1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0
2*4882a593Smuzhiyun /* Copyright(c) 2007 - 2018 Intel Corporation. */
3*4882a593Smuzhiyun
4*4882a593Smuzhiyun #include <linux/if_ether.h>
5*4882a593Smuzhiyun #include <linux/delay.h>
6*4882a593Smuzhiyun
7*4882a593Smuzhiyun #include "e1000_mac.h"
8*4882a593Smuzhiyun #include "e1000_nvm.h"
9*4882a593Smuzhiyun
10*4882a593Smuzhiyun /**
11*4882a593Smuzhiyun * igb_raise_eec_clk - Raise EEPROM clock
12*4882a593Smuzhiyun * @hw: pointer to the HW structure
13*4882a593Smuzhiyun * @eecd: pointer to the EEPROM
14*4882a593Smuzhiyun *
15*4882a593Smuzhiyun * Enable/Raise the EEPROM clock bit.
16*4882a593Smuzhiyun **/
igb_raise_eec_clk(struct e1000_hw * hw,u32 * eecd)17*4882a593Smuzhiyun static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
18*4882a593Smuzhiyun {
19*4882a593Smuzhiyun *eecd = *eecd | E1000_EECD_SK;
20*4882a593Smuzhiyun wr32(E1000_EECD, *eecd);
21*4882a593Smuzhiyun wrfl();
22*4882a593Smuzhiyun udelay(hw->nvm.delay_usec);
23*4882a593Smuzhiyun }
24*4882a593Smuzhiyun
25*4882a593Smuzhiyun /**
26*4882a593Smuzhiyun * igb_lower_eec_clk - Lower EEPROM clock
27*4882a593Smuzhiyun * @hw: pointer to the HW structure
28*4882a593Smuzhiyun * @eecd: pointer to the EEPROM
29*4882a593Smuzhiyun *
30*4882a593Smuzhiyun * Clear/Lower the EEPROM clock bit.
31*4882a593Smuzhiyun **/
igb_lower_eec_clk(struct e1000_hw * hw,u32 * eecd)32*4882a593Smuzhiyun static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
33*4882a593Smuzhiyun {
34*4882a593Smuzhiyun *eecd = *eecd & ~E1000_EECD_SK;
35*4882a593Smuzhiyun wr32(E1000_EECD, *eecd);
36*4882a593Smuzhiyun wrfl();
37*4882a593Smuzhiyun udelay(hw->nvm.delay_usec);
38*4882a593Smuzhiyun }
39*4882a593Smuzhiyun
40*4882a593Smuzhiyun /**
41*4882a593Smuzhiyun * igb_shift_out_eec_bits - Shift data bits our to the EEPROM
42*4882a593Smuzhiyun * @hw: pointer to the HW structure
43*4882a593Smuzhiyun * @data: data to send to the EEPROM
44*4882a593Smuzhiyun * @count: number of bits to shift out
45*4882a593Smuzhiyun *
46*4882a593Smuzhiyun * We need to shift 'count' bits out to the EEPROM. So, the value in the
47*4882a593Smuzhiyun * "data" parameter will be shifted out to the EEPROM one bit at a time.
48*4882a593Smuzhiyun * In order to do this, "data" must be broken down into bits.
49*4882a593Smuzhiyun **/
igb_shift_out_eec_bits(struct e1000_hw * hw,u16 data,u16 count)50*4882a593Smuzhiyun static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
51*4882a593Smuzhiyun {
52*4882a593Smuzhiyun struct e1000_nvm_info *nvm = &hw->nvm;
53*4882a593Smuzhiyun u32 eecd = rd32(E1000_EECD);
54*4882a593Smuzhiyun u32 mask;
55*4882a593Smuzhiyun
56*4882a593Smuzhiyun mask = 1u << (count - 1);
57*4882a593Smuzhiyun if (nvm->type == e1000_nvm_eeprom_spi)
58*4882a593Smuzhiyun eecd |= E1000_EECD_DO;
59*4882a593Smuzhiyun
60*4882a593Smuzhiyun do {
61*4882a593Smuzhiyun eecd &= ~E1000_EECD_DI;
62*4882a593Smuzhiyun
63*4882a593Smuzhiyun if (data & mask)
64*4882a593Smuzhiyun eecd |= E1000_EECD_DI;
65*4882a593Smuzhiyun
66*4882a593Smuzhiyun wr32(E1000_EECD, eecd);
67*4882a593Smuzhiyun wrfl();
68*4882a593Smuzhiyun
69*4882a593Smuzhiyun udelay(nvm->delay_usec);
70*4882a593Smuzhiyun
71*4882a593Smuzhiyun igb_raise_eec_clk(hw, &eecd);
72*4882a593Smuzhiyun igb_lower_eec_clk(hw, &eecd);
73*4882a593Smuzhiyun
74*4882a593Smuzhiyun mask >>= 1;
75*4882a593Smuzhiyun } while (mask);
76*4882a593Smuzhiyun
77*4882a593Smuzhiyun eecd &= ~E1000_EECD_DI;
78*4882a593Smuzhiyun wr32(E1000_EECD, eecd);
79*4882a593Smuzhiyun }
80*4882a593Smuzhiyun
81*4882a593Smuzhiyun /**
82*4882a593Smuzhiyun * igb_shift_in_eec_bits - Shift data bits in from the EEPROM
83*4882a593Smuzhiyun * @hw: pointer to the HW structure
84*4882a593Smuzhiyun * @count: number of bits to shift in
85*4882a593Smuzhiyun *
86*4882a593Smuzhiyun * In order to read a register from the EEPROM, we need to shift 'count' bits
87*4882a593Smuzhiyun * in from the EEPROM. Bits are "shifted in" by raising the clock input to
88*4882a593Smuzhiyun * the EEPROM (setting the SK bit), and then reading the value of the data out
89*4882a593Smuzhiyun * "DO" bit. During this "shifting in" process the data in "DI" bit should
90*4882a593Smuzhiyun * always be clear.
