shouldn't get here during regular operation */
2108 netdev_err(adapter->netdev,
2109 "AMS: Invalid media type found, returning\n");
2110 break;
2111 }
2112 wr32(E1000_CTRL_EXT, ctrl_ext);
2113 }
2114
2115 /**
2116 * igb_up - Open the interface and prepare it to handle traffic
2117 * @adapter: board private structure
2118 **/
igb_up(struct igb_adapter * adapter)2119 int igb_up(struct igb_adapter *adapter)
2120 {
2121 struct e1000_hw *hw = &adapter->hw;
2122 int i;
2123
2124 /* hardware has been reset, we need to reload some things */
2125 igb_configure(adapter);
2126
2127 clear_bit(__IGB_DOWN, &adapter->state);
2128
2129 for (i = 0; i < adapter->num_q_vectors; i++)
2130 napi_enable(&(adapter->q_vector[i]->napi));
2131
2132 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2133 igb_configure_msix(adapter);
2134 else
2135 igb_assign_vector(adapter->q_vector[0], 0);
2136
2137 /* Clear any pending interrupts. */
2138 rd32(E1000_TSICR);
2139 rd32(E1000_ICR);
2140 igb_irq_enable(adapter);
2141
2142 /* notify VFs that reset has been completed */
2143 if (adapter->vfs_allocated_count) {
2144 u32 reg_data = rd32(E1000_CTRL_EXT);
2145
2146 reg_data |= E1000_CTRL_EXT_PFRSTD;
2147 wr32(E1000_CTRL_EXT, reg_data);
2148 }
2149
2150 netif_tx_start_all_queues(adapter->netdev);
2151
2152 /* start the watchdog. */
2153 hw->mac.get_link_status = 1;
2154 schedule_work(&adapter->watchdog_task);
2155
2156 if ((adapter->flags & IGB_FLAG_EEE) &&
2157 (!hw->dev_spec._82575.eee_disable))
2158 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2159
2160 return 0;
2161 }
2162
igb_down(struct igb_adapter * adapter)2163 void igb_down(struct igb_adapter *adapter)
2164 {
2165 struct net_device *netdev = adapter->netdev;
2166 struct e1000_hw *hw = &adapter->hw;
2167 u32 tctl, rctl;
2168 int i;
2169
2170 /* signal that we're down so the interrupt handler does not
2171 * reschedule our watchdog timer
2172 */
2173 set_bit(__IGB_DOWN, &adapter->state);
2174
2175 /* disable receives in the hardware */
2176 rctl = rd32(E1000_RCTL);
2177 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2178 /* flush and sleep below */
2179
2180 igb_nfc_filter_exit(adapter);
2181
2182 netif_carrier_off(netdev);
2183 netif_tx_stop_all_queues(netdev);
2184
2185 /* disable transmits in the hardware */
2186 tctl = rd32(E1000_TCTL);
2187 tctl &= ~E1000_TCTL_EN;
2188 wr32(E1000_TCTL, tctl);
2189 /* flush both disables and wait for them to finish */
2190 wrfl();
2191 usleep_range(10000, 11000);
2192
2193 igb_irq_disable(adapter);
2194
2195 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2196
2197 for (i = 0; i < adapter->num_q_vectors; i++) {
2198 if (adapter->q_vector[i]) {
2199 napi_synchronize(&adapter->q_vector[i]->napi);
2200 napi_disable(&adapter->q_vector[i]->napi);
2201 }
2202 }
2203
2204 del_timer_sync(&adapter->watchdog_timer);
2205 del_timer_sync(&adapter->phy_info_timer);
2206
2207 /* record the stats before reset*/
2208 spin_lock(&adapter->stats64_lock);
2209 igb_update_stats(adapter);
2210 spin_unlock(&adapter->stats64_lock);
2211
2212 adapter->link_speed = 0;
2213 adapter->link_duplex = 0;
2214
2215 if (!pci_channel_offline(adapter->pdev))
2216 igb_reset(adapter);
2217
2218 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2219 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2220
2221 igb_clean_all_tx_rings(adapter);
2222 igb_clean_all_rx_rings(adapter);
2223 #ifdef CONFIG_IGB_DCA
2224
2225 /* since we reset the hardware DCA settings were cleared */
2226 igb_setup_dca(adapter);
2227 #endif
2228 }
2229
igb_reinit_locked(struct igb_adapter * adapter)2230 void igb_reinit_locked(struct igb_adapter *adapter)
2231 {
2232 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2233 usleep_range(1000, 2000);
2234 igb_down(adapter);
2235 igb_up(adapter);
2236 clear_bit(__IGB_RESETTING, &adapter->state);
2237 }
2238
2239 /** igb_enable_mas - Media Autosense re-enable after swap
2240 *
2241 * @adapter: adapter struct
2242 **/
igb_enable_mas(struct igb_adapter * adapter)2243 static void igb_enable_mas(struct igb_adapter *adapter)
2244 {
2245 struct e1000_hw *hw = &adapter->hw;
2246 u32 connsw = rd32(E1000_CONNSW);
2247
2248 /* configure for SerDes media detect */
2249 if ((hw->phy.media_type == e1000_media_type_copper) &&
2250 (!(connsw & E1000_CONNSW_SERDESD))) {
2251 connsw |= E1000_CONNSW_ENRGSRC;
2252 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2253 wr32(E1000_CONNSW, connsw);
2254 wrfl();
2255 }
2256 }
2257
igb_reset(struct igb_adapter * adapter)2258 void igb_reset(struct igb_adapter *adapter)
2259 {
2260 struct pci_dev *pdev = adapter->pdev;
2261 struct e1000_hw *hw = &adapter->hw;
2262 struct e1000_mac_info *mac = &hw->mac;
2263 struct e1000_fc_info *fc = &hw->fc;
2264 u32 pba, hwm;
2265
2266 /* Repartition Pba for greater than 9k mtu
2267 * To take effect CTRL.RST is required.
2268 */
2269 switch (mac->type) {
2270 case e1000_i350:
2271 case e1000_i354:
2272 case e1000_82580:
2273 pba = rd32(E1000_RXPBS);
2274 pba = igb_rxpbs_adjust_82580(pba);
2275 break;
2276 case e1000_82576:
2277 pba = rd32(E1000_RXPBS);
2278 pba &= E1000_RXPBS_SIZE_MASK_82576;
2279 break;
2280 case e1000_82575:
2281 case e1000_i210:
2282 case e1000_i211:
2283 default:
2284 pba = E1000_PBA_34K;
2285 break;
2286 }
2287
2288 if (mac->type == e1000_82575) {
2289 u32 min_rx_space, min_tx_space, needed_tx_space;
2290
2291 /* write Rx PBA so that hardware can report correct Tx PBA */
2292 wr32(E1000_PBA, pba);
2293
2294 /* To maintain wire speed transmits, the Tx FIFO should be
2295 * large enough to accommodate two full transmit packets,
2296 * rounded up to the next 1KB and expressed in KB. Likewise,
2297 * the Rx FIFO should be large enough to accommodate at least
2298 * one full receive packet and is similarly rounded up and
2299 * expressed in KB.
2300 */
2301 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302
2303 /* The Tx FIFO also stores 16 bytes of information about the Tx
2304 * but don't include Ethernet FCS because hardware appends it.
2305 * We only need to round down to the nearest 512 byte block
2306 * count since the value we care about is 2 frames, not 1.
2307 */
2308 min_tx_space = adapter->max_frame_size;
2309 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2310 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311
2312 /* upper 16 bits has Tx packet buffer allocation size in KB */
2313 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314
2315 /* If current Tx allocation is less than the min Tx FIFO size,
2316 * and the min Tx FIFO size is less than the current Rx FIFO
2317 * allocation, take space away from current Rx allocation.
2318 */
2319 if (needed_tx_space < pba) {
2320 pba -= needed_tx_space;
2321
2322 /* if short on Rx space, Rx wins and must trump Tx
2323 * adjustment
2324 */
2325 if (pba < min_rx_space)
2326 pba = min_rx_space;
2327 }
2328
2329 /* adjust PBA for jumbo frames */
2330 wr32(E1000_PBA, pba);
2331 }
2332
2333 /* flow control settings
2334 * The high water mark must be low enough to fit one full frame
2335 * after transmitting the pause frame. As such we must have enough
2336 * space to allow for us to complete our current transmit and then
2337 * receive the frame that is in progress from the link partner.
2338 * Set it to:
2339 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340 */
2341 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342
2343 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2344 fc->low_water = fc->high_water - 16;
2345 fc->pause_time = 0xFFFF;
2346 fc->send_xon = 1;
2347 fc->current_mode = fc->requested_mode;
2348
2349 /* disable receive for all VFs and wait one second */
2350 if (adapter->vfs_allocated_count) {
2351 int i;
2352
2353 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2354 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355
2356 /* ping all the active vfs to let them know we are going down */
2357 igb_ping_all_vfs(adapter);
2358
2359 /* disable transmits and receives */
2360 wr32(E1000_VFRE, 0);
2361 wr32(E1000_VFTE, 0);
2362 }
2363
2364 /* Allow time for pending master requests to run */
2365 hw->mac.ops.reset_hw(hw);
2366 wr32(E1000_WUC, 0);
2367
2368 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2369 /* need to resetup here after media swap */
2370 adapter->ei.get_invariants(hw);
2371 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372 }
2373 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2374 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2375 igb_enable_mas(adapter);
2376 }
2377 if (hw->mac.ops.init_hw(hw))
2378 dev_err(&pdev->dev, "Hardware Error\n");
2379
2380 /* RAR registers were cleared during init_hw, clear mac table */
2381 igb_flush_mac_table(adapter);
2382 __dev_uc_unsync(adapter->netdev, NULL);
2383
2384 /* Recover default RAR entry */
2385 igb_set_default_mac_filter(adapter);
2386
2387 /* Flow control settings reset on hardware reset, so guarantee flow
2388 * control is off when forcing speed.
2389 */
2390 if (!hw->mac.autoneg)
2391 igb_force_mac_fc(hw);
2392
2393 igb_init_dmac(adapter, pba);
2394 #ifdef CONFIG_IGB_HWMON
2395 /* Re-initialize the thermal sensor on i350 devices. */
2396 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2397 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2398 /* If present, re-initialize the external thermal sensor
2399 * interface.
2400 */
2401 if (adapter->ets)
2402 mac->ops.init_thermal_sensor_thresh(hw);
2403 }
2404 }
2405 #endif
2406 /* Re-establish EEE setting */
2407 if (hw->phy.media_type == e1000_media_type_copper) {
2408 switch (mac->type) {
2409 case e1000_i350:
2410 case e1000_i210:
2411 case e1000_i211:
2412 igb_set_eee_i350(hw, true, true);
2413 break;
2414 case e1000_i354:
2415 igb_set_eee_i354(hw, true, true);
2416 break;
2417 default:
2418 break;
2419 }
2420 }
2421 if (!netif_running(adapter->netdev))
2422 igb_power_down_link(adapter);
2423
2424 igb_update_mng_vlan(adapter);
2425
2426 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2427 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428
2429 /* Re-enable PTP, where applicable. */
2430 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2431 igb_ptp_reset(adapter);
2432
2433 igb_get_phy_info(hw);
2434 }
2435
igb_fix_features(struct net_device * netdev,netdev_features_t features)2436 static netdev_features_t igb_fix_features(struct net_device *netdev,
2437 netdev_features_t features)
2438 {
2439 /* Since there is no support for separate Rx/Tx vlan accel
2440 * enable/disable make sure Tx flag is always in same state as Rx.
2441 */
2442 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2443 features |= NETIF_F_HW_VLAN_CTAG_TX;
2444 else
2445 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2446
2447 return features;
2448 }
2449
igb_set_features(struct net_device * netdev,netdev_features_t features)2450 static int igb_set_features(struct net_device *netdev,
2451 netdev_features_t features)
2452 {
2453 netdev_features_t changed = netdev->features ^ features;
2454 struct igb_adapter *adapter = netdev_priv(netdev);
2455
2456 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2457 igb_vlan_mode(netdev, features);
2458
2459 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2460 return 0;
2461
2462 if (!(features & NETIF_F_NTUPLE)) {
2463 struct hlist_node *node2;
2464 struct igb_nfc_filter *rule;
2465
2466 spin_lock(&adapter->nfc_lock);
2467 hlist_for_each_entry_safe(rule, node2,
2468 &adapter->nfc_filter_list, nfc_node) {
2469 igb_erase_filter(adapter, rule);
2470 hlist_del(&rule->nfc_node);
2471 kfree(rule);
2472 }
2473 spin_unlock(&adapter->nfc_lock);
2474 adapter->nfc_filter_count = 0;
2475 }
2476
2477 netdev->features = features;
2478
2479 if (netif_running(netdev))
2480 igb_reinit_locked(adapter);
2481 else
2482 igb_reset(adapter);
2483
2484 return 1;
2485 }
2486
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2487 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2488 struct net_device *dev,
2489 const unsigned char *addr, u16 vid,
2490 u16 flags,
2491 struct netlink_ext_ack *extack)
2492 {
2493 /* guarantee we can provide a unique filter for the unicast address */
2494 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2495 struct igb_adapter *adapter = netdev_priv(dev);
2496 int vfn = adapter->vfs_allocated_count;
2497
2498 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2499 return -ENOMEM;
2500 }
2501
2502 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2503 }
2504
2505 #define IGB_MAX_MAC_HDR_LEN 127
2506 #define IGB_MAX_NETWORK_HDR_LEN 511
2507
2508 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2509 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2510 netdev_features_t features)
2511 {
2512 unsigned int network_hdr_len, mac_hdr_len;
2513
2514 /* Make certain the headers can be described by a context descriptor */
2515 mac_hdr_len = skb_network_header(skb) - skb->data;
2516 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2517 return features & ~(NETIF_F_HW_CSUM |
2518 NETIF_F_SCTP_CRC |
2519 NETIF_F_GSO_UDP_L4 |
2520 NETIF_F_HW_VLAN_CTAG_TX |
2521 NETIF_F_TSO |
2522 NETIF_F_TSO6);
2523
2524 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2525 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2526 return features & ~(NETIF_F_HW_CSUM |
2527 NETIF_F_SCTP_CRC |
2528 NETIF_F_GSO_UDP_L4 |
2529 NETIF_F_TSO |
2530 NETIF_F_TSO6);
2531
2532 /* We can only support IPV4 TSO in tunnels if we can mangle the
2533 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2534 */
2535 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2536 features &= ~NETIF_F_TSO;
2537
2538 return features;
2539 }
2540
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2541 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2542 {
2543 if (!is_fqtss_enabled(adapter)) {
2544 enable_fqtss(adapter, true);
2545 return;
2546 }
2547
2548 igb_config_tx_modes(adapter, queue);
2549
2550 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2551 enable_fqtss(adapter, false);
2552 }
2553
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2554 static int igb_offload_cbs(struct igb_adapter *adapter,
2555 struct tc_cbs_qopt_offload *qopt)
2556 {
2557 struct e1000_hw *hw = &adapter->hw;
2558 int err;
2559
2560 /* CBS offloading is only supported by i210 controller. */
2561 if (hw->mac.type != e1000_i210)
2562 return -EOPNOTSUPP;
2563
2564 /* CBS offloading is only supported by queue 0 and queue 1. */
2565 if (qopt->queue < 0 || qopt->queue > 1)
2566 return -EINVAL;
2567
2568 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2569 qopt->idleslope, qopt->sendslope,
2570 qopt->hicredit, qopt->locredit);
2571 if (err)
2572 return err;
2573
2574 igb_offload_apply(adapter, qopt->queue);
2575
2576 return 0;
2577 }
2578
2579 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2580 #define VLAN_PRIO_FULL_MASK (0x07)
2581
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2582 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2583 struct flow_cls_offload *f,
2584 int traffic_class,
2585 struct igb_nfc_filter *input)
2586 {
2587 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2588 struct flow_dissector *dissector = rule->match.dissector;
2589 struct netlink_ext_ack *extack = f->common.extack;
2590
2591 if (dissector->used_keys &
2592 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2593 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2594 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2595 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2596 NL_SET_ERR_MSG_MOD(extack,
2597 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598 return -EOPNOTSUPP;
2599 }
2600
2601 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2602 struct flow_match_eth_addrs match;
2603
2604 flow_rule_match_eth_addrs(rule, &match);
2605 if (!is_zero_ether_addr(match.mask->dst)) {
2606 if (!is_broadcast_ether_addr(match.mask->dst)) {
2607 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608 return -EINVAL;
2609 }
2610
2611 input->filter.match_flags |=
2612 IGB_FILTER_FLAG_DST_MAC_ADDR;
2613 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2614 }
2615
2616 if (!is_zero_ether_addr(match.mask->src)) {
2617 if (!is_broadcast_ether_addr(match.mask->src)) {
2618 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619 return -EINVAL;
2620 }
2621
2622 input->filter.match_flags |=
2623 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624 ether_addr_copy(input->filter.src_addr, match.key->src);
2625 }
2626 }
2627
2628 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2629 struct flow_match_basic match;
2630
2631 flow_rule_match_basic(rule, &match);
2632 if (match.mask->n_proto) {
2633 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2634 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635 return -EINVAL;
2636 }
2637
2638 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2639 input->filter.etype = match.key->n_proto;
2640 }
2641 }
2642
2643 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2644 struct flow_match_vlan match;
2645
2646 flow_rule_match_vlan(rule, &match);
2647 if (match.mask->vlan_priority) {
2648 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2649 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650 return -EINVAL;
2651 }
2652
2653 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2654 input->filter.vlan_tci =
2655 (__force __be16)match.key->vlan_priority;
2656 }
2657 }
2658
2659 input->action = traffic_class;
2660 input->cookie = f->cookie;
2661
2662 return 0;
2663 }
2664
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2665 static int igb_configure_clsflower(struct igb_adapter *adapter,
2666 struct flow_cls_offload *cls_flower)
2667 {
2668 struct netlink_ext_ack *extack = cls_flower->common.extack;
2669 struct igb_nfc_filter *filter, *f;
2670 int err, tc;
2671
2672 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2673 if (tc < 0) {
2674 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2675 return -EINVAL;
2676 }
2677
2678 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2679 if (!filter)
2680 return -ENOMEM;
2681
2682 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2683 if (err < 0)
2684 goto err_parse;
2685
2686 spin_lock(&adapter->nfc_lock);
2687
2688 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2689 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690 err = -EEXIST;
2691 NL_SET_ERR_MSG_MOD(extack,
2692 "This filter is already set in ethtool");
2693 goto err_locked;
2694 }
2695 }
2696
2697 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2698 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2699 err = -EEXIST;
2700 NL_SET_ERR_MSG_MOD(extack,
2701 "This filter is already set in cls_flower");
2702 goto err_locked;
2703 }
2704 }
2705
2706 err = igb_add_filter(adapter, filter);
2707 if (err < 0) {
2708 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2709 goto err_locked;
2710 }
2711
2712 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2713
2714 spin_unlock(&adapter->nfc_lock);
2715
2716 return 0;
2717
2718 err_locked:
2719 spin_unlock(&adapter->nfc_lock);
2720
2721 err_parse:
2722 kfree(filter);
2723
2724 return err;
2725 }
2726
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2727 static int igb_delete_clsflower(struct igb_adapter *adapter,
2728 struct flow_cls_offload *cls_flower)
2729 {
2730 struct igb_nfc_filter *filter;
2731 int err;
2732
2733 spin_lock(&adapter->nfc_lock);
2734
2735 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2736 if (filter->cookie == cls_flower->cookie)
2737 break;
2738
2739 if (!filter) {
2740 err = -ENOENT;
2741 goto out;
2742 }
2743
2744 err = igb_erase_filter(adapter, filter);
2745 if (err < 0)
2746 goto out;
2747
2748 hlist_del(&filter->nfc_node);
2749 kfree(filter);
2750
2751 out:
2752 spin_unlock(&adapter->nfc_lock);
2753
2754 return err;
2755 }
2756
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2757 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2758 struct flow_cls_offload *cls_flower)
2759 {
2760 switch (cls_flower->command) {
2761 case FLOW_CLS_REPLACE:
2762 return igb_configure_clsflower(adapter, cls_flower);
2763 case FLOW_CLS_DESTROY:
2764 return igb_delete_clsflower(adapter, cls_flower);
2765 case FLOW_CLS_STATS:
2766 return -EOPNOTSUPP;
2767 default:
2768 return -EOPNOTSUPP;
2769 }
2770 }
2771
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2772 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2773 void *cb_priv)
2774 {
2775 struct igb_adapter *adapter = cb_priv;
2776
2777 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2778 return -EOPNOTSUPP;
2779
2780 switch (type) {
2781 case TC_SETUP_CLSFLOWER:
2782 return igb_setup_tc_cls_flower(adapter, type_data);
2783
2784 default:
2785 return -EOPNOTSUPP;
2786 }
2787 }
2788
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2789 static int igb_offload_txtime(struct igb_adapter *adapter,
2790 struct tc_etf_qopt_offload *qopt)
2791 {
2792 struct e1000_hw *hw = &adapter->hw;
2793 int err;
2794
2795 /* Launchtime offloading is only supported by i210 controller. */
2796 if (hw->mac.type != e1000_i210)
2797 return -EOPNOTSUPP;
2798
2799 /* Launchtime offloading is only supported by queues 0 and 1. */
2800 if (qopt->queue < 0 || qopt->queue > 1)
2801 return -EINVAL;
2802
2803 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2804 if (err)
2805 return err;
2806
2807 igb_offload_apply(adapter, qopt->queue);
2808
2809 return 0;
2810 }
2811
2812 static LIST_HEAD(igb_block_cb_list);
2813
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2814 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2815 void *type_data)
2816 {
2817 struct igb_adapter *adapter = netdev_priv(dev);
2818
2819 switch (type) {
2820 case TC_SETUP_QDISC_CBS:
2821 return igb_offload_cbs(adapter, type_data);
2822 case TC_SETUP_BLOCK:
2823 return flow_block_cb_setup_simple(type_data,
2824 &igb_block_cb_list,
2825 igb_setup_tc_block_cb,
2826 adapter, adapter, true);
2827
2828 case TC_SETUP_QDISC_ETF:
2829 return igb_offload_txtime(adapter, type_data);
2830
2831 default:
2832 return -EOPNOTSUPP;
2833 }
2834 }
2835
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2836 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2837 {
2838 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2839 struct igb_adapter *adapter = netdev_priv(dev);
2840 struct bpf_prog *prog = bpf->prog, *old_prog;
2841 bool running = netif_running(dev);
2842 bool need_reset;
2843
2844 /* verify igb ring attributes are sufficient for XDP */
2845 for (i = 0; i < adapter->num_rx_queues; i++) {
2846 struct igb_ring *ring = adapter->rx_ring[i];
2847
2848 if (frame_size > igb_rx_bufsz(ring)) {
2849 NL_SET_ERR_MSG_MOD(bpf->extack,
2850 "The RX buffer size is too small for the frame size");
2851 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2852 igb_rx_bufsz(ring), frame_size);
2853 return -EINVAL;
2854 }
2855 }
2856
2857 old_prog = xchg(&adapter->xdp_prog, prog);
2858 need_reset = (!!prog != !!old_prog);
2859
2860 /* device is up and bpf is added/removed, must setup the RX queues */
2861 if (need_reset && running) {
2862 igb_close(dev);
2863 } else {
2864 for (i = 0; i < adapter->num_rx_queues; i++)
2865 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2866 adapter->xdp_prog);
2867 }
2868
2869 if (old_prog)
2870 bpf_prog_put(old_prog);
2871
2872 /* bpf is just replaced, RXQ and MTU are already setup */
2873 if (!need_reset)
2874 return 0;
2875
2876 if (running)
2877 igb_open(dev);
2878
2879 return 0;
2880 }
2881
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2882 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2883 {
2884 switch (xdp->command) {
2885 case XDP_SETUP_PROG:
2886 return igb_xdp_setup(dev, xdp);
2887 default:
2888 return -EINVAL;
2889 }
2890 }
2891
igb_xdp_ring_update_tail(struct igb_ring * ring)2892 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2893 {
2894 /* Force memory writes to complete before letting h/w know there
2895 * are new descriptors to fetch.
2896 */
2897 wmb();
2898 writel(ring->next_to_use, ring->tail);
2899 }
2900
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2901 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2902 {
2903 unsigned int r_idx = smp_processor_id();
2904
2905 if (r_idx >= adapter->num_tx_queues)
2906 r_idx = r_idx % adapter->num_tx_queues;
2907
2908 return adapter->tx_ring[r_idx];
2909 }
2910
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2911 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2912 {
2913 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2914 int cpu = smp_processor_id();
2915 struct igb_ring *tx_ring;
2916 struct netdev_queue *nq;
2917 u32 ret;
2918
2919 if (unlikely(!xdpf))
2920 return IGB_XDP_CONSUMED;
2921
2922 /* During program transitions its possible adapter->xdp_prog is assigned
2923 * but ring has not been configured yet. In this case simply abort xmit.
2924 */
2925 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2926 if (unlikely(!tx_ring))
2927 return IGB_XDP_CONSUMED;
2928
2929 nq = txring_txq(tx_ring);
2930 __netif_tx_lock(nq, cpu);
2931 /* Avoid transmit queue timeout since we share it with the slow path */
2932 nq->trans_start = jiffies;
2933 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2934 __netif_tx_unlock(nq);
2935
2936 return ret;
2937 }
2938
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2939 static int igb_xdp_xmit(struct net_device *dev, int n,
2940 struct xdp_frame **frames, u32 flags)
2941 {
2942 struct igb_adapter *adapter = netdev_priv(dev);
2943 int cpu = smp_processor_id();
2944 struct igb_ring *tx_ring;
2945 struct netdev_queue *nq;
2946 int drops = 0;
2947 int i;
2948
2949 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2950 return -ENETDOWN;
2951
2952 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2953 return -EINVAL;
2954
2955 /* During program transitions its possible adapter->xdp_prog is assigned
2956 * but ring has not been configured yet. In this case simply abort xmit.
2957 */
2958 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2959 if (unlikely(!tx_ring))
2960 return -ENXIO;
2961
2962 nq = txring_txq(tx_ring);
2963 __netif_tx_lock(nq, cpu);
2964
2965 /* Avoid transmit queue timeout since we share it with the slow path */
2966 nq->trans_start = jiffies;
2967
2968 for (i = 0; i < n; i++) {
2969 struct xdp_frame *xdpf = frames[i];
2970 int err;
2971
2972 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2973 if (err != IGB_XDP_TX) {
2974 xdp_return_frame_rx_napi(xdpf);
2975 drops++;
2976 }
2977 }
2978
2979 __netif_tx_unlock(nq);
2980
2981 if (unlikely(flags & XDP_XMIT_FLUSH))
2982 igb_xdp_ring_update_tail(tx_ring);
2983
2984 return n - drops;
2985 }
2986
2987 static const struct net_device_ops igb_netdev_ops = {
2988 .ndo_open = igb_open,
2989 .ndo_stop = igb_close,
2990 .ndo_start_xmit = igb_xmit_frame,
2991 .ndo_get_stats64 = igb_get_stats64,
2992 .ndo_set_rx_mode = igb_set_rx_mode,
2993 .ndo_set_mac_address = igb_set_mac,
2994 .ndo_change_mtu = igb_change_mtu,
2995 .ndo_do_ioctl = igb_ioctl,
2996 .ndo_tx_timeout = igb_tx_timeout,
2997 .ndo_validate_addr = eth_validate_addr,
2998 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2999 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3000 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3001 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3002 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3003 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3004 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3005 .ndo_get_vf_config = igb_ndo_get_vf_config,
3006 .ndo_fix_features = igb_fix_features,
3007 .ndo_set_features = igb_set_features,
3008 .ndo_fdb_add = igb_ndo_fdb_add,
3009 .ndo_features_check = igb_features_check,
3010 .ndo_setup_tc = igb_setup_tc,
3011 .ndo_bpf = igb_xdp,
3012 .ndo_xdp_xmit = igb_xdp_xmit,
3013 };
3014
3015 /**
3016 * igb_set_fw_version - Configure version string for ethtool
3017 * @adapter: adapter struct
3018 **/
igb_set_fw_version(struct igb_adapter * adapter)3019 void igb_set_fw_version(struct igb_adapter *adapter)
3020 {
3021 struct e1000_hw *hw = &adapter->hw;
3022 struct e1000_fw_version fw;
3023
3024 igb_get_fw_version(hw, &fw);
3025
3026 switch (hw->mac.type) {
3027 case e1000_i210:
3028 case e1000_i211:
3029 if (!(igb_get_flash_presence_i210(hw))) {
3030 snprintf(adapter->fw_version,
3031 sizeof(adapter->fw_version),
3032 "%2d.%2d-%d",
3033 fw.invm_major, fw.invm_minor,
3034 fw.invm_img_type);
3035 break;
3036 }
3037 fallthrough;
3038 default:
3039 /* if option is rom valid, display its version too */
3040 if (fw.or_valid) {
3041 snprintf(adapter->fw_version,
3042 sizeof(adapter->fw_version),
3043 "%d.%d, 0x%08x, %d.%d.%d",
3044 fw.eep_major, fw.eep_minor, fw.etrack_id,
3045 fw.or_major, fw.or_build, fw.or_patch);
3046 /* no option rom */
3047 } else if (fw.etrack_id != 0X0000) {
3048 snprintf(adapter->fw_version,
3049 sizeof(adapter->fw_version),
3050 "%d.%d, 0x%08x",
3051 fw.eep_major, fw.eep_minor, fw.etrack_id);
3052 } else {
3053 snprintf(adapter->fw_version,
3054 sizeof(adapter->fw_version),
3055 "%d.%d.%d",
3056 fw.eep_major, fw.eep_minor, fw.eep_build);
3057 }
3058 break;
3059 }
3060 }
3061
3062 /**
3063 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3064 *
3065 * @adapter: adapter struct
3066 **/
igb_init_mas(struct igb_adapter * adapter)3067 static void igb_init_mas(struct igb_adapter *adapter)
3068 {
3069 struct e1000_hw *hw = &adapter->hw;
3070 u16 eeprom_data;
3071
3072 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3073 switch (hw->bus.func) {
3074 case E1000_FUNC_0:
3075 if (eeprom_data & IGB_MAS_ENABLE_0) {
3076 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3077 netdev_info(adapter->netdev,
3078 "MAS: Enabling Media Autosense for port %d\n",
3079 hw->bus.func);
3080 }
3081 break;
3082 case E1000_FUNC_1:
3083 if (eeprom_data & IGB_MAS_ENABLE_1) {
3084 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3085 netdev_info(adapter->netdev,
3086 "MAS: Enabling Media Autosense for port %d\n",
3087 hw->bus.func);
3088 }
3089 break;
3090 case E1000_FUNC_2:
3091 if (eeprom_data & IGB_MAS_ENABLE_2) {
3092 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3093 netdev_info(adapter->netdev,
3094 "MAS: Enabling Media Autosense for port %d\n",
3095 hw->bus.func);
3096 }
3097 break;
3098 case E1000_FUNC_3:
3099 if (eeprom_data & IGB_MAS_ENABLE_3) {
3100 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3101 netdev_info(adapter->netdev,
3102 "MAS: Enabling Media Autosense for port %d\n",
3103 hw->bus.func);
3104 }
3105 break;
3106 default:
3107 /* Shouldn't get here */
3108 netdev_err(adapter->netdev,
3109 "MAS: Invalid port configuration, returning\n");
3110 break;
3111 }
3112 }
3113
3114 /**
3115 * igb_init_i2c - Init I2C interface
3116 * @adapter: pointer to adapter structure
3117 **/
igb_init_i2c(struct igb_adapter * adapter)3118 static s32 igb_init_i2c(struct igb_adapter *adapter)
3119 {
3120 s32 status = 0;
3121
3122 /* I2C interface supported on i350 devices */
3123 if (adapter->hw.mac.type != e1000_i350)
3124 return 0;
3125
3126 /* Initialize the i2c bus which is controlled by the registers.
