xref: /OK3568_Linux_fs/kernel/drivers/net/ethernet/intel/e1000e/nvm.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0
2*4882a593Smuzhiyun /* Copyright(c) 1999 - 2018 Intel Corporation. */
3*4882a593Smuzhiyun 
4*4882a593Smuzhiyun #include "e1000.h"
5*4882a593Smuzhiyun 
6*4882a593Smuzhiyun /**
7*4882a593Smuzhiyun  *  e1000_raise_eec_clk - Raise EEPROM clock
8*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
9*4882a593Smuzhiyun  *  @eecd: pointer to the EEPROM
10*4882a593Smuzhiyun  *
11*4882a593Smuzhiyun  *  Enable/Raise the EEPROM clock bit.
12*4882a593Smuzhiyun  **/
e1000_raise_eec_clk(struct e1000_hw * hw,u32 * eecd)13*4882a593Smuzhiyun static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
14*4882a593Smuzhiyun {
15*4882a593Smuzhiyun 	*eecd = *eecd | E1000_EECD_SK;
16*4882a593Smuzhiyun 	ew32(EECD, *eecd);
17*4882a593Smuzhiyun 	e1e_flush();
18*4882a593Smuzhiyun 	udelay(hw->nvm.delay_usec);
19*4882a593Smuzhiyun }
20*4882a593Smuzhiyun 
21*4882a593Smuzhiyun /**
22*4882a593Smuzhiyun  *  e1000_lower_eec_clk - Lower EEPROM clock
23*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
24*4882a593Smuzhiyun  *  @eecd: pointer to the EEPROM
25*4882a593Smuzhiyun  *
26*4882a593Smuzhiyun  *  Clear/Lower the EEPROM clock bit.
27*4882a593Smuzhiyun  **/
e1000_lower_eec_clk(struct e1000_hw * hw,u32 * eecd)28*4882a593Smuzhiyun static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
29*4882a593Smuzhiyun {
30*4882a593Smuzhiyun 	*eecd = *eecd & ~E1000_EECD_SK;
31*4882a593Smuzhiyun 	ew32(EECD, *eecd);
32*4882a593Smuzhiyun 	e1e_flush();
33*4882a593Smuzhiyun 	udelay(hw->nvm.delay_usec);
34*4882a593Smuzhiyun }
35*4882a593Smuzhiyun 
36*4882a593Smuzhiyun /**
37*4882a593Smuzhiyun  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
38*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
39*4882a593Smuzhiyun  *  @data: data to send to the EEPROM
40*4882a593Smuzhiyun  *  @count: number of bits to shift out
41*4882a593Smuzhiyun  *
42*4882a593Smuzhiyun  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
43*4882a593Smuzhiyun  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
44*4882a593Smuzhiyun  *  In order to do this, "data" must be broken down into bits.
45*4882a593Smuzhiyun  **/
e1000_shift_out_eec_bits(struct e1000_hw * hw,u16 data,u16 count)46*4882a593Smuzhiyun static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
47*4882a593Smuzhiyun {
48*4882a593Smuzhiyun 	struct e1000_nvm_info *nvm = &hw->nvm;
49*4882a593Smuzhiyun 	u32 eecd = er32(EECD);
50*4882a593Smuzhiyun 	u32 mask;
51*4882a593Smuzhiyun 
52*4882a593Smuzhiyun 	mask = BIT(count - 1);
53*4882a593Smuzhiyun 	if (nvm->type == e1000_nvm_eeprom_spi)
54*4882a593Smuzhiyun 		eecd |= E1000_EECD_DO;
55*4882a593Smuzhiyun 
56*4882a593Smuzhiyun 	do {
57*4882a593Smuzhiyun 		eecd &= ~E1000_EECD_DI;
58*4882a593Smuzhiyun 
59*4882a593Smuzhiyun 		if (data & mask)
60*4882a593Smuzhiyun 			eecd |= E1000_EECD_DI;
61*4882a593Smuzhiyun 
62*4882a593Smuzhiyun 		ew32(EECD, eecd);
63*4882a593Smuzhiyun 		e1e_flush();
64*4882a593Smuzhiyun 
65*4882a593Smuzhiyun 		udelay(nvm->delay_usec);
66*4882a593Smuzhiyun 
67*4882a593Smuzhiyun 		e1000_raise_eec_clk(hw, &eecd);
68*4882a593Smuzhiyun 		e1000_lower_eec_clk(hw, &eecd);
69*4882a593Smuzhiyun 
70*4882a593Smuzhiyun 		mask >>= 1;
71*4882a593Smuzhiyun 	} while (mask);
72*4882a593Smuzhiyun 
73*4882a593Smuzhiyun 	eecd &= ~E1000_EECD_DI;
74*4882a593Smuzhiyun 	ew32(EECD, eecd);
75*4882a593Smuzhiyun }
76*4882a593Smuzhiyun 
77*4882a593Smuzhiyun /**
78*4882a593Smuzhiyun  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
79*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
80*4882a593Smuzhiyun  *  @count: number of bits to shift in
81*4882a593Smuzhiyun  *
82*4882a593Smuzhiyun  *  In order to read a register from the EEPROM, we need to shift 'count' bits
83*4882a593Smuzhiyun  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
84*4882a593Smuzhiyun  *  the EEPROM (setting the SK bit), and then reading the value of the data out
85*4882a593Smuzhiyun  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
86*4882a593Smuzhiyun  *  always be clear.