91*4882a593Smuzhiyun **/
igb_shift_in_eec_bits(struct e1000_hw * hw,u16 count)92*4882a593Smuzhiyun static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
93*4882a593Smuzhiyun {
94*4882a593Smuzhiyun u32 eecd;
95*4882a593Smuzhiyun u32 i;
96*4882a593Smuzhiyun u16 data;
97*4882a593Smuzhiyun
98*4882a593Smuzhiyun eecd = rd32(E1000_EECD);
99*4882a593Smuzhiyun
100*4882a593Smuzhiyun eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
101*4882a593Smuzhiyun data = 0;
102*4882a593Smuzhiyun
103*4882a593Smuzhiyun for (i = 0; i < count; i++) {
104*4882a593Smuzhiyun data <<= 1;
105*4882a593Smuzhiyun igb_raise_eec_clk(hw, &eecd);
106*4882a593Smuzhiyun
107*4882a593Smuzhiyun eecd = rd32(E1000_EECD);
108*4882a593Smuzhiyun
109*4882a593Smuzhiyun eecd &= ~E1000_EECD_DI;
110*4882a593Smuzhiyun if (eecd & E1000_EECD_DO)
111*4882a593Smuzhiyun data |= 1;
112*4882a593Smuzhiyun
113*4882a593Smuzhiyun igb_lower_eec_clk(hw, &eecd);
114*4882a593Smuzhiyun }
115*4882a593Smuzhiyun
116*4882a593Smuzhiyun return data;
117*4882a593Smuzhiyun }
118*4882a593Smuzhiyun
119*4882a593Smuzhiyun /**
120*4882a593Smuzhiyun * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
121*4882a593Smuzhiyun * @hw: pointer to the HW structure
122*4882a593Smuzhiyun * @ee_reg: EEPROM flag for polling
123*4882a593Smuzhiyun *
124*4882a593Smuzhiyun * Polls the EEPROM status bit for either read or write completion based
125*4882a593Smuzhiyun * upon the value of 'ee_reg'.
126*4882a593Smuzhiyun **/
igb_poll_eerd_eewr_done(struct e1000_hw * hw,int ee_reg)127*4882a593Smuzhiyun static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
128*4882a593Smuzhiyun {
129*4882a593Smuzhiyun u32 attempts = 100000;
130*4882a593Smuzhiyun u32 i, reg = 0;
131*4882a593Smuzhiyun s32 ret_val = -E1000_ERR_NVM;
132*4882a593Smuzhiyun
133*4882a593Smuzhiyun for (i = 0; i < attempts; i++) {
134*4882a593Smuzhiyun if (ee_reg == E1000_NVM_POLL_READ)
135*4882a593Smuzhiyun reg = rd32(E1000_EERD);
136*4882a593Smuzhiyun else
137*4882a593Smuzhiyun reg = rd32(E1000_EEWR);
138*4882a593Smuzhiyun
139*4882a593Smuzhiyun if (reg & E1000_NVM_RW_REG_DONE) {
140*4882a593Smuzhiyun ret_val = 0;
141*4882a593Smuzhiyun break;
142*4882a593Smuzhiyun }
143*4882a593Smuzhiyun
144*4882a593Smuzhiyun udelay(5);
145*4882a593Smuzhiyun }
146*4882a593Smuzhiyun
147*4882a593Smuzhiyun return ret_val;
148*4882a593Smuzhiyun }
149*4882a593Smuzhiyun
150*4882a593Smuzhiyun /**
151*4882a593Smuzhiyun * igb_acquire_nvm - Generic request for access to EEPROM
152*4882a593Smuzhiyun * @hw: pointer to the HW structure
153*4882a593Smuzhiyun *
154*4882a593Smuzhiyun * Set the EEPROM access request bit and wait for EEPROM access grant bit.
155*4882a593Smuzhiyun * Return successful if access grant bit set, else clear the request for
156*4882a593Smuzhiyun * EEPROM access and return -E1000_ERR_NVM (-1).
157*4882a593Smuzhiyun **/
igb_acquire_nvm(struct e1000_hw * hw)158*4882a593Smuzhiyun s32 igb_acquire_nvm(struct e1000_hw *hw)
159*4882a593Smuzhiyun {
160*4882a593Smuzhiyun u32 eecd = rd32(E1000_EECD);
161*4882a593Smuzhiyun s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
162*4882a593Smuzhiyun s32 ret_val = 0;
163*4882a593Smuzhiyun
164*4882a593Smuzhiyun
165*4882a593Smuzhiyun wr32(E1000_EECD, eecd | E1000_EECD_REQ);
166*4882a593Smuzhiyun eecd = rd32(E1000_EECD);
167*4882a593Smuzhiyun
168*4882a593Smuzhiyun while (timeout) {
169*4882a593Smuzhiyun if (eecd & E1000_EECD_GNT)
170*4882a593Smuzhiyun break;
171*4882a593Smuzhiyun udelay(5);
172*4882a593Smuzhiyun eecd = rd32(E1000_EECD);
173*4882a593Smuzhiyun timeout--;
174*4882a593Smuzhiyun }
175*4882a593Smuzhiyun
176*4882a593Smuzhiyun if (!timeout) {
177*4882a593Smuzhiyun eecd &= ~E1000_EECD_REQ;
178*4882a593Smuzhiyun wr32(E1000_EECD, eecd);
179*4882a593Smuzhiyun hw_dbg("Could not acquire NVM grant\n");
180*4882a593Smuzhiyun ret_val = -E1000_ERR_NVM;
181*4882a593Smuzhiyun }
182*4882a593Smuzhiyun
183*4882a593Smuzhiyun return ret_val;
184*4882a593Smuzhiyun }
185*4882a593Smuzhiyun
186*4882a593Smuzhiyun /**
187*4882a593Smuzhiyun * igb_standby_nvm - Return EEPROM to standby state
188*4882a593Smuzhiyun * @hw: pointer to the HW structure
189*4882a593Smuzhiyun *
190*4882a593Smuzhiyun * Return the EEPROM to a standby state.