3127 * This bus will use the i2c_algo_bit structue that implements
3128 * the protocol through toggling of the 4 bits in the register.
3129 */
3130 adapter->i2c_adap.owner = THIS_MODULE;
3131 adapter->i2c_algo = igb_i2c_algo;
3132 adapter->i2c_algo.data = adapter;
3133 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3134 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3135 strlcpy(adapter->i2c_adap.name, "igb BB",
3136 sizeof(adapter->i2c_adap.name));
3137 status = i2c_bit_add_bus(&adapter->i2c_adap);
3138 return status;
3139 }
3140
3141 /**
3142 * igb_probe - Device Initialization Routine
3143 * @pdev: PCI device information struct
3144 * @ent: entry in igb_pci_tbl
3145 *
3146 * Returns 0 on success, negative on failure
3147 *
3148 * igb_probe initializes an adapter identified by a pci_dev structure.
3149 * The OS initialization, configuring of the adapter private structure,
3150 * and a hardware reset occur.
3151 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3152 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3153 {
3154 struct net_device *netdev;
3155 struct igb_adapter *adapter;
3156 struct e1000_hw *hw;
3157 u16 eeprom_data = 0;
3158 s32 ret_val;
3159 static int global_quad_port_a; /* global quad port a indication */
3160 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3161 int err, pci_using_dac;
3162 u8 part_str[E1000_PBANUM_LENGTH];
3163
3164 /* Catch broken hardware that put the wrong VF device ID in
3165 * the PCIe SR-IOV capability.
3166 */
3167 if (pdev->is_virtfn) {
3168 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3169 pci_name(pdev), pdev->vendor, pdev->device);
3170 return -EINVAL;
3171 }
3172
3173 err = pci_enable_device_mem(pdev);
3174 if (err)
3175 return err;
3176
3177 pci_using_dac = 0;
3178 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3179 if (!err) {
3180 pci_using_dac = 1;
3181 } else {
3182 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3183 if (err) {
3184 dev_err(&pdev->dev,
3185 "No usable DMA configuration, aborting\n");
3186 goto err_dma;
3187 }
3188 }
3189
3190 err = pci_request_mem_regions(pdev, igb_driver_name);
3191 if (err)
3192 goto err_pci_reg;
3193
3194 pci_enable_pcie_error_reporting(pdev);
3195
3196 pci_set_master(pdev);
3197 pci_save_state(pdev);
3198
3199 err = -ENOMEM;
3200 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3201 IGB_MAX_TX_QUEUES);
3202 if (!netdev)
3203 goto err_alloc_etherdev;
3204
3205 SET_NETDEV_DEV(netdev, &pdev->dev);
3206
3207 pci_set_drvdata(pdev, netdev);
3208 adapter = netdev_priv(netdev);
3209 adapter->netdev = netdev;
3210 adapter->pdev = pdev;
3211 hw = &adapter->hw;
3212 hw->back = adapter;
3213 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3214
3215 err = -EIO;
3216 adapter->io_addr = pci_iomap(pdev, 0, 0);
3217 if (!adapter->io_addr)
3218 goto err_ioremap;
3219 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3220 hw->hw_addr = adapter->io_addr;
3221
3222 netdev->netdev_ops = &igb_netdev_ops;
3223 igb_set_ethtool_ops(netdev);
3224 netdev->watchdog_timeo = 5 * HZ;
3225
3226 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3227
3228 netdev->mem_start = pci_resource_start(pdev, 0);
3229 netdev->mem_end = pci_resource_end(pdev, 0);
3230
3231 /* PCI config space info */
3232 hw->vendor_id = pdev->vendor;
3233 hw->device_id = pdev->device;
3234 hw->revision_id = pdev->revision;
3235 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3236 hw->subsystem_device_id = pdev->subsystem_device;
3237
3238 /* Copy the default MAC, PHY and NVM function pointers */
3239 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3240 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3241 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3242 /* Initialize skew-specific constants */
3243 err = ei->get_invariants(hw);
3244 if (err)
3245 goto err_sw_init;
3246
3247 /* setup the private structure */
3248 err = igb_sw_init(adapter);
3249 if (err)
3250 goto err_sw_init;
3251
3252 igb_get_bus_info_pcie(hw);
3253
3254 hw->phy.autoneg_wait_to_complete = false;
3255
3256 /* Copper options */
3257 if (hw->phy.media_type == e1000_media_type_copper) {
3258 hw->phy.mdix = AUTO_ALL_MODES;
3259 hw->phy.disable_polarity_correction = false;
3260 hw->phy.ms_type = e1000_ms_hw_default;
3261 }
3262
3263 if (igb_check_reset_block(hw))
3264 dev_info(&pdev->dev,
3265 "PHY reset is blocked due to SOL/IDER session.\n");
3266
3267 /* features is initialized to 0 in allocation, it might have bits
3268 * set by igb_sw_init so we should use an or instead of an
3269 * assignment.
3270 */
3271 netdev->features |= NETIF_F_SG |
3272 NETIF_F_TSO |
3273 NETIF_F_TSO6 |
3274 NETIF_F_RXHASH |
3275 NETIF_F_RXCSUM |
3276 NETIF_F_HW_CSUM;
3277
3278 if (hw->mac.type >= e1000_82576)
3279 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3280
3281 if (hw->mac.type >= e1000_i350)
3282 netdev->features |= NETIF_F_HW_TC;
3283
3284 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3285 NETIF_F_GSO_GRE_CSUM | \
3286 NETIF_F_GSO_IPXIP4 | \
3287 NETIF_F_GSO_IPXIP6 | \
3288 NETIF_F_GSO_UDP_TUNNEL | \
3289 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3290
3291 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3292 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3293
3294 /* copy netdev features into list of user selectable features */
3295 netdev->hw_features |= netdev->features |
3296 NETIF_F_HW_VLAN_CTAG_RX |
3297 NETIF_F_HW_VLAN_CTAG_TX |
3298 NETIF_F_RXALL;
3299
3300 if (hw->mac.type >= e1000_i350)
3301 netdev->hw_features |= NETIF_F_NTUPLE;
3302
3303 if (pci_using_dac)
3304 netdev->features |= NETIF_F_HIGHDMA;
3305
3306 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3307 netdev->mpls_features |= NETIF_F_HW_CSUM;
3308 netdev->hw_enc_features |= netdev->vlan_features;
3309
3310 /* set this bit last since it cannot be part of vlan_features */
3311 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3312 NETIF_F_HW_VLAN_CTAG_RX |
3313 NETIF_F_HW_VLAN_CTAG_TX;
3314
3315 netdev->priv_flags |= IFF_SUPP_NOFCS;
3316
3317 netdev->priv_flags |= IFF_UNICAST_FLT;
3318
3319 /* MTU range: 68 - 9216 */
3320 netdev->min_mtu = ETH_MIN_MTU;
3321 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3322
3323 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3324
3325 /* before reading the NVM, reset the controller to put the device in a
3326 * known good starting state
3327 */
3328 hw->mac.ops.reset_hw(hw);
3329
3330 /* make sure the NVM is good , i211/i210 parts can have special NVM
3331 * that doesn't contain a checksum
3332 */
3333 switch (hw->mac.type) {
3334 case e1000_i210:
3335 case e1000_i211:
3336 if (igb_get_flash_presence_i210(hw)) {
3337 if (hw->nvm.ops.validate(hw) < 0) {
3338 dev_err(&pdev->dev,
3339 "The NVM Checksum Is Not Valid\n");
3340 err = -EIO;
3341 goto err_eeprom;
3342 }
3343 }
3344 break;
3345 default:
3346 if (hw->nvm.ops.validate(hw) < 0) {
3347 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3348 err = -EIO;
3349 goto err_eeprom;
3350 }
3351 break;
3352 }
3353
3354 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3355 /* copy the MAC address out of the NVM */
3356 if (hw->mac.ops.read_mac_addr(hw))
3357 dev_err(&pdev->dev, "NVM Read Error\n");
3358 }
3359
3360 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3361
3362 if (!is_valid_ether_addr(netdev->dev_addr)) {
3363 dev_err(&pdev->dev, "Invalid MAC Address\n");
3364 err = -EIO;
3365 goto err_eeprom;
3366 }
3367
3368 igb_set_default_mac_filter(adapter);
3369
3370 /* get firmware version for ethtool -i */
3371 igb_set_fw_version(adapter);
3372
3373 /* configure RXPBSIZE and TXPBSIZE */
3374 if (hw->mac.type == e1000_i210) {
3375 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3376 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3377 }
3378
3379 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3380 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3381
3382 INIT_WORK(&adapter->reset_task, igb_reset_task);
3383 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3384
3385 /* Initialize link properties that are user-changeable */
3386 adapter->fc_autoneg = true;
3387 hw->mac.autoneg = true;
3388 hw->phy.autoneg_advertised = 0x2f;
3389
3390 hw->fc.requested_mode = e1000_fc_default;
3391 hw->fc.current_mode = e1000_fc_default;
3392
3393 igb_validate_mdi_setting(hw);
3394
3395 /* By default, support wake on port A */
3396 if (hw->bus.func == 0)
3397 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3398
3399 /* Check the NVM for wake support on non-port A ports */
3400 if (hw->mac.type >= e1000_82580)
3401 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3402 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3403 &eeprom_data);
3404 else if (hw->bus.func == 1)
3405 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3406
3407 if (eeprom_data & IGB_EEPROM_APME)
3408 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3409
3410 /* now that we have the eeprom settings, apply the special cases where
3411 * the eeprom may be wrong or the board simply won't support wake on
3412 * lan on a particular port
3413 */
3414 switch (pdev->device) {
3415 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3416 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3417 break;
3418 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3419 case E1000_DEV_ID_82576_FIBER:
3420 case E1000_DEV_ID_82576_SERDES:
3421 /* Wake events only supported on port A for dual fiber
3422 * regardless of eeprom setting
3423 */
3424 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3425 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3426 break;
3427 case E1000_DEV_ID_82576_QUAD_COPPER:
3428 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3429 /* if quad port adapter, disable WoL on all but port A */
3430 if (global_quad_port_a != 0)
3431 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3432 else
3433 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3434 /* Reset for multiple quad port adapters */
3435 if (++global_quad_port_a == 4)
3436 global_quad_port_a = 0;
3437 break;
3438 default:
3439 /* If the device can't wake, don't set software support */
3440 if (!device_can_wakeup(&adapter->pdev->dev))
3441 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3442 }
3443
3444 /* initialize the wol settings based on the eeprom settings */
3445 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3446 adapter->wol |= E1000_WUFC_MAG;
3447
3448 /* Some vendors want WoL disabled by default, but still supported */
3449 if ((hw->mac.type == e1000_i350) &&
3450 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3451 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3452 adapter->wol = 0;
3453 }
3454
3455 /* Some vendors want the ability to Use the EEPROM setting as
3456 * enable/disable only, and not for capability
3457 */
3458 if (((hw->mac.type == e1000_i350) ||
3459 (hw->mac.type == e1000_i354)) &&
3460 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3461 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3462 adapter->wol = 0;
3463 }
3464 if (hw->mac.type == e1000_i350) {
3465 if (((pdev->subsystem_device == 0x5001) ||
3466 (pdev->subsystem_device == 0x5002)) &&
3467 (hw->bus.func == 0)) {
3468 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3469 adapter->wol = 0;
3470 }
3471 if (pdev->subsystem_device == 0x1F52)
3472 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3473 }
3474
3475 device_set_wakeup_enable(&adapter->pdev->dev,
3476 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3477
3478 /* reset the hardware with the new settings */
3479 igb_reset(adapter);
3480
3481 /* Init the I2C interface */
3482 err = igb_init_i2c(adapter);
3483 if (err) {
3484 dev_err(&pdev->dev, "failed to init i2c interface\n");
3485 goto err_eeprom;
3486 }
3487
3488 /* let the f/w know that the h/w is now under the control of the
3489 * driver.
3490 */
3491 igb_get_hw_control(adapter);
3492
3493 strcpy(netdev->name, "eth%d");
3494 err = register_netdev(netdev);
3495 if (err)
3496 goto err_register;
3497
3498 /* carrier off reporting is important to ethtool even BEFORE open */
3499 netif_carrier_off(netdev);
3500
3501 #ifdef CONFIG_IGB_DCA
3502 if (dca_add_requester(&pdev->dev) == 0) {
3503 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3504 dev_info(&pdev->dev, "DCA enabled\n");
3505 igb_setup_dca(adapter);
3506 }
3507
3508 #endif
3509 #ifdef CONFIG_IGB_HWMON
3510 /* Initialize the thermal sensor on i350 devices. */
3511 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3512 u16 ets_word;
3513
3514 /* Read the NVM to determine if this i350 device supports an
3515 * external thermal sensor.
3516 */
3517 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3518 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3519 adapter->ets = true;
3520 else
3521 adapter->ets = false;
3522 if (igb_sysfs_init(adapter))
3523 dev_err(&pdev->dev,
3524 "failed to allocate sysfs resources\n");
3525 } else {
3526 adapter->ets = false;
3527 }
3528 #endif
3529 /* Check if Media Autosense is enabled */
3530 adapter->ei = *ei;
3531 if (hw->dev_spec._82575.mas_capable)
3532 igb_init_mas(adapter);
3533
3534 /* do hw tstamp init after resetting */
3535 igb_ptp_init(adapter);
3536
3537 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3538 /* print bus type/speed/width info, not applicable to i354 */
3539 if (hw->mac.type != e1000_i354) {
3540 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3541 netdev->name,
3542 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3543 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3544 "unknown"),
3545 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3546 "Width x4" :
3547 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3548 "Width x2" :
3549 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3550 "Width x1" : "unknown"), netdev->dev_addr);
3551 }
3552
3553 if ((hw->mac.type == e1000_82576 &&
3554 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3555 (hw->mac.type >= e1000_i210 ||
3556 igb_get_flash_presence_i210(hw))) {
3557 ret_val = igb_read_part_string(hw, part_str,
3558 E1000_PBANUM_LENGTH);
3559 } else {
3560 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3561 }
3562
3563 if (ret_val)
3564 strcpy(part_str, "Unknown");
3565 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3566 dev_info(&pdev->dev,
3567 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3568 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3569 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3570 adapter->num_rx_queues, adapter->num_tx_queues);
3571 if (hw->phy.media_type == e1000_media_type_copper) {
3572 switch (hw->mac.type) {
3573 case e1000_i350:
3574 case e1000_i210:
3575 case e1000_i211:
3576 /* Enable EEE for internal copper PHY devices */
3577 err = igb_set_eee_i350(hw, true, true);
3578 if ((!err) &&
3579 (!hw->dev_spec._82575.eee_disable)) {
3580 adapter->eee_advert =
3581 MDIO_EEE_100TX | MDIO_EEE_1000T;
3582 adapter->flags |= IGB_FLAG_EEE;
3583 }
3584 break;
3585 case e1000_i354:
3586 if ((rd32(E1000_CTRL_EXT) &
3587 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3588 err = igb_set_eee_i354(hw, true, true);
3589 if ((!err) &&
3590 (!hw->dev_spec._82575.eee_disable)) {
3591 adapter->eee_advert =
3592 MDIO_EEE_100TX | MDIO_EEE_1000T;
3593 adapter->flags |= IGB_FLAG_EEE;
3594 }
3595 }
3596 break;
3597 default:
3598 break;
3599 }
3600 }
3601
3602 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3603
3604 pm_runtime_put_noidle(&pdev->dev);
3605 return 0;
3606
3607 err_register:
3608 igb_release_hw_control(adapter);
3609 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3610 err_eeprom:
3611 if (!igb_check_reset_block(hw))
3612 igb_reset_phy(hw);
3613
3614 if (hw->flash_address)
3615 iounmap(hw->flash_address);
3616 err_sw_init:
3617 kfree(adapter->mac_table);
3618 kfree(adapter->shadow_vfta);
3619 igb_clear_interrupt_scheme(adapter);
3620 #ifdef CONFIG_PCI_IOV
3621 igb_disable_sriov(pdev);
3622 #endif
3623 pci_iounmap(pdev, adapter->io_addr);
3624 err_ioremap:
3625 free_netdev(netdev);
3626 err_alloc_etherdev:
3627 pci_disable_pcie_error_reporting(pdev);
3628 pci_release_mem_regions(pdev);
3629 err_pci_reg:
3630 err_dma:
3631 pci_disable_device(pdev);
3632 return err;
3633 }
3634
3635 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3636 static int igb_disable_sriov(struct pci_dev *pdev)
3637 {
3638 struct net_device *netdev = pci_get_drvdata(pdev);
3639 struct igb_adapter *adapter = netdev_priv(netdev);
3640 struct e1000_hw *hw = &adapter->hw;
3641 unsigned long flags;
3642
3643 /* reclaim resources allocated to VFs */
3644 if (adapter->vf_data) {
3645 /* disable iov and allow time for transactions to clear */
3646 if (pci_vfs_assigned(pdev)) {
3647 dev_warn(&pdev->dev,
3648 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3649 return -EPERM;
3650 } else {
3651 pci_disable_sriov(pdev);
3652 msleep(500);
3653 }
3654 spin_lock_irqsave(&adapter->vfs_lock, flags);
3655 kfree(adapter->vf_mac_list);
3656 adapter->vf_mac_list = NULL;
3657 kfree(adapter->vf_data);
3658 adapter->vf_data = NULL;
3659 adapter->vfs_allocated_count = 0;
3660 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3661 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3662 wrfl();
3663 msleep(100);
3664 dev_info(&pdev->dev, "IOV Disabled\n");
3665
3666 /* Re-enable DMA Coalescing flag since IOV is turned off */
3667 adapter->flags |= IGB_FLAG_DMAC;
3668 }
3669
3670 return 0;
3671 }
3672
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3673 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3674 {
3675 struct net_device *netdev = pci_get_drvdata(pdev);
3676 struct igb_adapter *adapter = netdev_priv(netdev);
3677 int old_vfs = pci_num_vf(pdev);
3678 struct vf_mac_filter *mac_list;
3679 int err = 0;
3680 int num_vf_mac_filters, i;
3681
3682 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3683 err = -EPERM;
3684 goto out;
3685 }
3686 if (!num_vfs)
3687 goto out;
3688
3689 if (old_vfs) {
3690 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3691 old_vfs, max_vfs);
3692 adapter->vfs_allocated_count = old_vfs;
3693 } else
3694 adapter->vfs_allocated_count = num_vfs;
3695
3696 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3697 sizeof(struct vf_data_storage), GFP_KERNEL);
3698
3699 /* if allocation failed then we do not support SR-IOV */
3700 if (!adapter->vf_data) {
3701 adapter->vfs_allocated_count = 0;
3702 err = -ENOMEM;
3703 goto out;
3704 }
3705
3706 /* Due to the limited number of RAR entries calculate potential
3707 * number of MAC filters available for the VFs. Reserve entries
3708 * for PF default MAC, PF MAC filters and at least one RAR entry
3709 * for each VF for VF MAC.
3710 */
3711 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3712 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3713 adapter->vfs_allocated_count);
3714
3715 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3716 sizeof(struct vf_mac_filter),
3717 GFP_KERNEL);
3718
3719 mac_list = adapter->vf_mac_list;
3720 INIT_LIST_HEAD(&adapter->vf_macs.l);
3721
3722 if (adapter->vf_mac_list) {
3723 /* Initialize list of VF MAC filters */
3724 for (i = 0; i < num_vf_mac_filters; i++) {
3725 mac_list->vf = -1;
3726 mac_list->free = true;
3727 list_add(&mac_list->l, &adapter->vf_macs.l);
3728 mac_list++;
3729 }
3730 } else {
3731 /* If we could not allocate memory for the VF MAC filters
3732 * we can continue without this feature but warn user.
3733 */
3734 dev_err(&pdev->dev,
3735 "Unable to allocate memory for VF MAC filter list\n");
3736 }
3737
3738 /* only call pci_enable_sriov() if no VFs are allocated already */
3739 if (!old_vfs) {
3740 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3741 if (err)
3742 goto err_out;
3743 }
3744 dev_info(&pdev->dev, "%d VFs allocated\n",
3745 adapter->vfs_allocated_count);
3746 for (i = 0; i < adapter->vfs_allocated_count; i++)
3747 igb_vf_configure(adapter, i);
3748
3749 /* DMA Coalescing is not supported in IOV mode. */
3750 adapter->flags &= ~IGB_FLAG_DMAC;
3751 goto out;
3752
3753 err_out:
3754 kfree(adapter->vf_mac_list);
3755 adapter->vf_mac_list = NULL;
3756 kfree(adapter->vf_data);
3757 adapter->vf_data = NULL;
3758 adapter->vfs_allocated_count = 0;
3759 out:
3760 return err;
3761 }
3762
3763 #endif
3764 /**
3765 * igb_remove_i2c - Cleanup I2C interface
3766 * @adapter: pointer to adapter structure
3767 **/
igb_remove_i2c(struct igb_adapter * adapter)3768 static void igb_remove_i2c(struct igb_adapter *adapter)
3769 {
3770 /* free the adapter bus structure */
3771 i2c_del_adapter(&adapter->i2c_adap);
3772 }
3773
3774 /**
3775 * igb_remove - Device Removal Routine
3776 * @pdev: PCI device information struct
3777 *
3778 * igb_remove is called by the PCI subsystem to alert the driver
3779 * that it should release a PCI device. The could be caused by a
3780 * Hot-Plug event, or because the driver is going to be removed from
3781 * memory.
3782 **/
igb_remove(struct pci_dev * pdev)3783 static void igb_remove(struct pci_dev *pdev)
3784 {
3785 struct net_device *netdev = pci_get_drvdata(pdev);
3786 struct igb_adapter *adapter = netdev_priv(netdev);
3787 struct e1000_hw *hw = &adapter->hw;
3788
3789 pm_runtime_get_noresume(&pdev->dev);
3790 #ifdef CONFIG_IGB_HWMON
3791 igb_sysfs_exit(adapter);
3792 #endif
3793 igb_remove_i2c(adapter);
3794 igb_ptp_stop(adapter);
3795 /* The watchdog timer may be rescheduled, so explicitly
3796 * disable watchdog from being rescheduled.
3797 */
3798 set_bit(__IGB_DOWN, &adapter->state);
3799 del_timer_sync(&adapter->watchdog_timer);
3800 del_timer_sync(&adapter->phy_info_timer);
3801
3802 cancel_work_sync(&adapter->reset_task);
3803 cancel_work_sync(&adapter->watchdog_task);
3804
3805 #ifdef CONFIG_IGB_DCA
3806 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3807 dev_info(&pdev->dev, "DCA disabled\n");
3808 dca_remove_requester(&pdev->dev);
3809 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3810 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3811 }
3812 #endif
3813
3814 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3815 * would have already happened in close and is redundant.
3816 */
3817 igb_release_hw_control(adapter);
3818
3819 #ifdef CONFIG_PCI_IOV
3820 rtnl_lock();
3821 igb_disable_sriov(pdev);
3822 rtnl_unlock();
3823 #endif
3824
3825 unregister_netdev(netdev);
3826
3827 igb_clear_interrupt_scheme(adapter);
3828
3829 pci_iounmap(pdev, adapter->io_addr);
3830 if (hw->flash_address)
3831 iounmap(hw->flash_address);
3832 pci_release_mem_regions(pdev);
3833
3834 kfree(adapter->mac_table);
3835 kfree(adapter->shadow_vfta);
3836 free_netdev(netdev);
3837
3838 pci_disable_pcie_error_reporting(pdev);
3839
3840 pci_disable_device(pdev);
3841 }
3842
3843 /**
3844 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3845 * @adapter: board private structure to initialize
3846 *
3847 * This function initializes the vf specific data storage and then attempts to
3848 * allocate the VFs. The reason for ordering it this way is because it is much
3849 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3850 * the memory for the VFs.
3851 **/
igb_probe_vfs(struct igb_adapter * adapter)3852 static void igb_probe_vfs(struct igb_adapter *adapter)
3853 {
3854 #ifdef CONFIG_PCI_IOV
3855 struct pci_dev *pdev = adapter->pdev;
3856 struct e1000_hw *hw = &adapter->hw;
3857
3858 /* Virtualization features not supported on i210 family. */
3859 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3860 return;
3861
3862 /* Of the below we really only want the effect of getting
3863 * IGB_FLAG_HAS_MSIX set (if available), without which
3864 * igb_enable_sriov() has no effect.
3865 */
3866 igb_set_interrupt_capability(adapter, true);
3867 igb_reset_interrupt_capability(adapter);
3868
3869 pci_sriov_set_totalvfs(pdev, 7);
3870 igb_enable_sriov(pdev, max_vfs);
3871
3872 #endif /* CONFIG_PCI_IOV */
3873 }
3874
igb_get_max_rss_queues(struct igb_adapter * adapter)3875 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3876 {
3877 struct e1000_hw *hw = &adapter->hw;
3878 unsigned int max_rss_queues;
3879
3880 /* Determine the maximum number of RSS queues supported. */
3881 switch (hw->mac.type) {
3882 case e1000_i211:
3883 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3884 break;
3885 case e1000_82575:
3886 case e1000_i210:
3887 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3888 break;
3889 case e1000_i350:
3890 /* I350 cannot do RSS and SR-IOV at the same time */
3891 if (!!adapter->vfs_allocated_count) {
3892 max_rss_queues = 1;
3893 break;
3894 }
3895 fallthrough;
3896 case e1000_82576:
3897 if (!!adapter->vfs_allocated_count) {
3898 max_rss_queues = 2;
3899 break;
3900 }
3901 fallthrough;
3902 case e1000_82580:
3903 case e1000_i354:
3904 default:
3905 max_rss_queues = IGB_MAX_RX_QUEUES;
3906 break;
3907 }
3908
3909 return max_rss_queues;
3910 }
3911
igb_init_queue_configuration(struct igb_adapter * adapter)3912 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3913 {
3914 u32 max_rss_queues;
3915
3916 max_rss_queues = igb_get_max_rss_queues(adapter);
3917 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3918
3919 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3920 }
3921
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3922 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3923 const u32 max_rss_queues)
3924 {
3925 struct e1000_hw *hw = &adapter->hw;
3926
3927 /* Determine if we need to pair queues. */
3928 switch (hw->mac.type) {
3929 case e1000_82575:
3930 case e1000_i211:
3931 /* Device supports enough interrupts without queue pairing. */
3932 break;
3933 case e1000_82576:
3934 case e1000_82580:
3935 case e1000_i350:
3936 case e1000_i354:
3937 case e1000_i210:
3938 default:
3939 /* If rss_queues > half of max_rss_queues, pair the queues in
3940 * order to conserve interrupts due to limited supply.
3941 */
3942 if (adapter->rss_queues > (max_rss_queues / 2))
3943 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3944 else
3945 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3946 break;
3947 }
3948 }
3949
3950 /**
3951 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3952 * @adapter: board private structure to initialize
3953 *
3954 * igb_sw_init initializes the Adapter private data structure.
3955 * Fields are initialized based on PCI device information and
3956 * OS network device settings (MTU size).
3957 **/
igb_sw_init(struct igb_adapter * adapter)3958 static int igb_sw_init(struct igb_adapter *adapter)
3959 {
3960 struct e1000_hw *hw = &adapter->hw;
3961 struct net_device *netdev = adapter->netdev;
3962 struct pci_dev *pdev = adapter->pdev;
3963
3964 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3965
3966 /* set default ring sizes */
3967 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3968 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3969
3970 /* set default ITR values */
3971 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3972 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3973
3974 /* set default work limits */
3975 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3976
3977 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3978 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3979
3980 spin_lock_init(&adapter->nfc_lock);
3981 spin_lock_init(&adapter->stats64_lock);
3982
3983 /* init spinlock to avoid concurrency of VF resources */
3984 spin_lock_init(&adapter->vfs_lock);
3985 #ifdef CONFIG_PCI_IOV
3986 switch (hw->mac.type) {
3987 case e1000_82576:
3988 case e1000_i350:
3989 if (max_vfs > 7) {
3990 dev_warn(&pdev->dev,
3991 "Maximum of 7 VFs per PF, using max\n");
3992 max_vfs = adapter->vfs_allocated_count = 7;
3993 } else
3994 adapter->vfs_allocated_count = max_vfs;
3995 if (adapter->vfs_allocated_count)
3996 dev_warn(&pdev->dev,
3997 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3998 break;
3999 default:
4000 break;
4001 }
4002 #endif /* CONFIG_PCI_IOV */
4003
4004 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4005 adapter->flags |= IGB_FLAG_HAS_MSIX;
4006
4007 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4008 sizeof(struct igb_mac_addr),
4009 GFP_KERNEL);
4010 if (!adapter->mac_table)
4011 return -ENOMEM;
4012
4013 igb_probe_vfs(adapter);
4014
4015 igb_init_queue_configuration(adapter);
4016
4017 /* Setup and initialize a copy of the hw vlan table array */
4018 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4019 GFP_KERNEL);
4020 if (!adapter->shadow_vfta)
4021 return -ENOMEM;
4022
4023 /* This call may decrease the number of queues */
4024 if (igb_init_interrupt_scheme(adapter, true)) {
4025 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4026 return -ENOMEM;
4027 }
4028
4029 /* Explicitly disable IRQ since the NIC can be in any state. */
4030 igb_irq_disable(adapter);
4031
4032 if (hw->mac.type >= e1000_i350)
4033 adapter->flags &= ~IGB_FLAG_DMAC;
4034
4035 set_bit(__IGB_DOWN, &adapter->state);
4036 return 0;
4037 }
4038
4039 /**
4040 * igb_open - Called when a network interface is made active
4041 * @netdev: network interface device structure
4042 * @resuming: indicates whether we are in a resume call
4043 *
4044 * Returns 0 on success, negative value on failure
4045 *
4046 * The open entry point is called when a network interface is made
4047 * active by the system (IFF_UP). At this point all resources needed
4048 * for transmit and receive operations are allocated, the interrupt
4049 * handler is registered with the OS, the watchdog timer is started,
4050 * and the stack is notified that the interface is ready.