87*4882a593Smuzhiyun  **/
e1000_shift_in_eec_bits(struct e1000_hw * hw,u16 count)88*4882a593Smuzhiyun static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
89*4882a593Smuzhiyun {
90*4882a593Smuzhiyun 	u32 eecd;
91*4882a593Smuzhiyun 	u32 i;
92*4882a593Smuzhiyun 	u16 data;
93*4882a593Smuzhiyun 
94*4882a593Smuzhiyun 	eecd = er32(EECD);
95*4882a593Smuzhiyun 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
96*4882a593Smuzhiyun 	data = 0;
97*4882a593Smuzhiyun 
98*4882a593Smuzhiyun 	for (i = 0; i < count; i++) {
99*4882a593Smuzhiyun 		data <<= 1;
100*4882a593Smuzhiyun 		e1000_raise_eec_clk(hw, &eecd);
101*4882a593Smuzhiyun 
102*4882a593Smuzhiyun 		eecd = er32(EECD);
103*4882a593Smuzhiyun 
104*4882a593Smuzhiyun 		eecd &= ~E1000_EECD_DI;
105*4882a593Smuzhiyun 		if (eecd & E1000_EECD_DO)
106*4882a593Smuzhiyun 			data |= 1;
107*4882a593Smuzhiyun 
108*4882a593Smuzhiyun 		e1000_lower_eec_clk(hw, &eecd);
109*4882a593Smuzhiyun 	}
110*4882a593Smuzhiyun 
111*4882a593Smuzhiyun 	return data;
112*4882a593Smuzhiyun }
113*4882a593Smuzhiyun 
114*4882a593Smuzhiyun /**
115*4882a593Smuzhiyun  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
116*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
117*4882a593Smuzhiyun  *  @ee_reg: EEPROM flag for polling
118*4882a593Smuzhiyun  *
119*4882a593Smuzhiyun  *  Polls the EEPROM status bit for either read or write completion based
120*4882a593Smuzhiyun  *  upon the value of 'ee_reg'.
121*4882a593Smuzhiyun  **/
e1000e_poll_eerd_eewr_done(struct e1000_hw * hw,int ee_reg)122*4882a593Smuzhiyun s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
123*4882a593Smuzhiyun {
124*4882a593Smuzhiyun 	u32 attempts = 100000;
125*4882a593Smuzhiyun 	u32 i, reg = 0;
126*4882a593Smuzhiyun 
127*4882a593Smuzhiyun 	for (i = 0; i < attempts; i++) {
128*4882a593Smuzhiyun 		if (ee_reg == E1000_NVM_POLL_READ)
129*4882a593Smuzhiyun 			reg = er32(EERD);
130*4882a593Smuzhiyun 		else
131*4882a593Smuzhiyun 			reg = er32(EEWR);
132*4882a593Smuzhiyun 
133*4882a593Smuzhiyun 		if (reg & E1000_NVM_RW_REG_DONE)
134*4882a593Smuzhiyun 			return 0;
135*4882a593Smuzhiyun 
136*4882a593Smuzhiyun 		udelay(5);
137*4882a593Smuzhiyun 	}
138*4882a593Smuzhiyun 
139*4882a593Smuzhiyun 	return -E1000_ERR_NVM;
140*4882a593Smuzhiyun }
141*4882a593Smuzhiyun 
142*4882a593Smuzhiyun /**
143*4882a593Smuzhiyun  *  e1000e_acquire_nvm - Generic request for access to EEPROM
144*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
145*4882a593Smuzhiyun  *
146*4882a593Smuzhiyun  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
147*4882a593Smuzhiyun  *  Return successful if access grant bit set, else clear the request for
148*4882a593Smuzhiyun  *  EEPROM access and return -E1000_ERR_NVM (-1).