191*4882a593Smuzhiyun **/
igb_standby_nvm(struct e1000_hw * hw)192*4882a593Smuzhiyun static void igb_standby_nvm(struct e1000_hw *hw)
193*4882a593Smuzhiyun {
194*4882a593Smuzhiyun struct e1000_nvm_info *nvm = &hw->nvm;
195*4882a593Smuzhiyun u32 eecd = rd32(E1000_EECD);
196*4882a593Smuzhiyun
197*4882a593Smuzhiyun if (nvm->type == e1000_nvm_eeprom_spi) {
198*4882a593Smuzhiyun /* Toggle CS to flush commands */
199*4882a593Smuzhiyun eecd |= E1000_EECD_CS;
200*4882a593Smuzhiyun wr32(E1000_EECD, eecd);
201*4882a593Smuzhiyun wrfl();
202*4882a593Smuzhiyun udelay(nvm->delay_usec);
203*4882a593Smuzhiyun eecd &= ~E1000_EECD_CS;
204*4882a593Smuzhiyun wr32(E1000_EECD, eecd);
205*4882a593Smuzhiyun wrfl();
206*4882a593Smuzhiyun udelay(nvm->delay_usec);
207*4882a593Smuzhiyun }
208*4882a593Smuzhiyun }
209*4882a593Smuzhiyun
210*4882a593Smuzhiyun /**
211*4882a593Smuzhiyun * e1000_stop_nvm - Terminate EEPROM command
212*4882a593Smuzhiyun * @hw: pointer to the HW structure
213*4882a593Smuzhiyun *
214*4882a593Smuzhiyun * Terminates the current command by inverting the EEPROM's chip select pin.
215*4882a593Smuzhiyun **/
e1000_stop_nvm(struct e1000_hw * hw)216*4882a593Smuzhiyun static void e1000_stop_nvm(struct e1000_hw *hw)
217*4882a593Smuzhiyun {
218*4882a593Smuzhiyun u32 eecd;
219*4882a593Smuzhiyun
220*4882a593Smuzhiyun eecd = rd32(E1000_EECD);
221*4882a593Smuzhiyun if (hw->nvm.type == e1000_nvm_eeprom_spi) {
222*4882a593Smuzhiyun /* Pull CS high */
223*4882a593Smuzhiyun eecd |= E1000_EECD_CS;
224*4882a593Smuzhiyun igb_lower_eec_clk(hw, &eecd);
225*4882a593Smuzhiyun }
226*4882a593Smuzhiyun }
227*4882a593Smuzhiyun
228*4882a593Smuzhiyun /**
229*4882a593Smuzhiyun * igb_release_nvm - Release exclusive access to EEPROM
230*4882a593Smuzhiyun * @hw: pointer to the HW structure
231*4882a593Smuzhiyun *
232*4882a593Smuzhiyun * Stop any current commands to the EEPROM and clear the EEPROM request bit.
233*4882a593Smuzhiyun **/
igb_release_nvm(struct e1000_hw * hw)234*4882a593Smuzhiyun void igb_release_nvm(struct e1000_hw *hw)
235*4882a593Smuzhiyun {
236*4882a593Smuzhiyun u32 eecd;
237*4882a593Smuzhiyun
238*4882a593Smuzhiyun e1000_stop_nvm(hw);
239*4882a593Smuzhiyun
240*4882a593Smuzhiyun eecd = rd32(E1000_EECD);
241*4882a593Smuzhiyun eecd &= ~E1000_EECD_REQ;
242*4882a593Smuzhiyun wr32(E1000_EECD, eecd);
243*4882a593Smuzhiyun }
244*4882a593Smuzhiyun
245*4882a593Smuzhiyun /**
246*4882a593Smuzhiyun * igb_ready_nvm_eeprom - Prepares EEPROM for read/write
247*4882a593Smuzhiyun * @hw: pointer to the HW structure
248*4882a593Smuzhiyun *
249*4882a593Smuzhiyun * Setups the EEPROM for reading and writing.
250*4882a593Smuzhiyun **/
igb_ready_nvm_eeprom(struct e1000_hw * hw)251*4882a593Smuzhiyun static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
252*4882a593Smuzhiyun {
253*4882a593Smuzhiyun struct e1000_nvm_info *nvm = &hw->nvm;
254*4882a593Smuzhiyun u32 eecd = rd32(E1000_EECD);
255*4882a593Smuzhiyun s32 ret_val = 0;
256*4882a593Smuzhiyun u16 timeout = 0;
257*4882a593Smuzhiyun u8 spi_stat_reg;
258*4882a593Smuzhiyun
259*4882a593Smuzhiyun
260*4882a593Smuzhiyun if (nvm->type == e1000_nvm_eeprom_spi) {
261*4882a593Smuzhiyun /* Clear SK and CS */
262*4882a593Smuzhiyun eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
263*4882a593Smuzhiyun wr32(E1000_EECD, eecd);
264*4882a593Smuzhiyun wrfl();
265*4882a593Smuzhiyun udelay(1);
266*4882a593Smuzhiyun timeout = NVM_MAX_RETRY_SPI;
267*4882a593Smuzhiyun
268*4882a593Smuzhiyun /* Read "Status Register" repeatedly until the LSB is cleared.
269*4882a593Smuzhiyun * The EEPROM will signal that the command has been completed
270*4882a593Smuzhiyun * by clearing bit 0 of the internal status register. If it's
271*4882a593Smuzhiyun * not cleared within 'timeout', then error out.
