xref: /OK3568_Linux_fs/kernel/drivers/mmc/host/sdhci-msm.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4  *
5  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/qcom_scm.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/interconnect.h>
19 #include <linux/pinctrl/consumer.h>
20 #include <linux/reset.h>
21 
22 #include "sdhci-pltfm.h"
23 #include "cqhci.h"
24 
25 #define CORE_MCI_VERSION		0x50
26 #define CORE_VERSION_MAJOR_SHIFT	28
27 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
28 #define CORE_VERSION_MINOR_MASK		0xff
29 
30 #define CORE_MCI_GENERICS		0x70
31 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
32 
33 #define HC_MODE_EN		0x1
34 #define CORE_POWER		0x0
35 #define CORE_SW_RST		BIT(7)
36 #define FF_CLK_SW_RST_DIS	BIT(13)
37 
38 #define CORE_PWRCTL_BUS_OFF	BIT(0)
39 #define CORE_PWRCTL_BUS_ON	BIT(1)
40 #define CORE_PWRCTL_IO_LOW	BIT(2)
41 #define CORE_PWRCTL_IO_HIGH	BIT(3)
42 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
43 #define CORE_PWRCTL_BUS_FAIL    BIT(1)
44 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
45 #define CORE_PWRCTL_IO_FAIL     BIT(3)
46 #define REQ_BUS_OFF		BIT(0)
47 #define REQ_BUS_ON		BIT(1)
48 #define REQ_IO_LOW		BIT(2)
49 #define REQ_IO_HIGH		BIT(3)
50 #define INT_MASK		0xf
51 #define MAX_PHASES		16
52 #define CORE_DLL_LOCK		BIT(7)
53 #define CORE_DDR_DLL_LOCK	BIT(11)
54 #define CORE_DLL_EN		BIT(16)
55 #define CORE_CDR_EN		BIT(17)
56 #define CORE_CK_OUT_EN		BIT(18)
57 #define CORE_CDR_EXT_EN		BIT(19)
58 #define CORE_DLL_PDN		BIT(29)
59 #define CORE_DLL_RST		BIT(30)
60 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
61 
62 #define CORE_DDR_CAL_EN		BIT(0)
63 #define CORE_FLL_CYCLE_CNT	BIT(18)
64 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
65 
66 #define DLL_USR_CTL_POR_VAL	0x10800
67 #define ENABLE_DLL_LOCK_STATUS	BIT(26)
68 #define FINE_TUNE_MODE_EN	BIT(27)
69 #define BIAS_OK_SIGNAL		BIT(29)
70 
71 #define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
72 #define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
73 
74 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
75 #define CORE_CLK_PWRSAVE	BIT(1)
76 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
77 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
78 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
79 #define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
80 #define CORE_IO_PAD_PWR_SWITCH	BIT(16)
81 #define CORE_HC_SELECT_IN_EN	BIT(18)
82 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
83 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
84 
85 #define CORE_3_0V_SUPPORT	BIT(25)
86 #define CORE_1_8V_SUPPORT	BIT(26)
87 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
88 
89 #define CORE_CSR_CDC_CTLR_CFG0		0x130
90 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
91 #define CORE_HW_AUTOCAL_ENA		BIT(17)
92 
93 #define CORE_CSR_CDC_CTLR_CFG1		0x134
94 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
95 #define CORE_TIMER_ENA			BIT(16)
96 
97 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
98 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
99 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
100 #define CORE_CDC_OFFSET_CFG		0x14C
101 #define CORE_CSR_CDC_DELAY_CFG		0x150
102 #define CORE_CDC_SLAVE_DDA_CFG		0x160
103 #define CORE_CSR_CDC_STATUS0		0x164
104 #define CORE_CALIBRATION_DONE		BIT(0)
105 
106 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
107 
108 #define CORE_CSR_CDC_GEN_CFG		0x178
109 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
110 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
111 
112 #define CORE_CDC_T4_DLY_SEL		BIT(0)
113 #define CORE_CMDIN_RCLK_EN		BIT(1)
114 #define CORE_START_CDC_TRAFFIC		BIT(6)
115 
116 #define CORE_PWRSAVE_DLL	BIT(3)
117 
118 #define DDR_CONFIG_POR_VAL	0x80040873
119 
120 
121 #define INVALID_TUNING_PHASE	-1
122 #define SDHCI_MSM_MIN_CLOCK	400000
123 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
124 
125 #define CDR_SELEXT_SHIFT	20
126 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
127 #define CMUX_SHIFT_PHASE_SHIFT	24
128 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
129 
130 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
131 
132 /* Timeout value to avoid infinite waiting for pwr_irq */
133 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
134 
135 /* Max load for eMMC Vdd-io supply */
136 #define MMC_VQMMC_MAX_LOAD_UA	325000
137 
138 #define msm_host_readl(msm_host, host, offset) \
139 	msm_host->var_ops->msm_readl_relaxed(host, offset)
140 
141 #define msm_host_writel(msm_host, val, host, offset) \
142 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
143 
144 /* CQHCI vendor specific registers */
145 #define CQHCI_VENDOR_CFG1	0xA00
146 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
147 
148 struct sdhci_msm_offset {
149 	u32 core_hc_mode;
150 	u32 core_mci_data_cnt;
151 	u32 core_mci_status;
152 	u32 core_mci_fifo_cnt;
153 	u32 core_mci_version;
154 	u32 core_generics;
155 	u32 core_testbus_config;
156 	u32 core_testbus_sel2_bit;
157 	u32 core_testbus_ena;
158 	u32 core_testbus_sel2;
159 	u32 core_pwrctl_status;
160 	u32 core_pwrctl_mask;
161 	u32 core_pwrctl_clear;
162 	u32 core_pwrctl_ctl;
163 	u32 core_sdcc_debug_reg;
164 	u32 core_dll_config;
165 	u32 core_dll_status;
166 	u32 core_vendor_spec;
167 	u32 core_vendor_spec_adma_err_addr0;
168 	u32 core_vendor_spec_adma_err_addr1;
169 	u32 core_vendor_spec_func2;
170 	u32 core_vendor_spec_capabilities0;
171 	u32 core_ddr_200_cfg;
172 	u32 core_vendor_spec3;
173 	u32 core_dll_config_2;
174 	u32 core_dll_config_3;
175 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
176 	u32 core_ddr_config;
177 	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
178 };
179 
180 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
181 	.core_mci_data_cnt = 0x35c,
182 	.core_mci_status = 0x324,
183 	.core_mci_fifo_cnt = 0x308,
184 	.core_mci_version = 0x318,
185 	.core_generics = 0x320,
186 	.core_testbus_config = 0x32c,
187 	.core_testbus_sel2_bit = 3,
188 	.core_testbus_ena = (1 << 31),
189 	.core_testbus_sel2 = (1 << 3),
190 	.core_pwrctl_status = 0x240,
191 	.core_pwrctl_mask = 0x244,
192 	.core_pwrctl_clear = 0x248,
193 	.core_pwrctl_ctl = 0x24c,
194 	.core_sdcc_debug_reg = 0x358,
195 	.core_dll_config = 0x200,
196 	.core_dll_status = 0x208,
197 	.core_vendor_spec = 0x20c,
198 	.core_vendor_spec_adma_err_addr0 = 0x214,
199 	.core_vendor_spec_adma_err_addr1 = 0x218,
200 	.core_vendor_spec_func2 = 0x210,
201 	.core_vendor_spec_capabilities0 = 0x21c,
202 	.core_ddr_200_cfg = 0x224,
203 	.core_vendor_spec3 = 0x250,
204 	.core_dll_config_2 = 0x254,
205 	.core_dll_config_3 = 0x258,
206 	.core_ddr_config = 0x25c,
207 	.core_dll_usr_ctl = 0x388,
208 };
209 
210 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
211 	.core_hc_mode = 0x78,
212 	.core_mci_data_cnt = 0x30,
213 	.core_mci_status = 0x34,
214 	.core_mci_fifo_cnt = 0x44,
215 	.core_mci_version = 0x050,
216 	.core_generics = 0x70,
217 	.core_testbus_config = 0x0cc,
218 	.core_testbus_sel2_bit = 4,
219 	.core_testbus_ena = (1 << 3),
220 	.core_testbus_sel2 = (1 << 4),
221 	.core_pwrctl_status = 0xdc,
222 	.core_pwrctl_mask = 0xe0,
223 	.core_pwrctl_clear = 0xe4,
224 	.core_pwrctl_ctl = 0xe8,
225 	.core_sdcc_debug_reg = 0x124,
226 	.core_dll_config = 0x100,
227 	.core_dll_status = 0x108,
228 	.core_vendor_spec = 0x10c,
229 	.core_vendor_spec_adma_err_addr0 = 0x114,
230 	.core_vendor_spec_adma_err_addr1 = 0x118,
231 	.core_vendor_spec_func2 = 0x110,
232 	.core_vendor_spec_capabilities0 = 0x11c,
233 	.core_ddr_200_cfg = 0x184,
234 	.core_vendor_spec3 = 0x1b0,
235 	.core_dll_config_2 = 0x1b4,
236 	.core_ddr_config_old = 0x1b8,
237 	.core_ddr_config = 0x1bc,
238 };
239 
240 struct sdhci_msm_variant_ops {
241 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
242 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
243 			u32 offset);
244 };
245 
246 /*
247  * From V5, register spaces have changed. Wrap this info in a structure
248  * and choose the data_structure based on version info mentioned in DT.
249  */
250 struct sdhci_msm_variant_info {
251 	bool mci_removed;
252 	bool restore_dll_config;
253 	bool uses_tassadar_dll;
254 	const struct sdhci_msm_variant_ops *var_ops;
255 	const struct sdhci_msm_offset *offset;
256 };
257 
258 struct sdhci_msm_host {
259 	struct platform_device *pdev;
260 	void __iomem *core_mem;	/* MSM SDCC mapped address */
261 	void __iomem *ice_mem;	/* MSM ICE mapped address (if available) */
262 	int pwr_irq;		/* power irq */
263 	struct clk *bus_clk;	/* SDHC bus voter clock */
264 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
265 	/* core, iface, cal, sleep, and ice clocks */
266 	struct clk_bulk_data bulk_clks[5];
267 	unsigned long clk_rate;
268 	struct mmc_host *mmc;
269 	struct opp_table *opp_table;
270 	bool use_14lpp_dll_reset;
271 	bool tuning_done;
272 	bool calibration_done;
273 	u8 saved_tuning_phase;
274 	bool use_cdclp533;
275 	u32 curr_pwr_state;
276 	u32 curr_io_level;
277 	wait_queue_head_t pwr_irq_wait;
278 	bool pwr_irq_flag;
279 	u32 caps_0;
280 	bool mci_removed;
281 	bool restore_dll_config;
282 	const struct sdhci_msm_variant_ops *var_ops;
283 	const struct sdhci_msm_offset *offset;
284 	bool use_cdr;
285 	u32 transfer_mode;
286 	bool updated_ddr_cfg;
287 	bool uses_tassadar_dll;
288 	u32 dll_config;
289 	u32 ddr_config;
290 	bool vqmmc_enabled;
291 };
292 
sdhci_priv_msm_offset(struct sdhci_host * host)293 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
294 {
295 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
296 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
297 
298 	return msm_host->offset;
299 }
300 
301 /*
302  * APIs to read/write to vendor specific registers which were there in the
303  * core_mem region before MCI was removed.