149*4882a593Smuzhiyun  **/
e1000e_acquire_nvm(struct e1000_hw * hw)150*4882a593Smuzhiyun s32 e1000e_acquire_nvm(struct e1000_hw *hw)
151*4882a593Smuzhiyun {
152*4882a593Smuzhiyun 	u32 eecd = er32(EECD);
153*4882a593Smuzhiyun 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
154*4882a593Smuzhiyun 
155*4882a593Smuzhiyun 	ew32(EECD, eecd | E1000_EECD_REQ);
156*4882a593Smuzhiyun 	eecd = er32(EECD);
157*4882a593Smuzhiyun 
158*4882a593Smuzhiyun 	while (timeout) {
159*4882a593Smuzhiyun 		if (eecd & E1000_EECD_GNT)
160*4882a593Smuzhiyun 			break;
161*4882a593Smuzhiyun 		udelay(5);
162*4882a593Smuzhiyun 		eecd = er32(EECD);
163*4882a593Smuzhiyun 		timeout--;
164*4882a593Smuzhiyun 	}
165*4882a593Smuzhiyun 
166*4882a593Smuzhiyun 	if (!timeout) {
167*4882a593Smuzhiyun 		eecd &= ~E1000_EECD_REQ;
168*4882a593Smuzhiyun 		ew32(EECD, eecd);
169*4882a593Smuzhiyun 		e_dbg("Could not acquire NVM grant\n");
170*4882a593Smuzhiyun 		return -E1000_ERR_NVM;
171*4882a593Smuzhiyun 	}
172*4882a593Smuzhiyun 
173*4882a593Smuzhiyun 	return 0;
174*4882a593Smuzhiyun }
175*4882a593Smuzhiyun 
176*4882a593Smuzhiyun /**
177*4882a593Smuzhiyun  *  e1000_standby_nvm - Return EEPROM to standby state
178*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
179*4882a593Smuzhiyun  *
180*4882a593Smuzhiyun  *  Return the EEPROM to a standby state.
181*4882a593Smuzhiyun  **/
e1000_standby_nvm(struct e1000_hw * hw)182*4882a593Smuzhiyun static void e1000_standby_nvm(struct e1000_hw *hw)
183*4882a593Smuzhiyun {
184*4882a593Smuzhiyun 	struct e1000_nvm_info *nvm = &hw->nvm;
185*4882a593Smuzhiyun 	u32 eecd = er32(EECD);
186*4882a593Smuzhiyun 
187*4882a593Smuzhiyun 	if (nvm->type == e1000_nvm_eeprom_spi) {
188*4882a593Smuzhiyun 		/* Toggle CS to flush commands */
189*4882a593Smuzhiyun 		eecd |= E1000_EECD_CS;
190*4882a593Smuzhiyun 		ew32(EECD, eecd);
191*4882a593Smuzhiyun 		e1e_flush();
192*4882a593Smuzhiyun 		udelay(nvm->delay_usec);
193*4882a593Smuzhiyun 		eecd &= ~E1000_EECD_CS;
194*4882a593Smuzhiyun 		ew32(EECD, eecd);
195*4882a593Smuzhiyun 		e1e_flush();
196*4882a593Smuzhiyun 		udelay(nvm->delay_usec);
197*4882a593Smuzhiyun 	}
198*4882a593Smuzhiyun }
199*4882a593Smuzhiyun 
200*4882a593Smuzhiyun /**
201*4882a593Smuzhiyun  *  e1000_stop_nvm - Terminate EEPROM command
202*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
203*4882a593Smuzhiyun  *
204*4882a593Smuzhiyun  *  Terminates the current command by inverting the EEPROM's chip select pin.
205*4882a593Smuzhiyun  **/
e1000_stop_nvm(struct e1000_hw * hw)206*4882a593Smuzhiyun static void e1000_stop_nvm(struct e1000_hw *hw)
207*4882a593Smuzhiyun {
208*4882a593Smuzhiyun 	u32 eecd;
209*4882a593Smuzhiyun 
210*4882a593Smuzhiyun 	eecd = er32(EECD);
211*4882a593Smuzhiyun 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
212*4882a593Smuzhiyun 		/* Pull CS high */
213*4882a593Smuzhiyun 		eecd |= E1000_EECD_CS;
214*4882a593Smuzhiyun 		e1000_lower_eec_clk(hw, &eecd);
215*4882a593Smuzhiyun 	}
216*4882a593Smuzhiyun }
217*4882a593Smuzhiyun 
218*4882a593Smuzhiyun /**
219*4882a593Smuzhiyun  *  e1000e_release_nvm - Release exclusive access to EEPROM
220*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
221*4882a593Smuzhiyun  *
222*4882a593Smuzhiyun  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
223*4882a593Smuzhiyun  **/
e1000e_release_nvm(struct e1000_hw * hw)224*4882a593Smuzhiyun void e1000e_release_nvm(struct e1000_hw *hw)
225*4882a593Smuzhiyun {
226*4882a593Smuzhiyun 	u32 eecd;
227*4882a593Smuzhiyun 
228*4882a593Smuzhiyun 	e1000_stop_nvm(hw);
229*4882a593Smuzhiyun 
230*4882a593Smuzhiyun 	eecd = er32(EECD);
231*4882a593Smuzhiyun 	eecd &= ~E1000_EECD_REQ;
232*4882a593Smuzhiyun 	ew32(EECD, eecd);
233*4882a593Smuzhiyun }
234*4882a593Smuzhiyun 
235*4882a593Smuzhiyun /**
236*4882a593Smuzhiyun  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
237*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
238*4882a593Smuzhiyun  *
239*4882a593Smuzhiyun  *  Setups the EEPROM for reading and writing.