272*4882a593Smuzhiyun */
273*4882a593Smuzhiyun while (timeout) {
274*4882a593Smuzhiyun igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
275*4882a593Smuzhiyun hw->nvm.opcode_bits);
276*4882a593Smuzhiyun spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
277*4882a593Smuzhiyun if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
278*4882a593Smuzhiyun break;
279*4882a593Smuzhiyun
280*4882a593Smuzhiyun udelay(5);
281*4882a593Smuzhiyun igb_standby_nvm(hw);
282*4882a593Smuzhiyun timeout--;
283*4882a593Smuzhiyun }
284*4882a593Smuzhiyun
285*4882a593Smuzhiyun if (!timeout) {
286*4882a593Smuzhiyun hw_dbg("SPI NVM Status error\n");
287*4882a593Smuzhiyun ret_val = -E1000_ERR_NVM;
288*4882a593Smuzhiyun goto out;
289*4882a593Smuzhiyun }
290*4882a593Smuzhiyun }
291*4882a593Smuzhiyun
292*4882a593Smuzhiyun out:
293*4882a593Smuzhiyun return ret_val;
294*4882a593Smuzhiyun }
295*4882a593Smuzhiyun
296*4882a593Smuzhiyun /**
297*4882a593Smuzhiyun * igb_read_nvm_spi - Read EEPROM's using SPI
298*4882a593Smuzhiyun * @hw: pointer to the HW structure
299*4882a593Smuzhiyun * @offset: offset of word in the EEPROM to read
300*4882a593Smuzhiyun * @words: number of words to read
301*4882a593Smuzhiyun * @data: word read from the EEPROM
302*4882a593Smuzhiyun *
303*4882a593Smuzhiyun * Reads a 16 bit word from the EEPROM.
304*4882a593Smuzhiyun **/
igb_read_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)305*4882a593Smuzhiyun s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
306*4882a593Smuzhiyun {
307*4882a593Smuzhiyun struct e1000_nvm_info *nvm = &hw->nvm;
308*4882a593Smuzhiyun u32 i = 0;
309*4882a593Smuzhiyun s32 ret_val;
310*4882a593Smuzhiyun u16 word_in;
311*4882a593Smuzhiyun u8 read_opcode = NVM_READ_OPCODE_SPI;
312*4882a593Smuzhiyun
313*4882a593Smuzhiyun /* A check for invalid values: offset too large, too many words,
314*4882a593Smuzhiyun * and not enough words.
315*4882a593Smuzhiyun */
316*4882a593Smuzhiyun if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
317*4882a593Smuzhiyun (words == 0)) {
318*4882a593Smuzhiyun hw_dbg("nvm parameter(s) out of bounds\n");
319*4882a593Smuzhiyun ret_val = -E1000_ERR_NVM;
320*4882a593Smuzhiyun goto out;
321*4882a593Smuzhiyun }
322*4882a593Smuzhiyun
323*4882a593Smuzhiyun ret_val = nvm->ops.acquire(hw);
324*4882a593Smuzhiyun if (ret_val)
325*4882a593Smuzhiyun goto out;
326*4882a593Smuzhiyun
327*4882a593Smuzhiyun ret_val = igb_ready_nvm_eeprom(hw);
328*4882a593Smuzhiyun if (ret_val)
329*4882a593Smuzhiyun goto release;
330*4882a593Smuzhiyun
331*4882a593Smuzhiyun igb_standby_nvm(hw);
332*4882a593Smuzhiyun
333*4882a593Smuzhiyun if ((nvm->address_bits == 8) && (offset >= 128))
334*4882a593Smuzhiyun read_opcode |= NVM_A8_OPCODE_SPI;
335*4882a593Smuzhiyun
336*4882a593Smuzhiyun /* Send the READ command (opcode + addr) */
337*4882a593Smuzhiyun igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
338*4882a593Smuzhiyun igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
339*4882a593Smuzhiyun
340*4882a593Smuzhiyun /* Read the data. SPI NVMs increment the address with each byte
341*4882a593Smuzhiyun * read and will roll over if reading beyond the end. This allows
342*4882a593Smuzhiyun * us to read the whole NVM from any offset
343*4882a593Smuzhiyun */
344*4882a593Smuzhiyun for (i = 0; i < words; i++) {
345*4882a593Smuzhiyun word_in = igb_shift_in_eec_bits(hw, 16);
346*4882a593Smuzhiyun data[i] = (word_in >> 8) | (word_in << 8);
347*4882a593Smuzhiyun }
348*4882a593Smuzhiyun
349*4882a593Smuzhiyun release:
350*4882a593Smuzhiyun nvm->ops.release(hw);
351*4882a593Smuzhiyun
352*4882a593Smuzhiyun out:
353*4882a593Smuzhiyun return ret_val;
354*4882a593Smuzhiyun }
355*4882a593Smuzhiyun
356*4882a593Smuzhiyun /**
357*4882a593Smuzhiyun * igb_read_nvm_eerd - Reads EEPROM using EERD register
358*4882a593Smuzhiyun * @hw: pointer to the HW structure
359*4882a593Smuzhiyun * @offset: offset of word in the EEPROM to read
360*4882a593Smuzhiyun * @words: number of words to read
361*4882a593Smuzhiyun * @data: word read from the EEPROM
362*4882a593Smuzhiyun *
363*4882a593Smuzhiyun * Reads a 16 bit word from the EEPROM using the EERD register.
364*4882a593Smuzhiyun **/
igb_read_nvm_eerd(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)365*4882a593Smuzhiyun s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
366*4882a593Smuzhiyun {
367*4882a593Smuzhiyun struct e1000_nvm_info *nvm = &hw->nvm;
368*4882a593Smuzhiyun u32 i, eerd = 0;
369*4882a593Smuzhiyun s32 ret_val = 0;
370*4882a593Smuzhiyun
371*4882a593Smuzhiyun /* A check for invalid values: offset too large, too many words,
372*4882a593Smuzhiyun * and not enough words.