304  */
sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host * host,u32 offset)305 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
306 		u32 offset)
307 {
308 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
309 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
310 
311 	return readl_relaxed(msm_host->core_mem + offset);
312 }
313 
sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host * host,u32 offset)314 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
315 		u32 offset)
316 {
317 	return readl_relaxed(host->ioaddr + offset);
318 }
319 
sdhci_msm_mci_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)320 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
321 		struct sdhci_host *host, u32 offset)
322 {
323 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
324 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
325 
326 	writel_relaxed(val, msm_host->core_mem + offset);
327 }
328 
sdhci_msm_v5_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)329 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
330 		struct sdhci_host *host, u32 offset)
331 {
332 	writel_relaxed(val, host->ioaddr + offset);
333 }
334 
msm_get_clock_rate_for_bus_mode(struct sdhci_host * host,unsigned int clock)335 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
336 						    unsigned int clock)
337 {
338 	struct mmc_ios ios = host->mmc->ios;
339 	/*
340 	 * The SDHC requires internal clock frequency to be double the
341 	 * actual clock that will be set for DDR mode. The controller
342 	 * uses the faster clock(100/400MHz) for some of its parts and
343 	 * send the actual required clock (50/200MHz) to the card.
344 	 */
345 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
346 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
347 	    ios.timing == MMC_TIMING_MMC_HS400 ||
348 	    host->flags & SDHCI_HS400_TUNING)
349 		clock *= 2;
350 	return clock;
351 }
352 
msm_set_clock_rate_for_bus_mode(struct sdhci_host * host,unsigned int clock)353 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
354 					    unsigned int clock)
355 {
356 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
357 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
358 	struct mmc_ios curr_ios = host->mmc->ios;
359 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
360 	int rc;
361 
362 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
363 	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock);
364 	if (rc) {
365 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
366 		       mmc_hostname(host->mmc), clock,
367 		       curr_ios.timing);
368 		return;
369 	}
370 	msm_host->clk_rate = clock;
371 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
372 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
373 		 curr_ios.timing);
374 }
375 
376 /* Platform specific tuning */
msm_dll_poll_ck_out_en(struct sdhci_host * host,u8 poll)377 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
378 {
379 	u32 wait_cnt = 50;
380 	u8 ck_out_en;
381 	struct mmc_host *mmc = host->mmc;
382 	const struct sdhci_msm_offset *msm_offset =
383 					sdhci_priv_msm_offset(host);
384 
385 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
386 	ck_out_en = !!(readl_relaxed(host->ioaddr +
387 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
388 
389 	while (ck_out_en != poll) {
390 		if (--wait_cnt == 0) {
391 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
392 			       mmc_hostname(mmc), poll);
393 			return -ETIMEDOUT;
394 		}
395 		udelay(1);
396 
397 		ck_out_en = !!(readl_relaxed(host->ioaddr +
398 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
399 	}
400 
401 	return 0;
402 }
403 
msm_config_cm_dll_phase(struct sdhci_host * host,u8 phase)404 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
405 {
406 	int rc;
407 	static const u8 grey_coded_phase_table[] = {
408 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
409 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
410 	};
411 	unsigned long flags;
412 	u32 config;
413 	struct mmc_host *mmc = host->mmc;
414 	const struct sdhci_msm_offset *msm_offset =
415 					sdhci_priv_msm_offset(host);
416 
417 	if (phase > 0xf)
418 		return -EINVAL;
419 
420 	spin_lock_irqsave(&host->lock, flags);
421 
422 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
423 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
424 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
425 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
426 
427 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
428 	rc = msm_dll_poll_ck_out_en(host, 0);
429 	if (rc)
430 		goto err_out;
431 
432 	/*
433 	 * Write the selected DLL clock output phase (0 ... 15)
434 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
435 	 */
436 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
437 	config &= ~CDR_SELEXT_MASK;
438 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
439 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
440 
441 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
442 	config |= CORE_CK_OUT_EN;
443 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
444 
445 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
446 	rc = msm_dll_poll_ck_out_en(host, 1);
447 	if (rc)
448 		goto err_out;
449 
450 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
451 	config |= CORE_CDR_EN;
452 	config &= ~CORE_CDR_EXT_EN;
453 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
454 	goto out;
455 
456 err_out:
457 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
458 	       mmc_hostname(mmc), phase);
459 out:
460 	spin_unlock_irqrestore(&host->lock, flags);
461 	return rc;
462 }
463 
464 /*
465  * Find out the greatest range of consecuitive selected
466  * DLL clock output phases that can be used as sampling
467  * setting for SD3.0 UHS-I card read operation (in SDR104
468  * timing mode) or for eMMC4.5 card read operation (in
469  * HS400/HS200 timing mode).
470  * Select the 3/4 of the range and configure the DLL with the
471  * selected DLL clock output phase.
472  */
473 
msm_find_most_appropriate_phase(struct sdhci_host * host,u8 * phase_table,u8 total_phases)474 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
475 					   u8 *phase_table, u8 total_phases)
476 {
477 	int ret;
478 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
479 	u8 phases_per_row[MAX_PHASES] = { 0 };
480 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
481 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
482 	bool phase_0_found = false, phase_15_found = false;
483 	struct mmc_host *mmc = host->mmc;
484 
485 	if (!total_phases || (total_phases > MAX_PHASES)) {
486 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
487 		       mmc_hostname(mmc), total_phases);
488 		return -EINVAL;
489 	}
490 
491 	for (cnt = 0; cnt < total_phases; cnt++) {
492 		ranges[row_index][col_index] = phase_table[cnt];
493 		phases_per_row[row_index] += 1;
494 		col_index++;
495 
496 		if ((cnt + 1) == total_phases) {
497 			continue;
498 		/* check if next phase in phase_table is consecutive or not */
499 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
500 			row_index++;
501 			col_index = 0;
502 		}
503 	}
504 
505 	if (row_index >= MAX_PHASES)
506 		return -EINVAL;
507 
508 	/* Check if phase-0 is present in first valid window? */
509 	if (!ranges[0][0]) {
510 		phase_0_found = true;
511 		phase_0_raw_index = 0;
512 		/* Check if cycle exist between 2 valid windows */
513 		for (cnt = 1; cnt <= row_index; cnt++) {
514 			if (phases_per_row[cnt]) {
515 				for (i = 0; i < phases_per_row[cnt]; i++) {
516 					if (ranges[cnt][i] == 15) {
517 						phase_15_found = true;
518 						phase_15_raw_index = cnt;
519 						break;
520 					}
521 				}
522 			}
523 		}
524 	}
525 
526 	/* If 2 valid windows form cycle then merge them as single window */
527 	if (phase_0_found && phase_15_found) {
528 		/* number of phases in raw where phase 0 is present */
529 		u8 phases_0 = phases_per_row[phase_0_raw_index];
530 		/* number of phases in raw where phase 15 is present */
531 		u8 phases_15 = phases_per_row[phase_15_raw_index];
532 
533 		if (phases_0 + phases_15 >= MAX_PHASES)
534 			/*
535 			 * If there are more than 1 phase windows then total
536 			 * number of phases in both the windows should not be
537 			 * more than or equal to MAX_PHASES.
538 			 */
539 			return -EINVAL;
540 
541 		/* Merge 2 cyclic windows */
542 		i = phases_15;
543 		for (cnt = 0; cnt < phases_0; cnt++) {
544 			ranges[phase_15_raw_index][i] =
545 			    ranges[phase_0_raw_index][cnt];
546 			if (++i >= MAX_PHASES)
547 				break;
548 		}
549 
550 		phases_per_row[phase_0_raw_index] = 0;
551 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
552 	}
553 
554 	for (cnt = 0; cnt <= row_index; cnt++) {
555 		if (phases_per_row[cnt] > curr_max) {
556 			curr_max = phases_per_row[cnt];
557 			selected_row_index = cnt;
558 		}
559 	}
560 
561 	i = (curr_max * 3) / 4;
562 	if (i)
563 		i--;
564 
565 	ret = ranges[selected_row_index][i];
566 
567 	if (ret >= MAX_PHASES) {
568 		ret = -EINVAL;
569 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
570 		       mmc_hostname(mmc), ret);
571 	}
572 
573 	return ret;
574 }
575 
msm_cm_dll_set_freq(struct sdhci_host * host)576 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
577 {
578 	u32 mclk_freq = 0, config;
579 	const struct sdhci_msm_offset *msm_offset =
580 					sdhci_priv_msm_offset(host);
581 
582 	/* Program the MCLK value to MCLK_FREQ bit field */
583 	if (host->clock <= 112000000)
584 		mclk_freq = 0;
585 	else if (host->clock <= 125000000)
586 		mclk_freq = 1;
587 	else if (host->clock <= 137000000)
588 		mclk_freq = 2;
589 	else if (host->clock <= 150000000)
590 		mclk_freq = 3;
591 	else if (host->clock <= 162000000)
592 		mclk_freq = 4;
593 	else if (host->clock <= 175000000)
594 		mclk_freq = 5;
595 	else if (host->clock <= 187000000)
596 		mclk_freq = 6;
597 	else if (host->clock <= 200000000)
598 		mclk_freq = 7;
599 
600 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
601 	config &= ~CMUX_SHIFT_PHASE_MASK;
602 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
603 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
604 }
605 
606 /* Initialize the DLL (Programmable Delay Line) */
msm_init_cm_dll(struct sdhci_host * host)607 static int msm_init_cm_dll(struct sdhci_host *host)
608 {
609 	struct mmc_host *mmc = host->mmc;
610 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
611 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
612 	int wait_cnt = 50;
613 	unsigned long flags, xo_clk = 0;
614 	u32 config;
615 	const struct sdhci_msm_offset *msm_offset =
616 					msm_host->offset;
617 
618 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
619 		xo_clk = clk_get_rate(msm_host->xo_clk);
620 
621 	spin_lock_irqsave(&host->lock, flags);
622 
623 	/*
624 	 * Make sure that clock is always enabled when DLL
625 	 * tuning is in progress. Keeping PWRSAVE ON may
626 	 * turn off the clock.
627 	 */
628 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
629 	config &= ~CORE_CLK_PWRSAVE;
630 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
631 
632 	if (msm_host->dll_config)
633 		writel_relaxed(msm_host->dll_config,
634 				host->ioaddr + msm_offset->core_dll_config);
635 
636 	if (msm_host->use_14lpp_dll_reset) {
637 		config = readl_relaxed(host->ioaddr +
638 				msm_offset->core_dll_config);
639 		config &= ~CORE_CK_OUT_EN;
640 		writel_relaxed(config, host->ioaddr +
641 				msm_offset->core_dll_config);
642 
643 		config = readl_relaxed(host->ioaddr +
644 				msm_offset->core_dll_config_2);
645 		config |= CORE_DLL_CLOCK_DISABLE;
646 		writel_relaxed(config, host->ioaddr +
647 				msm_offset->core_dll_config_2);
648 	}
649 
650 	config = readl_relaxed(host->ioaddr +
651 			msm_offset->core_dll_config);
652 	config |= CORE_DLL_RST;
653 	writel_relaxed(config, host->ioaddr +
654 			msm_offset->core_dll_config);
655 
656 	config = readl_relaxed(host->ioaddr +
657 			msm_offset->core_dll_config);
658 	config |= CORE_DLL_PDN;
659 	writel_relaxed(config, host->ioaddr +
660 			msm_offset->core_dll_config);
661 
662 	if (!msm_host->dll_config)
663 		msm_cm_dll_set_freq(host);
664 
665 	if (msm_host->use_14lpp_dll_reset &&
666 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
667 		u32 mclk_freq = 0;
668 
669 		config = readl_relaxed(host->ioaddr +
670 				msm_offset->core_dll_config_2);
671 		config &= CORE_FLL_CYCLE_CNT;
672 		if (config)
673 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
674 					xo_clk);
675 		else
676 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
677 					xo_clk);
678 
679 		config = readl_relaxed(host->ioaddr +
680 				msm_offset->core_dll_config_2);
681 		config &= ~(0xFF << 10);
682 		config |= mclk_freq << 10;
683 
684 		writel_relaxed(config, host->ioaddr +
685 				msm_offset->core_dll_config_2);
686 		/* wait for 5us before enabling DLL clock */
687 		udelay(5);
688 	}
689 
690 	config = readl_relaxed(host->ioaddr +
691 			msm_offset->core_dll_config);
692 	config &= ~CORE_DLL_RST;
693 	writel_relaxed(config, host->ioaddr +
694 			msm_offset->core_dll_config);
695 
696 	config = readl_relaxed(host->ioaddr +
697 			msm_offset->core_dll_config);
698 	config &= ~CORE_DLL_PDN;
699 	writel_relaxed(config, host->ioaddr +
700 			msm_offset->core_dll_config);
701 
702 	if (msm_host->use_14lpp_dll_reset) {
703 		if (!msm_host->dll_config)
704 			msm_cm_dll_set_freq(host);
705 		config = readl_relaxed(host->ioaddr +
706 				msm_offset->core_dll_config_2);
707 		config &= ~CORE_DLL_CLOCK_DISABLE;
708 		writel_relaxed(config, host->ioaddr +
709 				msm_offset->core_dll_config_2);
710 	}
711 
712 	/*
713 	 * Configure DLL user control register to enable DLL status.