240*4882a593Smuzhiyun  **/
e1000_ready_nvm_eeprom(struct e1000_hw * hw)241*4882a593Smuzhiyun static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
242*4882a593Smuzhiyun {
243*4882a593Smuzhiyun 	struct e1000_nvm_info *nvm = &hw->nvm;
244*4882a593Smuzhiyun 	u32 eecd = er32(EECD);
245*4882a593Smuzhiyun 	u8 spi_stat_reg;
246*4882a593Smuzhiyun 
247*4882a593Smuzhiyun 	if (nvm->type == e1000_nvm_eeprom_spi) {
248*4882a593Smuzhiyun 		u16 timeout = NVM_MAX_RETRY_SPI;
249*4882a593Smuzhiyun 
250*4882a593Smuzhiyun 		/* Clear SK and CS */
251*4882a593Smuzhiyun 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
252*4882a593Smuzhiyun 		ew32(EECD, eecd);
253*4882a593Smuzhiyun 		e1e_flush();
254*4882a593Smuzhiyun 		udelay(1);
255*4882a593Smuzhiyun 
256*4882a593Smuzhiyun 		/* Read "Status Register" repeatedly until the LSB is cleared.
257*4882a593Smuzhiyun 		 * The EEPROM will signal that the command has been completed
258*4882a593Smuzhiyun 		 * by clearing bit 0 of the internal status register.  If it's
259*4882a593Smuzhiyun 		 * not cleared within 'timeout', then error out.
260*4882a593Smuzhiyun 		 */
261*4882a593Smuzhiyun 		while (timeout) {
262*4882a593Smuzhiyun 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
263*4882a593Smuzhiyun 						 hw->nvm.opcode_bits);
264*4882a593Smuzhiyun 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
265*4882a593Smuzhiyun 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
266*4882a593Smuzhiyun 				break;
267*4882a593Smuzhiyun 
268*4882a593Smuzhiyun 			udelay(5);
269*4882a593Smuzhiyun 			e1000_standby_nvm(hw);
270*4882a593Smuzhiyun 			timeout--;
271*4882a593Smuzhiyun 		}
272*4882a593Smuzhiyun 
273*4882a593Smuzhiyun 		if (!timeout) {
274*4882a593Smuzhiyun 			e_dbg("SPI NVM Status error\n");
275*4882a593Smuzhiyun 			return -E1000_ERR_NVM;
276*4882a593Smuzhiyun 		}
277*4882a593Smuzhiyun 	}
278*4882a593Smuzhiyun 
279*4882a593Smuzhiyun 	return 0;
280*4882a593Smuzhiyun }
281*4882a593Smuzhiyun 
282*4882a593Smuzhiyun /**
283*4882a593Smuzhiyun  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
284*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
285*4882a593Smuzhiyun  *  @offset: offset of word in the EEPROM to read
286*4882a593Smuzhiyun  *  @words: number of words to read
287*4882a593Smuzhiyun  *  @data: word read from the EEPROM
288*4882a593Smuzhiyun  *
289*4882a593Smuzhiyun  *  Reads a 16 bit word from the EEPROM using the EERD register.
290*4882a593Smuzhiyun  **/
e1000e_read_nvm_eerd(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)291*4882a593Smuzhiyun s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
292*4882a593Smuzhiyun {
293*4882a593Smuzhiyun 	struct e1000_nvm_info *nvm = &hw->nvm;
294*4882a593Smuzhiyun 	u32 i, eerd = 0;
295*4882a593Smuzhiyun 	s32 ret_val = 0;
296*4882a593Smuzhiyun 
297*4882a593Smuzhiyun 	/* A check for invalid values:  offset too large, too many words,
298*4882a593Smuzhiyun 	 * too many words for the offset, and not enough words.
