1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/slab.h>
14 #include <linux/stat.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/mm.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/resource.h>
21
22 #include "core.h"
23 #include "card.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "quirks.h"
28 #include "sd_ops.h"
29 #include "pwrseq.h"
30
31 #define DEFAULT_CMD6_TIMEOUT_MS 500
32 #define MIN_CACHE_EN_TIMEOUT_MS 1600
33
34 static const unsigned int tran_exp[] = {
35 10000, 100000, 1000000, 10000000,
36 0, 0, 0, 0
37 };
38
39 static const unsigned char tran_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
42 };
43
44 static const unsigned int taac_exp[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
46 };
47
48 static const unsigned int taac_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
51 };
52
53 #define UNSTUFF_BITS(resp,start,size) \
54 ({ \
55 const int __size = size; \
56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
57 const int __off = 3 - ((start) / 32); \
58 const int __shft = (start) & 31; \
59 u32 __res; \
60 \
61 __res = resp[__off] >> __shft; \
62 if (__size + __shft > 32) \
63 __res |= resp[__off-1] << ((32 - __shft) % 32); \
64 __res & __mask; \
65 })
66
67 /*
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
69 */
70 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
mmc_decode_cid(struct mmc_card * card)71 static int mmc_decode_cid(struct mmc_card *card)
72 {
73 u32 *resp = card->raw_cid;
74
75 /*
76 * The selection of the format here is based upon published
77 * specs from sandisk and from what people have reported.
78 */
79 switch (card->csd.mmca_vsn) {
80 case 0: /* MMC v1.0 - v1.2 */
81 case 1: /* MMC v1.4 */
82 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
83 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
84 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
85 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
86 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
87 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
88 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
89 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
90 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
91 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
92 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
93 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
94 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
95 break;
96
97 case 2: /* MMC v2.0 - v2.2 */
98 case 3: /* MMC v3.1 - v3.3 */
99 case 4: /* MMC v4 */
100 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
101 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
102 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
103 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
104 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
105 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
106 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
107 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
108 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
109 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
110 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
111 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
112 break;
113
114 default:
115 pr_err("%s: card has unknown MMCA version %d\n",
116 mmc_hostname(card->host), card->csd.mmca_vsn);
117 return -EINVAL;
118 }
119
120 return 0;
121 }
122 #endif
123
mmc_set_erase_size(struct mmc_card * card)124 static void mmc_set_erase_size(struct mmc_card *card)
125 {
126 if (card->ext_csd.erase_group_def & 1)
127 card->erase_size = card->ext_csd.hc_erase_size;
128 else
129 card->erase_size = card->csd.erase_size;
130
131 mmc_init_erase(card);
132 }
133
134 /*
135 * Given a 128-bit response, decode to our card CSD structure.
136 */
mmc_decode_csd(struct mmc_card * card)137 static int mmc_decode_csd(struct mmc_card *card)
138 {
139 struct mmc_csd *csd = &card->csd;
140 unsigned int e, m, a, b;
141 u32 *resp = card->raw_csd;
142
143 /*
144 * We only understand CSD structure v1.1 and v1.2.
145 * v1.2 has extra information in bits 15, 11 and 10.
146 * We also support eMMC v4.4 & v4.41.