714 	 * This setting is applicable to SDCC v5.1 onwards only.
715 	 */
716 	if (msm_host->uses_tassadar_dll) {
717 		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
718 			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
719 		writel_relaxed(config, host->ioaddr +
720 				msm_offset->core_dll_usr_ctl);
721 
722 		config = readl_relaxed(host->ioaddr +
723 				msm_offset->core_dll_config_3);
724 		config &= ~0xFF;
725 		if (msm_host->clk_rate < 150000000)
726 			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
727 		else
728 			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
729 		writel_relaxed(config, host->ioaddr +
730 			msm_offset->core_dll_config_3);
731 	}
732 
733 	config = readl_relaxed(host->ioaddr +
734 			msm_offset->core_dll_config);
735 	config |= CORE_DLL_EN;
736 	writel_relaxed(config, host->ioaddr +
737 			msm_offset->core_dll_config);
738 
739 	config = readl_relaxed(host->ioaddr +
740 			msm_offset->core_dll_config);
741 	config |= CORE_CK_OUT_EN;
742 	writel_relaxed(config, host->ioaddr +
743 			msm_offset->core_dll_config);
744 
745 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
746 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
747 		 CORE_DLL_LOCK)) {
748 		/* max. wait for 50us sec for LOCK bit to be set */
749 		if (--wait_cnt == 0) {
750 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
751 			       mmc_hostname(mmc));
752 			spin_unlock_irqrestore(&host->lock, flags);
753 			return -ETIMEDOUT;
754 		}
755 		udelay(1);
756 	}
757 
758 	spin_unlock_irqrestore(&host->lock, flags);
759 	return 0;
760 }
761 
msm_hc_select_default(struct sdhci_host * host)762 static void msm_hc_select_default(struct sdhci_host *host)
763 {
764 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
765 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
766 	u32 config;
767 	const struct sdhci_msm_offset *msm_offset =
768 					msm_host->offset;
769 
770 	if (!msm_host->use_cdclp533) {
771 		config = readl_relaxed(host->ioaddr +
772 				msm_offset->core_vendor_spec3);
773 		config &= ~CORE_PWRSAVE_DLL;
774 		writel_relaxed(config, host->ioaddr +
775 				msm_offset->core_vendor_spec3);
776 	}
777 
778 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
779 	config &= ~CORE_HC_MCLK_SEL_MASK;
780 	config |= CORE_HC_MCLK_SEL_DFLT;
781 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
782 
783 	/*
784 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
785 	 * configuration from Host Control2 register for all other
786 	 * modes.
787 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
788 	 * in VENDOR_SPEC_FUNC
789 	 */
790 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
791 	config &= ~CORE_HC_SELECT_IN_EN;
792 	config &= ~CORE_HC_SELECT_IN_MASK;
793 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
794 
795 	/*
796 	 * Make sure above writes impacting free running MCLK are completed
797 	 * before changing the clk_rate at GCC.
798 	 */
799 	wmb();
800 }
801 
msm_hc_select_hs400(struct sdhci_host * host)802 static void msm_hc_select_hs400(struct sdhci_host *host)
803 {
804 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
805 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
806 	struct mmc_ios ios = host->mmc->ios;
807 	u32 config, dll_lock;
808 	int rc;
809 	const struct sdhci_msm_offset *msm_offset =
810 					msm_host->offset;
811 
812 	/* Select the divided clock (free running MCLK/2) */
813 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
814 	config &= ~CORE_HC_MCLK_SEL_MASK;
815 	config |= CORE_HC_MCLK_SEL_HS400;
816 
817 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
818 	/*
819 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
820 	 * register
821 	 */
822 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
823 	    !msm_host->calibration_done) {
824 		config = readl_relaxed(host->ioaddr +
825 				msm_offset->core_vendor_spec);
826 		config |= CORE_HC_SELECT_IN_HS400;
827 		config |= CORE_HC_SELECT_IN_EN;
828 		writel_relaxed(config, host->ioaddr +
829 				msm_offset->core_vendor_spec);
830 	}
831 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
832 		/*
833 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
834 		 * core_dll_status to be set. This should get set
835 		 * within 15 us at 200 MHz.
836 		 */
837 		rc = readl_relaxed_poll_timeout(host->ioaddr +
838 						msm_offset->core_dll_status,
839 						dll_lock,
840 						(dll_lock &
841 						(CORE_DLL_LOCK |
842 						CORE_DDR_DLL_LOCK)), 10,
843 						1000);
844 		if (rc == -ETIMEDOUT)
845 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
846 			       mmc_hostname(host->mmc), dll_lock);
847 	}
848 	/*
849 	 * Make sure above writes impacting free running MCLK are completed
850 	 * before changing the clk_rate at GCC.
851 	 */
852 	wmb();
853 }
854 
855 /*
856  * sdhci_msm_hc_select_mode :- In general all timing modes are
857  * controlled via UHS mode select in Host Control2 register.
858  * eMMC specific HS200/HS400 doesn't have their respective modes
859  * defined here, hence we use these values.
860  *
861  * HS200 - SDR104 (Since they both are equivalent in functionality)
862  * HS400 - This involves multiple configurations
863  *		Initially SDR104 - when tuning is required as HS200
864  *		Then when switching to DDR @ 400MHz (HS400) we use
865  *		the vendor specific HC_SELECT_IN to control the mode.
866  *
867  * In addition to controlling the modes we also need to select the
868  * correct input clock for DLL depending on the mode.
869  *
870  * HS400 - divided clock (free running MCLK/2)
871  * All other modes - default (free running MCLK)
872  */
sdhci_msm_hc_select_mode(struct sdhci_host * host)873 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
874 {
875 	struct mmc_ios ios = host->mmc->ios;
876 
877 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
878 	    host->flags & SDHCI_HS400_TUNING)
879 		msm_hc_select_hs400(host);
880 	else
881 		msm_hc_select_default(host);
882 }
883 
sdhci_msm_cdclp533_calibration(struct sdhci_host * host)884 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
885 {
886 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
887 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
888 	u32 config, calib_done;
889 	int ret;
890 	const struct sdhci_msm_offset *msm_offset =
891 					msm_host->offset;
892 
893 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
894 
895 	/*
896 	 * Retuning in HS400 (DDR mode) will fail, just reset the
897 	 * tuning block and restore the saved tuning phase.
898 	 */
899 	ret = msm_init_cm_dll(host);
900 	if (ret)
901 		goto out;
902 
903 	/* Set the selected phase in delay line hw block */
904 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
905 	if (ret)
906 		goto out;
907 
908 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
909 	config |= CORE_CMD_DAT_TRACK_SEL;
910 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
911 
912 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
913 	config &= ~CORE_CDC_T4_DLY_SEL;
914 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
915 
916 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
917 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
918 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
919 
920 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
921 	config |= CORE_CDC_SWITCH_RC_EN;
922 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
923 
924 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
925 	config &= ~CORE_START_CDC_TRAFFIC;
926 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
927 
928 	/* Perform CDC Register Initialization Sequence */
929 
930 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
931 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
932 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
933 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
934 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
935 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
936 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
937 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
938 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
939 
940 	/* CDC HW Calibration */
941 
942 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
943 	config |= CORE_SW_TRIG_FULL_CALIB;
944 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
945 
946 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
947 	config &= ~CORE_SW_TRIG_FULL_CALIB;
948 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
949 
950 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
951 	config |= CORE_HW_AUTOCAL_ENA;
952 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
953 
954 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
955 	config |= CORE_TIMER_ENA;
956 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
957 
958 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
959 					 calib_done,
960 					 (calib_done & CORE_CALIBRATION_DONE),
961 					 1, 50);
962 
963 	if (ret == -ETIMEDOUT) {
964 		pr_err("%s: %s: CDC calibration was not completed\n",
965 		       mmc_hostname(host->mmc), __func__);
966 		goto out;
967 	}
968 
969 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
970 			& CORE_CDC_ERROR_CODE_MASK;
971 	if (ret) {
972 		pr_err("%s: %s: CDC error code %d\n",
973 		       mmc_hostname(host->mmc), __func__, ret);
974 		ret = -EINVAL;
975 		goto out;
976 	}
977 
978 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
979 	config |= CORE_START_CDC_TRAFFIC;
980 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
981 out:
982 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
983 		 __func__, ret);
984 	return ret;
985 }
986 
sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host * host)987 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
988 {
989 	struct mmc_host *mmc = host->mmc;
990 	u32 dll_status, config, ddr_cfg_offset;
991 	int ret;
992 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
993 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
994 	const struct sdhci_msm_offset *msm_offset =
995 					sdhci_priv_msm_offset(host);
996 
997 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
998 
999 	/*
1000 	 * Currently the core_ddr_config register defaults to desired
1001 	 * configuration on reset. Currently reprogramming the power on
1002 	 * reset (POR) value in case it might have been modified by
1003 	 * bootloaders. In the future, if this changes, then the desired
1004 	 * values will need to be programmed appropriately.
1005 	 */
1006 	if (msm_host->updated_ddr_cfg)
1007 		ddr_cfg_offset = msm_offset->core_ddr_config;
1008 	else
1009 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1010 	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1011 
1012 	if (mmc->ios.enhanced_strobe) {
1013 		config = readl_relaxed(host->ioaddr +
1014 				msm_offset->core_ddr_200_cfg);
1015 		config |= CORE_CMDIN_RCLK_EN;
1016 		writel_relaxed(config, host->ioaddr +
1017 				msm_offset->core_ddr_200_cfg);
1018 	}
1019 
1020 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1021 	config |= CORE_DDR_CAL_EN;
1022 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1023 
1024 	ret = readl_relaxed_poll_timeout(host->ioaddr +
1025 					msm_offset->core_dll_status,
1026 					dll_status,
1027 					(dll_status & CORE_DDR_DLL_LOCK),
1028 					10, 1000);
1029 
1030 	if (ret == -ETIMEDOUT) {
1031 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1032 		       mmc_hostname(host->mmc), __func__);
1033 		goto out;
1034 	}
1035 
1036 	/*
1037 	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1038 	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1039 	 * and MCLK must be switched on for at-least 1us before DATA
1040 	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1041 	 * guarantee above requirement. So PWRSAVE_DLL should not be
1042 	 * turned on for host controllers using this DLL.
1043 	 */
1044 	if (!msm_host->use_14lpp_dll_reset) {
1045 		config = readl_relaxed(host->ioaddr +
1046 				msm_offset->core_vendor_spec3);
1047 		config |= CORE_PWRSAVE_DLL;
1048 		writel_relaxed(config, host->ioaddr +
1049 				msm_offset->core_vendor_spec3);
1050 	}
1051 
1052 	/*
1053 	 * Drain writebuffer to ensure above DLL calibration
1054 	 * and PWRSAVE DLL is enabled.