299*4882a593Smuzhiyun 	 */
300*4882a593Smuzhiyun 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
301*4882a593Smuzhiyun 	    (words == 0)) {
302*4882a593Smuzhiyun 		e_dbg("nvm parameter(s) out of bounds\n");
303*4882a593Smuzhiyun 		return -E1000_ERR_NVM;
304*4882a593Smuzhiyun 	}
305*4882a593Smuzhiyun 
306*4882a593Smuzhiyun 	for (i = 0; i < words; i++) {
307*4882a593Smuzhiyun 		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
308*4882a593Smuzhiyun 		    E1000_NVM_RW_REG_START;
309*4882a593Smuzhiyun 
310*4882a593Smuzhiyun 		ew32(EERD, eerd);
311*4882a593Smuzhiyun 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
312*4882a593Smuzhiyun 		if (ret_val) {
313*4882a593Smuzhiyun 			e_dbg("NVM read error: %d\n", ret_val);
314*4882a593Smuzhiyun 			break;
315*4882a593Smuzhiyun 		}
316*4882a593Smuzhiyun 
317*4882a593Smuzhiyun 		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
318*4882a593Smuzhiyun 	}
319*4882a593Smuzhiyun 
320*4882a593Smuzhiyun 	return ret_val;
321*4882a593Smuzhiyun }
322*4882a593Smuzhiyun 
323*4882a593Smuzhiyun /**
324*4882a593Smuzhiyun  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
325*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
326*4882a593Smuzhiyun  *  @offset: offset within the EEPROM to be written to
327*4882a593Smuzhiyun  *  @words: number of words to write
328*4882a593Smuzhiyun  *  @data: 16 bit word(s) to be written to the EEPROM
329*4882a593Smuzhiyun  *
330*4882a593Smuzhiyun  *  Writes data to EEPROM at offset using SPI interface.
331*4882a593Smuzhiyun  *
332*4882a593Smuzhiyun  *  If e1000e_update_nvm_checksum is not called after this function , the
333*4882a593Smuzhiyun  *  EEPROM will most likely contain an invalid checksum.
334*4882a593Smuzhiyun  **/
e1000e_write_nvm_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)335*4882a593Smuzhiyun s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
336*4882a593Smuzhiyun {
337*4882a593Smuzhiyun 	struct e1000_nvm_info *nvm = &hw->nvm;
338*4882a593Smuzhiyun 	s32 ret_val = -E1000_ERR_NVM;
339*4882a593Smuzhiyun 	u16 widx = 0;
340*4882a593Smuzhiyun 
341*4882a593Smuzhiyun 	/* A check for invalid values:  offset too large, too many words,
342*4882a593Smuzhiyun 	 * and not enough words.
343*4882a593Smuzhiyun 	 */
344*4882a593Smuzhiyun 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
345*4882a593Smuzhiyun 	    (words == 0)) {
346*4882a593Smuzhiyun 		e_dbg("nvm parameter(s) out of bounds\n");
347*4882a593Smuzhiyun 		return -E1000_ERR_NVM;
348*4882a593Smuzhiyun 	}
349*4882a593Smuzhiyun 
350*4882a593Smuzhiyun 	while (widx < words) {
351*4882a593Smuzhiyun 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
352*4882a593Smuzhiyun 
353*4882a593Smuzhiyun 		ret_val = nvm->ops.acquire(hw);
354*4882a593Smuzhiyun 		if (ret_val)
355*4882a593Smuzhiyun 			return ret_val;
356*4882a593Smuzhiyun 
357*4882a593Smuzhiyun 		ret_val = e1000_ready_nvm_eeprom(hw);
358*4882a593Smuzhiyun 		if (ret_val) {
359*4882a593Smuzhiyun 			nvm->ops.release(hw);
360*4882a593Smuzhiyun 			return ret_val;
361*4882a593Smuzhiyun 		}
362*4882a593Smuzhiyun 
363*4882a593Smuzhiyun 		e1000_standby_nvm(hw);
364*4882a593Smuzhiyun 
365*4882a593Smuzhiyun 		/* Send the WRITE ENABLE command (8 bit opcode) */
366*4882a593Smuzhiyun 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
367*4882a593Smuzhiyun 					 nvm->opcode_bits);
368*4882a593Smuzhiyun 
369*4882a593Smuzhiyun 		e1000_standby_nvm(hw);
370*4882a593Smuzhiyun 
371*4882a593Smuzhiyun 		/* Some SPI eeproms use the 8th address bit embedded in the
372*4882a593Smuzhiyun 		 * opcode
373*4882a593Smuzhiyun 		 */
374*4882a593Smuzhiyun 		if ((nvm->address_bits == 8) && (offset >= 128))
375*4882a593Smuzhiyun 			write_opcode |= NVM_A8_OPCODE_SPI;
376*4882a593Smuzhiyun 
377*4882a593Smuzhiyun 		/* Send the Write command (8-bit opcode + addr) */
378*4882a593Smuzhiyun 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
379*4882a593Smuzhiyun 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
380*4882a593Smuzhiyun 					 nvm->address_bits);
381*4882a593Smuzhiyun 
382*4882a593Smuzhiyun 		/* Loop to allow for up to whole page write of eeprom */
383*4882a593Smuzhiyun 		while (widx < words) {
384*4882a593Smuzhiyun 			u16 word_out = data[widx];
385*4882a593Smuzhiyun 
386*4882a593Smuzhiyun 			word_out = (word_out >> 8) | (word_out << 8);
387*4882a593Smuzhiyun 			e1000_shift_out_eec_bits(hw, word_out, 16);
388*4882a593Smuzhiyun 			widx++;
389*4882a593Smuzhiyun 
390*4882a593Smuzhiyun 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
391*4882a593Smuzhiyun 				e1000_standby_nvm(hw);
392*4882a593Smuzhiyun 				break;
393*4882a593Smuzhiyun 			}
394*4882a593Smuzhiyun 		}
395*4882a593Smuzhiyun 		usleep_range(10000, 11000);
396*4882a593Smuzhiyun 		nvm->ops.release(hw);
397*4882a593Smuzhiyun 	}
398*4882a593Smuzhiyun 
399*4882a593Smuzhiyun 	return ret_val;
400*4882a593Smuzhiyun }
401*4882a593Smuzhiyun 
402*4882a593Smuzhiyun /**
403*4882a593Smuzhiyun  *  e1000_read_pba_string_generic - Read device part number
404*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
405*4882a593Smuzhiyun  *  @pba_num: pointer to device part number
406*4882a593Smuzhiyun  *  @pba_num_size: size of part number buffer
407*4882a593Smuzhiyun  *
408*4882a593Smuzhiyun  *  Reads the product board assembly (PBA) number from the EEPROM and stores
409*4882a593Smuzhiyun  *  the value in pba_num.