373*4882a593Smuzhiyun */
374*4882a593Smuzhiyun if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
375*4882a593Smuzhiyun (words == 0)) {
376*4882a593Smuzhiyun hw_dbg("nvm parameter(s) out of bounds\n");
377*4882a593Smuzhiyun ret_val = -E1000_ERR_NVM;
378*4882a593Smuzhiyun goto out;
379*4882a593Smuzhiyun }
380*4882a593Smuzhiyun
381*4882a593Smuzhiyun for (i = 0; i < words; i++) {
382*4882a593Smuzhiyun eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
383*4882a593Smuzhiyun E1000_NVM_RW_REG_START;
384*4882a593Smuzhiyun
385*4882a593Smuzhiyun wr32(E1000_EERD, eerd);
386*4882a593Smuzhiyun ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
387*4882a593Smuzhiyun if (ret_val)
388*4882a593Smuzhiyun break;
389*4882a593Smuzhiyun
390*4882a593Smuzhiyun data[i] = (rd32(E1000_EERD) >>
391*4882a593Smuzhiyun E1000_NVM_RW_REG_DATA);
392*4882a593Smuzhiyun }
393*4882a593Smuzhiyun
394*4882a593Smuzhiyun out:
395*4882a593Smuzhiyun return ret_val;
396*4882a593Smuzhiyun }
397*4882a593Smuzhiyun
398*4882a593Smuzhiyun /**
399*4882a593Smuzhiyun * igb_write_nvm_spi - Write to EEPROM using SPI
400*4882a593Smuzhiyun * @hw: pointer to the HW structure
401*4882a593Smuzhiyun * @offset: offset within the EEPROM to be written to
402*4882a593Smuzhiyun * @words: number of words to write
403*4882a593Smuzhiyun * @data: 16 bit word(s) to be written to the EEPROM
404*4882a593Smuzhiyun *
405*4882a593Smuzhiyun * Writes data to EEPROM at offset using SPI interface.
406*4882a593Smuzhiyun *
407*4882a593Smuzhiyun * If e1000_update_nvm_checksum is not called after this function , the
408*4882a593Smuzhiyun * EEPROM will most likley contain an invalid checksum.
409*4882a593Smuzhiyun **/
igb_write_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)410*4882a593Smuzhiyun s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
411*4882a593Smuzhiyun {
412*4882a593Smuzhiyun struct e1000_nvm_info *nvm = &hw->nvm;
413*4882a593Smuzhiyun s32 ret_val = -E1000_ERR_NVM;
414*4882a593Smuzhiyun u16 widx = 0;
415*4882a593Smuzhiyun
416*4882a593Smuzhiyun /* A check for invalid values: offset too large, too many words,
417*4882a593Smuzhiyun * and not enough words.
418*4882a593Smuzhiyun */
419*4882a593Smuzhiyun if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
420*4882a593Smuzhiyun (words == 0)) {
421*4882a593Smuzhiyun hw_dbg("nvm parameter(s) out of bounds\n");
422*4882a593Smuzhiyun return ret_val;
423*4882a593Smuzhiyun }
424*4882a593Smuzhiyun
425*4882a593Smuzhiyun while (widx < words) {
426*4882a593Smuzhiyun u8 write_opcode = NVM_WRITE_OPCODE_SPI;
427*4882a593Smuzhiyun
428*4882a593Smuzhiyun ret_val = nvm->ops.acquire(hw);
429*4882a593Smuzhiyun if (ret_val)
430*4882a593Smuzhiyun return ret_val;
431*4882a593Smuzhiyun
432*4882a593Smuzhiyun ret_val = igb_ready_nvm_eeprom(hw);
433*4882a593Smuzhiyun if (ret_val) {
434*4882a593Smuzhiyun nvm->ops.release(hw);
435*4882a593Smuzhiyun return ret_val;
436*4882a593Smuzhiyun }
437*4882a593Smuzhiyun
438*4882a593Smuzhiyun igb_standby_nvm(hw);
439*4882a593Smuzhiyun
440*4882a593Smuzhiyun /* Send the WRITE ENABLE command (8 bit opcode) */
441*4882a593Smuzhiyun igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
442*4882a593Smuzhiyun nvm->opcode_bits);
443*4882a593Smuzhiyun
444*4882a593Smuzhiyun igb_standby_nvm(hw);
445*4882a593Smuzhiyun
446*4882a593Smuzhiyun /* Some SPI eeproms use the 8th address bit embedded in the
447*4882a593Smuzhiyun * opcode
448*4882a593Smuzhiyun */
449*4882a593Smuzhiyun if ((nvm->address_bits == 8) && (offset >= 128))
450*4882a593Smuzhiyun write_opcode |= NVM_A8_OPCODE_SPI;
451*4882a593Smuzhiyun
452*4882a593Smuzhiyun /* Send the Write command (8-bit opcode + addr) */
453*4882a593Smuzhiyun igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
454*4882a593Smuzhiyun igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
455*4882a593Smuzhiyun nvm->address_bits);
456*4882a593Smuzhiyun
457*4882a593Smuzhiyun /* Loop to allow for up to whole page write of eeprom */
458*4882a593Smuzhiyun while (widx < words) {
459*4882a593Smuzhiyun u16 word_out = data[widx];
460*4882a593Smuzhiyun
461*4882a593Smuzhiyun word_out = (word_out >> 8) | (word_out << 8);
462*4882a593Smuzhiyun igb_shift_out_eec_bits(hw, word_out, 16);
463*4882a593Smuzhiyun widx++;
464*4882a593Smuzhiyun
465*4882a593Smuzhiyun if ((((offset + widx) * 2) % nvm->page_size) == 0) {
466*4882a593Smuzhiyun igb_standby_nvm(hw);
467*4882a593Smuzhiyun break;
468*4882a593Smuzhiyun }
469*4882a593Smuzhiyun }
470*4882a593Smuzhiyun usleep_range(1000, 2000);
471*4882a593Smuzhiyun nvm->ops.release(hw);
472*4882a593Smuzhiyun }
473*4882a593Smuzhiyun
474*4882a593Smuzhiyun return ret_val;
475*4882a593Smuzhiyun }
476*4882a593Smuzhiyun
477*4882a593Smuzhiyun /**
478*4882a593Smuzhiyun * igb_read_part_string - Read device part number
479*4882a593Smuzhiyun * @hw: pointer to the HW structure
480*4882a593Smuzhiyun * @part_num: pointer to device part number
481*4882a593Smuzhiyun * @part_num_size: size of part number buffer
482*4882a593Smuzhiyun *
483*4882a593Smuzhiyun * Reads the product board assembly (PBA) number from the EEPROM and stores
484*4882a593Smuzhiyun * the value in part_num.