4051 **/
__igb_open(struct net_device * netdev,bool resuming)4052 static int __igb_open(struct net_device *netdev, bool resuming)
4053 {
4054 struct igb_adapter *adapter = netdev_priv(netdev);
4055 struct e1000_hw *hw = &adapter->hw;
4056 struct pci_dev *pdev = adapter->pdev;
4057 int err;
4058 int i;
4059
4060 /* disallow open during test */
4061 if (test_bit(__IGB_TESTING, &adapter->state)) {
4062 WARN_ON(resuming);
4063 return -EBUSY;
4064 }
4065
4066 if (!resuming)
4067 pm_runtime_get_sync(&pdev->dev);
4068
4069 netif_carrier_off(netdev);
4070
4071 /* allocate transmit descriptors */
4072 err = igb_setup_all_tx_resources(adapter);
4073 if (err)
4074 goto err_setup_tx;
4075
4076 /* allocate receive descriptors */
4077 err = igb_setup_all_rx_resources(adapter);
4078 if (err)
4079 goto err_setup_rx;
4080
4081 igb_power_up_link(adapter);
4082
4083 /* before we allocate an interrupt, we must be ready to handle it.
4084 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4085 * as soon as we call pci_request_irq, so we have to setup our
4086 * clean_rx handler before we do so.
4087 */
4088 igb_configure(adapter);
4089
4090 err = igb_request_irq(adapter);
4091 if (err)
4092 goto err_req_irq;
4093
4094 /* Notify the stack of the actual queue counts. */
4095 err = netif_set_real_num_tx_queues(adapter->netdev,
4096 adapter->num_tx_queues);
4097 if (err)
4098 goto err_set_queues;
4099
4100 err = netif_set_real_num_rx_queues(adapter->netdev,
4101 adapter->num_rx_queues);
4102 if (err)
4103 goto err_set_queues;
4104
4105 /* From here on the code is the same as igb_up() */
4106 clear_bit(__IGB_DOWN, &adapter->state);
4107
4108 for (i = 0; i < adapter->num_q_vectors; i++)
4109 napi_enable(&(adapter->q_vector[i]->napi));
4110
4111 /* Clear any pending interrupts. */
4112 rd32(E1000_TSICR);
4113 rd32(E1000_ICR);
4114
4115 igb_irq_enable(adapter);
4116
4117 /* notify VFs that reset has been completed */
4118 if (adapter->vfs_allocated_count) {
4119 u32 reg_data = rd32(E1000_CTRL_EXT);
4120
4121 reg_data |= E1000_CTRL_EXT_PFRSTD;
4122 wr32(E1000_CTRL_EXT, reg_data);
4123 }
4124
4125 netif_tx_start_all_queues(netdev);
4126
4127 if (!resuming)
4128 pm_runtime_put(&pdev->dev);
4129
4130 /* start the watchdog. */
4131 hw->mac.get_link_status = 1;
4132 schedule_work(&adapter->watchdog_task);
4133
4134 return 0;
4135
4136 err_set_queues:
4137 igb_free_irq(adapter);
4138 err_req_irq:
4139 igb_release_hw_control(adapter);
4140 igb_power_down_link(adapter);
4141 igb_free_all_rx_resources(adapter);
4142 err_setup_rx:
4143 igb_free_all_tx_resources(adapter);
4144 err_setup_tx:
4145 igb_reset(adapter);
4146 if (!resuming)
4147 pm_runtime_put(&pdev->dev);
4148
4149 return err;
4150 }
4151
igb_open(struct net_device * netdev)4152 int igb_open(struct net_device *netdev)
4153 {
4154 return __igb_open(netdev, false);
4155 }
4156
4157 /**
4158 * igb_close - Disables a network interface
4159 * @netdev: network interface device structure
4160 * @suspending: indicates we are in a suspend call
4161 *
4162 * Returns 0, this is not allowed to fail
4163 *
4164 * The close entry point is called when an interface is de-activated
4165 * by the OS. The hardware is still under the driver's control, but
4166 * needs to be disabled. A global MAC reset is issued to stop the
4167 * hardware, and all transmit and receive resources are freed.
4168 **/
__igb_close(struct net_device * netdev,bool suspending)4169 static int __igb_close(struct net_device *netdev, bool suspending)
4170 {
4171 struct igb_adapter *adapter = netdev_priv(netdev);
4172 struct pci_dev *pdev = adapter->pdev;
4173
4174 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4175
4176 if (!suspending)
4177 pm_runtime_get_sync(&pdev->dev);
4178
4179 igb_down(adapter);
4180 igb_free_irq(adapter);
4181
4182 igb_free_all_tx_resources(adapter);
4183 igb_free_all_rx_resources(adapter);
4184
4185 if (!suspending)
4186 pm_runtime_put_sync(&pdev->dev);
4187 return 0;
4188 }
4189
igb_close(struct net_device * netdev)4190 int igb_close(struct net_device *netdev)
4191 {
4192 if (netif_device_present(netdev) || netdev->dismantle)
4193 return __igb_close(netdev, false);
4194 return 0;
4195 }
4196
4197 /**
4198 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4199 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4200 *
4201 * Return 0 on success, negative on failure
4202 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4203 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4204 {
4205 struct device *dev = tx_ring->dev;
4206 int size;
4207
4208 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4209
4210 tx_ring->tx_buffer_info = vmalloc(size);
4211 if (!tx_ring->tx_buffer_info)
4212 goto err;
4213
4214 /* round up to nearest 4K */
4215 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4216 tx_ring->size = ALIGN(tx_ring->size, 4096);
4217
4218 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4219 &tx_ring->dma, GFP_KERNEL);
4220 if (!tx_ring->desc)
4221 goto err;
4222
4223 tx_ring->next_to_use = 0;
4224 tx_ring->next_to_clean = 0;
4225
4226 return 0;
4227
4228 err:
4229 vfree(tx_ring->tx_buffer_info);
4230 tx_ring->tx_buffer_info = NULL;
4231 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4232 return -ENOMEM;
4233 }
4234
4235 /**
4236 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4237 * (Descriptors) for all queues
4238 * @adapter: board private structure
4239 *
4240 * Return 0 on success, negative on failure
4241 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4242 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4243 {
4244 struct pci_dev *pdev = adapter->pdev;
4245 int i, err = 0;
4246
4247 for (i = 0; i < adapter->num_tx_queues; i++) {
4248 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4249 if (err) {
4250 dev_err(&pdev->dev,
4251 "Allocation for Tx Queue %u failed\n", i);
4252 for (i--; i >= 0; i--)
4253 igb_free_tx_resources(adapter->tx_ring[i]);
4254 break;
4255 }
4256 }
4257
4258 return err;
4259 }
4260
4261 /**
4262 * igb_setup_tctl - configure the transmit control registers
4263 * @adapter: Board private structure
4264 **/
igb_setup_tctl(struct igb_adapter * adapter)4265 void igb_setup_tctl(struct igb_adapter *adapter)
4266 {
4267 struct e1000_hw *hw = &adapter->hw;
4268 u32 tctl;
4269
4270 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4271 wr32(E1000_TXDCTL(0), 0);
4272
4273 /* Program the Transmit Control Register */
4274 tctl = rd32(E1000_TCTL);
4275 tctl &= ~E1000_TCTL_CT;
4276 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4277 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4278
4279 igb_config_collision_dist(hw);
4280
4281 /* Enable transmits */
4282 tctl |= E1000_TCTL_EN;
4283
4284 wr32(E1000_TCTL, tctl);
4285 }
4286
4287 /**
4288 * igb_configure_tx_ring - Configure transmit ring after Reset
4289 * @adapter: board private structure
4290 * @ring: tx ring to configure
4291 *
4292 * Configure a transmit ring after a reset.
4293 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4294 void igb_configure_tx_ring(struct igb_adapter *adapter,
4295 struct igb_ring *ring)
4296 {
4297 struct e1000_hw *hw = &adapter->hw;
4298 u32 txdctl = 0;
4299 u64 tdba = ring->dma;
4300 int reg_idx = ring->reg_idx;
4301
4302 wr32(E1000_TDLEN(reg_idx),
4303 ring->count * sizeof(union e1000_adv_tx_desc));
4304 wr32(E1000_TDBAL(reg_idx),
4305 tdba & 0x00000000ffffffffULL);
4306 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4307
4308 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4309 wr32(E1000_TDH(reg_idx), 0);
4310 writel(0, ring->tail);
4311
4312 txdctl |= IGB_TX_PTHRESH;
4313 txdctl |= IGB_TX_HTHRESH << 8;
4314 txdctl |= IGB_TX_WTHRESH << 16;
4315
4316 /* reinitialize tx_buffer_info */
4317 memset(ring->tx_buffer_info, 0,
4318 sizeof(struct igb_tx_buffer) * ring->count);
4319
4320 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4321 wr32(E1000_TXDCTL(reg_idx), txdctl);
4322 }
4323
4324 /**
4325 * igb_configure_tx - Configure transmit Unit after Reset
4326 * @adapter: board private structure
4327 *
4328 * Configure the Tx unit of the MAC after a reset.
4329 **/
igb_configure_tx(struct igb_adapter * adapter)4330 static void igb_configure_tx(struct igb_adapter *adapter)
4331 {
4332 struct e1000_hw *hw = &adapter->hw;
4333 int i;
4334
4335 /* disable the queues */
4336 for (i = 0; i < adapter->num_tx_queues; i++)
4337 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4338
4339 wrfl();
4340 usleep_range(10000, 20000);
4341
4342 for (i = 0; i < adapter->num_tx_queues; i++)
4343 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4344 }
4345
4346 /**
4347 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4348 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4349 *
4350 * Returns 0 on success, negative on failure
4351 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4352 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4353 {
4354 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4355 struct device *dev = rx_ring->dev;
4356 int size;
4357
4358 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4359
4360 rx_ring->rx_buffer_info = vmalloc(size);
4361 if (!rx_ring->rx_buffer_info)
4362 goto err;
4363
4364 /* Round up to nearest 4K */
4365 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4366 rx_ring->size = ALIGN(rx_ring->size, 4096);
4367
4368 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4369 &rx_ring->dma, GFP_KERNEL);
4370 if (!rx_ring->desc)
4371 goto err;
4372
4373 rx_ring->next_to_alloc = 0;
4374 rx_ring->next_to_clean = 0;
4375 rx_ring->next_to_use = 0;
4376
4377 rx_ring->xdp_prog = adapter->xdp_prog;
4378
4379 /* XDP RX-queue info */
4380 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4381 rx_ring->queue_index) < 0)
4382 goto err;
4383
4384 return 0;
4385
4386 err:
4387 vfree(rx_ring->rx_buffer_info);
4388 rx_ring->rx_buffer_info = NULL;
4389 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4390 return -ENOMEM;
4391 }
4392
4393 /**
4394 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4395 * (Descriptors) for all queues
4396 * @adapter: board private structure
4397 *
4398 * Return 0 on success, negative on failure
4399 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4400 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4401 {
4402 struct pci_dev *pdev = adapter->pdev;
4403 int i, err = 0;
4404
4405 for (i = 0; i < adapter->num_rx_queues; i++) {
4406 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4407 if (err) {
4408 dev_err(&pdev->dev,
4409 "Allocation for Rx Queue %u failed\n", i);
4410 for (i--; i >= 0; i--)
4411 igb_free_rx_resources(adapter->rx_ring[i]);
4412 break;
4413 }
4414 }
4415
4416 return err;
4417 }
4418
4419 /**
4420 * igb_setup_mrqc - configure the multiple receive queue control registers
4421 * @adapter: Board private structure
4422 **/
igb_setup_mrqc(struct igb_adapter * adapter)4423 static void igb_setup_mrqc(struct igb_adapter *adapter)
4424 {
4425 struct e1000_hw *hw = &adapter->hw;
4426 u32 mrqc, rxcsum;
4427 u32 j, num_rx_queues;
4428 u32 rss_key[10];
4429
4430 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4431 for (j = 0; j < 10; j++)
4432 wr32(E1000_RSSRK(j), rss_key[j]);
4433
4434 num_rx_queues = adapter->rss_queues;
4435
4436 switch (hw->mac.type) {
4437 case e1000_82576:
4438 /* 82576 supports 2 RSS queues for SR-IOV */
4439 if (adapter->vfs_allocated_count)
4440 num_rx_queues = 2;
4441 break;
4442 default:
4443 break;
4444 }
4445
4446 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4447 for (j = 0; j < IGB_RETA_SIZE; j++)
4448 adapter->rss_indir_tbl[j] =
4449 (j * num_rx_queues) / IGB_RETA_SIZE;
4450 adapter->rss_indir_tbl_init = num_rx_queues;
4451 }
4452 igb_write_rss_indir_tbl(adapter);
4453
4454 /* Disable raw packet checksumming so that RSS hash is placed in
4455 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4456 * offloads as they are enabled by default
4457 */
4458 rxcsum = rd32(E1000_RXCSUM);
4459 rxcsum |= E1000_RXCSUM_PCSD;
4460
4461 if (adapter->hw.mac.type >= e1000_82576)
4462 /* Enable Receive Checksum Offload for SCTP */
4463 rxcsum |= E1000_RXCSUM_CRCOFL;
4464
4465 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4466 wr32(E1000_RXCSUM, rxcsum);
4467
4468 /* Generate RSS hash based on packet types, TCP/UDP
4469 * port numbers and/or IPv4/v6 src and dst addresses
4470 */
4471 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4472 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4473 E1000_MRQC_RSS_FIELD_IPV6 |
4474 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4475 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4476
4477 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4478 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4479 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4480 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4481
4482 /* If VMDq is enabled then we set the appropriate mode for that, else
4483 * we default to RSS so that an RSS hash is calculated per packet even
4484 * if we are only using one queue
4485 */
4486 if (adapter->vfs_allocated_count) {
4487 if (hw->mac.type > e1000_82575) {
4488 /* Set the default pool for the PF's first queue */
4489 u32 vtctl = rd32(E1000_VT_CTL);
4490
4491 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4492 E1000_VT_CTL_DISABLE_DEF_POOL);
4493 vtctl |= adapter->vfs_allocated_count <<
4494 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4495 wr32(E1000_VT_CTL, vtctl);
4496 }
4497 if (adapter->rss_queues > 1)
4498 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4499 else
4500 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4501 } else {
4502 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4503 }
4504 igb_vmm_control(adapter);
4505
4506 wr32(E1000_MRQC, mrqc);
4507 }
4508
4509 /**
4510 * igb_setup_rctl - configure the receive control registers
4511 * @adapter: Board private structure
4512 **/
igb_setup_rctl(struct igb_adapter * adapter)4513 void igb_setup_rctl(struct igb_adapter *adapter)
4514 {
4515 struct e1000_hw *hw = &adapter->hw;
4516 u32 rctl;
4517
4518 rctl = rd32(E1000_RCTL);
4519
4520 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4521 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4522
4523 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4524 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4525
4526 /* enable stripping of CRC. It's unlikely this will break BMC
4527 * redirection as it did with e1000. Newer features require
4528 * that the HW strips the CRC.
4529 */
4530 rctl |= E1000_RCTL_SECRC;
4531
4532 /* disable store bad packets and clear size bits. */
4533 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4534
4535 /* enable LPE to allow for reception of jumbo frames */
4536 rctl |= E1000_RCTL_LPE;
4537
4538 /* disable queue 0 to prevent tail write w/o re-config */
4539 wr32(E1000_RXDCTL(0), 0);
4540
4541 /* Attention!!! For SR-IOV PF driver operations you must enable
4542 * queue drop for all VF and PF queues to prevent head of line blocking
4543 * if an un-trusted VF does not provide descriptors to hardware.
4544 */
4545 if (adapter->vfs_allocated_count) {
4546 /* set all queue drop enable bits */
4547 wr32(E1000_QDE, ALL_QUEUES);
4548 }
4549
4550 /* This is useful for sniffing bad packets. */
4551 if (adapter->netdev->features & NETIF_F_RXALL) {
4552 /* UPE and MPE will be handled by normal PROMISC logic
4553 * in e1000e_set_rx_mode
4554 */
4555 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4556 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4557 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4558
4559 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4560 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4561 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4562 * and that breaks VLANs.
4563 */
4564 }
4565
4566 wr32(E1000_RCTL, rctl);
4567 }
4568
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4569 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4570 int vfn)
4571 {
4572 struct e1000_hw *hw = &adapter->hw;
4573 u32 vmolr;
4574
4575 if (size > MAX_JUMBO_FRAME_SIZE)
4576 size = MAX_JUMBO_FRAME_SIZE;
4577
4578 vmolr = rd32(E1000_VMOLR(vfn));
4579 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4580 vmolr |= size | E1000_VMOLR_LPE;
4581 wr32(E1000_VMOLR(vfn), vmolr);
4582
4583 return 0;
4584 }
4585
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4586 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4587 int vfn, bool enable)
4588 {
4589 struct e1000_hw *hw = &adapter->hw;
4590 u32 val, reg;
4591
4592 if (hw->mac.type < e1000_82576)
4593 return;
4594
4595 if (hw->mac.type == e1000_i350)
4596 reg = E1000_DVMOLR(vfn);
4597 else
4598 reg = E1000_VMOLR(vfn);
4599
4600 val = rd32(reg);
4601 if (enable)
4602 val |= E1000_VMOLR_STRVLAN;
4603 else
4604 val &= ~(E1000_VMOLR_STRVLAN);
4605 wr32(reg, val);
4606 }
4607
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4608 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4609 int vfn, bool aupe)
4610 {
4611 struct e1000_hw *hw = &adapter->hw;
4612 u32 vmolr;
4613
4614 /* This register exists only on 82576 and newer so if we are older then
4615 * we should exit and do nothing
4616 */
4617 if (hw->mac.type < e1000_82576)
4618 return;
4619
4620 vmolr = rd32(E1000_VMOLR(vfn));
4621 if (aupe)
4622 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4623 else
4624 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4625
4626 /* clear all bits that might not be set */
4627 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4628
4629 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4630 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4631 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4632 * multicast packets
4633 */
4634 if (vfn <= adapter->vfs_allocated_count)
4635 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4636
4637 wr32(E1000_VMOLR(vfn), vmolr);
4638 }
4639
4640 /**
4641 * igb_setup_srrctl - configure the split and replication receive control
4642 * registers
4643 * @adapter: Board private structure
4644 * @ring: receive ring to be configured
4645 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4646 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4647 {
4648 struct e1000_hw *hw = &adapter->hw;
4649 int reg_idx = ring->reg_idx;
4650 u32 srrctl = 0;
4651
4652 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4653 if (ring_uses_large_buffer(ring))
4654 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4655 else
4656 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4657 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4658 if (hw->mac.type >= e1000_82580)
4659 srrctl |= E1000_SRRCTL_TIMESTAMP;
4660 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4661 * queues and rx flow control is disabled
4662 */
4663 if (adapter->vfs_allocated_count ||
4664 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4665 adapter->num_rx_queues > 1))
4666 srrctl |= E1000_SRRCTL_DROP_EN;
4667
4668 wr32(E1000_SRRCTL(reg_idx), srrctl);
4669 }
4670
4671 /**
4672 * igb_configure_rx_ring - Configure a receive ring after Reset
4673 * @adapter: board private structure
4674 * @ring: receive ring to be configured
4675 *
4676 * Configure the Rx unit of the MAC after a reset.
4677 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4678 void igb_configure_rx_ring(struct igb_adapter *adapter,
4679 struct igb_ring *ring)
4680 {
4681 struct e1000_hw *hw = &adapter->hw;
4682 union e1000_adv_rx_desc *rx_desc;
4683 u64 rdba = ring->dma;
4684 int reg_idx = ring->reg_idx;
4685 u32 rxdctl = 0;
4686
4687 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4688 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4689 MEM_TYPE_PAGE_SHARED, NULL));
4690
4691 /* disable the queue */
4692 wr32(E1000_RXDCTL(reg_idx), 0);
4693
4694 /* Set DMA base address registers */
4695 wr32(E1000_RDBAL(reg_idx),
4696 rdba & 0x00000000ffffffffULL);
4697 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4698 wr32(E1000_RDLEN(reg_idx),
4699 ring->count * sizeof(union e1000_adv_rx_desc));
4700
4701 /* initialize head and tail */
4702 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4703 wr32(E1000_RDH(reg_idx), 0);
4704 writel(0, ring->tail);
4705
4706 /* set descriptor configuration */
4707 igb_setup_srrctl(adapter, ring);
4708
4709 /* set filtering for VMDQ pools */
4710 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4711
4712 rxdctl |= IGB_RX_PTHRESH;
4713 rxdctl |= IGB_RX_HTHRESH << 8;
4714 rxdctl |= IGB_RX_WTHRESH << 16;
4715
4716 /* initialize rx_buffer_info */
4717 memset(ring->rx_buffer_info, 0,
4718 sizeof(struct igb_rx_buffer) * ring->count);
4719
4720 /* initialize Rx descriptor 0 */
4721 rx_desc = IGB_RX_DESC(ring, 0);
4722 rx_desc->wb.upper.length = 0;
4723
4724 /* enable receive descriptor fetching */
4725 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4726 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4727 }
4728
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4729 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4730 struct igb_ring *rx_ring)
4731 {
4732 /* set build_skb and buffer size flags */
4733 clear_ring_build_skb_enabled(rx_ring);
4734 clear_ring_uses_large_buffer(rx_ring);
4735
4736 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4737 return;
4738
4739 set_ring_build_skb_enabled(rx_ring);
4740
4741 #if (PAGE_SIZE < 8192)
4742 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4743 return;
4744
4745 set_ring_uses_large_buffer(rx_ring);
4746 #endif
4747 }
4748
4749 /**
4750 * igb_configure_rx - Configure receive Unit after Reset
4751 * @adapter: board private structure
4752 *
4753 * Configure the Rx unit of the MAC after a reset.
4754 **/
igb_configure_rx(struct igb_adapter * adapter)4755 static void igb_configure_rx(struct igb_adapter *adapter)
4756 {
4757 int i;
4758
4759 /* set the correct pool for the PF default MAC address in entry 0 */
4760 igb_set_default_mac_filter(adapter);
4761
4762 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4763 * the Base and Length of the Rx Descriptor Ring
4764 */
4765 for (i = 0; i < adapter->num_rx_queues; i++) {
4766 struct igb_ring *rx_ring = adapter->rx_ring[i];
4767
4768 igb_set_rx_buffer_len(adapter, rx_ring);
4769 igb_configure_rx_ring(adapter, rx_ring);
4770 }
4771 }
4772
4773 /**
4774 * igb_free_tx_resources - Free Tx Resources per Queue
4775 * @tx_ring: Tx descriptor ring for a specific queue
4776 *
4777 * Free all transmit software resources
4778 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4779 void igb_free_tx_resources(struct igb_ring *tx_ring)
4780 {
4781 igb_clean_tx_ring(tx_ring);
4782
4783 vfree(tx_ring->tx_buffer_info);
4784 tx_ring->tx_buffer_info = NULL;
4785
4786 /* if not set, then don't free */
4787 if (!tx_ring->desc)
4788 return;
4789
4790 dma_free_coherent(tx_ring->dev, tx_ring->size,
4791 tx_ring->desc, tx_ring->dma);
4792
4793 tx_ring->desc = NULL;
4794 }
4795
4796 /**
4797 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4798 * @adapter: board private structure
4799 *
4800 * Free all transmit software resources
4801 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4802 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4803 {
4804 int i;
4805
4806 for (i = 0; i < adapter->num_tx_queues; i++)
4807 if (adapter->tx_ring[i])
4808 igb_free_tx_resources(adapter->tx_ring[i]);
4809 }
4810
4811 /**
4812 * igb_clean_tx_ring - Free Tx Buffers
4813 * @tx_ring: ring to be cleaned
4814 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4815 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4816 {
4817 u16 i = tx_ring->next_to_clean;
4818 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4819
4820 while (i != tx_ring->next_to_use) {
4821 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4822
4823 /* Free all the Tx ring sk_buffs or xdp frames */
4824 if (tx_buffer->type == IGB_TYPE_SKB)
4825 dev_kfree_skb_any(tx_buffer->skb);
4826 else
4827 xdp_return_frame(tx_buffer->xdpf);
4828
4829 /* unmap skb header data */
4830 dma_unmap_single(tx_ring->dev,
4831 dma_unmap_addr(tx_buffer, dma),
4832 dma_unmap_len(tx_buffer, len),
4833 DMA_TO_DEVICE);
4834
4835 /* check for eop_desc to determine the end of the packet */
4836 eop_desc = tx_buffer->next_to_watch;
4837 tx_desc = IGB_TX_DESC(tx_ring, i);
4838
4839 /* unmap remaining buffers */
4840 while (tx_desc != eop_desc) {
4841 tx_buffer++;
4842 tx_desc++;
4843 i++;
4844 if (unlikely(i == tx_ring->count)) {
4845 i = 0;
4846 tx_buffer = tx_ring->tx_buffer_info;
4847 tx_desc = IGB_TX_DESC(tx_ring, 0);
4848 }
4849
4850 /* unmap any remaining paged data */
4851 if (dma_unmap_len(tx_buffer, len))
4852 dma_unmap_page(tx_ring->dev,
4853 dma_unmap_addr(tx_buffer, dma),
4854 dma_unmap_len(tx_buffer, len),
4855 DMA_TO_DEVICE);
4856 }
4857
4858 tx_buffer->next_to_watch = NULL;
4859
4860 /* move us one more past the eop_desc for start of next pkt */
4861 tx_buffer++;
4862 i++;
4863 if (unlikely(i == tx_ring->count)) {
4864 i = 0;
4865 tx_buffer = tx_ring->tx_buffer_info;
4866 }
4867 }
4868
4869 /* reset BQL for queue */
4870 netdev_tx_reset_queue(txring_txq(tx_ring));
4871
4872 /* reset next_to_use and next_to_clean */
4873 tx_ring->next_to_use = 0;
4874 tx_ring->next_to_clean = 0;
4875 }
4876
4877 /**
4878 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4879 * @adapter: board private structure
4880 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4881 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4882 {
4883 int i;
4884
4885 for (i = 0; i < adapter->num_tx_queues; i++)
4886 if (adapter->tx_ring[i])
4887 igb_clean_tx_ring(adapter->tx_ring[i]);
4888 }
4889
4890 /**
4891 * igb_free_rx_resources - Free Rx Resources
4892 * @rx_ring: ring to clean the resources from
4893 *
4894 * Free all receive software resources
4895 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4896 void igb_free_rx_resources(struct igb_ring *rx_ring)
4897 {
4898 igb_clean_rx_ring(rx_ring);
4899
4900 rx_ring->xdp_prog = NULL;
4901 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4902 vfree(rx_ring->rx_buffer_info);
4903 rx_ring->rx_buffer_info = NULL;
4904
4905 /* if not set, then don't free */
4906 if (!rx_ring->desc)
4907 return;
4908
4909 dma_free_coherent(rx_ring->dev, rx_ring->size,
4910 rx_ring->desc, rx_ring->dma);
4911
4912 rx_ring->desc = NULL;
4913 }
4914
4915 /**
4916 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4917 * @adapter: board private structure
4918 *
4919 * Free all receive software resources
4920 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4921 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4922 {
4923 int i;
4924
4925 for (i = 0; i < adapter->num_rx_queues; i++)
4926 if (adapter->rx_ring[i])
4927 igb_free_rx_resources(adapter->rx_ring[i]);
4928 }
4929
4930 /**
4931 * igb_clean_rx_ring - Free Rx Buffers per Queue
4932 * @rx_ring: ring to free buffers from
4933 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4934 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4935 {
4936 u16 i = rx_ring->next_to_clean;
4937
4938 dev_kfree_skb(rx_ring->skb);
4939 rx_ring->skb = NULL;
4940
4941 /* Free all the Rx ring sk_buffs */
4942 while (i != rx_ring->next_to_alloc) {
4943 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4944
4945 /* Invalidate cache lines that may have been written to by
4946 * device so that we avoid corrupting memory.
4947 */
4948 dma_sync_single_range_for_cpu(rx_ring->dev,
4949 buffer_info->dma,
4950 buffer_info->page_offset,
4951 igb_rx_bufsz(rx_ring),
4952 DMA_FROM_DEVICE);
4953
4954 /* free resources associated with mapping */
4955 dma_unmap_page_attrs(rx_ring->dev,
4956 buffer_info->dma,
4957 igb_rx_pg_size(rx_ring),
4958 DMA_FROM_DEVICE,
4959 IGB_RX_DMA_ATTR);
4960 __page_frag_cache_drain(buffer_info->page,
4961 buffer_info->pagecnt_bias);
4962
4963 i++;
4964 if (i == rx_ring->count)
4965 i = 0;
4966 }
4967
4968 rx_ring->next_to_alloc = 0;
4969 rx_ring->next_to_clean = 0;
4970 rx_ring->next_to_use = 0;
4971 }
4972
4973 /**
4974 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4975 * @adapter: board private structure
4976 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4977 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4978 {
4979 int i;
4980
4981 for (i = 0; i < adapter->num_rx_queues; i++)
4982 if (adapter->rx_ring[i])
4983 igb_clean_rx_ring(adapter->rx_ring[i]);
4984 }
4985
4986 /**
4987 * igb_set_mac - Change the Ethernet Address of the NIC
4988 * @netdev: network interface device structure
4989 * @p: pointer to an address structure
4990 *
4991 * Returns 0 on success, negative on failure
4992 **/
igb_set_mac(struct net_device * netdev,void * p)4993 static int igb_set_mac(struct net_device *netdev, void *p)
4994 {
4995 struct igb_adapter *adapter = netdev_priv(netdev);
4996 struct e1000_hw *hw = &adapter->hw;
4997 struct sockaddr *addr = p;
4998
4999 if (!is_valid_ether_addr(addr->sa_data))
5000 return -EADDRNOTAVAIL;
5001
5002 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
5003 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5004
5005 /* set the correct pool for the new PF MAC address in entry 0 */
5006 igb_set_default_mac_filter(adapter);
5007
5008 return 0;
5009 }
5010
5011 /**
5012 * igb_write_mc_addr_list - write multicast addresses to MTA
5013 * @netdev: network interface device structure
5014 *
5015 * Writes multicast address list to the MTA hash table.