410*4882a593Smuzhiyun  **/
e1000_read_pba_string_generic(struct e1000_hw * hw,u8 * pba_num,u32 pba_num_size)411*4882a593Smuzhiyun s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
412*4882a593Smuzhiyun 				  u32 pba_num_size)
413*4882a593Smuzhiyun {
414*4882a593Smuzhiyun 	s32 ret_val;
415*4882a593Smuzhiyun 	u16 nvm_data;
416*4882a593Smuzhiyun 	u16 pba_ptr;
417*4882a593Smuzhiyun 	u16 offset;
418*4882a593Smuzhiyun 	u16 length;
419*4882a593Smuzhiyun 
420*4882a593Smuzhiyun 	if (pba_num == NULL) {
421*4882a593Smuzhiyun 		e_dbg("PBA string buffer was null\n");
422*4882a593Smuzhiyun 		return -E1000_ERR_INVALID_ARGUMENT;
423*4882a593Smuzhiyun 	}
424*4882a593Smuzhiyun 
425*4882a593Smuzhiyun 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
426*4882a593Smuzhiyun 	if (ret_val) {
427*4882a593Smuzhiyun 		e_dbg("NVM Read Error\n");
428*4882a593Smuzhiyun 		return ret_val;
429*4882a593Smuzhiyun 	}
430*4882a593Smuzhiyun 
431*4882a593Smuzhiyun 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
432*4882a593Smuzhiyun 	if (ret_val) {
433*4882a593Smuzhiyun 		e_dbg("NVM Read Error\n");
434*4882a593Smuzhiyun 		return ret_val;
435*4882a593Smuzhiyun 	}
436*4882a593Smuzhiyun 
437*4882a593Smuzhiyun 	/* if nvm_data is not ptr guard the PBA must be in legacy format which
438*4882a593Smuzhiyun 	 * means pba_ptr is actually our second data word for the PBA number
439*4882a593Smuzhiyun 	 * and we can decode it into an ascii string
440*4882a593Smuzhiyun 	 */
441*4882a593Smuzhiyun 	if (nvm_data != NVM_PBA_PTR_GUARD) {
442*4882a593Smuzhiyun 		e_dbg("NVM PBA number is not stored as string\n");
443*4882a593Smuzhiyun 
444*4882a593Smuzhiyun 		/* make sure callers buffer is big enough to store the PBA */
445*4882a593Smuzhiyun 		if (pba_num_size < E1000_PBANUM_LENGTH) {
446*4882a593Smuzhiyun 			e_dbg("PBA string buffer too small\n");
447*4882a593Smuzhiyun 			return E1000_ERR_NO_SPACE;
448*4882a593Smuzhiyun 		}
449*4882a593Smuzhiyun 
450*4882a593Smuzhiyun 		/* extract hex string from data and pba_ptr */
451*4882a593Smuzhiyun 		pba_num[0] = (nvm_data >> 12) & 0xF;
452*4882a593Smuzhiyun 		pba_num[1] = (nvm_data >> 8) & 0xF;
453*4882a593Smuzhiyun 		pba_num[2] = (nvm_data >> 4) & 0xF;
454*4882a593Smuzhiyun 		pba_num[3] = nvm_data & 0xF;
455*4882a593Smuzhiyun 		pba_num[4] = (pba_ptr >> 12) & 0xF;
456*4882a593Smuzhiyun 		pba_num[5] = (pba_ptr >> 8) & 0xF;
457*4882a593Smuzhiyun 		pba_num[6] = '-';
458*4882a593Smuzhiyun 		pba_num[7] = 0;
459*4882a593Smuzhiyun 		pba_num[8] = (pba_ptr >> 4) & 0xF;
460*4882a593Smuzhiyun 		pba_num[9] = pba_ptr & 0xF;
461*4882a593Smuzhiyun 