485*4882a593Smuzhiyun **/
igb_read_part_string(struct e1000_hw * hw,u8 * part_num,u32 part_num_size)486*4882a593Smuzhiyun s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
487*4882a593Smuzhiyun {
488*4882a593Smuzhiyun s32 ret_val;
489*4882a593Smuzhiyun u16 nvm_data;
490*4882a593Smuzhiyun u16 pointer;
491*4882a593Smuzhiyun u16 offset;
492*4882a593Smuzhiyun u16 length;
493*4882a593Smuzhiyun
494*4882a593Smuzhiyun if (part_num == NULL) {
495*4882a593Smuzhiyun hw_dbg("PBA string buffer was null\n");
496*4882a593Smuzhiyun ret_val = E1000_ERR_INVALID_ARGUMENT;
497*4882a593Smuzhiyun goto out;
498*4882a593Smuzhiyun }
499*4882a593Smuzhiyun
500*4882a593Smuzhiyun ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
501*4882a593Smuzhiyun if (ret_val) {
502*4882a593Smuzhiyun hw_dbg("NVM Read Error\n");
503*4882a593Smuzhiyun goto out;
504*4882a593Smuzhiyun }
505*4882a593Smuzhiyun
506*4882a593Smuzhiyun ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
507*4882a593Smuzhiyun if (ret_val) {
508*4882a593Smuzhiyun hw_dbg("NVM Read Error\n");
509*4882a593Smuzhiyun goto out;
510*4882a593Smuzhiyun }
511*4882a593Smuzhiyun
512*4882a593Smuzhiyun /* if nvm_data is not ptr guard the PBA must be in legacy format which
513*4882a593Smuzhiyun * means pointer is actually our second data word for the PBA number
514*4882a593Smuzhiyun * and we can decode it into an ascii string
515*4882a593Smuzhiyun */
516*4882a593Smuzhiyun if (nvm_data != NVM_PBA_PTR_GUARD) {
517*4882a593Smuzhiyun hw_dbg("NVM PBA number is not stored as string\n");
518*4882a593Smuzhiyun
519*4882a593Smuzhiyun /* we will need 11 characters to store the PBA */
520*4882a593Smuzhiyun if (part_num_size < 11) {
521*4882a593Smuzhiyun hw_dbg("PBA string buffer too small\n");
522*4882a593Smuzhiyun return E1000_ERR_NO_SPACE;
523*4882a593Smuzhiyun }
524*4882a593Smuzhiyun
525*4882a593Smuzhiyun /* extract hex string from data and pointer */
526*4882a593Smuzhiyun part_num[0] = (nvm_data >> 12) & 0xF;
527*4882a593Smuzhiyun part_num[1] = (nvm_data >> 8) & 0xF;
528*4882a593Smuzhiyun part_num[2] = (nvm_data >> 4) & 0xF;
529*4882a593Smuzhiyun part_num[3] = nvm_data & 0xF;
530*4882a593Smuzhiyun part_num[4] = (pointer >> 12) & 0xF;
531*4882a593Smuzhiyun part_num[5] = (pointer >> 8) & 0xF;
532*4882a593Smuzhiyun part_num[6] = '-';
533*4882a593Smuzhiyun part_num[7] = 0;
534*4882a593Smuzhiyun part_num[8] = (pointer >> 4) & 0xF;
535*4882a593Smuzhiyun part_num[9] = pointer & 0xF;
536*4882a593Smuzhiyun
537*4882a593Smuzhiyun /* put a null character on the end of our string */
538*4882a593Smuzhiyun part_num[10] = '\0';
539*4882a593Smuzhiyun
540*4882a593Smuzhiyun /* switch all the data but the '-' to hex char */
541*4882a593Smuzhiyun for (offset = 0; offset < 10; offset++) {
542*4882a593Smuzhiyun if (part_num[offset] < 0xA)
543*4882a593Smuzhiyun part_num[offset] += '0';
544*4882a593Smuzhiyun else if (part_num[offset] < 0x10)
545*4882a593Smuzhiyun part_num[offset] += 'A' - 0xA;
546*4882a593Smuzhiyun }
547*4882a593Smuzhiyun
548*4882a593Smuzhiyun goto out;
549*4882a593Smuzhiyun }
550*4882a593Smuzhiyun
551*4882a593Smuzhiyun ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
552*4882a593Smuzhiyun if (ret_val) {
553*4882a593Smuzhiyun hw_dbg("NVM Read Error\n");
554*4882a593Smuzhiyun goto out;
555*4882a593Smuzhiyun }
556*4882a593Smuzhiyun
557*4882a593Smuzhiyun if (length == 0xFFFF || length == 0) {
558*4882a593Smuzhiyun hw_dbg("NVM PBA number section invalid length\n");
559*4882a593Smuzhiyun ret_val = E1000_ERR_NVM_PBA_SECTION;
560*4882a593Smuzhiyun goto out;
561*4882a593Smuzhiyun }
562*4882a593Smuzhiyun /* check if part_num buffer is big enough */
563*4882a593Smuzhiyun if (part_num_size < (((u32)length * 2) - 1)) {
564*4882a593Smuzhiyun hw_dbg("PBA string buffer too small\n");
565*4882a593Smuzhiyun ret_val = E1000_ERR_NO_SPACE;
566*4882a593Smuzhiyun goto out;
567*4882a593Smuzhiyun }
568*4882a593Smuzhiyun
569*4882a593Smuzhiyun /* trim pba length from start of string */
570*4882a593Smuzhiyun pointer++;
571*4882a593Smuzhiyun length--;
572*4882a593Smuzhiyun
573*4882a593Smuzhiyun for (offset = 0; offset < length; offset++) {
574*4882a593Smuzhiyun ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
575*4882a593Smuzhiyun if (ret_val) {
576*4882a593Smuzhiyun hw_dbg("NVM Read Error\n");
577*4882a593Smuzhiyun goto out;
578*4882a593Smuzhiyun }
579*4882a593Smuzhiyun part_num[offset * 2] = (u8)(nvm_data >> 8);
580*4882a593Smuzhiyun part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
581*4882a593Smuzhiyun }
582*4882a593Smuzhiyun part_num[offset * 2] = '\0';
583*4882a593Smuzhiyun
584*4882a593Smuzhiyun out:
585*4882a593Smuzhiyun return ret_val;
586*4882a593Smuzhiyun }
587*4882a593Smuzhiyun
588*4882a593Smuzhiyun /**
589*4882a593Smuzhiyun * igb_read_mac_addr - Read device MAC address
590*4882a593Smuzhiyun * @hw: pointer to the HW structure
591*4882a593Smuzhiyun *
592*4882a593Smuzhiyun * Reads the device MAC address from the EEPROM and stores the value.