1055 	 */
1056 	wmb();
1057 out:
1058 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1059 		 __func__, ret);
1060 	return ret;
1061 }
1062 
sdhci_msm_hs400_dll_calibration(struct sdhci_host * host)1063 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1064 {
1065 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1066 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1067 	struct mmc_host *mmc = host->mmc;
1068 	int ret;
1069 	u32 config;
1070 	const struct sdhci_msm_offset *msm_offset =
1071 					msm_host->offset;
1072 
1073 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1074 
1075 	/*
1076 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1077 	 * tuning block and restore the saved tuning phase.
1078 	 */
1079 	ret = msm_init_cm_dll(host);
1080 	if (ret)
1081 		goto out;
1082 
1083 	if (!mmc->ios.enhanced_strobe) {
1084 		/* Set the selected phase in delay line hw block */
1085 		ret = msm_config_cm_dll_phase(host,
1086 					      msm_host->saved_tuning_phase);
1087 		if (ret)
1088 			goto out;
1089 		config = readl_relaxed(host->ioaddr +
1090 				msm_offset->core_dll_config);
1091 		config |= CORE_CMD_DAT_TRACK_SEL;
1092 		writel_relaxed(config, host->ioaddr +
1093 				msm_offset->core_dll_config);
1094 	}
1095 
1096 	if (msm_host->use_cdclp533)
1097 		ret = sdhci_msm_cdclp533_calibration(host);
1098 	else
1099 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1100 out:
1101 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1102 		 __func__, ret);
1103 	return ret;
1104 }
1105 
sdhci_msm_is_tuning_needed(struct sdhci_host * host)1106 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1107 {
1108 	struct mmc_ios *ios = &host->mmc->ios;
1109 
1110 	/*
1111 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1112 	 * if clock frequency is greater than 100MHz in these modes.
1113 	 */
1114 	if (host->clock <= CORE_FREQ_100MHZ ||
1115 	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1116 	    ios->timing == MMC_TIMING_MMC_HS200 ||
1117 	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1118 	    ios->enhanced_strobe)
1119 		return false;
1120 
1121 	return true;
1122 }
1123 
sdhci_msm_restore_sdr_dll_config(struct sdhci_host * host)1124 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1125 {
1126 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1127 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1128 	int ret;
1129 
1130 	/*
1131 	 * SDR DLL comes into picture only for timing modes which needs
1132 	 * tuning.
1133 	 */
1134 	if (!sdhci_msm_is_tuning_needed(host))
1135 		return 0;
1136 
1137 	/* Reset the tuning block */
1138 	ret = msm_init_cm_dll(host);
1139 	if (ret)
1140 		return ret;
1141 
1142 	/* Restore the tuning block */
1143 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1144 
1145 	return ret;
1146 }
1147 
sdhci_msm_set_cdr(struct sdhci_host * host,bool enable)1148 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1149 {
1150 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1151 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1152 					      msm_offset->core_dll_config);
1153 
1154 	config = oldconfig;
1155 	if (enable) {
1156 		config |= CORE_CDR_EN;
1157 		config &= ~CORE_CDR_EXT_EN;
1158 	} else {
1159 		config &= ~CORE_CDR_EN;
1160 		config |= CORE_CDR_EXT_EN;
1161 	}
1162 
1163 	if (config != oldconfig) {
1164 		writel_relaxed(config, host->ioaddr +
1165 			       msm_offset->core_dll_config);
1166 	}
1167 }
1168 
sdhci_msm_execute_tuning(struct mmc_host * mmc,u32 opcode)1169 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1170 {
1171 	struct sdhci_host *host = mmc_priv(mmc);
1172 	int tuning_seq_cnt = 10;
1173 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1174 	int rc;
1175 	struct mmc_ios ios = host->mmc->ios;
1176 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1177 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1178 
1179 	if (!sdhci_msm_is_tuning_needed(host)) {
1180 		msm_host->use_cdr = false;
1181 		sdhci_msm_set_cdr(host, false);
1182 		return 0;
1183 	}
1184 
1185 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1186 	msm_host->use_cdr = true;
1187 
1188 	/*
1189 	 * Clear tuning_done flag before tuning to ensure proper
1190 	 * HS400 settings.
1191 	 */
1192 	msm_host->tuning_done = 0;
1193 
1194 	/*
1195 	 * For HS400 tuning in HS200 timing requires:
1196 	 * - select MCLK/2 in VENDOR_SPEC
1197 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1198 	 */
1199 	if (host->flags & SDHCI_HS400_TUNING) {
1200 		sdhci_msm_hc_select_mode(host);
1201 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1202 		host->flags &= ~SDHCI_HS400_TUNING;
1203 	}
1204 
1205 retry:
1206 	/* First of all reset the tuning block */
1207 	rc = msm_init_cm_dll(host);
1208 	if (rc)
1209 		return rc;
1210 
1211 	phase = 0;
1212 	do {
1213 		/* Set the phase in delay line hw block */
1214 		rc = msm_config_cm_dll_phase(host, phase);
1215 		if (rc)
1216 			return rc;
1217 
1218 		rc = mmc_send_tuning(mmc, opcode, NULL);
1219 		if (!rc) {
1220 			/* Tuning is successful at this tuning point */
1221 			tuned_phases[tuned_phase_cnt++] = phase;
1222 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1223 				 mmc_hostname(mmc), phase);
1224 		}
1225 	} while (++phase < ARRAY_SIZE(tuned_phases));
1226 
1227 	if (tuned_phase_cnt) {
1228 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1229 			/*
1230 			 * All phases valid is _almost_ as bad as no phases
1231 			 * valid.  Probably all phases are not really reliable
1232 			 * but we didn't detect where the unreliable place is.
1233 			 * That means we'll essentially be guessing and hoping
1234 			 * we get a good phase.  Better to try a few times.
1235 			 */
1236 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1237 				mmc_hostname(mmc));
1238 			if (--tuning_seq_cnt) {
1239 				tuned_phase_cnt = 0;
1240 				goto retry;
1241 			}
1242 		}
1243 
1244 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1245 						     tuned_phase_cnt);
1246 		if (rc < 0)
1247 			return rc;
1248 		else
1249 			phase = rc;
1250 
1251 		/*
1252 		 * Finally set the selected phase in delay
1253 		 * line hw block.
1254 		 */
1255 		rc = msm_config_cm_dll_phase(host, phase);
1256 		if (rc)
1257 			return rc;
1258 		msm_host->saved_tuning_phase = phase;
1259 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1260 			 mmc_hostname(mmc), phase);
1261 	} else {
1262 		if (--tuning_seq_cnt)
1263 			goto retry;
1264 		/* Tuning failed */
1265 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1266 		       mmc_hostname(mmc));
1267 		rc = -EIO;
1268 	}
1269 
1270 	if (!rc)
1271 		msm_host->tuning_done = true;
1272 	return rc;
1273 }
1274 
1275 /*
1276  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1277  * This needs to be done for both tuning and enhanced_strobe mode.
1278  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1279  * fixed feedback clock is used.
1280  */
sdhci_msm_hs400(struct sdhci_host * host,struct mmc_ios * ios)1281 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1282 {
1283 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1284 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1285 	int ret;
1286 
1287 	if (host->clock > CORE_FREQ_100MHZ &&
1288 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1289 	    !msm_host->calibration_done) {
1290 		ret = sdhci_msm_hs400_dll_calibration(host);
1291 		if (!ret)
1292 			msm_host->calibration_done = true;
1293 		else
1294 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1295 			       mmc_hostname(host->mmc), ret);
1296 	}
1297 }
1298 
sdhci_msm_set_uhs_signaling(struct sdhci_host * host,unsigned int uhs)1299 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1300 					unsigned int uhs)
1301 {
1302 	struct mmc_host *mmc = host->mmc;
1303 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1304 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1305 	u16 ctrl_2;
1306 	u32 config;
1307 	const struct sdhci_msm_offset *msm_offset =
1308 					msm_host->offset;
1309 
1310 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1311 	/* Select Bus Speed Mode for host */
1312 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1313 	switch (uhs) {
1314 	case MMC_TIMING_UHS_SDR12:
1315 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1316 		break;
1317 	case MMC_TIMING_UHS_SDR25:
1318 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1319 		break;
1320 	case MMC_TIMING_UHS_SDR50:
1321 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1322 		break;
1323 	case MMC_TIMING_MMC_HS400:
1324 	case MMC_TIMING_MMC_HS200:
1325 	case MMC_TIMING_UHS_SDR104:
1326 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1327 		break;
1328 	case MMC_TIMING_UHS_DDR50:
1329 	case MMC_TIMING_MMC_DDR52:
1330 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1331 		break;
1332 	}
1333 
1334 	/*
1335 	 * When clock frequency is less than 100MHz, the feedback clock must be
1336 	 * provided and DLL must not be used so that tuning can be skipped. To
1337 	 * provide feedback clock, the mode selection can be any value less
1338 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1339 	 */
1340 	if (host->clock <= CORE_FREQ_100MHZ) {
1341 		if (uhs == MMC_TIMING_MMC_HS400 ||
1342 		    uhs == MMC_TIMING_MMC_HS200 ||
1343 		    uhs == MMC_TIMING_UHS_SDR104)
1344 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1345 		/*
1346 		 * DLL is not required for clock <= 100MHz
1347 		 * Thus, make sure DLL it is disabled when not required
1348 		 */
1349 		config = readl_relaxed(host->ioaddr +
1350 				msm_offset->core_dll_config);
1351 		config |= CORE_DLL_RST;
1352 		writel_relaxed(config, host->ioaddr +
1353 				msm_offset->core_dll_config);
1354 
1355 		config = readl_relaxed(host->ioaddr +
1356 				msm_offset->core_dll_config);
1357 		config |= CORE_DLL_PDN;
1358 		writel_relaxed(config, host->ioaddr +
1359 				msm_offset->core_dll_config);
1360 
1361 		/*
1362 		 * The DLL needs to be restored and CDCLP533 recalibrated
1363 		 * when the clock frequency is set back to 400MHz.
1364 		 */
1365 		msm_host->calibration_done = false;
1366 	}
1367 
1368 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1369 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1370 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1371 
1372 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1373 		sdhci_msm_hs400(host, &mmc->ios);
1374 }
1375 
sdhci_msm_set_pincfg(struct sdhci_msm_host * msm_host,bool level)1376 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1377 {
1378 	struct platform_device *pdev = msm_host->pdev;
1379 	int ret;
1380 
1381 	if (level)
1382 		ret = pinctrl_pm_select_default_state(&pdev->dev);
1383 	else
1384 		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1385 
1386 	return ret;
1387 }
1388 
sdhci_msm_set_vmmc(struct mmc_host * mmc)1389 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1390 {
1391 	if (IS_ERR(mmc->supply.vmmc))
1392 		return 0;
1393 
1394 	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1395 }
1396 
msm_toggle_vqmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool level)1397 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1398 			      struct mmc_host *mmc, bool level)
1399 {
1400 	int ret;
1401 	struct mmc_ios ios;
1402 
1403 	if (msm_host->vqmmc_enabled == level)
1404 		return 0;
1405 
1406 	if (level) {
1407 		/* Set the IO voltage regulator to default voltage level */
1408 		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1409 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1410 		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1411 			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1412 
1413 		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1414 			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1415 			if (ret < 0) {
1416 				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1417 					mmc_hostname(mmc), ret);
1418 				goto out;
1419 			}
1420 		}
1421 		ret = regulator_enable(mmc->supply.vqmmc);
1422 	} else {
1423 		ret = regulator_disable(mmc->supply.vqmmc);
1424 	}
1425 
1426 	if (ret)
1427 		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1428 			mmc_hostname(mmc), level ? "en":"dis", ret);
1429 	else
1430 		msm_host->vqmmc_enabled = level;
1431 out:
1432 	return ret;
1433 }
1434 
msm_config_vqmmc_mode(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool hpm)1435 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1436 			      struct mmc_host *mmc, bool hpm)
1437 {
1438 	int load, ret;
1439 
1440 	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1441 	ret = regulator_set_load(mmc->supply.vqmmc, load);
1442 	if (ret)
1443 		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1444 			mmc_hostname(mmc), ret);
1445 	return ret;
1446 }
1447 
sdhci_msm_set_vqmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool level)1448 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1449 			      struct mmc_host *mmc, bool level)
1450 {
1451 	int ret;
1452 	bool always_on;
1453 
1454 	if (IS_ERR(mmc->supply.vqmmc) ||
1455 			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1456 		return 0;
1457 	/*
1458 	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1459 	 * and HPM modes by setting the corresponding load.