5016 * Returns: -ENOMEM on failure
5017 * 0 on no addresses written
5018 * X on writing X addresses to MTA
5019 **/
igb_write_mc_addr_list(struct net_device * netdev)5020 static int igb_write_mc_addr_list(struct net_device *netdev)
5021 {
5022 struct igb_adapter *adapter = netdev_priv(netdev);
5023 struct e1000_hw *hw = &adapter->hw;
5024 struct netdev_hw_addr *ha;
5025 u8 *mta_list;
5026 int i;
5027
5028 if (netdev_mc_empty(netdev)) {
5029 /* nothing to program, so clear mc list */
5030 igb_update_mc_addr_list(hw, NULL, 0);
5031 igb_restore_vf_multicasts(adapter);
5032 return 0;
5033 }
5034
5035 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5036 if (!mta_list)
5037 return -ENOMEM;
5038
5039 /* The shared function expects a packed array of only addresses. */
5040 i = 0;
5041 netdev_for_each_mc_addr(ha, netdev)
5042 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5043
5044 igb_update_mc_addr_list(hw, mta_list, i);
5045 kfree(mta_list);
5046
5047 return netdev_mc_count(netdev);
5048 }
5049
igb_vlan_promisc_enable(struct igb_adapter * adapter)5050 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5051 {
5052 struct e1000_hw *hw = &adapter->hw;
5053 u32 i, pf_id;
5054
5055 switch (hw->mac.type) {
5056 case e1000_i210:
5057 case e1000_i211:
5058 case e1000_i350:
5059 /* VLAN filtering needed for VLAN prio filter */
5060 if (adapter->netdev->features & NETIF_F_NTUPLE)
5061 break;
5062 fallthrough;
5063 case e1000_82576:
5064 case e1000_82580:
5065 case e1000_i354:
5066 /* VLAN filtering needed for pool filtering */
5067 if (adapter->vfs_allocated_count)
5068 break;
5069 fallthrough;
5070 default:
5071 return 1;
5072 }
5073
5074 /* We are already in VLAN promisc, nothing to do */
5075 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5076 return 0;
5077
5078 if (!adapter->vfs_allocated_count)
5079 goto set_vfta;
5080
5081 /* Add PF to all active pools */
5082 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5083
5084 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5085 u32 vlvf = rd32(E1000_VLVF(i));
5086
5087 vlvf |= BIT(pf_id);
5088 wr32(E1000_VLVF(i), vlvf);
5089 }
5090
5091 set_vfta:
5092 /* Set all bits in the VLAN filter table array */
5093 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5094 hw->mac.ops.write_vfta(hw, i, ~0U);
5095
5096 /* Set flag so we don't redo unnecessary work */
5097 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5098
5099 return 0;
5100 }
5101
5102 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5103 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5104 {
5105 struct e1000_hw *hw = &adapter->hw;
5106 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5107 u32 vid_start = vfta_offset * 32;
5108 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5109 u32 i, vid, word, bits, pf_id;
5110
5111 /* guarantee that we don't scrub out management VLAN */
5112 vid = adapter->mng_vlan_id;
5113 if (vid >= vid_start && vid < vid_end)
5114 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5115
5116 if (!adapter->vfs_allocated_count)
5117 goto set_vfta;
5118
5119 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5120
5121 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5122 u32 vlvf = rd32(E1000_VLVF(i));
5123
5124 /* pull VLAN ID from VLVF */
5125 vid = vlvf & VLAN_VID_MASK;
5126
5127 /* only concern ourselves with a certain range */
5128 if (vid < vid_start || vid >= vid_end)
5129 continue;
5130
5131 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5132 /* record VLAN ID in VFTA */
5133 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5134
5135 /* if PF is part of this then continue */
5136 if (test_bit(vid, adapter->active_vlans))
5137 continue;
5138 }
5139
5140 /* remove PF from the pool */
5141 bits = ~BIT(pf_id);
5142 bits &= rd32(E1000_VLVF(i));
5143 wr32(E1000_VLVF(i), bits);
5144 }
5145
5146 set_vfta:
5147 /* extract values from active_vlans and write back to VFTA */
5148 for (i = VFTA_BLOCK_SIZE; i--;) {
5149 vid = (vfta_offset + i) * 32;
5150 word = vid / BITS_PER_LONG;
5151 bits = vid % BITS_PER_LONG;
5152
5153 vfta[i] |= adapter->active_vlans[word] >> bits;
5154
5155 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5156 }
5157 }
5158
igb_vlan_promisc_disable(struct igb_adapter * adapter)5159 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5160 {
5161 u32 i;
5162
5163 /* We are not in VLAN promisc, nothing to do */
5164 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5165 return;
5166
5167 /* Set flag so we don't redo unnecessary work */
5168 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5169
5170 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5171 igb_scrub_vfta(adapter, i);
5172 }
5173
5174 /**
5175 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5176 * @netdev: network interface device structure
5177 *
5178 * The set_rx_mode entry point is called whenever the unicast or multicast
5179 * address lists or the network interface flags are updated. This routine is
5180 * responsible for configuring the hardware for proper unicast, multicast,
5181 * promiscuous mode, and all-multi behavior.
5182 **/
igb_set_rx_mode(struct net_device * netdev)5183 static void igb_set_rx_mode(struct net_device *netdev)
5184 {
5185 struct igb_adapter *adapter = netdev_priv(netdev);
5186 struct e1000_hw *hw = &adapter->hw;
5187 unsigned int vfn = adapter->vfs_allocated_count;
5188 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5189 int count;
5190
5191 /* Check for Promiscuous and All Multicast modes */
5192 if (netdev->flags & IFF_PROMISC) {
5193 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5194 vmolr |= E1000_VMOLR_MPME;
5195
5196 /* enable use of UTA filter to force packets to default pool */
5197 if (hw->mac.type == e1000_82576)
5198 vmolr |= E1000_VMOLR_ROPE;
5199 } else {
5200 if (netdev->flags & IFF_ALLMULTI) {
5201 rctl |= E1000_RCTL_MPE;
5202 vmolr |= E1000_VMOLR_MPME;
5203 } else {
5204 /* Write addresses to the MTA, if the attempt fails
5205 * then we should just turn on promiscuous mode so
5206 * that we can at least receive multicast traffic
5207 */
5208 count = igb_write_mc_addr_list(netdev);
5209 if (count < 0) {
5210 rctl |= E1000_RCTL_MPE;
5211 vmolr |= E1000_VMOLR_MPME;
5212 } else if (count) {
5213 vmolr |= E1000_VMOLR_ROMPE;
5214 }
5215 }
5216 }
5217
5218 /* Write addresses to available RAR registers, if there is not
5219 * sufficient space to store all the addresses then enable
5220 * unicast promiscuous mode
5221 */
5222 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5223 rctl |= E1000_RCTL_UPE;
5224 vmolr |= E1000_VMOLR_ROPE;
5225 }
5226
5227 /* enable VLAN filtering by default */
5228 rctl |= E1000_RCTL_VFE;
5229
5230 /* disable VLAN filtering for modes that require it */
5231 if ((netdev->flags & IFF_PROMISC) ||
5232 (netdev->features & NETIF_F_RXALL)) {
5233 /* if we fail to set all rules then just clear VFE */
5234 if (igb_vlan_promisc_enable(adapter))
5235 rctl &= ~E1000_RCTL_VFE;
5236 } else {
5237 igb_vlan_promisc_disable(adapter);
5238 }
5239
5240 /* update state of unicast, multicast, and VLAN filtering modes */
5241 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5242 E1000_RCTL_VFE);
5243 wr32(E1000_RCTL, rctl);
5244
5245 #if (PAGE_SIZE < 8192)
5246 if (!adapter->vfs_allocated_count) {
5247 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5248 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5249 }
5250 #endif
5251 wr32(E1000_RLPML, rlpml);
5252
5253 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5254 * the VMOLR to enable the appropriate modes. Without this workaround
5255 * we will have issues with VLAN tag stripping not being done for frames
5256 * that are only arriving because we are the default pool
5257 */
5258 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5259 return;
5260
5261 /* set UTA to appropriate mode */
5262 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5263
5264 vmolr |= rd32(E1000_VMOLR(vfn)) &
5265 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5266
5267 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5268 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5269 #if (PAGE_SIZE < 8192)
5270 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5271 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5272 else
5273 #endif
5274 vmolr |= MAX_JUMBO_FRAME_SIZE;
5275 vmolr |= E1000_VMOLR_LPE;
5276
5277 wr32(E1000_VMOLR(vfn), vmolr);
5278
5279 igb_restore_vf_multicasts(adapter);
5280 }
5281
igb_check_wvbr(struct igb_adapter * adapter)5282 static void igb_check_wvbr(struct igb_adapter *adapter)
5283 {
5284 struct e1000_hw *hw = &adapter->hw;
5285 u32 wvbr = 0;
5286
5287 switch (hw->mac.type) {
5288 case e1000_82576:
5289 case e1000_i350:
5290 wvbr = rd32(E1000_WVBR);
5291 if (!wvbr)
5292 return;
5293 break;
5294 default:
5295 break;
5296 }
5297
5298 adapter->wvbr |= wvbr;
5299 }
5300
5301 #define IGB_STAGGERED_QUEUE_OFFSET 8
5302
igb_spoof_check(struct igb_adapter * adapter)5303 static void igb_spoof_check(struct igb_adapter *adapter)
5304 {
5305 int j;
5306
5307 if (!adapter->wvbr)
5308 return;
5309
5310 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5311 if (adapter->wvbr & BIT(j) ||
5312 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5313 dev_warn(&adapter->pdev->dev,
5314 "Spoof event(s) detected on VF %d\n", j);
5315 adapter->wvbr &=
5316 ~(BIT(j) |
5317 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5318 }
5319 }
5320 }
5321
5322 /* Need to wait a few seconds after link up to get diagnostic information from
5323 * the phy
5324 */
igb_update_phy_info(struct timer_list * t)5325 static void igb_update_phy_info(struct timer_list *t)
5326 {
5327 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5328 igb_get_phy_info(&adapter->hw);
5329 }
5330
5331 /**
5332 * igb_has_link - check shared code for link and determine up/down
5333 * @adapter: pointer to driver private info
5334 **/
igb_has_link(struct igb_adapter * adapter)5335 bool igb_has_link(struct igb_adapter *adapter)
5336 {
5337 struct e1000_hw *hw = &adapter->hw;
5338 bool link_active = false;
5339
5340 /* get_link_status is set on LSC (link status) interrupt or
5341 * rx sequence error interrupt. get_link_status will stay
5342 * false until the e1000_check_for_link establishes link
5343 * for copper adapters ONLY
5344 */
5345 switch (hw->phy.media_type) {
5346 case e1000_media_type_copper:
5347 if (!hw->mac.get_link_status)
5348 return true;
5349 fallthrough;
5350 case e1000_media_type_internal_serdes:
5351 hw->mac.ops.check_for_link(hw);
5352 link_active = !hw->mac.get_link_status;
5353 break;
5354 default:
5355 case e1000_media_type_unknown:
5356 break;
5357 }
5358
5359 if (((hw->mac.type == e1000_i210) ||
5360 (hw->mac.type == e1000_i211)) &&
5361 (hw->phy.id == I210_I_PHY_ID)) {
5362 if (!netif_carrier_ok(adapter->netdev)) {
5363 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5364 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5365 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5366 adapter->link_check_timeout = jiffies;
5367 }
5368 }
5369
5370 return link_active;
5371 }
5372
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5373 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5374 {
5375 bool ret = false;
5376 u32 ctrl_ext, thstat;
5377
5378 /* check for thermal sensor event on i350 copper only */
5379 if (hw->mac.type == e1000_i350) {
5380 thstat = rd32(E1000_THSTAT);
5381 ctrl_ext = rd32(E1000_CTRL_EXT);
5382
5383 if ((hw->phy.media_type == e1000_media_type_copper) &&
5384 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5385 ret = !!(thstat & event);
5386 }
5387
5388 return ret;
5389 }
5390
5391 /**
5392 * igb_check_lvmmc - check for malformed packets received
5393 * and indicated in LVMMC register
5394 * @adapter: pointer to adapter
5395 **/
igb_check_lvmmc(struct igb_adapter * adapter)5396 static void igb_check_lvmmc(struct igb_adapter *adapter)
5397 {
5398 struct e1000_hw *hw = &adapter->hw;
5399 u32 lvmmc;
5400
5401 lvmmc = rd32(E1000_LVMMC);
5402 if (lvmmc) {
5403 if (unlikely(net_ratelimit())) {
5404 netdev_warn(adapter->netdev,
5405 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5406 lvmmc);
5407 }
5408 }
5409 }
5410
5411 /**
5412 * igb_watchdog - Timer Call-back
5413 * @t: pointer to timer_list containing our private info pointer
5414 **/
igb_watchdog(struct timer_list * t)5415 static void igb_watchdog(struct timer_list *t)
5416 {
5417 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5418 /* Do the rest outside of interrupt context */
5419 schedule_work(&adapter->watchdog_task);
5420 }
5421
igb_watchdog_task(struct work_struct * work)5422 static void igb_watchdog_task(struct work_struct *work)
5423 {
5424 struct igb_adapter *adapter = container_of(work,
5425 struct igb_adapter,
5426 watchdog_task);
5427 struct e1000_hw *hw = &adapter->hw;
5428 struct e1000_phy_info *phy = &hw->phy;
5429 struct net_device *netdev = adapter->netdev;
5430 u32 link;
5431 int i;
5432 u32 connsw;
5433 u16 phy_data, retry_count = 20;
5434
5435 link = igb_has_link(adapter);
5436
5437 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5438 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5439 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5440 else
5441 link = false;
5442 }
5443
5444 /* Force link down if we have fiber to swap to */
5445 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5446 if (hw->phy.media_type == e1000_media_type_copper) {
5447 connsw = rd32(E1000_CONNSW);
5448 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5449 link = 0;
5450 }
5451 }
5452 if (link) {
5453 /* Perform a reset if the media type changed. */
5454 if (hw->dev_spec._82575.media_changed) {
5455 hw->dev_spec._82575.media_changed = false;
5456 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5457 igb_reset(adapter);
5458 }
5459 /* Cancel scheduled suspend requests. */
5460 pm_runtime_resume(netdev->dev.parent);
5461
5462 if (!netif_carrier_ok(netdev)) {
5463 u32 ctrl;
5464
5465 hw->mac.ops.get_speed_and_duplex(hw,
5466 &adapter->link_speed,
5467 &adapter->link_duplex);
5468
5469 ctrl = rd32(E1000_CTRL);
5470 /* Links status message must follow this format */
5471 netdev_info(netdev,
5472 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5473 netdev->name,
5474 adapter->link_speed,
5475 adapter->link_duplex == FULL_DUPLEX ?
5476 "Full" : "Half",
5477 (ctrl & E1000_CTRL_TFCE) &&
5478 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5479 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5480 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5481
5482 /* disable EEE if enabled */
5483 if ((adapter->flags & IGB_FLAG_EEE) &&
5484 (adapter->link_duplex == HALF_DUPLEX)) {
5485 dev_info(&adapter->pdev->dev,
5486 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5487 adapter->hw.dev_spec._82575.eee_disable = true;
5488 adapter->flags &= ~IGB_FLAG_EEE;
5489 }
5490
5491 /* check if SmartSpeed worked */
5492 igb_check_downshift(hw);
5493 if (phy->speed_downgraded)
5494 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5495
5496 /* check for thermal sensor event */
5497 if (igb_thermal_sensor_event(hw,
5498 E1000_THSTAT_LINK_THROTTLE))
5499 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5500
5501 /* adjust timeout factor according to speed/duplex */
5502 adapter->tx_timeout_factor = 1;
5503 switch (adapter->link_speed) {
5504 case SPEED_10:
5505 adapter->tx_timeout_factor = 14;
5506 break;
5507 case SPEED_100:
5508 /* maybe add some timeout factor ? */
5509 break;
5510 }
5511
5512 if (adapter->link_speed != SPEED_1000 ||
5513 !hw->phy.ops.read_reg)
5514 goto no_wait;
5515
5516 /* wait for Remote receiver status OK */
5517 retry_read_status:
5518 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5519 &phy_data)) {
5520 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5521 retry_count) {
5522 msleep(100);
5523 retry_count--;
5524 goto retry_read_status;
5525 } else if (!retry_count) {
5526 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5527 }
5528 } else {
5529 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5530 }
5531 no_wait:
5532 netif_carrier_on(netdev);
5533
5534 igb_ping_all_vfs(adapter);
5535 igb_check_vf_rate_limit(adapter);
5536
5537 /* link state has changed, schedule phy info update */
5538 if (!test_bit(__IGB_DOWN, &adapter->state))
5539 mod_timer(&adapter->phy_info_timer,
5540 round_jiffies(jiffies + 2 * HZ));
5541 }
5542 } else {
5543 if (netif_carrier_ok(netdev)) {
5544 adapter->link_speed = 0;
5545 adapter->link_duplex = 0;
5546
5547 /* check for thermal sensor event */
5548 if (igb_thermal_sensor_event(hw,
5549 E1000_THSTAT_PWR_DOWN)) {
5550 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5551 }
5552
5553 /* Links status message must follow this format */
5554 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5555 netdev->name);
5556 netif_carrier_off(netdev);
5557
5558 igb_ping_all_vfs(adapter);
5559
5560 /* link state has changed, schedule phy info update */
5561 if (!test_bit(__IGB_DOWN, &adapter->state))
5562 mod_timer(&adapter->phy_info_timer,
5563 round_jiffies(jiffies + 2 * HZ));
5564
5565 /* link is down, time to check for alternate media */
5566 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5567 igb_check_swap_media(adapter);
5568 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5569 schedule_work(&adapter->reset_task);
5570 /* return immediately */
5571 return;
5572 }
5573 }
5574 pm_schedule_suspend(netdev->dev.parent,
5575 MSEC_PER_SEC * 5);
5576
5577 /* also check for alternate media here */
5578 } else if (!netif_carrier_ok(netdev) &&
5579 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5580 igb_check_swap_media(adapter);
5581 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5582 schedule_work(&adapter->reset_task);
5583 /* return immediately */
5584 return;
5585 }
5586 }
5587 }
5588
5589 spin_lock(&adapter->stats64_lock);
5590 igb_update_stats(adapter);
5591 spin_unlock(&adapter->stats64_lock);
5592
5593 for (i = 0; i < adapter->num_tx_queues; i++) {
5594 struct igb_ring *tx_ring = adapter->tx_ring[i];
5595 if (!netif_carrier_ok(netdev)) {
5596 /* We've lost link, so the controller stops DMA,
5597 * but we've got queued Tx work that's never going
5598 * to get done, so reset controller to flush Tx.
5599 * (Do the reset outside of interrupt context).
5600 */
5601 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5602 adapter->tx_timeout_count++;
5603 schedule_work(&adapter->reset_task);
5604 /* return immediately since reset is imminent */
5605 return;
5606 }
5607 }
5608
5609 /* Force detection of hung controller every watchdog period */
5610 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5611 }
5612
5613 /* Cause software interrupt to ensure Rx ring is cleaned */
5614 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5615 u32 eics = 0;
5616
5617 for (i = 0; i < adapter->num_q_vectors; i++)
5618 eics |= adapter->q_vector[i]->eims_value;
5619 wr32(E1000_EICS, eics);
5620 } else {
5621 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5622 }
5623
5624 igb_spoof_check(adapter);
5625 igb_ptp_rx_hang(adapter);
5626 igb_ptp_tx_hang(adapter);
5627
5628 /* Check LVMMC register on i350/i354 only */
5629 if ((adapter->hw.mac.type == e1000_i350) ||
5630 (adapter->hw.mac.type == e1000_i354))
5631 igb_check_lvmmc(adapter);
5632
5633 /* Reset the timer */
5634 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5635 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5636 mod_timer(&adapter->watchdog_timer,
5637 round_jiffies(jiffies + HZ));
5638 else
5639 mod_timer(&adapter->watchdog_timer,
5640 round_jiffies(jiffies + 2 * HZ));
5641 }
5642 }
5643
5644 enum latency_range {
5645 lowest_latency = 0,
5646 low_latency = 1,
5647 bulk_latency = 2,
5648 latency_invalid = 255
5649 };
5650
5651 /**
5652 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5653 * @q_vector: pointer to q_vector
5654 *
5655 * Stores a new ITR value based on strictly on packet size. This
5656 * algorithm is less sophisticated than that used in igb_update_itr,
5657 * due to the difficulty of synchronizing statistics across multiple
5658 * receive rings. The divisors and thresholds used by this function
5659 * were determined based on theoretical maximum wire speed and testing
5660 * data, in order to minimize response time while increasing bulk
5661 * throughput.
5662 * This functionality is controlled by ethtool's coalescing settings.
5663 * NOTE: This function is called only when operating in a multiqueue
5664 * receive environment.
5665 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5666 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5667 {
5668 int new_val = q_vector->itr_val;
5669 int avg_wire_size = 0;
5670 struct igb_adapter *adapter = q_vector->adapter;
5671 unsigned int packets;
5672
5673 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5674 * ints/sec - ITR timer value of 120 ticks.
5675 */
5676 if (adapter->link_speed != SPEED_1000) {
5677 new_val = IGB_4K_ITR;
5678 goto set_itr_val;
5679 }
5680
5681 packets = q_vector->rx.total_packets;
5682 if (packets)
5683 avg_wire_size = q_vector->rx.total_bytes / packets;
5684
5685 packets = q_vector->tx.total_packets;
5686 if (packets)
5687 avg_wire_size = max_t(u32, avg_wire_size,
5688 q_vector->tx.total_bytes / packets);
5689
5690 /* if avg_wire_size isn't set no work was done */
5691 if (!avg_wire_size)
5692 goto clear_counts;
5693
5694 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5695 avg_wire_size += 24;
5696
5697 /* Don't starve jumbo frames */
5698 avg_wire_size = min(avg_wire_size, 3000);
5699
5700 /* Give a little boost to mid-size frames */
5701 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5702 new_val = avg_wire_size / 3;
5703 else
5704 new_val = avg_wire_size / 2;
5705
5706 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5707 if (new_val < IGB_20K_ITR &&
5708 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5709 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5710 new_val = IGB_20K_ITR;
5711
5712 set_itr_val:
5713 if (new_val != q_vector->itr_val) {
5714 q_vector->itr_val = new_val;
5715 q_vector->set_itr = 1;
5716 }
5717 clear_counts:
5718 q_vector->rx.total_bytes = 0;
5719 q_vector->rx.total_packets = 0;
5720 q_vector->tx.total_bytes = 0;
5721 q_vector->tx.total_packets = 0;
5722 }
5723
5724 /**
5725 * igb_update_itr - update the dynamic ITR value based on statistics
5726 * @q_vector: pointer to q_vector
5727 * @ring_container: ring info to update the itr for
5728 *
5729 * Stores a new ITR value based on packets and byte
5730 * counts during the last interrupt. The advantage of per interrupt
5731 * computation is faster updates and more accurate ITR for the current
5732 * traffic pattern. Constants in this function were computed
5733 * based on theoretical maximum wire speed and thresholds were set based
5734 * on testing data as well as attempting to minimize response time
5735 * while increasing bulk throughput.
5736 * This functionality is controlled by ethtool's coalescing settings.
5737 * NOTE: These calculations are only valid when operating in a single-
5738 * queue environment.
5739 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5740 static void igb_update_itr(struct igb_q_vector *q_vector,
5741 struct igb_ring_container *ring_container)
5742 {
5743 unsigned int packets = ring_container->total_packets;
5744 unsigned int bytes = ring_container->total_bytes;
5745 u8 itrval = ring_container->itr;
5746
5747 /* no packets, exit with status unchanged */
5748 if (packets == 0)
5749 return;
5750
5751 switch (itrval) {
5752 case lowest_latency:
5753 /* handle TSO and jumbo frames */
5754 if (bytes/packets > 8000)
5755 itrval = bulk_latency;
5756 else if ((packets < 5) && (bytes > 512))
5757 itrval = low_latency;
5758 break;
5759 case low_latency: /* 50 usec aka 20000 ints/s */
5760 if (bytes > 10000) {
5761 /* this if handles the TSO accounting */
5762 if (bytes/packets > 8000)
5763 itrval = bulk_latency;
5764 else if ((packets < 10) || ((bytes/packets) > 1200))
5765 itrval = bulk_latency;
5766 else if ((packets > 35))
5767 itrval = lowest_latency;
5768 } else if (bytes/packets > 2000) {
5769 itrval = bulk_latency;
5770 } else if (packets <= 2 && bytes < 512) {
5771 itrval = lowest_latency;
5772 }
5773 break;
5774 case bulk_latency: /* 250 usec aka 4000 ints/s */
5775 if (bytes > 25000) {
5776 if (packets > 35)
5777 itrval = low_latency;
5778 } else if (bytes < 1500) {
5779 itrval = low_latency;
5780 }
5781 break;
5782 }
5783
5784 /* clear work counters since we have the values we need */
5785 ring_container->total_bytes = 0;
5786 ring_container->total_packets = 0;
5787
5788 /* write updated itr to ring container */
5789 ring_container->itr = itrval;
5790 }
5791
igb_set_itr(struct igb_q_vector * q_vector)5792 static void igb_set_itr(struct igb_q_vector *q_vector)
5793 {
5794 struct igb_adapter *adapter = q_vector->adapter;
5795 u32 new_itr = q_vector->itr_val;
5796 u8 current_itr = 0;
5797
5798 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5799 if (adapter->link_speed != SPEED_1000) {
5800 current_itr = 0;
5801 new_itr = IGB_4K_ITR;
5802 goto set_itr_now;
5803 }
5804
5805 igb_update_itr(q_vector, &q_vector->tx);
5806 igb_update_itr(q_vector, &q_vector->rx);
5807
5808 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5809
5810 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5811 if (current_itr == lowest_latency &&
5812 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5813 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5814 current_itr = low_latency;
5815
5816 switch (current_itr) {
5817 /* counts and packets in update_itr are dependent on these numbers */
5818 case lowest_latency:
5819 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5820 break;
5821 case low_latency:
5822 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5823 break;
5824 case bulk_latency:
5825 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5826 break;
5827 default:
5828 break;
5829 }
5830
5831 set_itr_now:
5832 if (new_itr != q_vector->itr_val) {
5833 /* this attempts to bias the interrupt rate towards Bulk
5834 * by adding intermediate steps when interrupt rate is
5835 * increasing
5836 */
5837 new_itr = new_itr > q_vector->itr_val ?
5838 max((new_itr * q_vector->itr_val) /
5839 (new_itr + (q_vector->itr_val >> 2)),
5840 new_itr) : new_itr;
5841 /* Don't write the value here; it resets the adapter's
5842 * internal timer, and causes us to delay far longer than
5843 * we should between interrupts. Instead, we write the ITR
5844 * value at the beginning of the next interrupt so the timing
5845 * ends up being correct.
5846 */
5847 q_vector->itr_val = new_itr;
5848 q_vector->set_itr = 1;
5849 }
5850 }
5851
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5852 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5853 struct igb_tx_buffer *first,
5854 u32 vlan_macip_lens, u32 type_tucmd,
5855 u32 mss_l4len_idx)
5856 {
5857 struct e1000_adv_tx_context_desc *context_desc;
5858 u16 i = tx_ring->next_to_use;
5859 struct timespec64 ts;
5860
5861 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5862
5863 i++;
5864 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5865
5866 /* set bits to identify this as an advanced context descriptor */
5867 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5868
5869 /* For 82575, context index must be unique per ring. */
5870 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5871 mss_l4len_idx |= tx_ring->reg_idx << 4;
5872
5873 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5874 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5875 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5876
5877 /* We assume there is always a valid tx time available. Invalid times
5878 * should have been handled by the upper layers.
5879 */
5880 if (tx_ring->launchtime_enable) {
5881 ts = ktime_to_timespec64(first->skb->tstamp);
5882 first->skb->tstamp = ktime_set(0, 0);
5883 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5884 } else {
5885 context_desc->seqnum_seed = 0;
5886 }
5887 }
5888
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5889 static int igb_tso(struct igb_ring *tx_ring,
5890 struct igb_tx_buffer *first,
5891 u8 *hdr_len)
5892 {
5893 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5894 struct sk_buff *skb = first->skb;
5895 union {
5896 struct iphdr *v4;
5897 struct ipv6hdr *v6;
5898 unsigned char *hdr;
5899 } ip;
5900 union {
5901 struct tcphdr *tcp;
5902 struct udphdr *udp;
5903 unsigned char *hdr;
5904 } l4;
5905 u32 paylen, l4_offset;
5906 int err;
5907
5908 if (skb->ip_summed != CHECKSUM_PARTIAL)
5909 return 0;
5910
5911 if (!skb_is_gso(skb))
5912 return 0;
5913
5914 err = skb_cow_head(skb, 0);
5915 if (err < 0)
5916 return err;
5917
5918 ip.hdr = skb_network_header(skb);
5919 l4.hdr = skb_checksum_start(skb);
5920
5921 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5922 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5923 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5924
5925 /* initialize outer IP header fields */
5926 if (ip.v4->version == 4) {
5927 unsigned char *csum_start = skb_checksum_start(skb);
5928 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5929
5930 /* IP header will have to cancel out any data that
5931 * is not a part of the outer IP header
5932 */
5933 ip.v4->check = csum_fold(csum_partial(trans_start,
5934 csum_start - trans_start,
5935 0));
5936 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5937
5938 ip.v4->tot_len = 0;
5939 first->tx_flags |= IGB_TX_FLAGS_TSO |
5940 IGB_TX_FLAGS_CSUM |
5941 IGB_TX_FLAGS_IPV4;
5942 } else {
5943 ip.v6->payload_len = 0;
5944 first->tx_flags |= IGB_TX_FLAGS_TSO |
5945 IGB_TX_FLAGS_CSUM;
5946 }
5947
5948 /* determine offset of inner transport header */
5949 l4_offset = l4.hdr - skb->data;
5950
5951 /* remove payload length from inner checksum */
5952 paylen = skb->len - l4_offset;
5953 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5954 /* compute length of segmentation header */
5955 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5956 csum_replace_by_diff(&l4.tcp->check,
5957 (__force __wsum)htonl(paylen));
5958 } else {
5959 /* compute length of segmentation header */
5960 *hdr_len = sizeof(*l4.udp) + l4_offset;
5961 csum_replace_by_diff(&l4.udp->check,
5962 (__force __wsum)htonl(paylen));
5963 }
5964
5965 /* update gso size and bytecount with header size */
5966 first->gso_segs = skb_shinfo(skb)->gso_segs;
5967 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5968
5969 /* MSS L4LEN IDX */
5970 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5971 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5972
5973 /* VLAN MACLEN IPLEN */
5974 vlan_macip_lens = l4.hdr - ip.hdr;
5975 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5976 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5977
5978 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5979 type_tucmd, mss_l4len_idx);
5980
5981 return 1;
5982 }
5983
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5984 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5985 {
5986 unsigned int offset = 0;
5987
5988 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5989
5990 return offset == skb_checksum_start_offset(skb);
5991 }
5992
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5993 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5994 {
5995 struct sk_buff *skb = first->skb;
5996 u32 vlan_macip_lens = 0;
5997 u32 type_tucmd = 0;
5998
5999 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6000 csum_failed:
6001 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6002 !tx_ring->launchtime_enable)
6003 return;
6004 goto no_csum;
6005 }
6006
6007 switch (skb->csum_offset) {
6008 case offsetof(struct tcphdr, check):
6009 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6010 fallthrough;
6011 case offsetof(struct udphdr, check):
6012 break;
6013 case offsetof(struct sctphdr, checksum):
6014 /* validate that this is actually an SCTP request */
6015 if (((first->protocol == htons(ETH_P_IP)) &&
6016 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
6017 ((first->protocol == htons(ETH_P_IPV6)) &&
6018 igb_ipv6_csum_is_sctp(skb))) {
6019 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6020 break;
6021 }
6022 fallthrough;
6023 default:
6024 skb_checksum_help(skb);
6025 goto csum_failed;
6026 }
6027
6028 /* update TX checksum flag */
6029 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6030 vlan_macip_lens = skb_checksum_start_offset(skb) -
6031 skb_network_offset(skb);
6032 no_csum:
6033 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6034 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6035
6036 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6037 }
6038
6039 #define IGB_SET_FLAG(_input, _flag, _result) \
6040 ((_flag <= _result) ? \
6041 ((u32)(_input & _flag) * (_result / _flag)) : \
6042 ((u32)(_input & _flag) / (_flag / _result)))
6043
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6044 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6045 {
6046 /* set type for advanced descriptor with frame checksum insertion */
6047 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6048 E1000_ADVTXD_DCMD_DEXT |
6049 E1000_ADVTXD_DCMD_IFCS;
6050
6051 /* set HW vlan bit if vlan is present */
6052 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6053 (E1000_ADVTXD_DCMD_VLE));
6054
6055 /* set segmentation bits for TSO */
6056 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6057 (E1000_ADVTXD_DCMD_TSE));
6058
6059 /* set timestamp bit if present */
6060 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6061 (E1000_ADVTXD_MAC_TSTAMP));
6062
6063 /* insert frame checksum */
6064 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6065
6066 return cmd_type;
6067 }
6068
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6069 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6070 union e1000_adv_tx_desc *tx_desc,
6071 u32 tx_flags, unsigned int paylen)
6072 {
6073 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6074
6075 /* 82575 requires a unique index per ring */
6076 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6077 olinfo_status |= tx_ring->reg_idx << 4;
6078
6079 /* insert L4 checksum */
6080 olinfo_status |= IGB_SET_FLAG(tx_flags,
6081 IGB_TX_FLAGS_CSUM,
6082 (E1000_TXD_POPTS_TXSM << 8));
6083
6084 /* insert IPv4 checksum */
6085 olinfo_status |= IGB_SET_FLAG(tx_flags,
6086 IGB_TX_FLAGS_IPV4,
6087 (E1000_TXD_POPTS_IXSM << 8));
6088
6089 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6090 }
6091
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6092 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6093 {
6094 struct net_device *netdev = tx_ring->netdev;
6095
6096 netif_stop_subqueue(netdev, tx_ring->queue_index);
6097
6098 /* Herbert's original patch had:
6099 * smp_mb__after_netif_stop_queue();
6100 * but since that doesn't exist yet, just open code it.