147 */
148 csd->structure = UNSTUFF_BITS(resp, 126, 2);
149 if (csd->structure == 0) {
150 pr_err("%s: unrecognised CSD structure version %d\n",
151 mmc_hostname(card->host), csd->structure);
152 return -EINVAL;
153 }
154
155 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
156 m = UNSTUFF_BITS(resp, 115, 4);
157 e = UNSTUFF_BITS(resp, 112, 3);
158 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
159 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
160
161 m = UNSTUFF_BITS(resp, 99, 4);
162 e = UNSTUFF_BITS(resp, 96, 3);
163 csd->max_dtr = tran_exp[e] * tran_mant[m];
164 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
165
166 e = UNSTUFF_BITS(resp, 47, 3);
167 m = UNSTUFF_BITS(resp, 62, 12);
168 csd->capacity = (1 + m) << (e + 2);
169
170 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
171 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
172 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
173 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
174 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
175 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
176 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
177 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
178
179 if (csd->write_blkbits >= 9) {
180 a = UNSTUFF_BITS(resp, 42, 5);
181 b = UNSTUFF_BITS(resp, 37, 5);
182 csd->erase_size = (a + 1) * (b + 1);
183 csd->erase_size <<= csd->write_blkbits - 9;
184 }
185
186 return 0;
187 }
188
mmc_select_card_type(struct mmc_card * card)189 static void mmc_select_card_type(struct mmc_card *card)
190 {
191 struct mmc_host *host = card->host;
192 u8 card_type = card->ext_csd.raw_card_type;
193 u32 caps = host->caps, caps2 = host->caps2;
194 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
195 unsigned int avail_type = 0;
196
197 if (caps & MMC_CAP_MMC_HIGHSPEED &&
198 card_type & EXT_CSD_CARD_TYPE_HS_26) {
199 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
200 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
201 }
202
203 if (caps & MMC_CAP_MMC_HIGHSPEED &&
204 card_type & EXT_CSD_CARD_TYPE_HS_52) {
205 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
206 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
207 }
208
209 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
210 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
211 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
212 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
213 }
214
215 if (caps & MMC_CAP_1_2V_DDR &&
216 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
217 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
218 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
219 }
220
221 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
222 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
223 hs200_max_dtr = MMC_HS200_MAX_DTR;
224 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
225 }
226
227 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
228 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
229 hs200_max_dtr = MMC_HS200_MAX_DTR;
230 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
231 }
232
233 if (caps2 & MMC_CAP2_HS400_1_8V &&
234 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
235 hs200_max_dtr = MMC_HS200_MAX_DTR;
236 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
237 }
238
239 if (caps2 & MMC_CAP2_HS400_1_2V &&
240 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
241 hs200_max_dtr = MMC_HS200_MAX_DTR;
242 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
243 }
244
245 if ((caps2 & MMC_CAP2_HS400_ES) &&
246 card->ext_csd.strobe_support &&
247 (avail_type & EXT_CSD_CARD_TYPE_HS400))
248 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
249
250 card->ext_csd.hs_max_dtr = hs_max_dtr;
251 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
252 card->mmc_avail_type = avail_type;
253 }
254
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)255 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
256 {
257 u8 hc_erase_grp_sz, hc_wp_grp_sz;
258
259 /*
260 * Disable these attributes by default
261 */
262 card->ext_csd.enhanced_area_offset = -EINVAL;
263 card->ext_csd.enhanced_area_size = -EINVAL;
264
265 /*
266 * Enhanced area feature support -- check whether the eMMC
267 * card has the Enhanced area enabled. If so, export enhanced
268 * area offset and size to user by adding sysfs interface.
269 */
270 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
271 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
272 if (card->ext_csd.partition_setting_completed) {
273 hc_erase_grp_sz =
274 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
275 hc_wp_grp_sz =
276 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
277
278 /*
279 * calculate the enhanced data area offset, in bytes
280 */
281 card->ext_csd.enhanced_area_offset =
282 (((unsigned long long)ext_csd[139]) << 24) +
283 (((unsigned long long)ext_csd[138]) << 16) +
284 (((unsigned long long)ext_csd[137]) << 8) +
285 (((unsigned long long)ext_csd[136]));
286 if (mmc_card_blockaddr(card))
287 card->ext_csd.enhanced_area_offset <<= 9;
288 /*
289 * calculate the enhanced data area size, in kilobytes
290 */
291 card->ext_csd.enhanced_area_size =
292 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
293 ext_csd[140];
294 card->ext_csd.enhanced_area_size *=
295 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
296 card->ext_csd.enhanced_area_size <<= 9;
297 } else {
298 pr_warn("%s: defines enhanced area without partition setting complete\n",
299 mmc_hostname(card->host));
300 }
301 }
302 }
303
mmc_part_add(struct mmc_card * card,u64 size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)304 static void mmc_part_add(struct mmc_card *card, u64 size,
305 unsigned int part_cfg, char *name, int idx, bool ro,
306 int area_type)
307 {
308 card->part[card->nr_parts].size = size;
309 card->part[card->nr_parts].part_cfg = part_cfg;
310 sprintf(card->part[card->nr_parts].name, name, idx);
311 card->part[card->nr_parts].force_ro = ro;
312 card->part[card->nr_parts].area_type = area_type;
313 card->nr_parts++;
314 }
315
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)316 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
317 {
318 int idx;
319 u8 hc_erase_grp_sz, hc_wp_grp_sz;
320 u64 part_size;
321
322 /*
323 * General purpose partition feature support --
324 * If ext_csd has the size of general purpose partitions,
325 * set size, part_cfg, partition name in mmc_part.