1460 	 *
1461 	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1462 	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1463 	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1464 	 * Vqmmc should remain ON, So just set the load instead of turning it
1465 	 * off/on.
1466 	 */
1467 	always_on = !mmc_card_is_removable(mmc) &&
1468 			mmc->card && mmc_card_mmc(mmc->card);
1469 
1470 	if (always_on)
1471 		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1472 	else
1473 		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1474 
1475 	return ret;
1476 }
1477 
sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host * msm_host)1478 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1479 {
1480 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1481 }
1482 
sdhci_msm_complete_pwr_irq_wait(struct sdhci_msm_host * msm_host)1483 static inline void sdhci_msm_complete_pwr_irq_wait(
1484 		struct sdhci_msm_host *msm_host)
1485 {
1486 	wake_up(&msm_host->pwr_irq_wait);
1487 }
1488 
1489 /*
1490  * sdhci_msm_check_power_status API should be called when registers writes
1491  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1492  * To what state the register writes will change the IO lines should be passed
1493  * as the argument req_type. This API will check whether the IO line's state
1494  * is already the expected state and will wait for power irq only if
1495  * power irq is expected to be triggered based on the current IO line state
1496  * and expected IO line state.
1497  */
sdhci_msm_check_power_status(struct sdhci_host * host,u32 req_type)1498 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1499 {
1500 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1501 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1502 	bool done = false;
1503 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1504 	const struct sdhci_msm_offset *msm_offset =
1505 					msm_host->offset;
1506 
1507 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1508 			mmc_hostname(host->mmc), __func__, req_type,
1509 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1510 
1511 	/*
1512 	 * The power interrupt will not be generated for signal voltage
1513 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1514 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1515 	 * it as always set.
1516 	 */
1517 	if (!msm_host->mci_removed)
1518 		val = msm_host_readl(msm_host, host,
1519 				msm_offset->core_generics);
1520 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1521 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1522 		return;
1523 	}
1524 
1525 	/*
1526 	 * The IRQ for request type IO High/LOW will be generated when -
1527 	 * there is a state change in 1.8V enable bit (bit 3) of
1528 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1529 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1530 	 * to set it to 3.3V before card detection happens, the
1531 	 * IRQ doesn't get triggered as there is no state change in this bit.
1532 	 * The driver already handles this case by changing the IO voltage
1533 	 * level to high as part of controller power up sequence. Hence, check
1534 	 * for host->pwr to handle a case where IO voltage high request is
1535 	 * issued even before controller power up.
1536 	 */
1537 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1538 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1539 				mmc_hostname(host->mmc), req_type);
1540 		return;
1541 	}
1542 	if ((req_type & msm_host->curr_pwr_state) ||
1543 			(req_type & msm_host->curr_io_level))
1544 		done = true;
1545 	/*
1546 	 * This is needed here to handle cases where register writes will
1547 	 * not change the current bus state or io level of the controller.
1548 	 * In this case, no power irq will be triggerred and we should
1549 	 * not wait.
1550 	 */
1551 	if (!done) {
1552 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1553 				msm_host->pwr_irq_flag,
1554 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1555 			dev_warn(&msm_host->pdev->dev,
1556 				 "%s: pwr_irq for req: (%d) timed out\n",
1557 				 mmc_hostname(host->mmc), req_type);
1558 	}
1559 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1560 			__func__, req_type);
1561 }
1562 
sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host * host)1563 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1564 {
1565 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1566 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1567 	const struct sdhci_msm_offset *msm_offset =
1568 					msm_host->offset;
1569 
1570 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1571 		mmc_hostname(host->mmc),
1572 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1573 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1574 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1575 }
1576 
sdhci_msm_handle_pwr_irq(struct sdhci_host * host,int irq)1577 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1578 {
1579 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1580 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1581 	struct mmc_host *mmc = host->mmc;
1582 	u32 irq_status, irq_ack = 0;
1583 	int retry = 10, ret;
1584 	u32 pwr_state = 0, io_level = 0;
1585 	u32 config;
1586 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1587 
1588 	irq_status = msm_host_readl(msm_host, host,
1589 			msm_offset->core_pwrctl_status);
1590 	irq_status &= INT_MASK;
1591 
1592 	msm_host_writel(msm_host, irq_status, host,
1593 			msm_offset->core_pwrctl_clear);
1594 
1595 	/*
1596 	 * There is a rare HW scenario where the first clear pulse could be
1597 	 * lost when actual reset and clear/read of status register is
1598 	 * happening at a time. Hence, retry for at least 10 times to make
1599 	 * sure status register is cleared. Otherwise, this will result in
1600 	 * a spurious power IRQ resulting in system instability.
1601 	 */
1602 	while (irq_status & msm_host_readl(msm_host, host,
1603 				msm_offset->core_pwrctl_status)) {
1604 		if (retry == 0) {
1605 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1606 					mmc_hostname(host->mmc), irq_status);
1607 			sdhci_msm_dump_pwr_ctrl_regs(host);
1608 			WARN_ON(1);
1609 			break;
1610 		}
1611 		msm_host_writel(msm_host, irq_status, host,
1612 			msm_offset->core_pwrctl_clear);
1613 		retry--;
1614 		udelay(10);
1615 	}
1616 
1617 	/* Handle BUS ON/OFF*/
1618 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1619 		pwr_state = REQ_BUS_ON;
1620 		io_level = REQ_IO_HIGH;
1621 	}
1622 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1623 		pwr_state = REQ_BUS_OFF;
1624 		io_level = REQ_IO_LOW;
1625 	}
1626 
1627 	if (pwr_state) {
1628 		ret = sdhci_msm_set_vmmc(mmc);
1629 		if (!ret)
1630 			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1631 					pwr_state & REQ_BUS_ON);
1632 		if (!ret)
1633 			ret = sdhci_msm_set_pincfg(msm_host,
1634 					pwr_state & REQ_BUS_ON);
1635 		if (!ret)
1636 			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1637 		else
1638 			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1639 	}
1640 
1641 	/* Handle IO LOW/HIGH */
1642 	if (irq_status & CORE_PWRCTL_IO_LOW)
1643 		io_level = REQ_IO_LOW;
1644 
1645 	if (irq_status & CORE_PWRCTL_IO_HIGH)
1646 		io_level = REQ_IO_HIGH;
1647 
1648 	if (io_level)
1649 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1650 
1651 	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1652 		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1653 		if (ret < 0) {
1654 			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1655 					mmc_hostname(mmc), ret,
1656 					mmc->ios.signal_voltage, mmc->ios.vdd,
1657 					irq_status);
1658 			irq_ack |= CORE_PWRCTL_IO_FAIL;
1659 		}
1660 	}
1661 
1662 	/*
1663 	 * The driver has to acknowledge the interrupt, switch voltages and
1664 	 * report back if it succeded or not to this register. The voltage
1665 	 * switches are handled by the sdhci core, so just report success.
1666 	 */
1667 	msm_host_writel(msm_host, irq_ack, host,
1668 			msm_offset->core_pwrctl_ctl);
1669 
1670 	/*
1671 	 * If we don't have info regarding the voltage levels supported by
1672 	 * regulators, don't change the IO PAD PWR SWITCH.
1673 	 */
1674 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1675 		u32 new_config;
1676 		/*
1677 		 * We should unset IO PAD PWR switch only if the register write
1678 		 * can set IO lines high and the regulator also switches to 3 V.
1679 		 * Else, we should keep the IO PAD PWR switch set.
1680 		 * This is applicable to certain targets where eMMC vccq supply
1681 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1682 		 * IO PAD PWR switch must be kept set to reflect actual
1683 		 * regulator voltage. This way, during initialization of
1684 		 * controllers with only 1.8V, we will set the IO PAD bit
1685 		 * without waiting for a REQ_IO_LOW.
1686 		 */
1687 		config = readl_relaxed(host->ioaddr +
1688 				msm_offset->core_vendor_spec);
1689 		new_config = config;
1690 
1691 		if ((io_level & REQ_IO_HIGH) &&
1692 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1693 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1694 		else if ((io_level & REQ_IO_LOW) ||
1695 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1696 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1697 
1698 		if (config ^ new_config)
1699 			writel_relaxed(new_config, host->ioaddr +
1700 					msm_offset->core_vendor_spec);
1701 	}
1702 
1703 	if (pwr_state)
1704 		msm_host->curr_pwr_state = pwr_state;
1705 	if (io_level)
1706 		msm_host->curr_io_level = io_level;
1707 
1708 	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1709 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1710 		irq_ack);
1711 }
1712 
sdhci_msm_pwr_irq(int irq,void * data)1713 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1714 {
1715 	struct sdhci_host *host = (struct sdhci_host *)data;
1716 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1717 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1718 
1719 	sdhci_msm_handle_pwr_irq(host, irq);
1720 	msm_host->pwr_irq_flag = 1;
1721 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1722 
1723 
1724 	return IRQ_HANDLED;
1725 }
1726 
sdhci_msm_get_max_clock(struct sdhci_host * host)1727 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1728 {
1729 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1730 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1731 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1732 
1733 	return clk_round_rate(core_clk, ULONG_MAX);
1734 }
1735 
sdhci_msm_get_min_clock(struct sdhci_host * host)1736 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1737 {
1738 	return SDHCI_MSM_MIN_CLOCK;
1739 }
1740 
1741 /*
1742  * __sdhci_msm_set_clock - sdhci_msm clock control.
1743  *
1744  * Description:
1745  * MSM controller does not use internal divider and
1746  * instead directly control the GCC clock as per
1747  * HW recommendation.
1748  **/
__sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1749 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1750 {
1751 	u16 clk;
1752 	/*
1753 	 * Keep actual_clock as zero -
1754 	 * - since there is no divider used so no need of having actual_clock.
1755 	 * - MSM controller uses SDCLK for data timeout calculation. If
1756 	 *   actual_clock is zero, host->clock is taken for calculation.
1757 	 */
1758 	host->mmc->actual_clock = 0;
1759 
1760 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1761 
1762 	if (clock == 0)
1763 		return;
1764 
1765 	/*
1766 	 * MSM controller do not use clock divider.
1767 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1768 	 * clock with no divider value programmed.