6101 */
6102 smp_mb();
6103
6104 /* We need to check again in a case another CPU has just
6105 * made room available.
6106 */
6107 if (igb_desc_unused(tx_ring) < size)
6108 return -EBUSY;
6109
6110 /* A reprieve! */
6111 netif_wake_subqueue(netdev, tx_ring->queue_index);
6112
6113 u64_stats_update_begin(&tx_ring->tx_syncp2);
6114 tx_ring->tx_stats.restart_queue2++;
6115 u64_stats_update_end(&tx_ring->tx_syncp2);
6116
6117 return 0;
6118 }
6119
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6120 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6121 {
6122 if (igb_desc_unused(tx_ring) >= size)
6123 return 0;
6124 return __igb_maybe_stop_tx(tx_ring, size);
6125 }
6126
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6127 static int igb_tx_map(struct igb_ring *tx_ring,
6128 struct igb_tx_buffer *first,
6129 const u8 hdr_len)
6130 {
6131 struct sk_buff *skb = first->skb;
6132 struct igb_tx_buffer *tx_buffer;
6133 union e1000_adv_tx_desc *tx_desc;
6134 skb_frag_t *frag;
6135 dma_addr_t dma;
6136 unsigned int data_len, size;
6137 u32 tx_flags = first->tx_flags;
6138 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6139 u16 i = tx_ring->next_to_use;
6140
6141 tx_desc = IGB_TX_DESC(tx_ring, i);
6142
6143 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6144
6145 size = skb_headlen(skb);
6146 data_len = skb->data_len;
6147
6148 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6149
6150 tx_buffer = first;
6151
6152 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6153 if (dma_mapping_error(tx_ring->dev, dma))
6154 goto dma_error;
6155
6156 /* record length, and DMA address */
6157 dma_unmap_len_set(tx_buffer, len, size);
6158 dma_unmap_addr_set(tx_buffer, dma, dma);
6159
6160 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6161
6162 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6163 tx_desc->read.cmd_type_len =
6164 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6165
6166 i++;
6167 tx_desc++;
6168 if (i == tx_ring->count) {
6169 tx_desc = IGB_TX_DESC(tx_ring, 0);
6170 i = 0;
6171 }
6172 tx_desc->read.olinfo_status = 0;
6173
6174 dma += IGB_MAX_DATA_PER_TXD;
6175 size -= IGB_MAX_DATA_PER_TXD;
6176
6177 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6178 }
6179
6180 if (likely(!data_len))
6181 break;
6182
6183 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6184
6185 i++;
6186 tx_desc++;
6187 if (i == tx_ring->count) {
6188 tx_desc = IGB_TX_DESC(tx_ring, 0);
6189 i = 0;
6190 }
6191 tx_desc->read.olinfo_status = 0;
6192
6193 size = skb_frag_size(frag);
6194 data_len -= size;
6195
6196 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6197 size, DMA_TO_DEVICE);
6198
6199 tx_buffer = &tx_ring->tx_buffer_info[i];
6200 }
6201
6202 /* write last descriptor with RS and EOP bits */
6203 cmd_type |= size | IGB_TXD_DCMD;
6204 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6205
6206 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6207
6208 /* set the timestamp */
6209 first->time_stamp = jiffies;
6210
6211 skb_tx_timestamp(skb);
6212
6213 /* Force memory writes to complete before letting h/w know there
6214 * are new descriptors to fetch. (Only applicable for weak-ordered
6215 * memory model archs, such as IA-64).
6216 *
6217 * We also need this memory barrier to make certain all of the
6218 * status bits have been updated before next_to_watch is written.
6219 */
6220 dma_wmb();
6221
6222 /* set next_to_watch value indicating a packet is present */
6223 first->next_to_watch = tx_desc;
6224
6225 i++;
6226 if (i == tx_ring->count)
6227 i = 0;
6228
6229 tx_ring->next_to_use = i;
6230
6231 /* Make sure there is space in the ring for the next send. */
6232 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6233
6234 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6235 writel(i, tx_ring->tail);
6236 }
6237 return 0;
6238
6239 dma_error:
6240 dev_err(tx_ring->dev, "TX DMA map failed\n");
6241 tx_buffer = &tx_ring->tx_buffer_info[i];
6242
6243 /* clear dma mappings for failed tx_buffer_info map */
6244 while (tx_buffer != first) {
6245 if (dma_unmap_len(tx_buffer, len))
6246 dma_unmap_page(tx_ring->dev,
6247 dma_unmap_addr(tx_buffer, dma),
6248 dma_unmap_len(tx_buffer, len),
6249 DMA_TO_DEVICE);
6250 dma_unmap_len_set(tx_buffer, len, 0);
6251
6252 if (i-- == 0)
6253 i += tx_ring->count;
6254 tx_buffer = &tx_ring->tx_buffer_info[i];
6255 }
6256
6257 if (dma_unmap_len(tx_buffer, len))
6258 dma_unmap_single(tx_ring->dev,
6259 dma_unmap_addr(tx_buffer, dma),
6260 dma_unmap_len(tx_buffer, len),
6261 DMA_TO_DEVICE);
6262 dma_unmap_len_set(tx_buffer, len, 0);
6263
6264 dev_kfree_skb_any(tx_buffer->skb);
6265 tx_buffer->skb = NULL;
6266
6267 tx_ring->next_to_use = i;
6268
6269 return -1;
6270 }
6271
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6272 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6273 struct igb_ring *tx_ring,
6274 struct xdp_frame *xdpf)
6275 {
6276 union e1000_adv_tx_desc *tx_desc;
6277 u32 len, cmd_type, olinfo_status;
6278 struct igb_tx_buffer *tx_buffer;
6279 dma_addr_t dma;
6280 u16 i;
6281
6282 len = xdpf->len;
6283
6284 if (unlikely(!igb_desc_unused(tx_ring)))
6285 return IGB_XDP_CONSUMED;
6286
6287 dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6288 if (dma_mapping_error(tx_ring->dev, dma))
6289 return IGB_XDP_CONSUMED;
6290
6291 /* record the location of the first descriptor for this packet */
6292 tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6293 tx_buffer->bytecount = len;
6294 tx_buffer->gso_segs = 1;
6295 tx_buffer->protocol = 0;
6296
6297 i = tx_ring->next_to_use;
6298 tx_desc = IGB_TX_DESC(tx_ring, i);
6299
6300 dma_unmap_len_set(tx_buffer, len, len);
6301 dma_unmap_addr_set(tx_buffer, dma, dma);
6302 tx_buffer->type = IGB_TYPE_XDP;
6303 tx_buffer->xdpf = xdpf;
6304
6305 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6306
6307 /* put descriptor type bits */
6308 cmd_type = E1000_ADVTXD_DTYP_DATA |
6309 E1000_ADVTXD_DCMD_DEXT |
6310 E1000_ADVTXD_DCMD_IFCS;
6311 cmd_type |= len | IGB_TXD_DCMD;
6312 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6313
6314 olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6315 /* 82575 requires a unique index per ring */
6316 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6317 olinfo_status |= tx_ring->reg_idx << 4;
6318
6319 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6320
6321 netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6322
6323 /* set the timestamp */
6324 tx_buffer->time_stamp = jiffies;
6325
6326 /* Avoid any potential race with xdp_xmit and cleanup */
6327 smp_wmb();
6328
6329 /* set next_to_watch value indicating a packet is present */
6330 i++;
6331 if (i == tx_ring->count)
6332 i = 0;
6333
6334 tx_buffer->next_to_watch = tx_desc;
6335 tx_ring->next_to_use = i;
6336
6337 /* Make sure there is space in the ring for the next send. */
6338 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6339
6340 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6341 writel(i, tx_ring->tail);
6342
6343 return IGB_XDP_TX;
6344 }
6345
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6346 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6347 struct igb_ring *tx_ring)
6348 {
6349 struct igb_tx_buffer *first;
6350 int tso;
6351 u32 tx_flags = 0;
6352 unsigned short f;
6353 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6354 __be16 protocol = vlan_get_protocol(skb);
6355 u8 hdr_len = 0;
6356
6357 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6358 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6359 * + 2 desc gap to keep tail from touching head,
6360 * + 1 desc for context descriptor,
6361 * otherwise try next time
6362 */
6363 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6364 count += TXD_USE_COUNT(skb_frag_size(
6365 &skb_shinfo(skb)->frags[f]));
6366
6367 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6368 /* this is a hard error */
6369 return NETDEV_TX_BUSY;
6370 }
6371
6372 /* record the location of the first descriptor for this packet */
6373 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6374 first->type = IGB_TYPE_SKB;
6375 first->skb = skb;
6376 first->bytecount = skb->len;
6377 first->gso_segs = 1;
6378
6379 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6380 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6381
6382 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6383 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6384 &adapter->state)) {
6385 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6386 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6387
6388 adapter->ptp_tx_skb = skb_get(skb);
6389 adapter->ptp_tx_start = jiffies;
6390 if (adapter->hw.mac.type == e1000_82576)
6391 schedule_work(&adapter->ptp_tx_work);
6392 } else {
6393 adapter->tx_hwtstamp_skipped++;
6394 }
6395 }
6396
6397 if (skb_vlan_tag_present(skb)) {
6398 tx_flags |= IGB_TX_FLAGS_VLAN;
6399 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6400 }
6401
6402 /* record initial flags and protocol */
6403 first->tx_flags = tx_flags;
6404 first->protocol = protocol;
6405
6406 tso = igb_tso(tx_ring, first, &hdr_len);
6407 if (tso < 0)
6408 goto out_drop;
6409 else if (!tso)
6410 igb_tx_csum(tx_ring, first);
6411
6412 if (igb_tx_map(tx_ring, first, hdr_len))
6413 goto cleanup_tx_tstamp;
6414
6415 return NETDEV_TX_OK;
6416
6417 out_drop:
6418 dev_kfree_skb_any(first->skb);
6419 first->skb = NULL;
6420 cleanup_tx_tstamp:
6421 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6422 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6423
6424 dev_kfree_skb_any(adapter->ptp_tx_skb);
6425 adapter->ptp_tx_skb = NULL;
6426 if (adapter->hw.mac.type == e1000_82576)
6427 cancel_work_sync(&adapter->ptp_tx_work);
6428 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6429 }
6430
6431 return NETDEV_TX_OK;
6432 }
6433
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6434 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6435 struct sk_buff *skb)
6436 {
6437 unsigned int r_idx = skb->queue_mapping;
6438
6439 if (r_idx >= adapter->num_tx_queues)
6440 r_idx = r_idx % adapter->num_tx_queues;
6441
6442 return adapter->tx_ring[r_idx];
6443 }
6444
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6445 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6446 struct net_device *netdev)
6447 {
6448 struct igb_adapter *adapter = netdev_priv(netdev);
6449
6450 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6451 * in order to meet this minimum size requirement.
6452 */
6453 if (skb_put_padto(skb, 17))
6454 return NETDEV_TX_OK;
6455
6456 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6457 }
6458
6459 /**
6460 * igb_tx_timeout - Respond to a Tx Hang
6461 * @netdev: network interface device structure
6462 * @txqueue: number of the Tx queue that hung (unused)
6463 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6464 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6465 {
6466 struct igb_adapter *adapter = netdev_priv(netdev);
6467 struct e1000_hw *hw = &adapter->hw;
6468
6469 /* Do the reset outside of interrupt context */
6470 adapter->tx_timeout_count++;
6471
6472 if (hw->mac.type >= e1000_82580)
6473 hw->dev_spec._82575.global_device_reset = true;
6474
6475 schedule_work(&adapter->reset_task);
6476 wr32(E1000_EICS,
6477 (adapter->eims_enable_mask & ~adapter->eims_other));
6478 }
6479
igb_reset_task(struct work_struct * work)6480 static void igb_reset_task(struct work_struct *work)
6481 {
6482 struct igb_adapter *adapter;
6483 adapter = container_of(work, struct igb_adapter, reset_task);
6484
6485 rtnl_lock();
6486 /* If we're already down or resetting, just bail */
6487 if (test_bit(__IGB_DOWN, &adapter->state) ||
6488 test_bit(__IGB_RESETTING, &adapter->state)) {
6489 rtnl_unlock();
6490 return;
6491 }
6492
6493 igb_dump(adapter);
6494 netdev_err(adapter->netdev, "Reset adapter\n");
6495 igb_reinit_locked(adapter);
6496 rtnl_unlock();
6497 }
6498
6499 /**
6500 * igb_get_stats64 - Get System Network Statistics
6501 * @netdev: network interface device structure
6502 * @stats: rtnl_link_stats64 pointer
6503 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6504 static void igb_get_stats64(struct net_device *netdev,
6505 struct rtnl_link_stats64 *stats)
6506 {
6507 struct igb_adapter *adapter = netdev_priv(netdev);
6508
6509 spin_lock(&adapter->stats64_lock);
6510 igb_update_stats(adapter);
6511 memcpy(stats, &adapter->stats64, sizeof(*stats));
6512 spin_unlock(&adapter->stats64_lock);
6513 }
6514
6515 /**
6516 * igb_change_mtu - Change the Maximum Transfer Unit
6517 * @netdev: network interface device structure
6518 * @new_mtu: new value for maximum frame size
6519 *
6520 * Returns 0 on success, negative on failure
6521 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6522 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6523 {
6524 struct igb_adapter *adapter = netdev_priv(netdev);
6525 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6526
6527 if (adapter->xdp_prog) {
6528 int i;
6529
6530 for (i = 0; i < adapter->num_rx_queues; i++) {
6531 struct igb_ring *ring = adapter->rx_ring[i];
6532
6533 if (max_frame > igb_rx_bufsz(ring)) {
6534 netdev_warn(adapter->netdev,
6535 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6536 max_frame);
6537 return -EINVAL;
6538 }
6539 }
6540 }
6541
6542 /* adjust max frame to be at least the size of a standard frame */
6543 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6544 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6545
6546 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6547 usleep_range(1000, 2000);
6548
6549 /* igb_down has a dependency on max_frame_size */
6550 adapter->max_frame_size = max_frame;
6551
6552 if (netif_running(netdev))
6553 igb_down(adapter);
6554
6555 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6556 netdev->mtu, new_mtu);
6557 netdev->mtu = new_mtu;
6558
6559 if (netif_running(netdev))
6560 igb_up(adapter);
6561 else
6562 igb_reset(adapter);
6563
6564 clear_bit(__IGB_RESETTING, &adapter->state);
6565
6566 return 0;
6567 }
6568
6569 /**
6570 * igb_update_stats - Update the board statistics counters
6571 * @adapter: board private structure
6572 **/
igb_update_stats(struct igb_adapter * adapter)6573 void igb_update_stats(struct igb_adapter *adapter)
6574 {
6575 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6576 struct e1000_hw *hw = &adapter->hw;
6577 struct pci_dev *pdev = adapter->pdev;
6578 u32 reg, mpc;
6579 int i;
6580 u64 bytes, packets;
6581 unsigned int start;
6582 u64 _bytes, _packets;
6583
6584 /* Prevent stats update while adapter is being reset, or if the pci
6585 * connection is down.
6586 */
6587 if (adapter->link_speed == 0)
6588 return;
6589 if (pci_channel_offline(pdev))
6590 return;
6591
6592 bytes = 0;
6593 packets = 0;
6594
6595 rcu_read_lock();
6596 for (i = 0; i < adapter->num_rx_queues; i++) {
6597 struct igb_ring *ring = adapter->rx_ring[i];
6598 u32 rqdpc = rd32(E1000_RQDPC(i));
6599 if (hw->mac.type >= e1000_i210)
6600 wr32(E1000_RQDPC(i), 0);
6601
6602 if (rqdpc) {
6603 ring->rx_stats.drops += rqdpc;
6604 net_stats->rx_fifo_errors += rqdpc;
6605 }
6606
6607 do {
6608 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6609 _bytes = ring->rx_stats.bytes;
6610 _packets = ring->rx_stats.packets;
6611 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6612 bytes += _bytes;
6613 packets += _packets;
6614 }
6615
6616 net_stats->rx_bytes = bytes;
6617 net_stats->rx_packets = packets;
6618
6619 bytes = 0;
6620 packets = 0;
6621 for (i = 0; i < adapter->num_tx_queues; i++) {
6622 struct igb_ring *ring = adapter->tx_ring[i];
6623 do {
6624 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6625 _bytes = ring->tx_stats.bytes;
6626 _packets = ring->tx_stats.packets;
6627 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6628 bytes += _bytes;
6629 packets += _packets;
6630 }
6631 net_stats->tx_bytes = bytes;
6632 net_stats->tx_packets = packets;
6633 rcu_read_unlock();
6634
6635 /* read stats registers */
6636 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6637 adapter->stats.gprc += rd32(E1000_GPRC);
6638 adapter->stats.gorc += rd32(E1000_GORCL);
6639 rd32(E1000_GORCH); /* clear GORCL */
6640 adapter->stats.bprc += rd32(E1000_BPRC);
6641 adapter->stats.mprc += rd32(E1000_MPRC);
6642 adapter->stats.roc += rd32(E1000_ROC);
6643
6644 adapter->stats.prc64 += rd32(E1000_PRC64);
6645 adapter->stats.prc127 += rd32(E1000_PRC127);
6646 adapter->stats.prc255 += rd32(E1000_PRC255);
6647 adapter->stats.prc511 += rd32(E1000_PRC511);
6648 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6649 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6650 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6651 adapter->stats.sec += rd32(E1000_SEC);
6652
6653 mpc = rd32(E1000_MPC);
6654 adapter->stats.mpc += mpc;
6655 net_stats->rx_fifo_errors += mpc;
6656 adapter->stats.scc += rd32(E1000_SCC);
6657 adapter->stats.ecol += rd32(E1000_ECOL);
6658 adapter->stats.mcc += rd32(E1000_MCC);
6659 adapter->stats.latecol += rd32(E1000_LATECOL);
6660 adapter->stats.dc += rd32(E1000_DC);
6661 adapter->stats.rlec += rd32(E1000_RLEC);
6662 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6663 adapter->stats.xontxc += rd32(E1000_XONTXC);
6664 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6665 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6666 adapter->stats.fcruc += rd32(E1000_FCRUC);
6667 adapter->stats.gptc += rd32(E1000_GPTC);
6668 adapter->stats.gotc += rd32(E1000_GOTCL);
6669 rd32(E1000_GOTCH); /* clear GOTCL */
6670 adapter->stats.rnbc += rd32(E1000_RNBC);
6671 adapter->stats.ruc += rd32(E1000_RUC);
6672 adapter->stats.rfc += rd32(E1000_RFC);
6673 adapter->stats.rjc += rd32(E1000_RJC);
6674 adapter->stats.tor += rd32(E1000_TORH);
6675 adapter->stats.tot += rd32(E1000_TOTH);
6676 adapter->stats.tpr += rd32(E1000_TPR);
6677
6678 adapter->stats.ptc64 += rd32(E1000_PTC64);
6679 adapter->stats.ptc127 += rd32(E1000_PTC127);
6680 adapter->stats.ptc255 += rd32(E1000_PTC255);
6681 adapter->stats.ptc511 += rd32(E1000_PTC511);
6682 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6683 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6684
6685 adapter->stats.mptc += rd32(E1000_MPTC);
6686 adapter->stats.bptc += rd32(E1000_BPTC);
6687
6688 adapter->stats.tpt += rd32(E1000_TPT);
6689 adapter->stats.colc += rd32(E1000_COLC);
6690
6691 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6692 /* read internal phy specific stats */
6693 reg = rd32(E1000_CTRL_EXT);
6694 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6695 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6696
6697 /* this stat has invalid values on i210/i211 */
6698 if ((hw->mac.type != e1000_i210) &&
6699 (hw->mac.type != e1000_i211))
6700 adapter->stats.tncrs += rd32(E1000_TNCRS);
6701 }
6702
6703 adapter->stats.tsctc += rd32(E1000_TSCTC);
6704 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6705
6706 adapter->stats.iac += rd32(E1000_IAC);
6707 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6708 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6709 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6710 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6711 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6712 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6713 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6714 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6715
6716 /* Fill out the OS statistics structure */
6717 net_stats->multicast = adapter->stats.mprc;
6718 net_stats->collisions = adapter->stats.colc;
6719
6720 /* Rx Errors */
6721
6722 /* RLEC on some newer hardware can be incorrect so build
6723 * our own version based on RUC and ROC
6724 */
6725 net_stats->rx_errors = adapter->stats.rxerrc +
6726 adapter->stats.crcerrs + adapter->stats.algnerrc +
6727 adapter->stats.ruc + adapter->stats.roc +
6728 adapter->stats.cexterr;
6729 net_stats->rx_length_errors = adapter->stats.ruc +
6730 adapter->stats.roc;
6731 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6732 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6733 net_stats->rx_missed_errors = adapter->stats.mpc;
6734
6735 /* Tx Errors */
6736 net_stats->tx_errors = adapter->stats.ecol +
6737 adapter->stats.latecol;
6738 net_stats->tx_aborted_errors = adapter->stats.ecol;
6739 net_stats->tx_window_errors = adapter->stats.latecol;
6740 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6741
6742 /* Tx Dropped needs to be maintained elsewhere */
6743
6744 /* Management Stats */
6745 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6746 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6747 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6748
6749 /* OS2BMC Stats */
6750 reg = rd32(E1000_MANC);
6751 if (reg & E1000_MANC_EN_BMC2OS) {
6752 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6753 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6754 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6755 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6756 }
6757 }
6758
igb_tsync_interrupt(struct igb_adapter * adapter)6759 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6760 {
6761 struct e1000_hw *hw = &adapter->hw;
6762 struct ptp_clock_event event;
6763 struct timespec64 ts;
6764 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6765
6766 if (tsicr & TSINTR_SYS_WRAP) {
6767 event.type = PTP_CLOCK_PPS;
6768 if (adapter->ptp_caps.pps)
6769 ptp_clock_event(adapter->ptp_clock, &event);
6770 ack |= TSINTR_SYS_WRAP;
6771 }
6772
6773 if (tsicr & E1000_TSICR_TXTS) {
6774 /* retrieve hardware timestamp */
6775 schedule_work(&adapter->ptp_tx_work);
6776 ack |= E1000_TSICR_TXTS;
6777 }
6778
6779 if (tsicr & TSINTR_TT0) {
6780 spin_lock(&adapter->tmreg_lock);
6781 ts = timespec64_add(adapter->perout[0].start,
6782 adapter->perout[0].period);
6783 /* u32 conversion of tv_sec is safe until y2106 */
6784 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6785 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6786 tsauxc = rd32(E1000_TSAUXC);
6787 tsauxc |= TSAUXC_EN_TT0;
6788 wr32(E1000_TSAUXC, tsauxc);
6789 adapter->perout[0].start = ts;
6790 spin_unlock(&adapter->tmreg_lock);
6791 ack |= TSINTR_TT0;
6792 }
6793
6794 if (tsicr & TSINTR_TT1) {
6795 spin_lock(&adapter->tmreg_lock);
6796 ts = timespec64_add(adapter->perout[1].start,
6797 adapter->perout[1].period);
6798 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6799 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6800 tsauxc = rd32(E1000_TSAUXC);
6801 tsauxc |= TSAUXC_EN_TT1;
6802 wr32(E1000_TSAUXC, tsauxc);
6803 adapter->perout[1].start = ts;
6804 spin_unlock(&adapter->tmreg_lock);
6805 ack |= TSINTR_TT1;
6806 }
6807
6808 if (tsicr & TSINTR_AUTT0) {
6809 nsec = rd32(E1000_AUXSTMPL0);
6810 sec = rd32(E1000_AUXSTMPH0);
6811 event.type = PTP_CLOCK_EXTTS;
6812 event.index = 0;
6813 event.timestamp = sec * 1000000000ULL + nsec;
6814 ptp_clock_event(adapter->ptp_clock, &event);
6815 ack |= TSINTR_AUTT0;
6816 }
6817
6818 if (tsicr & TSINTR_AUTT1) {
6819 nsec = rd32(E1000_AUXSTMPL1);
6820 sec = rd32(E1000_AUXSTMPH1);
6821 event.type = PTP_CLOCK_EXTTS;
6822 event.index = 1;
6823 event.timestamp = sec * 1000000000ULL + nsec;
6824 ptp_clock_event(adapter->ptp_clock, &event);
6825 ack |= TSINTR_AUTT1;
6826 }
6827
6828 /* acknowledge the interrupts */
6829 wr32(E1000_TSICR, ack);
6830 }
6831
igb_msix_other(int irq,void * data)6832 static irqreturn_t igb_msix_other(int irq, void *data)
6833 {
6834 struct igb_adapter *adapter = data;
6835 struct e1000_hw *hw = &adapter->hw;
6836 u32 icr = rd32(E1000_ICR);
6837 /* reading ICR causes bit 31 of EICR to be cleared */
6838
6839 if (icr & E1000_ICR_DRSTA)
6840 schedule_work(&adapter->reset_task);
6841
6842 if (icr & E1000_ICR_DOUTSYNC) {
6843 /* HW is reporting DMA is out of sync */
6844 adapter->stats.doosync++;
6845 /* The DMA Out of Sync is also indication of a spoof event
6846 * in IOV mode. Check the Wrong VM Behavior register to
6847 * see if it is really a spoof event.
6848 */
6849 igb_check_wvbr(adapter);
6850 }
6851
6852 /* Check for a mailbox event */
6853 if (icr & E1000_ICR_VMMB)
6854 igb_msg_task(adapter);
6855
6856 if (icr & E1000_ICR_LSC) {
6857 hw->mac.get_link_status = 1;
6858 /* guard against interrupt when we're going down */
6859 if (!test_bit(__IGB_DOWN, &adapter->state))
6860 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6861 }
6862
6863 if (icr & E1000_ICR_TS)
6864 igb_tsync_interrupt(adapter);
6865
6866 wr32(E1000_EIMS, adapter->eims_other);
6867
6868 return IRQ_HANDLED;
6869 }
6870
igb_write_itr(struct igb_q_vector * q_vector)6871 static void igb_write_itr(struct igb_q_vector *q_vector)
6872 {
6873 struct igb_adapter *adapter = q_vector->adapter;
6874 u32 itr_val = q_vector->itr_val & 0x7FFC;
6875
6876 if (!q_vector->set_itr)
6877 return;
6878
6879 if (!itr_val)
6880 itr_val = 0x4;
6881
6882 if (adapter->hw.mac.type == e1000_82575)
6883 itr_val |= itr_val << 16;
6884 else
6885 itr_val |= E1000_EITR_CNT_IGNR;
6886
6887 writel(itr_val, q_vector->itr_register);
6888 q_vector->set_itr = 0;
6889 }
6890
igb_msix_ring(int irq,void * data)6891 static irqreturn_t igb_msix_ring(int irq, void *data)
6892 {
6893 struct igb_q_vector *q_vector = data;
6894
6895 /* Write the ITR value calculated from the previous interrupt. */
6896 igb_write_itr(q_vector);
6897
6898 napi_schedule(&q_vector->napi);
6899
6900 return IRQ_HANDLED;
6901 }
6902
6903 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6904 static void igb_update_tx_dca(struct igb_adapter *adapter,
6905 struct igb_ring *tx_ring,
6906 int cpu)
6907 {
6908 struct e1000_hw *hw = &adapter->hw;
6909 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6910
6911 if (hw->mac.type != e1000_82575)
6912 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6913
6914 /* We can enable relaxed ordering for reads, but not writes when
6915 * DCA is enabled. This is due to a known issue in some chipsets
6916 * which will cause the DCA tag to be cleared.
6917 */
6918 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6919 E1000_DCA_TXCTRL_DATA_RRO_EN |
6920 E1000_DCA_TXCTRL_DESC_DCA_EN;
6921
6922 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6923 }
6924
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6925 static void igb_update_rx_dca(struct igb_adapter *adapter,
6926 struct igb_ring *rx_ring,
6927 int cpu)
6928 {
6929 struct e1000_hw *hw = &adapter->hw;
6930 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6931
6932 if (hw->mac.type != e1000_82575)
6933 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6934
6935 /* We can enable relaxed ordering for reads, but not writes when
6936 * DCA is enabled. This is due to a known issue in some chipsets
6937 * which will cause the DCA tag to be cleared.