462*4882a593Smuzhiyun 		/* put a null character on the end of our string */
463*4882a593Smuzhiyun 		pba_num[10] = '\0';
464*4882a593Smuzhiyun 
465*4882a593Smuzhiyun 		/* switch all the data but the '-' to hex char */
466*4882a593Smuzhiyun 		for (offset = 0; offset < 10; offset++) {
467*4882a593Smuzhiyun 			if (pba_num[offset] < 0xA)
468*4882a593Smuzhiyun 				pba_num[offset] += '0';
469*4882a593Smuzhiyun 			else if (pba_num[offset] < 0x10)
470*4882a593Smuzhiyun 				pba_num[offset] += 'A' - 0xA;
471*4882a593Smuzhiyun 		}
472*4882a593Smuzhiyun 
473*4882a593Smuzhiyun 		return 0;
474*4882a593Smuzhiyun 	}
475*4882a593Smuzhiyun 
476*4882a593Smuzhiyun 	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
477*4882a593Smuzhiyun 	if (ret_val) {
478*4882a593Smuzhiyun 		e_dbg("NVM Read Error\n");
479*4882a593Smuzhiyun 		return ret_val;
480*4882a593Smuzhiyun 	}
481*4882a593Smuzhiyun 
482*4882a593Smuzhiyun 	if (length == 0xFFFF || length == 0) {
483*4882a593Smuzhiyun 		e_dbg("NVM PBA number section invalid length\n");
484*4882a593Smuzhiyun 		return -E1000_ERR_NVM_PBA_SECTION;
485*4882a593Smuzhiyun 	}
486*4882a593Smuzhiyun 	/* check if pba_num buffer is big enough */
487*4882a593Smuzhiyun 	if (pba_num_size < (((u32)length * 2) - 1)) {
488*4882a593Smuzhiyun 		e_dbg("PBA string buffer too small\n");
489*4882a593Smuzhiyun 		return -E1000_ERR_NO_SPACE;
490*4882a593Smuzhiyun 	}
491*4882a593Smuzhiyun 
492*4882a593Smuzhiyun 	/* trim pba length from start of string */
493*4882a593Smuzhiyun 	pba_ptr++;
494*4882a593Smuzhiyun 	length--;
495*4882a593Smuzhiyun 
496*4882a593Smuzhiyun 	for (offset = 0; offset < length; offset++) {
497*4882a593Smuzhiyun 		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
498*4882a593Smuzhiyun 		if (ret_val) {
499*4882a593Smuzhiyun 			e_dbg("NVM Read Error\n");
500*4882a593Smuzhiyun 			return ret_val;
501*4882a593Smuzhiyun 		}
502*4882a593Smuzhiyun 		pba_num[offset * 2] = (u8)(nvm_data >> 8);
503*4882a593Smuzhiyun 		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
504*4882a593Smuzhiyun 	}
505*4882a593Smuzhiyun 	pba_num[offset * 2] = '\0';
506*4882a593Smuzhiyun 
507*4882a593Smuzhiyun 	return 0;
508*4882a593Smuzhiyun }
509*4882a593Smuzhiyun 
510*4882a593Smuzhiyun /**
511*4882a593Smuzhiyun  *  e1000_read_mac_addr_generic - Read device MAC address
512*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
513*4882a593Smuzhiyun  *
514*4882a593Smuzhiyun  *  Reads the device MAC address from the EEPROM and stores the value.
515*4882a593Smuzhiyun  *  Since devices with two ports use the same EEPROM, we increment the
516*4882a593Smuzhiyun  *  last bit in the MAC address for the second port.