593*4882a593Smuzhiyun * Since devices with two ports use the same EEPROM, we increment the
594*4882a593Smuzhiyun * last bit in the MAC address for the second port.
595*4882a593Smuzhiyun **/
igb_read_mac_addr(struct e1000_hw * hw)596*4882a593Smuzhiyun s32 igb_read_mac_addr(struct e1000_hw *hw)
597*4882a593Smuzhiyun {
598*4882a593Smuzhiyun u32 rar_high;
599*4882a593Smuzhiyun u32 rar_low;
600*4882a593Smuzhiyun u16 i;
601*4882a593Smuzhiyun
602*4882a593Smuzhiyun rar_high = rd32(E1000_RAH(0));
603*4882a593Smuzhiyun rar_low = rd32(E1000_RAL(0));
604*4882a593Smuzhiyun
605*4882a593Smuzhiyun for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
606*4882a593Smuzhiyun hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
607*4882a593Smuzhiyun
608*4882a593Smuzhiyun for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
609*4882a593Smuzhiyun hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
610*4882a593Smuzhiyun
611*4882a593Smuzhiyun for (i = 0; i < ETH_ALEN; i++)
612*4882a593Smuzhiyun hw->mac.addr[i] = hw->mac.perm_addr[i];
613*4882a593Smuzhiyun
614*4882a593Smuzhiyun return 0;
615*4882a593Smuzhiyun }
616*4882a593Smuzhiyun
617*4882a593Smuzhiyun /**
618*4882a593Smuzhiyun * igb_validate_nvm_checksum - Validate EEPROM checksum
619*4882a593Smuzhiyun * @hw: pointer to the HW structure
620*4882a593Smuzhiyun *
621*4882a593Smuzhiyun * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
622*4882a593Smuzhiyun * and then verifies that the sum of the EEPROM is equal to 0xBABA.
623*4882a593Smuzhiyun **/
igb_validate_nvm_checksum(struct e1000_hw * hw)624*4882a593Smuzhiyun s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
625*4882a593Smuzhiyun {
626*4882a593Smuzhiyun s32 ret_val = 0;
627*4882a593Smuzhiyun u16 checksum = 0;
628*4882a593Smuzhiyun u16 i, nvm_data;
629*4882a593Smuzhiyun
630*4882a593Smuzhiyun for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
631*4882a593Smuzhiyun ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
632*4882a593Smuzhiyun if (ret_val) {
633*4882a593Smuzhiyun hw_dbg("NVM Read Error\n");
634*4882a593Smuzhiyun goto out;
635*4882a593Smuzhiyun }
636*4882a593Smuzhiyun checksum += nvm_data;
637*4882a593Smuzhiyun }
638*4882a593Smuzhiyun
639*4882a593Smuzhiyun if (checksum != (u16) NVM_SUM) {
640*4882a593Smuzhiyun hw_dbg("NVM Checksum Invalid\n");
641*4882a593Smuzhiyun ret_val = -E1000_ERR_NVM;
642*4882a593Smuzhiyun goto out;
643*4882a593Smuzhiyun }
644*4882a593Smuzhiyun
645*4882a593Smuzhiyun out:
646*4882a593Smuzhiyun return ret_val;
647*4882a593Smuzhiyun }
648*4882a593Smuzhiyun
649*4882a593Smuzhiyun /**
650*4882a593Smuzhiyun * igb_update_nvm_checksum - Update EEPROM checksum
651*4882a593Smuzhiyun * @hw: pointer to the HW structure
652*4882a593Smuzhiyun *
653*4882a593Smuzhiyun * Updates the EEPROM checksum by reading/adding each word of the EEPROM
654*4882a593Smuzhiyun * up to the checksum. Then calculates the EEPROM checksum and writes the
655*4882a593Smuzhiyun * value to the EEPROM.
656*4882a593Smuzhiyun **/
igb_update_nvm_checksum(struct e1000_hw * hw)657*4882a593Smuzhiyun s32 igb_update_nvm_checksum(struct e1000_hw *hw)
658*4882a593Smuzhiyun {
659*4882a593Smuzhiyun s32 ret_val;
660*4882a593Smuzhiyun u16 checksum = 0;
661*4882a593Smuzhiyun u16 i, nvm_data;
662*4882a593Smuzhiyun
663*4882a593Smuzhiyun for (i = 0; i < NVM_CHECKSUM_REG; i++) {
664*4882a593Smuzhiyun ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
665*4882a593Smuzhiyun if (ret_val) {
666*4882a593Smuzhiyun hw_dbg("NVM Read Error while updating checksum.\n");
667*4882a593Smuzhiyun goto out;
668*4882a593Smuzhiyun }
669*4882a593Smuzhiyun checksum += nvm_data;
670*4882a593Smuzhiyun }
671*4882a593Smuzhiyun checksum = (u16) NVM_SUM - checksum;
672*4882a593Smuzhiyun ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
673*4882a593Smuzhiyun if (ret_val)
674*4882a593Smuzhiyun hw_dbg("NVM Write Error while updating checksum.\n");
675*4882a593Smuzhiyun
676*4882a593Smuzhiyun out:
677*4882a593Smuzhiyun return ret_val;
678*4882a593Smuzhiyun }
679*4882a593Smuzhiyun
680*4882a593Smuzhiyun /**
681*4882a593Smuzhiyun * igb_get_fw_version - Get firmware version information
682*4882a593Smuzhiyun * @hw: pointer to the HW structure
683*4882a593Smuzhiyun * @fw_vers: pointer to output structure
684*4882a593Smuzhiyun *
685*4882a593Smuzhiyun * unsupported MAC types will return all 0 version structure
686*4882a593Smuzhiyun **/
igb_get_fw_version(struct e1000_hw * hw,struct e1000_fw_version * fw_vers)687*4882a593Smuzhiyun void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
688*4882a593Smuzhiyun {
689*4882a593Smuzhiyun u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
690*4882a593Smuzhiyun u8 q, hval, rem, result;
691*4882a593Smuzhiyun u16 comb_verh, comb_verl, comb_offset;
692*4882a593Smuzhiyun
693*4882a593Smuzhiyun memset(fw_vers, 0, sizeof(struct e1000_fw_version));
694*4882a593Smuzhiyun
695*4882a593Smuzhiyun /* basic eeprom version numbers and bits used vary by part and by tool
696*4882a593Smuzhiyun * used to create the nvm images. Check which data format we have.