6938 */
6939 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6940 E1000_DCA_RXCTRL_DESC_DCA_EN;
6941
6942 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6943 }
6944
igb_update_dca(struct igb_q_vector * q_vector)6945 static void igb_update_dca(struct igb_q_vector *q_vector)
6946 {
6947 struct igb_adapter *adapter = q_vector->adapter;
6948 int cpu = get_cpu();
6949
6950 if (q_vector->cpu == cpu)
6951 goto out_no_update;
6952
6953 if (q_vector->tx.ring)
6954 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6955
6956 if (q_vector->rx.ring)
6957 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6958
6959 q_vector->cpu = cpu;
6960 out_no_update:
6961 put_cpu();
6962 }
6963
igb_setup_dca(struct igb_adapter * adapter)6964 static void igb_setup_dca(struct igb_adapter *adapter)
6965 {
6966 struct e1000_hw *hw = &adapter->hw;
6967 int i;
6968
6969 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6970 return;
6971
6972 /* Always use CB2 mode, difference is masked in the CB driver. */
6973 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6974
6975 for (i = 0; i < adapter->num_q_vectors; i++) {
6976 adapter->q_vector[i]->cpu = -1;
6977 igb_update_dca(adapter->q_vector[i]);
6978 }
6979 }
6980
__igb_notify_dca(struct device * dev,void * data)6981 static int __igb_notify_dca(struct device *dev, void *data)
6982 {
6983 struct net_device *netdev = dev_get_drvdata(dev);
6984 struct igb_adapter *adapter = netdev_priv(netdev);
6985 struct pci_dev *pdev = adapter->pdev;
6986 struct e1000_hw *hw = &adapter->hw;
6987 unsigned long event = *(unsigned long *)data;
6988
6989 switch (event) {
6990 case DCA_PROVIDER_ADD:
6991 /* if already enabled, don't do it again */
6992 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6993 break;
6994 if (dca_add_requester(dev) == 0) {
6995 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6996 dev_info(&pdev->dev, "DCA enabled\n");
6997 igb_setup_dca(adapter);
6998 break;
6999 }
7000 fallthrough; /* since DCA is disabled. */
7001 case DCA_PROVIDER_REMOVE:
7002 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7003 /* without this a class_device is left
7004 * hanging around in the sysfs model
7005 */
7006 dca_remove_requester(dev);
7007 dev_info(&pdev->dev, "DCA disabled\n");
7008 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7009 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7010 }
7011 break;
7012 }
7013
7014 return 0;
7015 }
7016
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7017 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7018 void *p)
7019 {
7020 int ret_val;
7021
7022 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7023 __igb_notify_dca);
7024
7025 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7026 }
7027 #endif /* CONFIG_IGB_DCA */
7028
7029 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7030 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7031 {
7032 unsigned char mac_addr[ETH_ALEN];
7033
7034 eth_zero_addr(mac_addr);
7035 igb_set_vf_mac(adapter, vf, mac_addr);
7036
7037 /* By default spoof check is enabled for all VFs */
7038 adapter->vf_data[vf].spoofchk_enabled = true;
7039
7040 /* By default VFs are not trusted */
7041 adapter->vf_data[vf].trusted = false;
7042
7043 return 0;
7044 }
7045
7046 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7047 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7048 {
7049 struct e1000_hw *hw = &adapter->hw;
7050 u32 ping;
7051 int i;
7052
7053 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7054 ping = E1000_PF_CONTROL_MSG;
7055 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7056 ping |= E1000_VT_MSGTYPE_CTS;
7057 igb_write_mbx(hw, &ping, 1, i);
7058 }
7059 }
7060
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7061 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7062 {
7063 struct e1000_hw *hw = &adapter->hw;
7064 u32 vmolr = rd32(E1000_VMOLR(vf));
7065 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7066
7067 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7068 IGB_VF_FLAG_MULTI_PROMISC);
7069 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7070
7071 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7072 vmolr |= E1000_VMOLR_MPME;
7073 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7074 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7075 } else {
7076 /* if we have hashes and we are clearing a multicast promisc
7077 * flag we need to write the hashes to the MTA as this step
7078 * was previously skipped
7079 */
7080 if (vf_data->num_vf_mc_hashes > 30) {
7081 vmolr |= E1000_VMOLR_MPME;
7082 } else if (vf_data->num_vf_mc_hashes) {
7083 int j;
7084
7085 vmolr |= E1000_VMOLR_ROMPE;
7086 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7087 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7088 }
7089 }
7090
7091 wr32(E1000_VMOLR(vf), vmolr);
7092
7093 /* there are flags left unprocessed, likely not supported */
7094 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7095 return -EINVAL;
7096
7097 return 0;
7098 }
7099
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7100 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7101 u32 *msgbuf, u32 vf)
7102 {
7103 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7104 u16 *hash_list = (u16 *)&msgbuf[1];
7105 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7106 int i;
7107
7108 /* salt away the number of multicast addresses assigned
7109 * to this VF for later use to restore when the PF multi cast
7110 * list changes
7111 */
7112 vf_data->num_vf_mc_hashes = n;
7113
7114 /* only up to 30 hash values supported */
7115 if (n > 30)
7116 n = 30;
7117
7118 /* store the hashes for later use */
7119 for (i = 0; i < n; i++)
7120 vf_data->vf_mc_hashes[i] = hash_list[i];
7121
7122 /* Flush and reset the mta with the new values */
7123 igb_set_rx_mode(adapter->netdev);
7124
7125 return 0;
7126 }
7127
igb_restore_vf_multicasts(struct igb_adapter * adapter)7128 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7129 {
7130 struct e1000_hw *hw = &adapter->hw;
7131 struct vf_data_storage *vf_data;
7132 int i, j;
7133
7134 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7135 u32 vmolr = rd32(E1000_VMOLR(i));
7136
7137 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7138
7139 vf_data = &adapter->vf_data[i];
7140
7141 if ((vf_data->num_vf_mc_hashes > 30) ||
7142 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7143 vmolr |= E1000_VMOLR_MPME;
7144 } else if (vf_data->num_vf_mc_hashes) {
7145 vmolr |= E1000_VMOLR_ROMPE;
7146 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7147 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7148 }
7149 wr32(E1000_VMOLR(i), vmolr);
7150 }
7151 }
7152
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7153 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7154 {
7155 struct e1000_hw *hw = &adapter->hw;
7156 u32 pool_mask, vlvf_mask, i;
7157
7158 /* create mask for VF and other pools */
7159 pool_mask = E1000_VLVF_POOLSEL_MASK;
7160 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7161
7162 /* drop PF from pool bits */
7163 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7164 adapter->vfs_allocated_count);
7165
7166 /* Find the vlan filter for this id */
7167 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7168 u32 vlvf = rd32(E1000_VLVF(i));
7169 u32 vfta_mask, vid, vfta;
7170
7171 /* remove the vf from the pool */
7172 if (!(vlvf & vlvf_mask))
7173 continue;
7174
7175 /* clear out bit from VLVF */
7176 vlvf ^= vlvf_mask;
7177
7178 /* if other pools are present, just remove ourselves */
7179 if (vlvf & pool_mask)
7180 goto update_vlvfb;
7181
7182 /* if PF is present, leave VFTA */
7183 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7184 goto update_vlvf;
7185
7186 vid = vlvf & E1000_VLVF_VLANID_MASK;
7187 vfta_mask = BIT(vid % 32);
7188
7189 /* clear bit from VFTA */
7190 vfta = adapter->shadow_vfta[vid / 32];
7191 if (vfta & vfta_mask)
7192 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7193 update_vlvf:
7194 /* clear pool selection enable */
7195 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7196 vlvf &= E1000_VLVF_POOLSEL_MASK;
7197 else
7198 vlvf = 0;
7199 update_vlvfb:
7200 /* clear pool bits */
7201 wr32(E1000_VLVF(i), vlvf);
7202 }
7203 }
7204
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7205 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7206 {
7207 u32 vlvf;
7208 int idx;
7209
7210 /* short cut the special case */
7211 if (vlan == 0)
7212 return 0;
7213
7214 /* Search for the VLAN id in the VLVF entries */
7215 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7216 vlvf = rd32(E1000_VLVF(idx));
7217 if ((vlvf & VLAN_VID_MASK) == vlan)
7218 break;
7219 }
7220
7221 return idx;
7222 }
7223
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7224 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7225 {
7226 struct e1000_hw *hw = &adapter->hw;
7227 u32 bits, pf_id;
7228 int idx;
7229
7230 idx = igb_find_vlvf_entry(hw, vid);
7231 if (!idx)
7232 return;
7233
7234 /* See if any other pools are set for this VLAN filter
7235 * entry other than the PF.
7236 */
7237 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7238 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7239 bits &= rd32(E1000_VLVF(idx));
7240
7241 /* Disable the filter so this falls into the default pool. */
7242 if (!bits) {
7243 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7244 wr32(E1000_VLVF(idx), BIT(pf_id));
7245 else
7246 wr32(E1000_VLVF(idx), 0);
7247 }
7248 }
7249
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7250 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7251 bool add, u32 vf)
7252 {
7253 int pf_id = adapter->vfs_allocated_count;
7254 struct e1000_hw *hw = &adapter->hw;
7255 int err;
7256
7257 /* If VLAN overlaps with one the PF is currently monitoring make
7258 * sure that we are able to allocate a VLVF entry. This may be
7259 * redundant but it guarantees PF will maintain visibility to
7260 * the VLAN.
7261 */
7262 if (add && test_bit(vid, adapter->active_vlans)) {
7263 err = igb_vfta_set(hw, vid, pf_id, true, false);
7264 if (err)
7265 return err;
7266 }
7267
7268 err = igb_vfta_set(hw, vid, vf, add, false);
7269
7270 if (add && !err)
7271 return err;
7272
7273 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7274 * we may need to drop the PF pool bit in order to allow us to free
7275 * up the VLVF resources.
7276 */
7277 if (test_bit(vid, adapter->active_vlans) ||
7278 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7279 igb_update_pf_vlvf(adapter, vid);
7280
7281 return err;
7282 }
7283
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7284 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7285 {
7286 struct e1000_hw *hw = &adapter->hw;
7287
7288 if (vid)
7289 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7290 else
7291 wr32(E1000_VMVIR(vf), 0);
7292 }
7293
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7294 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7295 u16 vlan, u8 qos)
7296 {
7297 int err;
7298
7299 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7300 if (err)
7301 return err;
7302
7303 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7304 igb_set_vmolr(adapter, vf, !vlan);
7305
7306 /* revoke access to previous VLAN */
7307 if (vlan != adapter->vf_data[vf].pf_vlan)
7308 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7309 false, vf);
7310
7311 adapter->vf_data[vf].pf_vlan = vlan;
7312 adapter->vf_data[vf].pf_qos = qos;
7313 igb_set_vf_vlan_strip(adapter, vf, true);
7314 dev_info(&adapter->pdev->dev,
7315 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7316 if (test_bit(__IGB_DOWN, &adapter->state)) {
7317 dev_warn(&adapter->pdev->dev,
7318 "The VF VLAN has been set, but the PF device is not up.\n");
7319 dev_warn(&adapter->pdev->dev,
7320 "Bring the PF device up before attempting to use the VF device.\n");
7321 }
7322
7323 return err;
7324 }
7325
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7326 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7327 {
7328 /* Restore tagless access via VLAN 0 */
7329 igb_set_vf_vlan(adapter, 0, true, vf);
7330
7331 igb_set_vmvir(adapter, 0, vf);
7332 igb_set_vmolr(adapter, vf, true);
7333
7334 /* Remove any PF assigned VLAN */
7335 if (adapter->vf_data[vf].pf_vlan)
7336 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7337 false, vf);
7338
7339 adapter->vf_data[vf].pf_vlan = 0;
7340 adapter->vf_data[vf].pf_qos = 0;
7341 igb_set_vf_vlan_strip(adapter, vf, false);
7342
7343 return 0;
7344 }
7345
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7346 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7347 u16 vlan, u8 qos, __be16 vlan_proto)
7348 {
7349 struct igb_adapter *adapter = netdev_priv(netdev);
7350
7351 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7352 return -EINVAL;
7353
7354 if (vlan_proto != htons(ETH_P_8021Q))
7355 return -EPROTONOSUPPORT;
7356
7357 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7358 igb_disable_port_vlan(adapter, vf);
7359 }
7360
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7361 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7362 {
7363 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7364 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7365 int ret;
7366
7367 if (adapter->vf_data[vf].pf_vlan)
7368 return -1;
7369
7370 /* VLAN 0 is a special case, don't allow it to be removed */
7371 if (!vid && !add)
7372 return 0;
7373
7374 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7375 if (!ret)
7376 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7377 return ret;
7378 }
7379
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7380 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7381 {
7382 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7383
7384 /* clear flags - except flag that indicates PF has set the MAC */
7385 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7386 vf_data->last_nack = jiffies;
7387
7388 /* reset vlans for device */
7389 igb_clear_vf_vfta(adapter, vf);
7390 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7391 igb_set_vmvir(adapter, vf_data->pf_vlan |
7392 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7393 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7394 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7395
7396 /* reset multicast table array for vf */
7397 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7398
7399 /* Flush and reset the mta with the new values */
7400 igb_set_rx_mode(adapter->netdev);
7401 }
7402
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7403 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7404 {
7405 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7406
7407 /* clear mac address as we were hotplug removed/added */
7408 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7409 eth_zero_addr(vf_mac);
7410
7411 /* process remaining reset events */
7412 igb_vf_reset(adapter, vf);
7413 }
7414
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7415 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7416 {
7417 struct e1000_hw *hw = &adapter->hw;
7418 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7419 u32 reg, msgbuf[3] = {};
7420 u8 *addr = (u8 *)(&msgbuf[1]);
7421
7422 /* process all the same items cleared in a function level reset */
7423 igb_vf_reset(adapter, vf);
7424
7425 /* set vf mac address */
7426 igb_set_vf_mac(adapter, vf, vf_mac);
7427
7428 /* enable transmit and receive for vf */
7429 reg = rd32(E1000_VFTE);
7430 wr32(E1000_VFTE, reg | BIT(vf));
7431 reg = rd32(E1000_VFRE);
7432 wr32(E1000_VFRE, reg | BIT(vf));
7433
7434 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7435
7436 /* reply to reset with ack and vf mac address */
7437 if (!is_zero_ether_addr(vf_mac)) {
7438 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7439 memcpy(addr, vf_mac, ETH_ALEN);
7440 } else {
7441 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7442 }
7443 igb_write_mbx(hw, msgbuf, 3, vf);
7444 }
7445
igb_flush_mac_table(struct igb_adapter * adapter)7446 static void igb_flush_mac_table(struct igb_adapter *adapter)
7447 {
7448 struct e1000_hw *hw = &adapter->hw;
7449 int i;
7450
7451 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7452 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7453 eth_zero_addr(adapter->mac_table[i].addr);
7454 adapter->mac_table[i].queue = 0;
7455 igb_rar_set_index(adapter, i);
7456 }
7457 }
7458
igb_available_rars(struct igb_adapter * adapter,u8 queue)7459 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7460 {
7461 struct e1000_hw *hw = &adapter->hw;
7462 /* do not count rar entries reserved for VFs MAC addresses */
7463 int rar_entries = hw->mac.rar_entry_count -
7464 adapter->vfs_allocated_count;
7465 int i, count = 0;
7466
7467 for (i = 0; i < rar_entries; i++) {
7468 /* do not count default entries */
7469 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7470 continue;
7471
7472 /* do not count "in use" entries for different queues */
7473 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7474 (adapter->mac_table[i].queue != queue))
7475 continue;
7476
7477 count++;
7478 }
7479
7480 return count;
7481 }
7482
7483 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7484 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7485 {
7486 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7487
7488 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7489 mac_table->queue = adapter->vfs_allocated_count;
7490 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7491
7492 igb_rar_set_index(adapter, 0);
7493 }
7494
7495 /* If the filter to be added and an already existing filter express
7496 * the same address and address type, it should be possible to only
7497 * override the other configurations, for example the queue to steer
7498 * traffic.
7499 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7500 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7501 const u8 *addr, const u8 flags)
7502 {
7503 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7504 return true;
7505
7506 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7507 (flags & IGB_MAC_STATE_SRC_ADDR))
7508 return false;
7509
7510 if (!ether_addr_equal(addr, entry->addr))
7511 return false;
7512
7513 return true;
7514 }
7515
7516 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7517 * 'flags' is used to indicate what kind of match is made, match is by
7518 * default for the destination address, if matching by source address
7519 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7520 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7521 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7522 const u8 *addr, const u8 queue,
7523 const u8 flags)
7524 {
7525 struct e1000_hw *hw = &adapter->hw;
7526 int rar_entries = hw->mac.rar_entry_count -
7527 adapter->vfs_allocated_count;
7528 int i;
7529
7530 if (is_zero_ether_addr(addr))
7531 return -EINVAL;
7532
7533 /* Search for the first empty entry in the MAC table.
7534 * Do not touch entries at the end of the table reserved for the VF MAC
7535 * addresses.
7536 */
7537 for (i = 0; i < rar_entries; i++) {
7538 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7539 addr, flags))
7540 continue;
7541
7542 ether_addr_copy(adapter->mac_table[i].addr, addr);
7543 adapter->mac_table[i].queue = queue;
7544 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7545
7546 igb_rar_set_index(adapter, i);
7547 return i;
7548 }
7549
7550 return -ENOSPC;
7551 }
7552
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7553 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7554 const u8 queue)
7555 {
7556 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7557 }
7558
7559 /* Remove a MAC filter for 'addr' directing matching traffic to
7560 * 'queue', 'flags' is used to indicate what kind of match need to be
7561 * removed, match is by default for the destination address, if
7562 * matching by source address is to be removed the flag
7563 * IGB_MAC_STATE_SRC_ADDR can be used.
7564 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7565 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7566 const u8 *addr, const u8 queue,
7567 const u8 flags)
7568 {
7569 struct e1000_hw *hw = &adapter->hw;
7570 int rar_entries = hw->mac.rar_entry_count -
7571 adapter->vfs_allocated_count;
7572 int i;
7573
7574 if (is_zero_ether_addr(addr))
7575 return -EINVAL;
7576
7577 /* Search for matching entry in the MAC table based on given address
7578 * and queue. Do not touch entries at the end of the table reserved
7579 * for the VF MAC addresses.
7580 */
7581 for (i = 0; i < rar_entries; i++) {
7582 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7583 continue;
7584 if ((adapter->mac_table[i].state & flags) != flags)
7585 continue;
7586 if (adapter->mac_table[i].queue != queue)
7587 continue;
7588 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7589 continue;
7590
7591 /* When a filter for the default address is "deleted",
7592 * we return it to its initial configuration
7593 */
7594 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7595 adapter->mac_table[i].state =
7596 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7597 adapter->mac_table[i].queue =
7598 adapter->vfs_allocated_count;
7599 } else {
7600 adapter->mac_table[i].state = 0;
7601 adapter->mac_table[i].queue = 0;
7602 eth_zero_addr(adapter->mac_table[i].addr);
7603 }
7604
7605 igb_rar_set_index(adapter, i);
7606 return 0;
7607 }
7608
7609 return -ENOENT;
7610 }
7611
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7612 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7613 const u8 queue)
7614 {
7615 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7616 }
7617
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7618 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7619 const u8 *addr, u8 queue, u8 flags)
7620 {
7621 struct e1000_hw *hw = &adapter->hw;
7622
7623 /* In theory, this should be supported on 82575 as well, but
7624 * that part wasn't easily accessible during development.
7625 */
7626 if (hw->mac.type != e1000_i210)
7627 return -EOPNOTSUPP;
7628
7629 return igb_add_mac_filter_flags(adapter, addr, queue,
7630 IGB_MAC_STATE_QUEUE_STEERING | flags);
7631 }
7632
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7633 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7634 const u8 *addr, u8 queue, u8 flags)
7635 {
7636 return igb_del_mac_filter_flags(adapter, addr, queue,
7637 IGB_MAC_STATE_QUEUE_STEERING | flags);
7638 }
7639
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7640 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7641 {
7642 struct igb_adapter *adapter = netdev_priv(netdev);
7643 int ret;
7644
7645 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7646
7647 return min_t(int, ret, 0);
7648 }
7649
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7650 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7651 {
7652 struct igb_adapter *adapter = netdev_priv(netdev);
7653
7654 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7655
7656 return 0;
7657 }
7658
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7659 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7660 const u32 info, const u8 *addr)
7661 {
7662 struct pci_dev *pdev = adapter->pdev;
7663 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7664 struct list_head *pos;
7665 struct vf_mac_filter *entry = NULL;
7666 int ret = 0;
7667
7668 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7669 !vf_data->trusted) {
7670 dev_warn(&pdev->dev,
7671 "VF %d requested MAC filter but is administratively denied\n",
7672 vf);
7673 return -EINVAL;
7674 }
7675 if (!is_valid_ether_addr(addr)) {
7676 dev_warn(&pdev->dev,
7677 "VF %d attempted to set invalid MAC filter\n",
7678 vf);
7679 return -EINVAL;
7680 }
7681
7682 switch (info) {
7683 case E1000_VF_MAC_FILTER_CLR:
7684 /* remove all unicast MAC filters related to the current VF */
7685 list_for_each(pos, &adapter->vf_macs.l) {
7686 entry = list_entry(pos, struct vf_mac_filter, l);
7687 if (entry->vf == vf) {
7688 entry->vf = -1;
7689 entry->free = true;
7690 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7691 }
7692 }
7693 break;
7694 case E1000_VF_MAC_FILTER_ADD:
7695 /* try to find empty slot in the list */
7696 list_for_each(pos, &adapter->vf_macs.l) {
7697 entry = list_entry(pos, struct vf_mac_filter, l);
7698 if (entry->free)
7699 break;
7700 }
7701
7702 if (entry && entry->free) {
7703 entry->free = false;
7704 entry->vf = vf;
7705 ether_addr_copy(entry->vf_mac, addr);
7706
7707 ret = igb_add_mac_filter(adapter, addr, vf);
7708 ret = min_t(int, ret, 0);
7709 } else {
7710 ret = -ENOSPC;
7711 }
7712
7713 if (ret == -ENOSPC)
7714 dev_warn(&pdev->dev,
7715 "VF %d has requested MAC filter but there is no space for it\n",
7716 vf);
7717 break;
7718 default:
7719 ret = -EINVAL;
7720 break;
7721 }
7722
7723 return ret;
7724 }
7725
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7726 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7727 {
7728 struct pci_dev *pdev = adapter->pdev;
7729 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7730 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7731
7732 /* The VF MAC Address is stored in a packed array of bytes
7733 * starting at the second 32 bit word of the msg array
7734 */
7735 unsigned char *addr = (unsigned char *)&msg[1];
7736 int ret = 0;
7737
7738 if (!info) {
7739 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7740 !vf_data->trusted) {
7741 dev_warn(&pdev->dev,
7742 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7743 vf);
7744 return -EINVAL;
7745 }
7746
7747 if (!is_valid_ether_addr(addr)) {
7748 dev_warn(&pdev->dev,
7749 "VF %d attempted to set invalid MAC\n",
7750 vf);
7751 return -EINVAL;
7752 }
7753
7754 ret = igb_set_vf_mac(adapter, vf, addr);
7755 } else {
7756 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7757 }
7758
7759 return ret;
7760 }
7761
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7762 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7763 {
7764 struct e1000_hw *hw = &adapter->hw;
7765 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7766 u32 msg = E1000_VT_MSGTYPE_NACK;
7767
7768 /* if device isn't clear to send it shouldn't be reading either */
7769 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7770 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7771 igb_write_mbx(hw, &msg, 1, vf);
7772 vf_data->last_nack = jiffies;
7773 }
7774 }
7775
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7776 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7777 {
7778 struct pci_dev *pdev = adapter->pdev;
7779 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7780 struct e1000_hw *hw = &adapter->hw;
7781 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7782 s32 retval;
7783
7784 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7785
7786 if (retval) {
7787 /* if receive failed revoke VF CTS stats and restart init */
7788 dev_err(&pdev->dev, "Error receiving message from VF\n");
7789 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7790 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7791 goto unlock;
7792 goto out;
7793 }
7794
7795 /* this is a message we already processed, do nothing */
7796 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7797 goto unlock;
7798
7799 /* until the vf completes a reset it should not be
7800 * allowed to start any configuration.
7801 */
7802 if (msgbuf[0] == E1000_VF_RESET) {
7803 /* unlocks mailbox */
7804 igb_vf_reset_msg(adapter, vf);
7805 return;
7806 }
7807
7808 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7809 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7810 goto unlock;
7811 retval = -1;
7812 goto out;
7813 }
7814
7815 switch ((msgbuf[0] & 0xFFFF)) {
7816 case E1000_VF_SET_MAC_ADDR:
7817 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7818 break;
7819 case E1000_VF_SET_PROMISC:
7820 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7821 break;
7822 case E1000_VF_SET_MULTICAST:
7823 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7824 break;
7825 case E1000_VF_SET_LPE:
7826 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7827 break;
7828 case E1000_VF_SET_VLAN:
7829 retval = -1;
7830 if (vf_data->pf_vlan)
7831 dev_warn(&pdev->dev,
7832 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7833 vf);
7834 else
7835 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7836 break;
7837 default:
7838 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7839 retval = -1;
7840 break;
7841 }
7842
7843 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7844 out:
7845 /* notify the VF of the results of what it sent us */
7846 if (retval)
7847 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7848 else
7849 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7850
7851 /* unlocks mailbox */
7852 igb_write_mbx(hw, msgbuf, 1, vf);
7853 return;
7854
7855 unlock:
7856 igb_unlock_mbx(hw, vf);
7857 }
7858
igb_msg_task(struct igb_adapter * adapter)7859 static void igb_msg_task(struct igb_adapter *adapter)
7860 {
7861 struct e1000_hw *hw = &adapter->hw;
7862 unsigned long flags;
7863 u32 vf;
7864
7865 spin_lock_irqsave(&adapter->vfs_lock, flags);
7866 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7867 /* process any reset requests */
7868 if (!igb_check_for_rst(hw, vf))
7869 igb_vf_reset_event(adapter, vf);
7870
7871 /* process any messages pending */
7872 if (!igb_check_for_msg(hw, vf))
7873 igb_rcv_msg_from_vf(adapter, vf);
7874
7875 /* process any acks */
7876 if (!igb_check_for_ack(hw, vf))
7877 igb_rcv_ack_from_vf(adapter, vf);
7878 }
7879 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
7880 }
7881
7882 /**
7883 * igb_set_uta - Set unicast filter table address
7884 * @adapter: board private structure
7885 * @set: boolean indicating if we are setting or clearing bits
7886 *
7887 * The unicast table address is a register array of 32-bit registers.