1769 	 */
1770 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1771 	sdhci_enable_clk(host, clk);
1772 }
1773 
1774 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1775 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1776 {
1777 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1778 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1779 
1780 	if (!clock) {
1781 		msm_host->clk_rate = clock;
1782 		goto out;
1783 	}
1784 
1785 	sdhci_msm_hc_select_mode(host);
1786 
1787 	msm_set_clock_rate_for_bus_mode(host, clock);
1788 out:
1789 	__sdhci_msm_set_clock(host, clock);
1790 }
1791 
1792 /*****************************************************************************\
1793  *                                                                           *
1794  * Inline Crypto Engine (ICE) support                                        *
1795  *                                                                           *
1796 \*****************************************************************************/
1797 
1798 #ifdef CONFIG_MMC_CRYPTO
1799 
1800 #define AES_256_XTS_KEY_SIZE			64
1801 
1802 /* QCOM ICE registers */
1803 
1804 #define QCOM_ICE_REG_VERSION			0x0008
1805 
1806 #define QCOM_ICE_REG_FUSE_SETTING		0x0010
1807 #define QCOM_ICE_FUSE_SETTING_MASK		0x1
1808 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	0x2
1809 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	0x4
1810 
1811 #define QCOM_ICE_REG_BIST_STATUS		0x0070
1812 #define QCOM_ICE_BIST_STATUS_MASK		0xF0000000
1813 
1814 #define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000
1815 
1816 #define sdhci_msm_ice_writel(host, val, reg)	\
1817 	writel((val), (host)->ice_mem + (reg))
1818 #define sdhci_msm_ice_readl(host, reg)	\
1819 	readl((host)->ice_mem + (reg))
1820 
sdhci_msm_ice_supported(struct sdhci_msm_host * msm_host)1821 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1822 {
1823 	struct device *dev = mmc_dev(msm_host->mmc);
1824 	u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1825 	int major = regval >> 24;
1826 	int minor = (regval >> 16) & 0xFF;
1827 	int step = regval & 0xFFFF;
1828 
1829 	/* For now this driver only supports ICE version 3. */
1830 	if (major != 3) {
1831 		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1832 			 major, minor, step);
1833 		return false;
1834 	}
1835 
1836 	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1837 		 major, minor, step);
1838 
1839 	/* If fuses are blown, ICE might not work in the standard way. */
1840 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1841 	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1842 		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1843 		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1844 		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1845 		return false;
1846 	}
1847 	return true;
1848 }
1849 
sdhci_msm_ice_get_clk(struct device * dev)1850 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1851 {
1852 	return devm_clk_get(dev, "ice");
1853 }
1854 
sdhci_msm_ice_init(struct sdhci_msm_host * msm_host,struct cqhci_host * cq_host)1855 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1856 			      struct cqhci_host *cq_host)
1857 {
1858 	struct mmc_host *mmc = msm_host->mmc;
1859 	struct device *dev = mmc_dev(mmc);
1860 	struct resource *res;
1861 	int err;
1862 
1863 	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1864 		return 0;
1865 
1866 	res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1867 					   "ice");
1868 	if (!res) {
1869 		dev_warn(dev, "ICE registers not found\n");
1870 		goto disable;
1871 	}
1872 
1873 	if (!qcom_scm_ice_available()) {
1874 		dev_warn(dev, "ICE SCM interface not found\n");
1875 		goto disable;
1876 	}
1877 
1878 	msm_host->ice_mem = devm_ioremap_resource(dev, res);
1879 	if (IS_ERR(msm_host->ice_mem)) {
1880 		err = PTR_ERR(msm_host->ice_mem);
1881 		dev_err(dev, "Failed to map ICE registers; err=%d\n", err);
1882 		return err;
1883 	}
1884 
1885 	if (!sdhci_msm_ice_supported(msm_host))
1886 		goto disable;
1887 
1888 	mmc->caps2 |= MMC_CAP2_CRYPTO;
1889 	return 0;
1890 
1891 disable:
1892 	dev_warn(dev, "Disabling inline encryption support\n");
1893 	return 0;
1894 }
1895 
sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host * msm_host)1896 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1897 {
1898 	u32 regval;
1899 
1900 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1901 	/*
1902 	 * Enable low power mode sequence
1903 	 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1904 	 */
1905 	regval |= 0x7000;
1906 	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1907 }
1908 
sdhci_msm_ice_optimization_enable(struct sdhci_msm_host * msm_host)1909 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1910 {
1911 	u32 regval;
1912 
1913 	/* ICE Optimizations Enable Sequence */
1914 	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1915 	regval |= 0xD807100;
1916 	/* ICE HPG requires delay before writing */
1917 	udelay(5);
1918 	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1919 	udelay(5);
1920 }
1921 
1922 /*
1923  * Wait until the ICE BIST (built-in self-test) has completed.
1924  *
1925  * This may be necessary before ICE can be used.
1926  *
1927  * Note that we don't really care whether the BIST passed or failed; we really
1928  * just want to make sure that it isn't still running.  This is because (a) the
1929  * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1930  * documented to reject crypto requests if the BIST fails, so we needn't do it
1931  * in software too, and (c) properly testing storage encryption requires testing
1932  * the full storage stack anyway, and not relying on hardware-level self-tests.
1933  */
sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host * msm_host)1934 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1935 {
1936 	u32 regval;
1937 	int err;
1938 
1939 	err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1940 				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1941 				 50, 5000);
1942 	if (err)
1943 		dev_err(mmc_dev(msm_host->mmc),
1944 			"Timed out waiting for ICE self-test to complete\n");
1945 	return err;
1946 }
1947 
sdhci_msm_ice_enable(struct sdhci_msm_host * msm_host)1948 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1949 {
1950 	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1951 		return;
1952 	sdhci_msm_ice_low_power_mode_enable(msm_host);
1953 	sdhci_msm_ice_optimization_enable(msm_host);
1954 	sdhci_msm_ice_wait_bist_status(msm_host);
1955 }
1956 
sdhci_msm_ice_resume(struct sdhci_msm_host * msm_host)1957 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1958 {
1959 	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1960 		return 0;
1961 	return sdhci_msm_ice_wait_bist_status(msm_host);
1962 }
1963 
1964 /*
1965  * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1966  * vendor-specific SCM calls for this; it doesn't support the standard way.
1967  */
sdhci_msm_program_key(struct cqhci_host * cq_host,const union cqhci_crypto_cfg_entry * cfg,int slot)1968 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1969 				 const union cqhci_crypto_cfg_entry *cfg,
1970 				 int slot)
1971 {
1972 	struct device *dev = mmc_dev(cq_host->mmc);
1973 	union cqhci_crypto_cap_entry cap;
1974 	union {
1975 		u8 bytes[AES_256_XTS_KEY_SIZE];
1976 		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1977 	} key;
1978 	int i;
1979 	int err;
1980 
1981 	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1982 		return qcom_scm_ice_invalidate_key(slot);
1983 
1984 	/* Only AES-256-XTS has been tested so far. */
1985 	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1986 	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1987 	    cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1988 		dev_err_ratelimited(dev,
1989 				    "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1990 				    cap.algorithm_id, cap.key_size);
1991 		return -EINVAL;
1992 	}
1993 
1994 	memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1995 
1996 	/*
1997 	 * The SCM call byte-swaps the 32-bit words of the key.  So we have to
1998 	 * do the same, in order for the final key be correct.
1999 	 */
2000 	for (i = 0; i < ARRAY_SIZE(key.words); i++)
2001 		__cpu_to_be32s(&key.words[i]);
2002 
2003 	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2004 				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2005 				   cfg->data_unit_size);
2006 	memzero_explicit(&key, sizeof(key));
2007 	return err;
2008 }
2009 #else /* CONFIG_MMC_CRYPTO */
sdhci_msm_ice_get_clk(struct device * dev)2010 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2011 {
2012 	return NULL;
2013 }
2014 
sdhci_msm_ice_init(struct sdhci_msm_host * msm_host,struct cqhci_host * cq_host)2015 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2016 				     struct cqhci_host *cq_host)
2017 {
2018 	return 0;
2019 }
2020 
sdhci_msm_ice_enable(struct sdhci_msm_host * msm_host)2021 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2022 {
2023 }
2024 
2025 static inline int __maybe_unused
sdhci_msm_ice_resume(struct sdhci_msm_host * msm_host)2026 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2027 {
2028 	return 0;
2029 }
2030 #endif /* !CONFIG_MMC_CRYPTO */
2031 
2032 /*****************************************************************************\
2033  *                                                                           *
2034  * MSM Command Queue Engine (CQE)                                            *
2035  *                                                                           *
2036 \*****************************************************************************/
2037 
sdhci_msm_cqe_irq(struct sdhci_host * host,u32 intmask)2038 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2039 {
2040 	int cmd_error = 0;
2041 	int data_error = 0;
2042 
2043 	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2044 		return intmask;
2045 
2046 	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2047 	return 0;
2048 }
2049 
sdhci_msm_cqe_enable(struct mmc_host * mmc)2050 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2051 {
2052 	struct sdhci_host *host = mmc_priv(mmc);
2053 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2054 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2055 
2056 	sdhci_cqe_enable(mmc);
2057 	sdhci_msm_ice_enable(msm_host);
2058 }
2059 
sdhci_msm_cqe_disable(struct mmc_host * mmc,bool recovery)2060 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2061 {
2062 	struct sdhci_host *host = mmc_priv(mmc);
2063 	unsigned long flags;
2064 	u32 ctrl;
2065 
2066 	/*
2067 	 * When CQE is halted, the legacy SDHCI path operates only
2068 	 * on 16-byte descriptors in 64bit mode.
2069 	 */
2070 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2071 		host->desc_sz = 16;
2072 
2073 	spin_lock_irqsave(&host->lock, flags);
2074 
2075 	/*
2076 	 * During CQE command transfers, command complete bit gets latched.
2077 	 * So s/w should clear command complete interrupt status when CQE is
2078 	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2079 	 * interrupt gets triggered when CQE is halted/disabled.
2080 	 */
2081 	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2082 	ctrl |= SDHCI_INT_RESPONSE;
2083 	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2084 	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2085 
2086 	spin_unlock_irqrestore(&host->lock, flags);
2087 
2088 	sdhci_cqe_disable(mmc, recovery);
2089 }
2090 
sdhci_msm_set_timeout(struct sdhci_host * host,struct mmc_command * cmd)2091 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2092 {
2093 	u32 count, start = 15;
2094 
2095 	__sdhci_set_timeout(host, cmd);
2096 	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2097 	/*
2098 	 * Update software timeout value if its value is less than hardware data
2099 	 * timeout value. Qcom SoC hardware data timeout value was calculated
2100 	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2101 	 */
2102 	if (cmd && cmd->data && host->clock > 400000 &&
2103 	    host->clock <= 50000000 &&
2104 	    ((1 << (count + start)) > (10 * host->clock)))
2105 		host->data_timeout = 22LL * NSEC_PER_SEC;
2106 }
2107 
2108 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2109 	.enable		= sdhci_msm_cqe_enable,
2110 	.disable	= sdhci_msm_cqe_disable,
2111 #ifdef CONFIG_MMC_CRYPTO
2112 	.program_key	= sdhci_msm_program_key,
2113 #endif
2114 };
2115 
sdhci_msm_cqe_add_host(struct sdhci_host * host,struct platform_device * pdev)2116 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2117 				struct platform_device *pdev)
2118 {
2119 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2120 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2121 	struct cqhci_host *cq_host;
2122 	bool dma64;
2123 	u32 cqcfg;
2124 	int ret;
2125 
2126 	/*
2127 	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2128 	 * So ensure ADMA table is allocated for 16byte descriptors.
2129 	 */
2130 	if (host->caps & SDHCI_CAN_64BIT)
2131 		host->alloc_desc_sz = 16;
2132 
2133 	ret = sdhci_setup_host(host);
2134 	if (ret)
2135 		return ret;
2136 
2137 	cq_host = cqhci_pltfm_init(pdev);
2138 	if (IS_ERR(cq_host)) {
2139 		ret = PTR_ERR(cq_host);
2140 		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2141 		goto cleanup;
2142 	}
2143 
2144 	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2145 	cq_host->ops = &sdhci_msm_cqhci_ops;
2146 
2147 	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2148 
2149 	ret = sdhci_msm_ice_init(msm_host, cq_host);
2150 	if (ret)
2151 		goto cleanup;
2152 
2153 	ret = cqhci_init(cq_host, host->mmc, dma64);
2154 	if (ret) {
2155 		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2156 				mmc_hostname(host->mmc), ret);
2157 		goto cleanup;
2158 	}
2159 
2160 	/* Disable cqe reset due to cqe enable signal */
2161 	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2162 	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2163 	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2164 
2165 	/*
2166 	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2167 	 * So limit desc_sz to 12 so that the data commands that are sent
2168 	 * during card initialization (before CQE gets enabled) would
2169 	 * get executed without any issues.