697*4882a593Smuzhiyun */
698*4882a593Smuzhiyun hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
699*4882a593Smuzhiyun switch (hw->mac.type) {
700*4882a593Smuzhiyun case e1000_i211:
701*4882a593Smuzhiyun igb_read_invm_version(hw, fw_vers);
702*4882a593Smuzhiyun return;
703*4882a593Smuzhiyun case e1000_82575:
704*4882a593Smuzhiyun case e1000_82576:
705*4882a593Smuzhiyun case e1000_82580:
706*4882a593Smuzhiyun /* Use this format, unless EETRACK ID exists,
707*4882a593Smuzhiyun * then use alternate format
708*4882a593Smuzhiyun */
709*4882a593Smuzhiyun if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
710*4882a593Smuzhiyun hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
711*4882a593Smuzhiyun fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
712*4882a593Smuzhiyun >> NVM_MAJOR_SHIFT;
713*4882a593Smuzhiyun fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
714*4882a593Smuzhiyun >> NVM_MINOR_SHIFT;
715*4882a593Smuzhiyun fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
716*4882a593Smuzhiyun goto etrack_id;
717*4882a593Smuzhiyun }
718*4882a593Smuzhiyun break;
719*4882a593Smuzhiyun case e1000_i210:
720*4882a593Smuzhiyun if (!(igb_get_flash_presence_i210(hw))) {
721*4882a593Smuzhiyun igb_read_invm_version(hw, fw_vers);
722*4882a593Smuzhiyun return;
723*4882a593Smuzhiyun }
724*4882a593Smuzhiyun fallthrough;
725*4882a593Smuzhiyun case e1000_i350:
726*4882a593Smuzhiyun /* find combo image version */
727*4882a593Smuzhiyun hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
728*4882a593Smuzhiyun if ((comb_offset != 0x0) &&
729*4882a593Smuzhiyun (comb_offset != NVM_VER_INVALID)) {
730*4882a593Smuzhiyun
731*4882a593Smuzhiyun hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
732*4882a593Smuzhiyun + 1), 1, &comb_verh);
733*4882a593Smuzhiyun hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
734*4882a593Smuzhiyun 1, &comb_verl);
735*4882a593Smuzhiyun
736*4882a593Smuzhiyun /* get Option Rom version if it exists and is valid */
737*4882a593Smuzhiyun if ((comb_verh && comb_verl) &&
738*4882a593Smuzhiyun ((comb_verh != NVM_VER_INVALID) &&
739*4882a593Smuzhiyun (comb_verl != NVM_VER_INVALID))) {
740*4882a593Smuzhiyun
741*4882a593Smuzhiyun fw_vers->or_valid = true;
742*4882a593Smuzhiyun fw_vers->or_major =
743*4882a593Smuzhiyun comb_verl >> NVM_COMB_VER_SHFT;
744*4882a593Smuzhiyun fw_vers->or_build =
745*4882a593Smuzhiyun (comb_verl << NVM_COMB_VER_SHFT)
746*4882a593Smuzhiyun | (comb_verh >> NVM_COMB_VER_SHFT);
747*4882a593Smuzhiyun fw_vers->or_patch =
748*4882a593Smuzhiyun comb_verh & NVM_COMB_VER_MASK;
749*4882a593Smuzhiyun }
750*4882a593Smuzhiyun }
751*4882a593Smuzhiyun break;
752*4882a593Smuzhiyun default:
753*4882a593Smuzhiyun return;
754*4882a593Smuzhiyun }
755*4882a593Smuzhiyun hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
756*4882a593Smuzhiyun fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
757*4882a593Smuzhiyun >> NVM_MAJOR_SHIFT;
758*4882a593Smuzhiyun
759*4882a593Smuzhiyun /* check for old style version format in newer images*/
760*4882a593Smuzhiyun if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
761*4882a593Smuzhiyun eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
762*4882a593Smuzhiyun } else {
763*4882a593Smuzhiyun eeprom_verl = (fw_version & NVM_MINOR_MASK)
764*4882a593Smuzhiyun >> NVM_MINOR_SHIFT;
765*4882a593Smuzhiyun }
766*4882a593Smuzhiyun /* Convert minor value to hex before assigning to output struct
767*4882a593Smuzhiyun * Val to be converted will not be higher than 99, per tool output
768*4882a593Smuzhiyun */
769*4882a593Smuzhiyun q = eeprom_verl / NVM_HEX_CONV;
770*4882a593Smuzhiyun hval = q * NVM_HEX_TENS;
771*4882a593Smuzhiyun rem = eeprom_verl % NVM_HEX_CONV;
772*4882a593Smuzhiyun result = hval + rem;
773*4882a593Smuzhiyun fw_vers->eep_minor = result;
774*4882a593Smuzhiyun
775*4882a593Smuzhiyun etrack_id:
776*4882a593Smuzhiyun if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
777*4882a593Smuzhiyun hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
778*4882a593Smuzhiyun hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
779*4882a593Smuzhiyun fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
780*4882a593Smuzhiyun | eeprom_verl;
781*4882a593Smuzhiyun }
782*4882a593Smuzhiyun }
783