7888 * The table is meant to be used in a way similar to how the MTA is used
7889 * however due to certain limitations in the hardware it is necessary to
7890 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7891 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7892 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7893 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7894 {
7895 struct e1000_hw *hw = &adapter->hw;
7896 u32 uta = set ? ~0 : 0;
7897 int i;
7898
7899 /* we only need to do this if VMDq is enabled */
7900 if (!adapter->vfs_allocated_count)
7901 return;
7902
7903 for (i = hw->mac.uta_reg_count; i--;)
7904 array_wr32(E1000_UTA, i, uta);
7905 }
7906
7907 /**
7908 * igb_intr_msi - Interrupt Handler
7909 * @irq: interrupt number
7910 * @data: pointer to a network interface device structure
7911 **/
igb_intr_msi(int irq,void * data)7912 static irqreturn_t igb_intr_msi(int irq, void *data)
7913 {
7914 struct igb_adapter *adapter = data;
7915 struct igb_q_vector *q_vector = adapter->q_vector[0];
7916 struct e1000_hw *hw = &adapter->hw;
7917 /* read ICR disables interrupts using IAM */
7918 u32 icr = rd32(E1000_ICR);
7919
7920 igb_write_itr(q_vector);
7921
7922 if (icr & E1000_ICR_DRSTA)
7923 schedule_work(&adapter->reset_task);
7924
7925 if (icr & E1000_ICR_DOUTSYNC) {
7926 /* HW is reporting DMA is out of sync */
7927 adapter->stats.doosync++;
7928 }
7929
7930 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7931 hw->mac.get_link_status = 1;
7932 if (!test_bit(__IGB_DOWN, &adapter->state))
7933 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7934 }
7935
7936 if (icr & E1000_ICR_TS)
7937 igb_tsync_interrupt(adapter);
7938
7939 napi_schedule(&q_vector->napi);
7940
7941 return IRQ_HANDLED;
7942 }
7943
7944 /**
7945 * igb_intr - Legacy Interrupt Handler
7946 * @irq: interrupt number
7947 * @data: pointer to a network interface device structure
7948 **/
igb_intr(int irq,void * data)7949 static irqreturn_t igb_intr(int irq, void *data)
7950 {
7951 struct igb_adapter *adapter = data;
7952 struct igb_q_vector *q_vector = adapter->q_vector[0];
7953 struct e1000_hw *hw = &adapter->hw;
7954 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7955 * need for the IMC write
7956 */
7957 u32 icr = rd32(E1000_ICR);
7958
7959 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7960 * not set, then the adapter didn't send an interrupt
7961 */
7962 if (!(icr & E1000_ICR_INT_ASSERTED))
7963 return IRQ_NONE;
7964
7965 igb_write_itr(q_vector);
7966
7967 if (icr & E1000_ICR_DRSTA)
7968 schedule_work(&adapter->reset_task);
7969
7970 if (icr & E1000_ICR_DOUTSYNC) {
7971 /* HW is reporting DMA is out of sync */
7972 adapter->stats.doosync++;
7973 }
7974
7975 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7976 hw->mac.get_link_status = 1;
7977 /* guard against interrupt when we're going down */
7978 if (!test_bit(__IGB_DOWN, &adapter->state))
7979 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7980 }
7981
7982 if (icr & E1000_ICR_TS)
7983 igb_tsync_interrupt(adapter);
7984
7985 napi_schedule(&q_vector->napi);
7986
7987 return IRQ_HANDLED;
7988 }
7989
igb_ring_irq_enable(struct igb_q_vector * q_vector)7990 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7991 {
7992 struct igb_adapter *adapter = q_vector->adapter;
7993 struct e1000_hw *hw = &adapter->hw;
7994
7995 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7996 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7997 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7998 igb_set_itr(q_vector);
7999 else
8000 igb_update_ring_itr(q_vector);
8001 }
8002
8003 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8004 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8005 wr32(E1000_EIMS, q_vector->eims_value);
8006 else
8007 igb_irq_enable(adapter);
8008 }
8009 }
8010
8011 /**
8012 * igb_poll - NAPI Rx polling callback
8013 * @napi: napi polling structure
8014 * @budget: count of how many packets we should handle
8015 **/
igb_poll(struct napi_struct * napi,int budget)8016 static int igb_poll(struct napi_struct *napi, int budget)
8017 {
8018 struct igb_q_vector *q_vector = container_of(napi,
8019 struct igb_q_vector,
8020 napi);
8021 bool clean_complete = true;
8022 int work_done = 0;
8023
8024 #ifdef CONFIG_IGB_DCA
8025 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8026 igb_update_dca(q_vector);
8027 #endif
8028 if (q_vector->tx.ring)
8029 clean_complete = igb_clean_tx_irq(q_vector, budget);
8030
8031 if (q_vector->rx.ring) {
8032 int cleaned = igb_clean_rx_irq(q_vector, budget);
8033
8034 work_done += cleaned;
8035 if (cleaned >= budget)
8036 clean_complete = false;
8037 }
8038
8039 /* If all work not completed, return budget and keep polling */
8040 if (!clean_complete)
8041 return budget;
8042
8043 /* Exit the polling mode, but don't re-enable interrupts if stack might
8044 * poll us due to busy-polling
8045 */
8046 if (likely(napi_complete_done(napi, work_done)))
8047 igb_ring_irq_enable(q_vector);
8048
8049 return work_done;
8050 }
8051
8052 /**
8053 * igb_clean_tx_irq - Reclaim resources after transmit completes
8054 * @q_vector: pointer to q_vector containing needed info
8055 * @napi_budget: Used to determine if we are in netpoll
8056 *
8057 * returns true if ring is completely cleaned
8058 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8059 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8060 {
8061 struct igb_adapter *adapter = q_vector->adapter;
8062 struct igb_ring *tx_ring = q_vector->tx.ring;
8063 struct igb_tx_buffer *tx_buffer;
8064 union e1000_adv_tx_desc *tx_desc;
8065 unsigned int total_bytes = 0, total_packets = 0;
8066 unsigned int budget = q_vector->tx.work_limit;
8067 unsigned int i = tx_ring->next_to_clean;
8068
8069 if (test_bit(__IGB_DOWN, &adapter->state))
8070 return true;
8071
8072 tx_buffer = &tx_ring->tx_buffer_info[i];
8073 tx_desc = IGB_TX_DESC(tx_ring, i);
8074 i -= tx_ring->count;
8075
8076 do {
8077 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8078
8079 /* if next_to_watch is not set then there is no work pending */
8080 if (!eop_desc)
8081 break;
8082
8083 /* prevent any other reads prior to eop_desc */
8084 smp_rmb();
8085
8086 /* if DD is not set pending work has not been completed */
8087 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8088 break;
8089
8090 /* clear next_to_watch to prevent false hangs */
8091 tx_buffer->next_to_watch = NULL;
8092
8093 /* update the statistics for this packet */
8094 total_bytes += tx_buffer->bytecount;
8095 total_packets += tx_buffer->gso_segs;
8096
8097 /* free the skb */
8098 if (tx_buffer->type == IGB_TYPE_SKB)
8099 napi_consume_skb(tx_buffer->skb, napi_budget);
8100 else
8101 xdp_return_frame(tx_buffer->xdpf);
8102
8103 /* unmap skb header data */
8104 dma_unmap_single(tx_ring->dev,
8105 dma_unmap_addr(tx_buffer, dma),
8106 dma_unmap_len(tx_buffer, len),
8107 DMA_TO_DEVICE);
8108
8109 /* clear tx_buffer data */
8110 dma_unmap_len_set(tx_buffer, len, 0);
8111
8112 /* clear last DMA location and unmap remaining buffers */
8113 while (tx_desc != eop_desc) {
8114 tx_buffer++;
8115 tx_desc++;
8116 i++;
8117 if (unlikely(!i)) {
8118 i -= tx_ring->count;
8119 tx_buffer = tx_ring->tx_buffer_info;
8120 tx_desc = IGB_TX_DESC(tx_ring, 0);
8121 }
8122
8123 /* unmap any remaining paged data */
8124 if (dma_unmap_len(tx_buffer, len)) {
8125 dma_unmap_page(tx_ring->dev,
8126 dma_unmap_addr(tx_buffer, dma),
8127 dma_unmap_len(tx_buffer, len),
8128 DMA_TO_DEVICE);
8129 dma_unmap_len_set(tx_buffer, len, 0);
8130 }
8131 }
8132
8133 /* move us one more past the eop_desc for start of next pkt */
8134 tx_buffer++;
8135 tx_desc++;
8136 i++;
8137 if (unlikely(!i)) {
8138 i -= tx_ring->count;
8139 tx_buffer = tx_ring->tx_buffer_info;
8140 tx_desc = IGB_TX_DESC(tx_ring, 0);
8141 }
8142
8143 /* issue prefetch for next Tx descriptor */
8144 prefetch(tx_desc);
8145
8146 /* update budget accounting */
8147 budget--;
8148 } while (likely(budget));
8149
8150 netdev_tx_completed_queue(txring_txq(tx_ring),
8151 total_packets, total_bytes);
8152 i += tx_ring->count;
8153 tx_ring->next_to_clean = i;
8154 u64_stats_update_begin(&tx_ring->tx_syncp);
8155 tx_ring->tx_stats.bytes += total_bytes;
8156 tx_ring->tx_stats.packets += total_packets;
8157 u64_stats_update_end(&tx_ring->tx_syncp);
8158 q_vector->tx.total_bytes += total_bytes;
8159 q_vector->tx.total_packets += total_packets;
8160
8161 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8162 struct e1000_hw *hw = &adapter->hw;
8163
8164 /* Detect a transmit hang in hardware, this serializes the
8165 * check with the clearing of time_stamp and movement of i
8166 */
8167 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8168 if (tx_buffer->next_to_watch &&
8169 time_after(jiffies, tx_buffer->time_stamp +
8170 (adapter->tx_timeout_factor * HZ)) &&
8171 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8172
8173 /* detected Tx unit hang */
8174 dev_err(tx_ring->dev,
8175 "Detected Tx Unit Hang\n"
8176 " Tx Queue <%d>\n"
8177 " TDH <%x>\n"
8178 " TDT <%x>\n"
8179 " next_to_use <%x>\n"
8180 " next_to_clean <%x>\n"
8181 "buffer_info[next_to_clean]\n"
8182 " time_stamp <%lx>\n"
8183 " next_to_watch <%p>\n"
8184 " jiffies <%lx>\n"
8185 " desc.status <%x>\n",
8186 tx_ring->queue_index,
8187 rd32(E1000_TDH(tx_ring->reg_idx)),
8188 readl(tx_ring->tail),
8189 tx_ring->next_to_use,
8190 tx_ring->next_to_clean,
8191 tx_buffer->time_stamp,
8192 tx_buffer->next_to_watch,
8193 jiffies,
8194 tx_buffer->next_to_watch->wb.status);
8195 netif_stop_subqueue(tx_ring->netdev,
8196 tx_ring->queue_index);
8197
8198 /* we are about to reset, no point in enabling stuff */
8199 return true;
8200 }
8201 }
8202
8203 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8204 if (unlikely(total_packets &&
8205 netif_carrier_ok(tx_ring->netdev) &&
8206 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8207 /* Make sure that anybody stopping the queue after this
8208 * sees the new next_to_clean.
8209 */
8210 smp_mb();
8211 if (__netif_subqueue_stopped(tx_ring->netdev,
8212 tx_ring->queue_index) &&
8213 !(test_bit(__IGB_DOWN, &adapter->state))) {
8214 netif_wake_subqueue(tx_ring->netdev,
8215 tx_ring->queue_index);
8216
8217 u64_stats_update_begin(&tx_ring->tx_syncp);
8218 tx_ring->tx_stats.restart_queue++;
8219 u64_stats_update_end(&tx_ring->tx_syncp);
8220 }
8221 }
8222
8223 return !!budget;
8224 }
8225
8226 /**
8227 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8228 * @rx_ring: rx descriptor ring to store buffers on
8229 * @old_buff: donor buffer to have page reused
8230 *
8231 * Synchronizes page for reuse by the adapter
8232 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8233 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8234 struct igb_rx_buffer *old_buff)
8235 {
8236 struct igb_rx_buffer *new_buff;
8237 u16 nta = rx_ring->next_to_alloc;
8238
8239 new_buff = &rx_ring->rx_buffer_info[nta];
8240
8241 /* update, and store next to alloc */
8242 nta++;
8243 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8244
8245 /* Transfer page from old buffer to new buffer.
8246 * Move each member individually to avoid possible store
8247 * forwarding stalls.
8248 */
8249 new_buff->dma = old_buff->dma;
8250 new_buff->page = old_buff->page;
8251 new_buff->page_offset = old_buff->page_offset;
8252 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8253 }
8254
igb_page_is_reserved(struct page * page)8255 static inline bool igb_page_is_reserved(struct page *page)
8256 {
8257 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8258 }
8259
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8260 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8261 int rx_buf_pgcnt)
8262 {
8263 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8264 struct page *page = rx_buffer->page;
8265
8266 /* avoid re-using remote pages */
8267 if (unlikely(igb_page_is_reserved(page)))
8268 return false;
8269
8270 #if (PAGE_SIZE < 8192)
8271 /* if we are only owner of page we can reuse it */
8272 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8273 return false;
8274 #else
8275 #define IGB_LAST_OFFSET \
8276 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8277
8278 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8279 return false;
8280 #endif
8281
8282 /* If we have drained the page fragment pool we need to update
8283 * the pagecnt_bias and page count so that we fully restock the
8284 * number of references the driver holds.
8285 */
8286 if (unlikely(pagecnt_bias == 1)) {
8287 page_ref_add(page, USHRT_MAX - 1);
8288 rx_buffer->pagecnt_bias = USHRT_MAX;
8289 }
8290
8291 return true;
8292 }
8293
8294 /**
8295 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8296 * @rx_ring: rx descriptor ring to transact packets on
8297 * @rx_buffer: buffer containing page to add
8298 * @skb: sk_buff to place the data into
8299 * @size: size of buffer to be added
8300 *
8301 * This function will add the data contained in rx_buffer->page to the skb.
8302 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8303 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8304 struct igb_rx_buffer *rx_buffer,
8305 struct sk_buff *skb,
8306 unsigned int size)
8307 {
8308 #if (PAGE_SIZE < 8192)
8309 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8310 #else
8311 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8312 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8313 SKB_DATA_ALIGN(size);
8314 #endif
8315 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8316 rx_buffer->page_offset, size, truesize);
8317 #if (PAGE_SIZE < 8192)
8318 rx_buffer->page_offset ^= truesize;
8319 #else
8320 rx_buffer->page_offset += truesize;
8321 #endif
8322 }
8323
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8324 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8325 struct igb_rx_buffer *rx_buffer,
8326 struct xdp_buff *xdp,
8327 union e1000_adv_rx_desc *rx_desc)
8328 {
8329 #if (PAGE_SIZE < 8192)
8330 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8331 #else
8332 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8333 xdp->data_hard_start);
8334 #endif
8335 unsigned int size = xdp->data_end - xdp->data;
8336 unsigned int headlen;
8337 struct sk_buff *skb;
8338
8339 /* prefetch first cache line of first page */
8340 net_prefetch(xdp->data);
8341
8342 /* allocate a skb to store the frags */
8343 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8344 if (unlikely(!skb))
8345 return NULL;
8346
8347 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8348 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb)) {
8349 xdp->data += IGB_TS_HDR_LEN;
8350 size -= IGB_TS_HDR_LEN;
8351 }
8352 }
8353
8354 /* Determine available headroom for copy */
8355 headlen = size;
8356 if (headlen > IGB_RX_HDR_LEN)
8357 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8358
8359 /* align pull length to size of long to optimize memcpy performance */
8360 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8361
8362 /* update all of the pointers */
8363 size -= headlen;
8364 if (size) {
8365 skb_add_rx_frag(skb, 0, rx_buffer->page,
8366 (xdp->data + headlen) - page_address(rx_buffer->page),
8367 size, truesize);
8368 #if (PAGE_SIZE < 8192)
8369 rx_buffer->page_offset ^= truesize;
8370 #else
8371 rx_buffer->page_offset += truesize;
8372 #endif
8373 } else {
8374 rx_buffer->pagecnt_bias++;
8375 }
8376
8377 return skb;
8378 }
8379
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8380 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8381 struct igb_rx_buffer *rx_buffer,
8382 struct xdp_buff *xdp,
8383 union e1000_adv_rx_desc *rx_desc)
8384 {
8385 #if (PAGE_SIZE < 8192)
8386 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8387 #else
8388 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8389 SKB_DATA_ALIGN(xdp->data_end -
8390 xdp->data_hard_start);
8391 #endif
8392 unsigned int metasize = xdp->data - xdp->data_meta;
8393 struct sk_buff *skb;
8394
8395 /* prefetch first cache line of first page */
8396 net_prefetch(xdp->data_meta);
8397
8398 /* build an skb around the page buffer */
8399 skb = build_skb(xdp->data_hard_start, truesize);
8400 if (unlikely(!skb))
8401 return NULL;
8402
8403 /* update pointers within the skb to store the data */
8404 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8405 __skb_put(skb, xdp->data_end - xdp->data);
8406
8407 if (metasize)
8408 skb_metadata_set(skb, metasize);
8409
8410 /* pull timestamp out of packet data */
8411 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8412 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb))
8413 __skb_pull(skb, IGB_TS_HDR_LEN);
8414 }
8415
8416 /* update buffer offset */
8417 #if (PAGE_SIZE < 8192)
8418 rx_buffer->page_offset ^= truesize;
8419 #else
8420 rx_buffer->page_offset += truesize;
8421 #endif
8422
8423 return skb;
8424 }
8425
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8426 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8427 struct igb_ring *rx_ring,
8428 struct xdp_buff *xdp)
8429 {
8430 int err, result = IGB_XDP_PASS;
8431 struct bpf_prog *xdp_prog;
8432 u32 act;
8433
8434 rcu_read_lock();
8435 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8436
8437 if (!xdp_prog)
8438 goto xdp_out;
8439
8440 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8441
8442 act = bpf_prog_run_xdp(xdp_prog, xdp);
8443 switch (act) {
8444 case XDP_PASS:
8445 break;
8446 case XDP_TX:
8447 result = igb_xdp_xmit_back(adapter, xdp);
8448 if (result == IGB_XDP_CONSUMED)
8449 goto out_failure;
8450 break;
8451 case XDP_REDIRECT:
8452 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8453 if (err)
8454 goto out_failure;
8455 result = IGB_XDP_REDIR;
8456 break;
8457 default:
8458 bpf_warn_invalid_xdp_action(act);
8459 fallthrough;
8460 case XDP_ABORTED:
8461 out_failure:
8462 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8463 fallthrough;
8464 case XDP_DROP:
8465 result = IGB_XDP_CONSUMED;
8466 break;
8467 }
8468 xdp_out:
8469 rcu_read_unlock();
8470 return ERR_PTR(-result);
8471 }
8472
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8473 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8474 unsigned int size)
8475 {
8476 unsigned int truesize;
8477
8478 #if (PAGE_SIZE < 8192)
8479 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8480 #else
8481 truesize = ring_uses_build_skb(rx_ring) ?
8482 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8483 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8484 SKB_DATA_ALIGN(size);
8485 #endif
8486 return truesize;
8487 }
8488
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8489 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8490 struct igb_rx_buffer *rx_buffer,
8491 unsigned int size)
8492 {
8493 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8494 #if (PAGE_SIZE < 8192)
8495 rx_buffer->page_offset ^= truesize;
8496 #else
8497 rx_buffer->page_offset += truesize;
8498 #endif
8499 }
8500
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8501 static inline void igb_rx_checksum(struct igb_ring *ring,
8502 union e1000_adv_rx_desc *rx_desc,
8503 struct sk_buff *skb)
8504 {
8505 skb_checksum_none_assert(skb);
8506
8507 /* Ignore Checksum bit is set */
8508 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8509 return;
8510
8511 /* Rx checksum disabled via ethtool */
8512 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8513 return;
8514
8515 /* TCP/UDP checksum error bit is set */
8516 if (igb_test_staterr(rx_desc,
8517 E1000_RXDEXT_STATERR_TCPE |
8518 E1000_RXDEXT_STATERR_IPE)) {
8519 /* work around errata with sctp packets where the TCPE aka
8520 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8521 * packets, (aka let the stack check the crc32c)
8522 */
8523 if (!((skb->len == 60) &&
8524 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8525 u64_stats_update_begin(&ring->rx_syncp);
8526 ring->rx_stats.csum_err++;
8527 u64_stats_update_end(&ring->rx_syncp);
8528 }
8529 /* let the stack verify checksum errors */
8530 return;
8531 }
8532 /* It must be a TCP or UDP packet with a valid checksum */
8533 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8534 E1000_RXD_STAT_UDPCS))
8535 skb->ip_summed = CHECKSUM_UNNECESSARY;
8536
8537 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8538 le32_to_cpu(rx_desc->wb.upper.status_error));
8539 }
8540
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8541 static inline void igb_rx_hash(struct igb_ring *ring,
8542 union e1000_adv_rx_desc *rx_desc,
8543 struct sk_buff *skb)
8544 {
8545 if (ring->netdev->features & NETIF_F_RXHASH)
8546 skb_set_hash(skb,
8547 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8548 PKT_HASH_TYPE_L3);
8549 }
8550
8551 /**
8552 * igb_is_non_eop - process handling of non-EOP buffers
8553 * @rx_ring: Rx ring being processed
8554 * @rx_desc: Rx descriptor for current buffer
8555 *
8556 * This function updates next to clean. If the buffer is an EOP buffer
8557 * this function exits returning false, otherwise it will place the
8558 * sk_buff in the next buffer to be chained and return true indicating
8559 * that this is in fact a non-EOP buffer.
8560 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8561 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8562 union e1000_adv_rx_desc *rx_desc)
8563 {
8564 u32 ntc = rx_ring->next_to_clean + 1;
8565
8566 /* fetch, update, and store next to clean */
8567 ntc = (ntc < rx_ring->count) ? ntc : 0;
8568 rx_ring->next_to_clean = ntc;
8569
8570 prefetch(IGB_RX_DESC(rx_ring, ntc));
8571
8572 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8573 return false;
8574
8575 return true;
8576 }
8577
8578 /**
8579 * igb_cleanup_headers - Correct corrupted or empty headers
8580 * @rx_ring: rx descriptor ring packet is being transacted on
8581 * @rx_desc: pointer to the EOP Rx descriptor
8582 * @skb: pointer to current skb being fixed
8583 *
8584 * Address the case where we are pulling data in on pages only
8585 * and as such no data is present in the skb header.
8586 *
8587 * In addition if skb is not at least 60 bytes we need to pad it so that
8588 * it is large enough to qualify as a valid Ethernet frame.
8589 *
8590 * Returns true if an error was encountered and skb was freed.
8591 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8592 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8593 union e1000_adv_rx_desc *rx_desc,
8594 struct sk_buff *skb)
8595 {
8596 /* XDP packets use error pointer so abort at this point */
8597 if (IS_ERR(skb))
8598 return true;
8599
8600 if (unlikely((igb_test_staterr(rx_desc,
8601 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8602 struct net_device *netdev = rx_ring->netdev;
8603 if (!(netdev->features & NETIF_F_RXALL)) {
8604 dev_kfree_skb_any(skb);
8605 return true;
8606 }
8607 }
8608
8609 /* if eth_skb_pad returns an error the skb was freed */
8610 if (eth_skb_pad(skb))
8611 return true;
8612
8613 return false;
8614 }
8615
8616 /**
8617 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8618 * @rx_ring: rx descriptor ring packet is being transacted on
8619 * @rx_desc: pointer to the EOP Rx descriptor
8620 * @skb: pointer to current skb being populated
8621 *
8622 * This function checks the ring, descriptor, and packet information in
8623 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8624 * other fields within the skb.
8625 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8626 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8627 union e1000_adv_rx_desc *rx_desc,
8628 struct sk_buff *skb)
8629 {
8630 struct net_device *dev = rx_ring->netdev;
8631
8632 igb_rx_hash(rx_ring, rx_desc, skb);
8633
8634 igb_rx_checksum(rx_ring, rx_desc, skb);
8635
8636 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8637 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8638 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8639
8640 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8641 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8642 u16 vid;
8643
8644 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8645 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8646 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8647 else
8648 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8649
8650 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8651 }
8652
8653 skb_record_rx_queue(skb, rx_ring->queue_index);
8654
8655 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8656 }
8657
igb_rx_offset(struct igb_ring * rx_ring)8658 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8659 {
8660 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8661 }
8662
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8663 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8664 const unsigned int size, int *rx_buf_pgcnt)
8665 {
8666 struct igb_rx_buffer *rx_buffer;
8667
8668 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8669 *rx_buf_pgcnt =
8670 #if (PAGE_SIZE < 8192)
8671 page_count(rx_buffer->page);
8672 #else
8673 0;
8674 #endif
8675 prefetchw(rx_buffer->page);
8676
8677 /* we are reusing so sync this buffer for CPU use */
8678 dma_sync_single_range_for_cpu(rx_ring->dev,
8679 rx_buffer->dma,
8680 rx_buffer->page_offset,
8681 size,
8682 DMA_FROM_DEVICE);
8683
8684 rx_buffer->pagecnt_bias--;
8685
8686 return rx_buffer;
8687 }
8688
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8689 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8690 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8691 {
8692 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8693 /* hand second half of page back to the ring */
8694 igb_reuse_rx_page(rx_ring, rx_buffer);
8695 } else {
8696 /* We are not reusing the buffer so unmap it and free
8697 * any references we are holding to it
8698 */
8699 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8700 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8701 IGB_RX_DMA_ATTR);
8702 __page_frag_cache_drain(rx_buffer->page,
8703 rx_buffer->pagecnt_bias);
8704 }
8705
8706 /* clear contents of rx_buffer */
8707 rx_buffer->page = NULL;
8708 }
8709
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8710 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8711 {
8712 struct igb_adapter *adapter = q_vector->adapter;
8713 struct igb_ring *rx_ring = q_vector->rx.ring;
8714 struct sk_buff *skb = rx_ring->skb;
8715 unsigned int total_bytes = 0, total_packets = 0;
8716 u16 cleaned_count = igb_desc_unused(rx_ring);
8717 unsigned int xdp_xmit = 0;
8718 struct xdp_buff xdp;
8719 int rx_buf_pgcnt;
8720
8721 xdp.rxq = &rx_ring->xdp_rxq;
8722
8723 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8724 #if (PAGE_SIZE < 8192)
8725 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8726 #endif
8727
8728 while (likely(total_packets < budget)) {
8729 union e1000_adv_rx_desc *rx_desc;
8730 struct igb_rx_buffer *rx_buffer;
8731 unsigned int size;
8732
8733 /* return some buffers to hardware, one at a time is too slow */
8734 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8735 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8736 cleaned_count = 0;
8737 }
8738
8739 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8740 size = le16_to_cpu(rx_desc->wb.upper.length);
8741 if (!size)
8742 break;
8743
8744 /* This memory barrier is needed to keep us from reading
8745 * any other fields out of the rx_desc until we know the
8746 * descriptor has been written back
8747 */
8748 dma_rmb();
8749
8750 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8751
8752 /* retrieve a buffer from the ring */
8753 if (!skb) {
8754 xdp.data = page_address(rx_buffer->page) +
8755 rx_buffer->page_offset;
8756 xdp.data_meta = xdp.data;
8757 xdp.data_hard_start = xdp.data -
8758 igb_rx_offset(rx_ring);
8759 xdp.data_end = xdp.data + size;
8760 #if (PAGE_SIZE > 4096)
8761 /* At larger PAGE_SIZE, frame_sz depend on len size */
8762 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8763 #endif
8764 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8765 }
8766
8767 if (IS_ERR(skb)) {
8768 unsigned int xdp_res = -PTR_ERR(skb);
8769
8770 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8771 xdp_xmit |= xdp_res;
8772 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8773 } else {
8774 rx_buffer->pagecnt_bias++;
8775 }
8776 total_packets++;
8777 total_bytes += size;
8778 } else if (skb)
8779 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8780 else if (ring_uses_build_skb(rx_ring))
8781 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8782 else
8783 skb = igb_construct_skb(rx_ring, rx_buffer,
8784 &xdp, rx_desc);
8785
8786 /* exit if we failed to retrieve a buffer */
8787 if (!skb) {
8788 rx_ring->rx_stats.alloc_failed++;
8789 rx_buffer->pagecnt_bias++;
8790 break;
8791 }
8792
8793 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8794 cleaned_count++;
8795
8796 /* fetch next buffer in frame if non-eop */
8797 if (igb_is_non_eop(rx_ring, rx_desc))
8798 continue;
8799
8800 /* verify the packet layout is correct */
8801 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8802 skb = NULL;
8803 continue;
8804 }
8805
8806 /* probably a little skewed due to removing CRC */
8807 total_bytes += skb->len;
8808
8809 /* populate checksum, timestamp, VLAN, and protocol */
8810 igb_process_skb_fields(rx_ring, rx_desc, skb);
8811
8812 napi_gro_receive(&q_vector->napi, skb);
8813
8814 /* reset skb pointer */
8815 skb = NULL;
8816
8817 /* update budget accounting */
8818 total_packets++;
8819 }
8820
8821 /* place incomplete frames back on ring for completion */
8822 rx_ring->skb = skb;
8823
8824 if (xdp_xmit & IGB_XDP_REDIR)
8825 xdp_do_flush();
8826
8827 if (xdp_xmit & IGB_XDP_TX) {
8828 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8829
8830 igb_xdp_ring_update_tail(tx_ring);
8831 }
8832
8833 u64_stats_update_begin(&rx_ring->rx_syncp);
8834 rx_ring->rx_stats.packets += total_packets;
8835 rx_ring->rx_stats.bytes += total_bytes;
8836 u64_stats_update_end(&rx_ring->rx_syncp);
8837 q_vector->rx.total_packets += total_packets;
8838 q_vector->rx.total_bytes += total_bytes;
8839
8840 if (cleaned_count)
8841 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8842
8843 return total_packets;
8844 }
8845
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8846 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8847 struct igb_rx_buffer *bi)
8848 {
8849 struct page *page = bi->page;
8850 dma_addr_t dma;
8851
8852 /* since we are recycling buffers we should seldom need to alloc */
8853 if (likely(page))
8854 return true;
8855
8856 /* alloc new page for storage */
8857 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8858 if (unlikely(!page)) {
8859 rx_ring->rx_stats.alloc_failed++;
8860 return false;
8861 }
8862
8863 /* map page for use */
8864 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8865 igb_rx_pg_size(rx_ring),
8866 DMA_FROM_DEVICE,
8867 IGB_RX_DMA_ATTR);
8868
8869 /* if mapping failed free memory back to system since
8870 * there isn't much point in holding memory we can't use
8871 */
8872 if (dma_mapping_error(rx_ring->dev, dma)) {
8873 __free_pages(page, igb_rx_pg_order(rx_ring));
8874
8875 rx_ring->rx_stats.alloc_failed++;
8876 return false;
8877 }
8878
8879 bi->dma = dma;
8880 bi->page = page;
8881 bi->page_offset = igb_rx_offset(rx_ring);
8882 page_ref_add(page, USHRT_MAX - 1);
8883 bi->pagecnt_bias = USHRT_MAX;
8884
8885 return true;
8886 }
8887
8888 /**
8889 * igb_alloc_rx_buffers - Replace used receive buffers
8890 * @rx_ring: rx descriptor ring to allocate new receive buffers
8891 * @cleaned_count: count of buffers to allocate
8892 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8893 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8894 {
8895 union e1000_adv_rx_desc *rx_desc;
8896 struct igb_rx_buffer *bi;
8897 u16 i = rx_ring->next_to_use;
8898 u16 bufsz;
8899
8900 /* nothing to do */
8901 if (!cleaned_count)
8902 return;
8903
8904 rx_desc = IGB_RX_DESC(rx_ring, i);
8905 bi = &rx_ring->rx_buffer_info[i];
8906 i -= rx_ring->count;
8907
8908 bufsz = igb_rx_bufsz(rx_ring);
8909
8910 do {
8911 if (!igb_alloc_mapped_page(rx_ring, bi))
8912 break;
8913
8914 /* sync the buffer for use by the device */
8915 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8916 bi->page_offset, bufsz,
8917 DMA_FROM_DEVICE);
8918
8919 /* Refresh the desc even if buffer_addrs didn't change
8920 * because each write-back erases this info.
8921 */
8922 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8923
8924 rx_desc++;
8925 bi++;
8926 i++;
8927 if (unlikely(!i)) {
8928 rx_desc = IGB_RX_DESC(rx_ring, 0);
8929 bi = rx_ring->rx_buffer_info;
8930 i -= rx_ring->count;
8931 }
8932
8933 /* clear the length for the next_to_use descriptor */
8934 rx_desc->wb.upper.length = 0;
8935
8936 cleaned_count--;
8937 } while (cleaned_count);
8938
8939 i += rx_ring->count;
8940
8941 if (rx_ring->next_to_use != i) {
8942 /* record the next descriptor to use */
8943 rx_ring->next_to_use = i;
8944
8945 /* update next to alloc since we have filled the ring */
8946 rx_ring->next_to_alloc = i;
8947
8948 /* Force memory writes to complete before letting h/w
8949 * know there are new descriptors to fetch. (Only
8950 * applicable for weak-ordered memory model archs,
8951 * such as IA-64).