517*4882a593Smuzhiyun  **/
e1000_read_mac_addr_generic(struct e1000_hw * hw)518*4882a593Smuzhiyun s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
519*4882a593Smuzhiyun {
520*4882a593Smuzhiyun 	u32 rar_high;
521*4882a593Smuzhiyun 	u32 rar_low;
522*4882a593Smuzhiyun 	u16 i;
523*4882a593Smuzhiyun 
524*4882a593Smuzhiyun 	rar_high = er32(RAH(0));
525*4882a593Smuzhiyun 	rar_low = er32(RAL(0));
526*4882a593Smuzhiyun 
527*4882a593Smuzhiyun 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
528*4882a593Smuzhiyun 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
529*4882a593Smuzhiyun 
530*4882a593Smuzhiyun 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
531*4882a593Smuzhiyun 		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
532*4882a593Smuzhiyun 
533*4882a593Smuzhiyun 	for (i = 0; i < ETH_ALEN; i++)
534*4882a593Smuzhiyun 		hw->mac.addr[i] = hw->mac.perm_addr[i];
535*4882a593Smuzhiyun 
536*4882a593Smuzhiyun 	return 0;
537*4882a593Smuzhiyun }
538*4882a593Smuzhiyun 
539*4882a593Smuzhiyun /**
540*4882a593Smuzhiyun  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
541*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
542*4882a593Smuzhiyun  *
543*4882a593Smuzhiyun  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
544*4882a593Smuzhiyun  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
545*4882a593Smuzhiyun  **/
e1000e_validate_nvm_checksum_generic(struct e1000_hw * hw)546*4882a593Smuzhiyun s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
547*4882a593Smuzhiyun {
548*4882a593Smuzhiyun 	s32 ret_val;
549*4882a593Smuzhiyun 	u16 checksum = 0;
550*4882a593Smuzhiyun 	u16 i, nvm_data;
551*4882a593Smuzhiyun 
552*4882a593Smuzhiyun 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
553*4882a593Smuzhiyun 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
554*4882a593Smuzhiyun 		if (ret_val) {
555*4882a593Smuzhiyun 			e_dbg("NVM Read Error\n");
556*4882a593Smuzhiyun 			return ret_val;
557*4882a593Smuzhiyun 		}
558*4882a593Smuzhiyun 		checksum += nvm_data;
559*4882a593Smuzhiyun 	}
560*4882a593Smuzhiyun 
561*4882a593Smuzhiyun 	if (checksum != (u16)NVM_SUM) {
562*4882a593Smuzhiyun 		e_dbg("NVM Checksum Invalid\n");
563*4882a593Smuzhiyun 		return -E1000_ERR_NVM;
564*4882a593Smuzhiyun 	}
565*4882a593Smuzhiyun 
566*4882a593Smuzhiyun 	return 0;
567*4882a593Smuzhiyun }
568*4882a593Smuzhiyun 
569*4882a593Smuzhiyun /**
570*4882a593Smuzhiyun  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
571*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
572*4882a593Smuzhiyun  *
573*4882a593Smuzhiyun  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
574*4882a593Smuzhiyun  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
575*4882a593Smuzhiyun  *  value to the EEPROM.
576*4882a593Smuzhiyun  **/
e1000e_update_nvm_checksum_generic(struct e1000_hw * hw)577*4882a593Smuzhiyun s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
578*4882a593Smuzhiyun {
579*4882a593Smuzhiyun 	s32 ret_val;
580*4882a593Smuzhiyun 	u16 checksum = 0;
581*4882a593Smuzhiyun 	u16 i, nvm_data;
582*4882a593Smuzhiyun 
583*4882a593Smuzhiyun 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
584*4882a593Smuzhiyun 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
585*4882a593Smuzhiyun 		if (ret_val) {
586*4882a593Smuzhiyun 			e_dbg("NVM Read Error while updating checksum.\n");
587*4882a593Smuzhiyun 			return ret_val;
588*4882a593Smuzhiyun 		}
589*4882a593Smuzhiyun 		checksum += nvm_data;
590*4882a593Smuzhiyun 	}
591*4882a593Smuzhiyun 	checksum = (u16)NVM_SUM - checksum;
592*4882a593Smuzhiyun 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
593*4882a593Smuzhiyun 	if (ret_val)
594*4882a593Smuzhiyun 		e_dbg("NVM Write Error while updating checksum.\n");
595*4882a593Smuzhiyun 
596*4882a593Smuzhiyun 	return ret_val;
597*4882a593Smuzhiyun }
598*4882a593Smuzhiyun 
599*4882a593Smuzhiyun /**
600*4882a593Smuzhiyun  *  e1000e_reload_nvm_generic - Reloads EEPROM
601*4882a593Smuzhiyun  *  @hw: pointer to the HW structure
602*4882a593Smuzhiyun  *
603*4882a593Smuzhiyun  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
604*4882a593Smuzhiyun  *  extended control register.
605*4882a593Smuzhiyun  **/
e1000e_reload_nvm_generic(struct e1000_hw * hw)606*4882a593Smuzhiyun void e1000e_reload_nvm_generic(struct e1000_hw *hw)
607*4882a593Smuzhiyun {
608*4882a593Smuzhiyun 	u32 ctrl_ext;
609*4882a593Smuzhiyun 
610*4882a593Smuzhiyun 	usleep_range(10, 20);
611*4882a593Smuzhiyun 	ctrl_ext = er32(CTRL_EXT);
612*4882a593Smuzhiyun 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
613*4882a593Smuzhiyun 	ew32(CTRL_EXT, ctrl_ext);
614*4882a593Smuzhiyun 	e1e_flush();
615*4882a593Smuzhiyun }
616