2170 	 */
2171 	if (host->flags & SDHCI_USE_64_BIT_DMA)
2172 		host->desc_sz = 12;
2173 
2174 	ret = __sdhci_add_host(host);
2175 	if (ret)
2176 		goto cleanup;
2177 
2178 	dev_info(&pdev->dev, "%s: CQE init: success\n",
2179 			mmc_hostname(host->mmc));
2180 	return ret;
2181 
2182 cleanup:
2183 	sdhci_cleanup_host(host);
2184 	return ret;
2185 }
2186 
2187 /*
2188  * Platform specific register write functions. This is so that, if any
2189  * register write needs to be followed up by platform specific actions,
2190  * they can be added here. These functions can go to sleep when writes
2191  * to certain registers are done.
2192  * These functions are relying on sdhci_set_ios not using spinlock.
2193  */
__sdhci_msm_check_write(struct sdhci_host * host,u16 val,int reg)2194 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2195 {
2196 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2197 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2198 	u32 req_type = 0;
2199 
2200 	switch (reg) {
2201 	case SDHCI_HOST_CONTROL2:
2202 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2203 			REQ_IO_HIGH;
2204 		break;
2205 	case SDHCI_SOFTWARE_RESET:
2206 		if (host->pwr && (val & SDHCI_RESET_ALL))
2207 			req_type = REQ_BUS_OFF;
2208 		break;
2209 	case SDHCI_POWER_CONTROL:
2210 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2211 		break;
2212 	case SDHCI_TRANSFER_MODE:
2213 		msm_host->transfer_mode = val;
2214 		break;
2215 	case SDHCI_COMMAND:
2216 		if (!msm_host->use_cdr)
2217 			break;
2218 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2219 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
2220 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
2221 			sdhci_msm_set_cdr(host, true);
2222 		else
2223 			sdhci_msm_set_cdr(host, false);
2224 		break;
2225 	}
2226 
2227 	if (req_type) {
2228 		msm_host->pwr_irq_flag = 0;
2229 		/*
2230 		 * Since this register write may trigger a power irq, ensure
2231 		 * all previous register writes are complete by this point.
2232 		 */
2233 		mb();
2234 	}
2235 	return req_type;
2236 }
2237 
2238 /* This function may sleep*/
sdhci_msm_writew(struct sdhci_host * host,u16 val,int reg)2239 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2240 {
2241 	u32 req_type = 0;
2242 
2243 	req_type = __sdhci_msm_check_write(host, val, reg);
2244 	writew_relaxed(val, host->ioaddr + reg);
2245 
2246 	if (req_type)
2247 		sdhci_msm_check_power_status(host, req_type);
2248 }
2249 
2250 /* This function may sleep*/
sdhci_msm_writeb(struct sdhci_host * host,u8 val,int reg)2251 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2252 {
2253 	u32 req_type = 0;
2254 
2255 	req_type = __sdhci_msm_check_write(host, val, reg);
2256 
2257 	writeb_relaxed(val, host->ioaddr + reg);
2258 
2259 	if (req_type)
2260 		sdhci_msm_check_power_status(host, req_type);
2261 }
2262 
sdhci_msm_set_regulator_caps(struct sdhci_msm_host * msm_host)2263 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2264 {
2265 	struct mmc_host *mmc = msm_host->mmc;
2266 	struct regulator *supply = mmc->supply.vqmmc;
2267 	u32 caps = 0, config;
2268 	struct sdhci_host *host = mmc_priv(mmc);
2269 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2270 
2271 	if (!IS_ERR(mmc->supply.vqmmc)) {
2272 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2273 			caps |= CORE_1_8V_SUPPORT;
2274 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2275 			caps |= CORE_3_0V_SUPPORT;
2276 
2277 		if (!caps)
2278 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2279 					mmc_hostname(mmc));
2280 	}
2281 
2282 	if (caps) {
2283 		/*
2284 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2285 		 * bit can be used as required later on.
2286 		 */
2287 		u32 io_level = msm_host->curr_io_level;
2288 
2289 		config = readl_relaxed(host->ioaddr +
2290 				msm_offset->core_vendor_spec);
2291 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2292 
2293 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2294 			config &= ~CORE_IO_PAD_PWR_SWITCH;
2295 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2296 			config |= CORE_IO_PAD_PWR_SWITCH;
2297 
2298 		writel_relaxed(config,
2299 				host->ioaddr + msm_offset->core_vendor_spec);
2300 	}
2301 	msm_host->caps_0 |= caps;
2302 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2303 }
2304 
sdhci_msm_reset(struct sdhci_host * host,u8 mask)2305 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2306 {
2307 	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2308 		cqhci_deactivate(host->mmc);
2309 	sdhci_reset(host, mask);
2310 }
2311 
sdhci_msm_register_vreg(struct sdhci_msm_host * msm_host)2312 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2313 {
2314 	int ret;
2315 
2316 	ret = mmc_regulator_get_supply(msm_host->mmc);
2317 	if (ret)
2318 		return ret;
2319 
2320 	sdhci_msm_set_regulator_caps(msm_host);
2321 
2322 	return 0;
2323 }
2324 
sdhci_msm_start_signal_voltage_switch(struct mmc_host * mmc,struct mmc_ios * ios)2325 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2326 				      struct mmc_ios *ios)
2327 {
2328 	struct sdhci_host *host = mmc_priv(mmc);
2329 	u16 ctrl, status;
2330 
2331 	/*
2332 	 * Signal Voltage Switching is only applicable for Host Controllers
2333 	 * v3.00 and above.
2334 	 */
2335 	if (host->version < SDHCI_SPEC_300)
2336 		return 0;
2337 
2338 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2339 
2340 	switch (ios->signal_voltage) {
2341 	case MMC_SIGNAL_VOLTAGE_330:
2342 		if (!(host->flags & SDHCI_SIGNALING_330))
2343 			return -EINVAL;
2344 
2345 		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2346 		ctrl &= ~SDHCI_CTRL_VDD_180;
2347 		break;
2348 	case MMC_SIGNAL_VOLTAGE_180:
2349 		if (!(host->flags & SDHCI_SIGNALING_180))
2350 			return -EINVAL;
2351 
2352 		/* Enable 1.8V Signal Enable in the Host Control2 register */
2353 		ctrl |= SDHCI_CTRL_VDD_180;
2354 		break;
2355 
2356 	default:
2357 		return -EINVAL;
2358 	}
2359 
2360 	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2361 
2362 	/* Wait for 5ms */
2363 	usleep_range(5000, 5500);
2364 
2365 	/* regulator output should be stable within 5 ms */
2366 	status = ctrl & SDHCI_CTRL_VDD_180;
2367 	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2368 	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2369 		return 0;
2370 
2371 	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2372 		mmc_hostname(mmc));
2373 
2374 	return -EAGAIN;
2375 }
2376 
2377 #define DRIVER_NAME "sdhci_msm"
2378 #define SDHCI_MSM_DUMP(f, x...) \
2379 	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2380 
sdhci_msm_dump_vendor_regs(struct sdhci_host * host)2381 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2382 {
2383 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2384 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2385 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2386 
2387 	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2388 
2389 	SDHCI_MSM_DUMP(
2390 			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2391 		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2392 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2393 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2394 	SDHCI_MSM_DUMP(
2395 			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2396 		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2397 		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2398 		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2399 	SDHCI_MSM_DUMP(
2400 			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2401 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2402 		readl_relaxed(host->ioaddr +
2403 			msm_offset->core_vendor_spec_func2),
2404 		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2405 }
2406 
2407 static const struct sdhci_msm_variant_ops mci_var_ops = {
2408 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2409 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2410 };
2411 
2412 static const struct sdhci_msm_variant_ops v5_var_ops = {
2413 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2414 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2415 };
2416 
2417 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2418 	.var_ops = &mci_var_ops,
2419 	.offset = &sdhci_msm_mci_offset,
2420 };
2421 
2422 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2423 	.mci_removed = true,
2424 	.var_ops = &v5_var_ops,
2425 	.offset = &sdhci_msm_v5_offset,
2426 };
2427 
2428 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2429 	.mci_removed = true,
2430 	.restore_dll_config = true,
2431 	.var_ops = &v5_var_ops,
2432 	.offset = &sdhci_msm_v5_offset,
2433 };
2434 
2435 static const struct sdhci_msm_variant_info sm8250_sdhci_var = {
2436 	.mci_removed = true,
2437 	.uses_tassadar_dll = true,
2438 	.var_ops = &v5_var_ops,
2439 	.offset = &sdhci_msm_v5_offset,
2440 };
2441 
2442 static const struct of_device_id sdhci_msm_dt_match[] = {
2443 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2444 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2445 	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2446 	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2447 	{.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var},
2448 	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2449 	{},
2450 };
2451 
2452 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2453 
2454 static const struct sdhci_ops sdhci_msm_ops = {
2455 	.reset = sdhci_msm_reset,
2456 	.set_clock = sdhci_msm_set_clock,
2457 	.get_min_clock = sdhci_msm_get_min_clock,
2458 	.get_max_clock = sdhci_msm_get_max_clock,
2459 	.set_bus_width = sdhci_set_bus_width,
2460 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2461 	.write_w = sdhci_msm_writew,
2462 	.write_b = sdhci_msm_writeb,
2463 	.irq	= sdhci_msm_cqe_irq,
2464 	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2465 	.set_power = sdhci_set_power_noreg,
2466 	.set_timeout = sdhci_msm_set_timeout,
2467 };
2468 
2469 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2470 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2471 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2472 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2473 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2474 
2475 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2476 	.ops = &sdhci_msm_ops,
2477 };
2478 
sdhci_msm_get_of_property(struct platform_device * pdev,struct sdhci_host * host)2479 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2480 		struct sdhci_host *host)
2481 {
2482 	struct device_node *node = pdev->dev.of_node;
2483 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2484 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2485 
2486 	if (of_property_read_u32(node, "qcom,ddr-config",
2487 				&msm_host->ddr_config))
2488 		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2489 
2490 	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2491 }
2492 
sdhci_msm_gcc_reset(struct device * dev,struct sdhci_host * host)2493 static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2494 {
2495 	struct reset_control *reset;
2496 	int ret = 0;
2497 
2498 	reset = reset_control_get_optional_exclusive(dev, NULL);
2499 	if (IS_ERR(reset))
2500 		return dev_err_probe(dev, PTR_ERR(reset),
2501 				"unable to acquire core_reset\n");
2502 
2503 	if (!reset)
2504 		return ret;
2505 
2506 	ret = reset_control_assert(reset);
2507 	if (ret) {
2508 		reset_control_put(reset);
2509 		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2510 	}
2511 
2512 	/*
2513 	 * The hardware requirement for delay between assert/deassert
2514 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2515 	 * ~125us (4/32768). To be on the safe side add 200us delay.
2516 	 */
2517 	usleep_range(200, 210);
2518 
2519 	ret = reset_control_deassert(reset);
2520 	if (ret) {
2521 		reset_control_put(reset);
2522 		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2523 	}
2524 
2525 	usleep_range(200, 210);
2526 	reset_control_put(reset);
2527 
2528 	return ret;
2529 }
2530 
sdhci_msm_probe(struct platform_device * pdev)2531 static int sdhci_msm_probe(struct platform_device *pdev)
2532 {
2533 	struct sdhci_host *host;
2534 	struct sdhci_pltfm_host *pltfm_host;
2535 	struct sdhci_msm_host *msm_host;
2536 	struct clk *clk;
2537 	int ret;
2538 	u16 host_version, core_minor;
2539 	u32 core_version, config;
2540 	u8 core_major;
2541 	const struct sdhci_msm_offset *msm_offset;
2542 	const struct sdhci_msm_variant_info *var_info;
2543 	struct device_node *node = pdev->dev.of_node;
2544 
2545 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2546 	if (IS_ERR(host))
2547 		return PTR_ERR(host);
2548 
2549 	host->sdma_boundary = 0;
2550 	pltfm_host = sdhci_priv(host);
2551 	msm_host = sdhci_pltfm_priv(pltfm_host);
2552 	msm_host->mmc = host->mmc;
2553 	msm_host->pdev = pdev;
2554 
2555 	ret = mmc_of_parse(host->mmc);
2556 	if (ret)
2557 		goto pltfm_free;
2558 
2559 	/*
2560 	 * Based on the compatible string, load the required msm host info from
2561 	 * the data associated with the version info.