8952 */
8953 dma_wmb();
8954 writel(i, rx_ring->tail);
8955 }
8956 }
8957
8958 /**
8959 * igb_mii_ioctl -
8960 * @netdev: pointer to netdev struct
8961 * @ifr: interface structure
8962 * @cmd: ioctl command to execute
8963 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8964 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8965 {
8966 struct igb_adapter *adapter = netdev_priv(netdev);
8967 struct mii_ioctl_data *data = if_mii(ifr);
8968
8969 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8970 return -EOPNOTSUPP;
8971
8972 switch (cmd) {
8973 case SIOCGMIIPHY:
8974 data->phy_id = adapter->hw.phy.addr;
8975 break;
8976 case SIOCGMIIREG:
8977 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8978 &data->val_out))
8979 return -EIO;
8980 break;
8981 case SIOCSMIIREG:
8982 default:
8983 return -EOPNOTSUPP;
8984 }
8985 return 0;
8986 }
8987
8988 /**
8989 * igb_ioctl -
8990 * @netdev: pointer to netdev struct
8991 * @ifr: interface structure
8992 * @cmd: ioctl command to execute
8993 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8994 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8995 {
8996 switch (cmd) {
8997 case SIOCGMIIPHY:
8998 case SIOCGMIIREG:
8999 case SIOCSMIIREG:
9000 return igb_mii_ioctl(netdev, ifr, cmd);
9001 case SIOCGHWTSTAMP:
9002 return igb_ptp_get_ts_config(netdev, ifr);
9003 case SIOCSHWTSTAMP:
9004 return igb_ptp_set_ts_config(netdev, ifr);
9005 default:
9006 return -EOPNOTSUPP;
9007 }
9008 }
9009
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9010 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9011 {
9012 struct igb_adapter *adapter = hw->back;
9013
9014 pci_read_config_word(adapter->pdev, reg, value);
9015 }
9016
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9017 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9018 {
9019 struct igb_adapter *adapter = hw->back;
9020
9021 pci_write_config_word(adapter->pdev, reg, *value);
9022 }
9023
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9024 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9025 {
9026 struct igb_adapter *adapter = hw->back;
9027
9028 if (pcie_capability_read_word(adapter->pdev, reg, value))
9029 return -E1000_ERR_CONFIG;
9030
9031 return 0;
9032 }
9033
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9034 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9035 {
9036 struct igb_adapter *adapter = hw->back;
9037
9038 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9039 return -E1000_ERR_CONFIG;
9040
9041 return 0;
9042 }
9043
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9044 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9045 {
9046 struct igb_adapter *adapter = netdev_priv(netdev);
9047 struct e1000_hw *hw = &adapter->hw;
9048 u32 ctrl, rctl;
9049 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9050
9051 if (enable) {
9052 /* enable VLAN tag insert/strip */
9053 ctrl = rd32(E1000_CTRL);
9054 ctrl |= E1000_CTRL_VME;
9055 wr32(E1000_CTRL, ctrl);
9056
9057 /* Disable CFI check */
9058 rctl = rd32(E1000_RCTL);
9059 rctl &= ~E1000_RCTL_CFIEN;
9060 wr32(E1000_RCTL, rctl);
9061 } else {
9062 /* disable VLAN tag insert/strip */
9063 ctrl = rd32(E1000_CTRL);
9064 ctrl &= ~E1000_CTRL_VME;
9065 wr32(E1000_CTRL, ctrl);
9066 }
9067
9068 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9069 }
9070
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9071 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9072 __be16 proto, u16 vid)
9073 {
9074 struct igb_adapter *adapter = netdev_priv(netdev);
9075 struct e1000_hw *hw = &adapter->hw;
9076 int pf_id = adapter->vfs_allocated_count;
9077
9078 /* add the filter since PF can receive vlans w/o entry in vlvf */
9079 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9080 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9081
9082 set_bit(vid, adapter->active_vlans);
9083
9084 return 0;
9085 }
9086
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9087 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9088 __be16 proto, u16 vid)
9089 {
9090 struct igb_adapter *adapter = netdev_priv(netdev);
9091 int pf_id = adapter->vfs_allocated_count;
9092 struct e1000_hw *hw = &adapter->hw;
9093
9094 /* remove VID from filter table */
9095 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9096 igb_vfta_set(hw, vid, pf_id, false, true);
9097
9098 clear_bit(vid, adapter->active_vlans);
9099
9100 return 0;
9101 }
9102
igb_restore_vlan(struct igb_adapter * adapter)9103 static void igb_restore_vlan(struct igb_adapter *adapter)
9104 {
9105 u16 vid = 1;
9106
9107 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9108 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9109
9110 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9111 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9112 }
9113
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9114 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9115 {
9116 struct pci_dev *pdev = adapter->pdev;
9117 struct e1000_mac_info *mac = &adapter->hw.mac;
9118
9119 mac->autoneg = 0;
9120
9121 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9122 * for the switch() below to work
9123 */
9124 if ((spd & 1) || (dplx & ~1))
9125 goto err_inval;
9126
9127 /* Fiber NIC's only allow 1000 gbps Full duplex
9128 * and 100Mbps Full duplex for 100baseFx sfp
9129 */
9130 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9131 switch (spd + dplx) {
9132 case SPEED_10 + DUPLEX_HALF:
9133 case SPEED_10 + DUPLEX_FULL:
9134 case SPEED_100 + DUPLEX_HALF:
9135 goto err_inval;
9136 default:
9137 break;
9138 }
9139 }
9140
9141 switch (spd + dplx) {
9142 case SPEED_10 + DUPLEX_HALF:
9143 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9144 break;
9145 case SPEED_10 + DUPLEX_FULL:
9146 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9147 break;
9148 case SPEED_100 + DUPLEX_HALF:
9149 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9150 break;
9151 case SPEED_100 + DUPLEX_FULL:
9152 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9153 break;
9154 case SPEED_1000 + DUPLEX_FULL:
9155 mac->autoneg = 1;
9156 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9157 break;
9158 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9159 default:
9160 goto err_inval;
9161 }
9162
9163 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9164 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9165
9166 return 0;
9167
9168 err_inval:
9169 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9170 return -EINVAL;
9171 }
9172
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9173 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9174 bool runtime)
9175 {
9176 struct net_device *netdev = pci_get_drvdata(pdev);
9177 struct igb_adapter *adapter = netdev_priv(netdev);
9178 struct e1000_hw *hw = &adapter->hw;
9179 u32 ctrl, rctl, status;
9180 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9181 bool wake;
9182
9183 rtnl_lock();
9184 netif_device_detach(netdev);
9185
9186 if (netif_running(netdev))
9187 __igb_close(netdev, true);
9188
9189 igb_ptp_suspend(adapter);
9190
9191 igb_clear_interrupt_scheme(adapter);
9192 rtnl_unlock();
9193
9194 status = rd32(E1000_STATUS);
9195 if (status & E1000_STATUS_LU)
9196 wufc &= ~E1000_WUFC_LNKC;
9197
9198 if (wufc) {
9199 igb_setup_rctl(adapter);
9200 igb_set_rx_mode(netdev);
9201
9202 /* turn on all-multi mode if wake on multicast is enabled */
9203 if (wufc & E1000_WUFC_MC) {
9204 rctl = rd32(E1000_RCTL);
9205 rctl |= E1000_RCTL_MPE;
9206 wr32(E1000_RCTL, rctl);
9207 }
9208
9209 ctrl = rd32(E1000_CTRL);
9210 ctrl |= E1000_CTRL_ADVD3WUC;
9211 wr32(E1000_CTRL, ctrl);
9212
9213 /* Allow time for pending master requests to run */
9214 igb_disable_pcie_master(hw);
9215
9216 wr32(E1000_WUC, E1000_WUC_PME_EN);
9217 wr32(E1000_WUFC, wufc);
9218 } else {
9219 wr32(E1000_WUC, 0);
9220 wr32(E1000_WUFC, 0);
9221 }
9222
9223 wake = wufc || adapter->en_mng_pt;
9224 if (!wake)
9225 igb_power_down_link(adapter);
9226 else
9227 igb_power_up_link(adapter);
9228
9229 if (enable_wake)
9230 *enable_wake = wake;
9231
9232 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9233 * would have already happened in close and is redundant.
9234 */
9235 igb_release_hw_control(adapter);
9236
9237 pci_disable_device(pdev);
9238
9239 return 0;
9240 }
9241
igb_deliver_wake_packet(struct net_device * netdev)9242 static void igb_deliver_wake_packet(struct net_device *netdev)
9243 {
9244 struct igb_adapter *adapter = netdev_priv(netdev);
9245 struct e1000_hw *hw = &adapter->hw;
9246 struct sk_buff *skb;
9247 u32 wupl;
9248
9249 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9250
9251 /* WUPM stores only the first 128 bytes of the wake packet.
9252 * Read the packet only if we have the whole thing.
9253 */
9254 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9255 return;
9256
9257 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9258 if (!skb)
9259 return;
9260
9261 skb_put(skb, wupl);
9262
9263 /* Ensure reads are 32-bit aligned */
9264 wupl = roundup(wupl, 4);
9265
9266 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9267
9268 skb->protocol = eth_type_trans(skb, netdev);
9269 netif_rx(skb);
9270 }
9271
igb_suspend(struct device * dev)9272 static int __maybe_unused igb_suspend(struct device *dev)
9273 {
9274 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9275 }
9276
__igb_resume(struct device * dev,bool rpm)9277 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9278 {
9279 struct pci_dev *pdev = to_pci_dev(dev);
9280 struct net_device *netdev = pci_get_drvdata(pdev);
9281 struct igb_adapter *adapter = netdev_priv(netdev);
9282 struct e1000_hw *hw = &adapter->hw;
9283 u32 err, val;
9284
9285 pci_set_power_state(pdev, PCI_D0);
9286 pci_restore_state(pdev);
9287 pci_save_state(pdev);
9288
9289 if (!pci_device_is_present(pdev))
9290 return -ENODEV;
9291 err = pci_enable_device_mem(pdev);
9292 if (err) {
9293 dev_err(&pdev->dev,
9294 "igb: Cannot enable PCI device from suspend\n");
9295 return err;
9296 }
9297 pci_set_master(pdev);
9298
9299 pci_enable_wake(pdev, PCI_D3hot, 0);
9300 pci_enable_wake(pdev, PCI_D3cold, 0);
9301
9302 if (igb_init_interrupt_scheme(adapter, true)) {
9303 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9304 return -ENOMEM;
9305 }
9306
9307 igb_reset(adapter);
9308
9309 /* let the f/w know that the h/w is now under the control of the
9310 * driver.
9311 */
9312 igb_get_hw_control(adapter);
9313
9314 val = rd32(E1000_WUS);
9315 if (val & WAKE_PKT_WUS)
9316 igb_deliver_wake_packet(netdev);
9317
9318 wr32(E1000_WUS, ~0);
9319
9320 if (!rpm)
9321 rtnl_lock();
9322 if (!err && netif_running(netdev))
9323 err = __igb_open(netdev, true);
9324
9325 if (!err)
9326 netif_device_attach(netdev);
9327 if (!rpm)
9328 rtnl_unlock();
9329
9330 return err;
9331 }
9332
igb_resume(struct device * dev)9333 static int __maybe_unused igb_resume(struct device *dev)
9334 {
9335 return __igb_resume(dev, false);
9336 }
9337
igb_runtime_idle(struct device * dev)9338 static int __maybe_unused igb_runtime_idle(struct device *dev)
9339 {
9340 struct net_device *netdev = dev_get_drvdata(dev);
9341 struct igb_adapter *adapter = netdev_priv(netdev);
9342
9343 if (!igb_has_link(adapter))
9344 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9345
9346 return -EBUSY;
9347 }
9348
igb_runtime_suspend(struct device * dev)9349 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9350 {
9351 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9352 }
9353
igb_runtime_resume(struct device * dev)9354 static int __maybe_unused igb_runtime_resume(struct device *dev)
9355 {
9356 return __igb_resume(dev, true);
9357 }
9358
igb_shutdown(struct pci_dev * pdev)9359 static void igb_shutdown(struct pci_dev *pdev)
9360 {
9361 bool wake;
9362
9363 __igb_shutdown(pdev, &wake, 0);
9364
9365 if (system_state == SYSTEM_POWER_OFF) {
9366 pci_wake_from_d3(pdev, wake);
9367 pci_set_power_state(pdev, PCI_D3hot);
9368 }
9369 }
9370
9371 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)9372 static int igb_sriov_reinit(struct pci_dev *dev)
9373 {
9374 struct net_device *netdev = pci_get_drvdata(dev);
9375 struct igb_adapter *adapter = netdev_priv(netdev);
9376 struct pci_dev *pdev = adapter->pdev;
9377
9378 rtnl_lock();
9379
9380 if (netif_running(netdev))
9381 igb_close(netdev);
9382 else
9383 igb_reset(adapter);
9384
9385 igb_clear_interrupt_scheme(adapter);
9386
9387 igb_init_queue_configuration(adapter);
9388
9389 if (igb_init_interrupt_scheme(adapter, true)) {
9390 rtnl_unlock();
9391 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9392 return -ENOMEM;
9393 }
9394
9395 if (netif_running(netdev))
9396 igb_open(netdev);
9397
9398 rtnl_unlock();
9399
9400 return 0;
9401 }
9402
igb_pci_disable_sriov(struct pci_dev * dev)9403 static int igb_pci_disable_sriov(struct pci_dev *dev)
9404 {
9405 int err = igb_disable_sriov(dev);
9406
9407 if (!err)
9408 err = igb_sriov_reinit(dev);
9409
9410 return err;
9411 }
9412
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9413 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9414 {
9415 int err = igb_enable_sriov(dev, num_vfs);
9416
9417 if (err)
9418 goto out;
9419
9420 err = igb_sriov_reinit(dev);
9421 if (!err)
9422 return num_vfs;
9423
9424 out:
9425 return err;
9426 }
9427
9428 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9429 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9430 {
9431 #ifdef CONFIG_PCI_IOV
9432 if (num_vfs == 0)
9433 return igb_pci_disable_sriov(dev);
9434 else
9435 return igb_pci_enable_sriov(dev, num_vfs);
9436 #endif
9437 return 0;
9438 }
9439
9440 /**
9441 * igb_io_error_detected - called when PCI error is detected
9442 * @pdev: Pointer to PCI device
9443 * @state: The current pci connection state
9444 *
9445 * This function is called after a PCI bus error affecting
9446 * this device has been detected.
9447 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9448 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9449 pci_channel_state_t state)
9450 {
9451 struct net_device *netdev = pci_get_drvdata(pdev);
9452 struct igb_adapter *adapter = netdev_priv(netdev);
9453
9454 netif_device_detach(netdev);
9455
9456 if (state == pci_channel_io_perm_failure)
9457 return PCI_ERS_RESULT_DISCONNECT;
9458
9459 if (netif_running(netdev))
9460 igb_down(adapter);
9461 pci_disable_device(pdev);
9462
9463 /* Request a slot slot reset. */
9464 return PCI_ERS_RESULT_NEED_RESET;
9465 }
9466
9467 /**
9468 * igb_io_slot_reset - called after the pci bus has been reset.
9469 * @pdev: Pointer to PCI device
9470 *
9471 * Restart the card from scratch, as if from a cold-boot. Implementation
9472 * resembles the first-half of the __igb_resume routine.
9473 **/
igb_io_slot_reset(struct pci_dev * pdev)9474 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9475 {
9476 struct net_device *netdev = pci_get_drvdata(pdev);
9477 struct igb_adapter *adapter = netdev_priv(netdev);
9478 struct e1000_hw *hw = &adapter->hw;
9479 pci_ers_result_t result;
9480
9481 if (pci_enable_device_mem(pdev)) {
9482 dev_err(&pdev->dev,
9483 "Cannot re-enable PCI device after reset.\n");
9484 result = PCI_ERS_RESULT_DISCONNECT;
9485 } else {
9486 pci_set_master(pdev);
9487 pci_restore_state(pdev);
9488 pci_save_state(pdev);
9489
9490 pci_enable_wake(pdev, PCI_D3hot, 0);
9491 pci_enable_wake(pdev, PCI_D3cold, 0);
9492
9493 /* In case of PCI error, adapter lose its HW address
9494 * so we should re-assign it here.
9495 */
9496 hw->hw_addr = adapter->io_addr;
9497
9498 igb_reset(adapter);
9499 wr32(E1000_WUS, ~0);
9500 result = PCI_ERS_RESULT_RECOVERED;
9501 }
9502
9503 return result;
9504 }
9505
9506 /**
9507 * igb_io_resume - called when traffic can start flowing again.
9508 * @pdev: Pointer to PCI device
9509 *
9510 * This callback is called when the error recovery driver tells us that
9511 * its OK to resume normal operation. Implementation resembles the
9512 * second-half of the __igb_resume routine.
9513 */
igb_io_resume(struct pci_dev * pdev)9514 static void igb_io_resume(struct pci_dev *pdev)
9515 {
9516 struct net_device *netdev = pci_get_drvdata(pdev);
9517 struct igb_adapter *adapter = netdev_priv(netdev);
9518
9519 if (netif_running(netdev)) {
9520 if (igb_up(adapter)) {
9521 dev_err(&pdev->dev, "igb_up failed after reset\n");
9522 return;
9523 }
9524 }
9525
9526 netif_device_attach(netdev);
9527
9528 /* let the f/w know that the h/w is now under the control of the
9529 * driver.
9530 */
9531 igb_get_hw_control(adapter);
9532 }
9533
9534 /**
9535 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9536 * @adapter: Pointer to adapter structure
9537 * @index: Index of the RAR entry which need to be synced with MAC table
9538 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9539 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9540 {
9541 struct e1000_hw *hw = &adapter->hw;
9542 u32 rar_low, rar_high;
9543 u8 *addr = adapter->mac_table[index].addr;
9544
9545 /* HW expects these to be in network order when they are plugged
9546 * into the registers which are little endian. In order to guarantee
9547 * that ordering we need to do an leXX_to_cpup here in order to be
9548 * ready for the byteswap that occurs with writel
9549 */
9550 rar_low = le32_to_cpup((__le32 *)(addr));
9551 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9552
9553 /* Indicate to hardware the Address is Valid. */
9554 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9555 if (is_valid_ether_addr(addr))
9556 rar_high |= E1000_RAH_AV;
9557
9558 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9559 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9560
9561 switch (hw->mac.type) {
9562 case e1000_82575:
9563 case e1000_i210:
9564 if (adapter->mac_table[index].state &
9565 IGB_MAC_STATE_QUEUE_STEERING)
9566 rar_high |= E1000_RAH_QSEL_ENABLE;
9567
9568 rar_high |= E1000_RAH_POOL_1 *
9569 adapter->mac_table[index].queue;
9570 break;
9571 default:
9572 rar_high |= E1000_RAH_POOL_1 <<
9573 adapter->mac_table[index].queue;
9574 break;
9575 }
9576 }
9577
9578 wr32(E1000_RAL(index), rar_low);
9579 wrfl();
9580 wr32(E1000_RAH(index), rar_high);
9581 wrfl();
9582 }
9583
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9584 static int igb_set_vf_mac(struct igb_adapter *adapter,
9585 int vf, unsigned char *mac_addr)
9586 {
9587 struct e1000_hw *hw = &adapter->hw;
9588 /* VF MAC addresses start at end of receive addresses and moves
9589 * towards the first, as a result a collision should not be possible
9590 */
9591 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9592 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9593
9594 ether_addr_copy(vf_mac_addr, mac_addr);
9595 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9596 adapter->mac_table[rar_entry].queue = vf;
9597 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9598 igb_rar_set_index(adapter, rar_entry);
9599
9600 return 0;
9601 }
9602
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9603 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9604 {
9605 struct igb_adapter *adapter = netdev_priv(netdev);
9606
9607 if (vf >= adapter->vfs_allocated_count)
9608 return -EINVAL;
9609
9610 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9611 * flag and allows to overwrite the MAC via VF netdev. This
9612 * is necessary to allow libvirt a way to restore the original
9613 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9614 * down a VM.
9615 */
9616 if (is_zero_ether_addr(mac)) {
9617 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9618 dev_info(&adapter->pdev->dev,
9619 "remove administratively set MAC on VF %d\n",
9620 vf);
9621 } else if (is_valid_ether_addr(mac)) {
9622 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9623 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9624 mac, vf);
9625 dev_info(&adapter->pdev->dev,
9626 "Reload the VF driver to make this change effective.");
9627 /* Generate additional warning if PF is down */
9628 if (test_bit(__IGB_DOWN, &adapter->state)) {
9629 dev_warn(&adapter->pdev->dev,
9630 "The VF MAC address has been set, but the PF device is not up.\n");
9631 dev_warn(&adapter->pdev->dev,
9632 "Bring the PF device up before attempting to use the VF device.\n");
9633 }
9634 } else {
9635 return -EINVAL;
9636 }
9637 return igb_set_vf_mac(adapter, vf, mac);
9638 }
9639
igb_link_mbps(int internal_link_speed)9640 static int igb_link_mbps(int internal_link_speed)
9641 {
9642 switch (internal_link_speed) {
9643 case SPEED_100:
9644 return 100;
9645 case SPEED_1000:
9646 return 1000;
9647 default:
9648 return 0;
9649 }
9650 }
9651
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9652 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9653 int link_speed)
9654 {
9655 int rf_dec, rf_int;
9656 u32 bcnrc_val;
9657
9658 if (tx_rate != 0) {
9659 /* Calculate the rate factor values to set */
9660 rf_int = link_speed / tx_rate;
9661 rf_dec = (link_speed - (rf_int * tx_rate));
9662 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9663 tx_rate;
9664
9665 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9666 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9667 E1000_RTTBCNRC_RF_INT_MASK);
9668 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9669 } else {
9670 bcnrc_val = 0;
9671 }
9672
9673 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9674 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9675 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9676 */
9677 wr32(E1000_RTTBCNRM, 0x14);
9678 wr32(E1000_RTTBCNRC, bcnrc_val);
9679 }
9680
igb_check_vf_rate_limit(struct igb_adapter * adapter)9681 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9682 {
9683 int actual_link_speed, i;
9684 bool reset_rate = false;
9685
9686 /* VF TX rate limit was not set or not supported */
9687 if ((adapter->vf_rate_link_speed == 0) ||
9688 (adapter->hw.mac.type != e1000_82576))
9689 return;
9690
9691 actual_link_speed = igb_link_mbps(adapter->link_speed);
9692 if (actual_link_speed != adapter->vf_rate_link_speed) {
9693 reset_rate = true;
9694 adapter->vf_rate_link_speed = 0;
9695 dev_info(&adapter->pdev->dev,
9696 "Link speed has been changed. VF Transmit rate is disabled\n");
9697 }
9698
9699 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9700 if (reset_rate)
9701 adapter->vf_data[i].tx_rate = 0;
9702
9703 igb_set_vf_rate_limit(&adapter->hw, i,
9704 adapter->vf_data[i].tx_rate,
9705 actual_link_speed);
9706 }
9707 }
9708
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9709 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9710 int min_tx_rate, int max_tx_rate)
9711 {
9712 struct igb_adapter *adapter = netdev_priv(netdev);
9713 struct e1000_hw *hw = &adapter->hw;
9714 int actual_link_speed;
9715
9716 if (hw->mac.type != e1000_82576)
9717 return -EOPNOTSUPP;
9718
9719 if (min_tx_rate)
9720 return -EINVAL;
9721
9722 actual_link_speed = igb_link_mbps(adapter->link_speed);
9723 if ((vf >= adapter->vfs_allocated_count) ||
9724 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9725 (max_tx_rate < 0) ||
9726 (max_tx_rate > actual_link_speed))
9727 return -EINVAL;
9728
9729 adapter->vf_rate_link_speed = actual_link_speed;
9730 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9731 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9732
9733 return 0;
9734 }
9735
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9736 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9737 bool setting)
9738 {
9739 struct igb_adapter *adapter = netdev_priv(netdev);
9740 struct e1000_hw *hw = &adapter->hw;
9741 u32 reg_val, reg_offset;
9742
9743 if (!adapter->vfs_allocated_count)
9744 return -EOPNOTSUPP;
9745
9746 if (vf >= adapter->vfs_allocated_count)
9747 return -EINVAL;
9748
9749 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9750 reg_val = rd32(reg_offset);
9751 if (setting)
9752 reg_val |= (BIT(vf) |
9753 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9754 else
9755 reg_val &= ~(BIT(vf) |
9756 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9757 wr32(reg_offset, reg_val);
9758
9759 adapter->vf_data[vf].spoofchk_enabled = setting;
9760 return 0;
9761 }
9762
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9763 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9764 {
9765 struct igb_adapter *adapter = netdev_priv(netdev);
9766
9767 if (vf >= adapter->vfs_allocated_count)
9768 return -EINVAL;
9769 if (adapter->vf_data[vf].trusted == setting)
9770 return 0;
9771
9772 adapter->vf_data[vf].trusted = setting;
9773
9774 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9775 vf, setting ? "" : "not ");
9776 return 0;
9777 }
9778
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9779 static int igb_ndo_get_vf_config(struct net_device *netdev,
9780 int vf, struct ifla_vf_info *ivi)
9781 {
9782 struct igb_adapter *adapter = netdev_priv(netdev);
9783 if (vf >= adapter->vfs_allocated_count)
9784 return -EINVAL;
9785 ivi->vf = vf;
9786 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9787 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9788 ivi->min_tx_rate = 0;
9789 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9790 ivi->qos = adapter->vf_data[vf].pf_qos;
9791 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9792 ivi->trusted = adapter->vf_data[vf].trusted;
9793 return 0;
9794 }
9795
igb_vmm_control(struct igb_adapter * adapter)9796 static void igb_vmm_control(struct igb_adapter *adapter)
9797 {
9798 struct e1000_hw *hw = &adapter->hw;
9799 u32 reg;
9800
9801 switch (hw->mac.type) {
9802 case e1000_82575:
9803 case e1000_i210:
9804 case e1000_i211:
9805 case e1000_i354:
9806 default:
9807 /* replication is not supported for 82575 */
9808 return;
9809 case e1000_82576:
9810 /* notify HW that the MAC is adding vlan tags */
9811 reg = rd32(E1000_DTXCTL);
9812 reg |= E1000_DTXCTL_VLAN_ADDED;
9813 wr32(E1000_DTXCTL, reg);
9814 fallthrough;
9815 case e1000_82580:
9816 /* enable replication vlan tag stripping */
9817 reg = rd32(E1000_RPLOLR);
9818 reg |= E1000_RPLOLR_STRVLAN;
9819 wr32(E1000_RPLOLR, reg);
9820 fallthrough;
9821 case e1000_i350:
9822 /* none of the above registers are supported by i350 */
9823 break;
9824 }
9825
9826 if (adapter->vfs_allocated_count) {
9827 igb_vmdq_set_loopback_pf(hw, true);
9828 igb_vmdq_set_replication_pf(hw, true);
9829 igb_vmdq_set_anti_spoofing_pf(hw, true,
9830 adapter->vfs_allocated_count);
9831 } else {
9832 igb_vmdq_set_loopback_pf(hw, false);
9833 igb_vmdq_set_replication_pf(hw, false);
9834 }
9835 }
9836
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9837 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9838 {
9839 struct e1000_hw *hw = &adapter->hw;
9840 u32 dmac_thr;
9841 u16 hwm;
9842 u32 reg;
9843
9844 if (hw->mac.type > e1000_82580) {
9845 if (adapter->flags & IGB_FLAG_DMAC) {
9846 /* force threshold to 0. */
9847 wr32(E1000_DMCTXTH, 0);
9848
9849 /* DMA Coalescing high water mark needs to be greater
9850 * than the Rx threshold. Set hwm to PBA - max frame
9851 * size in 16B units, capping it at PBA - 6KB.
9852 */
9853 hwm = 64 * (pba - 6);
9854 reg = rd32(E1000_FCRTC);
9855 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9856 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9857 & E1000_FCRTC_RTH_COAL_MASK);
9858 wr32(E1000_FCRTC, reg);
9859
9860 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9861 * frame size, capping it at PBA - 10KB.
9862 */
9863 dmac_thr = pba - 10;
9864 reg = rd32(E1000_DMACR);
9865 reg &= ~E1000_DMACR_DMACTHR_MASK;
9866 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9867 & E1000_DMACR_DMACTHR_MASK);
9868
9869 /* transition to L0x or L1 if available..*/
9870 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9871
9872 /* watchdog timer= +-1000 usec in 32usec intervals */
9873 reg |= (1000 >> 5);
9874
9875 /* Disable BMC-to-OS Watchdog Enable */
9876 if (hw->mac.type != e1000_i354)
9877 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9878 wr32(E1000_DMACR, reg);
9879
9880 /* no lower threshold to disable
9881 * coalescing(smart fifb)-UTRESH=0
9882 */
9883 wr32(E1000_DMCRTRH, 0);
9884
9885 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9886
9887 wr32(E1000_DMCTLX, reg);
9888
9889 /* free space in tx packet buffer to wake from
9890 * DMA coal
9891 */
9892 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9893 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9894 }
9895
9896 if (hw->mac.type >= e1000_i210 ||
9897 (adapter->flags & IGB_FLAG_DMAC)) {
9898 reg = rd32(E1000_PCIEMISC);
9899 reg |= E1000_PCIEMISC_LX_DECISION;
9900 wr32(E1000_PCIEMISC, reg);
9901 } /* endif adapter->dmac is not disabled */
9902 } else if (hw->mac.type == e1000_82580) {
9903 u32 reg = rd32(E1000_PCIEMISC);
9904
9905 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9906 wr32(E1000_DMACR, 0);
9907 }
9908 }
9909
9910 /**
9911 * igb_read_i2c_byte - Reads 8 bit word over I2C
9912 * @hw: pointer to hardware structure
9913 * @byte_offset: byte offset to read
9914 * @dev_addr: device address
9915 * @data: value read
9916 *
9917 * Performs byte read operation over I2C interface at
9918 * a specified device address.
9919 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9920 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9921 u8 dev_addr, u8 *data)
9922 {
9923 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9924 struct i2c_client *this_client = adapter->i2c_client;
9925 s32 status;
9926 u16 swfw_mask = 0;
9927
9928 if (!this_client)
9929 return E1000_ERR_I2C;
9930
9931 swfw_mask = E1000_SWFW_PHY0_SM;
9932
9933 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9934 return E1000_ERR_SWFW_SYNC;
9935
9936 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9937 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9938
9939 if (status < 0)
9940 return E1000_ERR_I2C;
9941 else {
9942 *data = status;
9943 return 0;
9944 }
9945 }
9946
9947 /**
9948 * igb_write_i2c_byte - Writes 8 bit word over I2C
9949 * @hw: pointer to hardware structure
9950 * @byte_offset: byte offset to write
9951 * @dev_addr: device address
9952 * @data: value to write
9953 *
9954 * Performs byte write operation over I2C interface at
9955 * a specified device address.
9956 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9957 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9958 u8 dev_addr, u8 data)
9959 {
9960 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9961 struct i2c_client *this_client = adapter->i2c_client;
9962 s32 status;
9963 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9964
9965 if (!this_client)
9966 return E1000_ERR_I2C;
9967
9968 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9969 return E1000_ERR_SWFW_SYNC;
9970 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9971 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9972
9973 if (status)
9974 return E1000_ERR_I2C;
9975 else
9976 return 0;
9977
9978 }
9979
igb_reinit_queues(struct igb_adapter * adapter)9980 int igb_reinit_queues(struct igb_adapter *adapter)
9981 {
9982 struct net_device *netdev = adapter->netdev;
9983 struct pci_dev *pdev = adapter->pdev;
9984 int err = 0;
9985
9986 if (netif_running(netdev))
9987 igb_close(netdev);
9988
9989 igb_reset_interrupt_capability(adapter);
9990
9991 if (igb_init_interrupt_scheme(adapter, true)) {
9992 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9993 return -ENOMEM;
9994 }
9995
9996 if (netif_running(netdev))
9997 err = igb_open(netdev);
9998
9999 return err;
10000 }
10001
igb_nfc_filter_exit(struct igb_adapter * adapter)10002 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10003 {
10004 struct igb_nfc_filter *rule;
10005
10006 spin_lock(&adapter->nfc_lock);
10007
10008 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10009 igb_erase_filter(adapter, rule);
10010
10011 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10012 igb_erase_filter(adapter, rule);
10013
10014 spin_unlock(&adapter->nfc_lock);
10015 }
10016
igb_nfc_filter_restore(struct igb_adapter * adapter)10017 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10018 {
10019 struct igb_nfc_filter *rule;
10020
10021 spin_lock(&adapter->nfc_lock);
10022
10023 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10024 igb_add_filter(adapter, rule);
10025
10026 spin_unlock(&adapter->nfc_lock);
10027 }
10028 /* igb_main.c */
10029