2562 	 */
2563 	var_info = of_device_get_match_data(&pdev->dev);
2564 
2565 	msm_host->mci_removed = var_info->mci_removed;
2566 	msm_host->restore_dll_config = var_info->restore_dll_config;
2567 	msm_host->var_ops = var_info->var_ops;
2568 	msm_host->offset = var_info->offset;
2569 	msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll;
2570 
2571 	msm_offset = msm_host->offset;
2572 
2573 	sdhci_get_of_property(pdev);
2574 	sdhci_msm_get_of_property(pdev, host);
2575 
2576 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2577 
2578 	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2579 	if (ret)
2580 		goto pltfm_free;
2581 
2582 	/* Setup SDCC bus voter clock. */
2583 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2584 	if (!IS_ERR(msm_host->bus_clk)) {
2585 		/* Vote for max. clk rate for max. performance */
2586 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2587 		if (ret)
2588 			goto pltfm_free;
2589 		ret = clk_prepare_enable(msm_host->bus_clk);
2590 		if (ret)
2591 			goto pltfm_free;
2592 	}
2593 
2594 	/* Setup main peripheral bus clock */
2595 	clk = devm_clk_get(&pdev->dev, "iface");
2596 	if (IS_ERR(clk)) {
2597 		ret = PTR_ERR(clk);
2598 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2599 		goto bus_clk_disable;
2600 	}
2601 	msm_host->bulk_clks[1].clk = clk;
2602 
2603 	/* Setup SDC MMC clock */
2604 	clk = devm_clk_get(&pdev->dev, "core");
2605 	if (IS_ERR(clk)) {
2606 		ret = PTR_ERR(clk);
2607 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2608 		goto bus_clk_disable;
2609 	}
2610 	msm_host->bulk_clks[0].clk = clk;
2611 
2612 	 /* Check for optional interconnect paths */
2613 	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2614 	if (ret)
2615 		goto bus_clk_disable;
2616 
2617 	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
2618 	if (IS_ERR(msm_host->opp_table)) {
2619 		ret = PTR_ERR(msm_host->opp_table);
2620 		goto bus_clk_disable;
2621 	}
2622 
2623 	/* OPP table is optional */
2624 	ret = dev_pm_opp_of_add_table(&pdev->dev);
2625 	if (ret && ret != -ENODEV) {
2626 		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2627 		goto opp_put_clkname;
2628 	}
2629 
2630 	/* Vote for maximum clock rate for maximum performance */
2631 	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2632 	if (ret)
2633 		dev_warn(&pdev->dev, "core clock boost failed\n");
2634 
2635 	clk = devm_clk_get(&pdev->dev, "cal");
2636 	if (IS_ERR(clk))
2637 		clk = NULL;
2638 	msm_host->bulk_clks[2].clk = clk;
2639 
2640 	clk = devm_clk_get(&pdev->dev, "sleep");
2641 	if (IS_ERR(clk))
2642 		clk = NULL;
2643 	msm_host->bulk_clks[3].clk = clk;
2644 
2645 	clk = sdhci_msm_ice_get_clk(&pdev->dev);
2646 	if (IS_ERR(clk))
2647 		clk = NULL;
2648 	msm_host->bulk_clks[4].clk = clk;
2649 
2650 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2651 				      msm_host->bulk_clks);
2652 	if (ret)
2653 		goto opp_cleanup;
2654 
2655 	/*
2656 	 * xo clock is needed for FLL feature of cm_dll.
2657 	 * In case if xo clock is not mentioned in DT, warn and proceed.
2658 	 */
2659 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2660 	if (IS_ERR(msm_host->xo_clk)) {
2661 		ret = PTR_ERR(msm_host->xo_clk);
2662 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2663 	}
2664 
2665 	if (!msm_host->mci_removed) {
2666 		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2667 		if (IS_ERR(msm_host->core_mem)) {
2668 			ret = PTR_ERR(msm_host->core_mem);
2669 			goto clk_disable;
2670 		}
2671 	}
2672 
2673 	/* Reset the vendor spec register to power on reset state */
2674 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2675 			host->ioaddr + msm_offset->core_vendor_spec);
2676 
2677 	if (!msm_host->mci_removed) {
2678 		/* Set HC_MODE_EN bit in HC_MODE register */
2679 		msm_host_writel(msm_host, HC_MODE_EN, host,
2680 				msm_offset->core_hc_mode);
2681 		config = msm_host_readl(msm_host, host,
2682 				msm_offset->core_hc_mode);
2683 		config |= FF_CLK_SW_RST_DIS;
2684 		msm_host_writel(msm_host, config, host,
2685 				msm_offset->core_hc_mode);
2686 	}
2687 
2688 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2689 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2690 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2691 			       SDHCI_VENDOR_VER_SHIFT));
2692 
2693 	core_version = msm_host_readl(msm_host, host,
2694 			msm_offset->core_mci_version);
2695 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2696 		      CORE_VERSION_MAJOR_SHIFT;
2697 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2698 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2699 		core_version, core_major, core_minor);
2700 
2701 	if (core_major == 1 && core_minor >= 0x42)
2702 		msm_host->use_14lpp_dll_reset = true;
2703 
2704 	/*
2705 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2706 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2707 	 */
2708 	if (core_major == 1 && core_minor < 0x34)
2709 		msm_host->use_cdclp533 = true;
2710 
2711 	/*
2712 	 * Support for some capabilities is not advertised by newer
2713 	 * controller versions and must be explicitly enabled.
2714 	 */
2715 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2716 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2717 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2718 		writel_relaxed(config, host->ioaddr +
2719 				msm_offset->core_vendor_spec_capabilities0);
2720 	}
2721 
2722 	if (core_major == 1 && core_minor >= 0x49)
2723 		msm_host->updated_ddr_cfg = true;
2724 
2725 	ret = sdhci_msm_register_vreg(msm_host);
2726 	if (ret)
2727 		goto clk_disable;
2728 
2729 	/*
2730 	 * Power on reset state may trigger power irq if previous status of
2731 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2732 	 * interrupt in GIC, any pending power irq interrupt should be
2733 	 * acknowledged. Otherwise power irq interrupt handler would be
2734 	 * fired prematurely.
2735 	 */
2736 	sdhci_msm_handle_pwr_irq(host, 0);
2737 
2738 	/*
2739 	 * Ensure that above writes are propogated before interrupt enablement
2740 	 * in GIC.
2741 	 */
2742 	mb();
2743 
2744 	/* Setup IRQ for handling power/voltage tasks with PMIC */
2745 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2746 	if (msm_host->pwr_irq < 0) {
2747 		ret = msm_host->pwr_irq;
2748 		goto clk_disable;
2749 	}
2750 
2751 	sdhci_msm_init_pwr_irq_wait(msm_host);
2752 	/* Enable pwr irq interrupts */
2753 	msm_host_writel(msm_host, INT_MASK, host,
2754 		msm_offset->core_pwrctl_mask);
2755 
2756 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2757 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2758 					dev_name(&pdev->dev), host);
2759 	if (ret) {
2760 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2761 		goto clk_disable;
2762 	}
2763 
2764 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2765 
2766 	pm_runtime_get_noresume(&pdev->dev);
2767 	pm_runtime_set_active(&pdev->dev);
2768 	pm_runtime_enable(&pdev->dev);
2769 	pm_runtime_set_autosuspend_delay(&pdev->dev,
2770 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2771 	pm_runtime_use_autosuspend(&pdev->dev);
2772 
2773 	host->mmc_host_ops.start_signal_voltage_switch =
2774 		sdhci_msm_start_signal_voltage_switch;
2775 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2776 	if (of_property_read_bool(node, "supports-cqe"))
2777 		ret = sdhci_msm_cqe_add_host(host, pdev);
2778 	else
2779 		ret = sdhci_add_host(host);
2780 	if (ret)
2781 		goto pm_runtime_disable;
2782 
2783 	pm_runtime_mark_last_busy(&pdev->dev);
2784 	pm_runtime_put_autosuspend(&pdev->dev);
2785 
2786 	return 0;
2787 
2788 pm_runtime_disable:
2789 	pm_runtime_disable(&pdev->dev);
2790 	pm_runtime_set_suspended(&pdev->dev);
2791 	pm_runtime_put_noidle(&pdev->dev);
2792 clk_disable:
2793 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2794 				   msm_host->bulk_clks);
2795 opp_cleanup:
2796 	dev_pm_opp_of_remove_table(&pdev->dev);
2797 opp_put_clkname:
2798 	dev_pm_opp_put_clkname(msm_host->opp_table);
2799 bus_clk_disable:
2800 	if (!IS_ERR(msm_host->bus_clk))
2801 		clk_disable_unprepare(msm_host->bus_clk);
2802 pltfm_free:
2803 	sdhci_pltfm_free(pdev);
2804 	return ret;
2805 }
2806 
sdhci_msm_remove(struct platform_device * pdev)2807 static int sdhci_msm_remove(struct platform_device *pdev)
2808 {
2809 	struct sdhci_host *host = platform_get_drvdata(pdev);
2810 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2811 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2812 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2813 		    0xffffffff);
2814 
2815 	sdhci_remove_host(host, dead);
2816 
2817 	dev_pm_opp_of_remove_table(&pdev->dev);
2818 	dev_pm_opp_put_clkname(msm_host->opp_table);
2819 	pm_runtime_get_sync(&pdev->dev);
2820 	pm_runtime_disable(&pdev->dev);
2821 	pm_runtime_put_noidle(&pdev->dev);
2822 
2823 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2824 				   msm_host->bulk_clks);
2825 	if (!IS_ERR(msm_host->bus_clk))
2826 		clk_disable_unprepare(msm_host->bus_clk);
2827 	sdhci_pltfm_free(pdev);
2828 	return 0;
2829 }
2830 
sdhci_msm_runtime_suspend(struct device * dev)2831 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2832 {
2833 	struct sdhci_host *host = dev_get_drvdata(dev);
2834 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2835 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2836 
2837 	/* Drop the performance vote */
2838 	dev_pm_opp_set_rate(dev, 0);
2839 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2840 				   msm_host->bulk_clks);
2841 
2842 	return 0;
2843 }
2844 
sdhci_msm_runtime_resume(struct device * dev)2845 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2846 {
2847 	struct sdhci_host *host = dev_get_drvdata(dev);
2848 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2849 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2850 	int ret;
2851 
2852 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2853 				       msm_host->bulk_clks);
2854 	if (ret)
2855 		return ret;
2856 	/*
2857 	 * Whenever core-clock is gated dynamically, it's needed to
2858 	 * restore the SDR DLL settings when the clock is ungated.
2859 	 */
2860 	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2861 		ret = sdhci_msm_restore_sdr_dll_config(host);
2862 		if (ret)
2863 			return ret;
2864 	}
2865 
2866 	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2867 
2868 	return sdhci_msm_ice_resume(msm_host);
2869 }
2870 
2871 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2872 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2873 				pm_runtime_force_resume)
2874 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2875 			   sdhci_msm_runtime_resume,
2876 			   NULL)
2877 };
2878 
2879 static struct platform_driver sdhci_msm_driver = {
2880 	.probe = sdhci_msm_probe,
2881 	.remove = sdhci_msm_remove,
2882 	.driver = {
2883 		   .name = "sdhci_msm",
2884 		   .of_match_table = sdhci_msm_dt_match,
2885 		   .pm = &sdhci_msm_pm_ops,
2886 		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2887 	},
2888 };
2889 
2890 module_platform_driver(sdhci_msm_driver);
2891 
2892 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2893 MODULE_LICENSE("GPL v2");
2894