326 */
327 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
328 EXT_CSD_PART_SUPPORT_PART_EN) {
329 hc_erase_grp_sz =
330 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
331 hc_wp_grp_sz =
332 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
333
334 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
335 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
336 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
337 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
338 continue;
339 if (card->ext_csd.partition_setting_completed == 0) {
340 pr_warn("%s: has partition size defined without partition complete\n",
341 mmc_hostname(card->host));
342 break;
343 }
344 part_size =
345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
346 << 16) +
347 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
348 << 8) +
349 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
350 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
351 mmc_part_add(card, part_size << 19,
352 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
353 "gp%d", idx, false,
354 MMC_BLK_DATA_AREA_GP);
355 }
356 }
357 }
358
359 /* Minimum partition switch timeout in milliseconds */
360 #define MMC_MIN_PART_SWITCH_TIME 300
361
362 /*
363 * Decode extended CSD.
364 */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)365 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
366 {
367 int err = 0, idx;
368 u64 part_size;
369 struct device_node *np;
370 bool broken_hpi = false;
371
372 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
373 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
374 if (card->csd.structure == 3) {
375 if (card->ext_csd.raw_ext_csd_structure > 2) {
376 pr_err("%s: unrecognised EXT_CSD structure "
377 "version %d\n", mmc_hostname(card->host),
378 card->ext_csd.raw_ext_csd_structure);
379 err = -EINVAL;
380 goto out;
381 }
382 }
383
384 np = mmc_of_find_child_device(card->host, 0);
385 if (np && of_device_is_compatible(np, "mmc-card"))
386 broken_hpi = of_property_read_bool(np, "broken-hpi");
387 of_node_put(np);
388
389 /*
390 * The EXT_CSD format is meant to be forward compatible. As long
391 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
392 * are authorized, see JEDEC JESD84-B50 section B.8.
393 */
394 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
395
396 /* fixup device after ext_csd revision field is updated */
397 mmc_fixup_device(card, mmc_ext_csd_fixups);
398
399 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
400 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
401 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
402 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
403 if (card->ext_csd.rev >= 2) {
404 card->ext_csd.sectors =
405 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
406 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
407 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
408 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
409
410 /* Cards with density > 2GiB are sector addressed */
411 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
412 mmc_card_set_blockaddr(card);
413 }
414
415 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
416 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
417 mmc_select_card_type(card);
418
419 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
420 card->ext_csd.raw_erase_timeout_mult =
421 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
422 card->ext_csd.raw_hc_erase_grp_size =
423 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
424 if (card->ext_csd.rev >= 3) {
425 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
426 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
427
428 /* EXT_CSD value is in units of 10ms, but we store in ms */
429 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
430
431 /* Sleep / awake timeout in 100ns units */
432 if (sa_shift > 0 && sa_shift <= 0x17)
433 card->ext_csd.sa_timeout =
434 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
435 card->ext_csd.erase_group_def =
436 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
437 card->ext_csd.hc_erase_timeout = 300 *
438 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
439 card->ext_csd.hc_erase_size =
440 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
441
442 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
443
444 /*
445 * There are two boot regions of equal size, defined in
446 * multiples of 128K.
447 */
448 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
449 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
450 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
451 mmc_part_add(card, part_size,
452 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
453 "boot%d", idx, true,
454 MMC_BLK_DATA_AREA_BOOT);
455 }
456 }
457 }
458
459 card->ext_csd.raw_hc_erase_gap_size =
460 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
461 card->ext_csd.raw_sec_trim_mult =
462 ext_csd[EXT_CSD_SEC_TRIM_MULT];
463 card->ext_csd.raw_sec_erase_mult =
464 ext_csd[EXT_CSD_SEC_ERASE_MULT];
465 card->ext_csd.raw_sec_feature_support =
466 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
467 card->ext_csd.raw_trim_mult =
468 ext_csd[EXT_CSD_TRIM_MULT];
469 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
470 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
471 if (card->ext_csd.rev >= 4) {
472 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
473 EXT_CSD_PART_SETTING_COMPLETED)
474 card->ext_csd.partition_setting_completed = 1;
475 else
476 card->ext_csd.partition_setting_completed = 0;
477
478 mmc_manage_enhanced_area(card, ext_csd);
479
480 mmc_manage_gp_partitions(card, ext_csd);
481
482 card->ext_csd.sec_trim_mult =
483 ext_csd[EXT_CSD_SEC_TRIM_MULT];
484 card->ext_csd.sec_erase_mult =
485 ext_csd[EXT_CSD_SEC_ERASE_MULT];
486 card->ext_csd.sec_feature_support =
487 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
488 card->ext_csd.trim_timeout = 300 *
489 ext_csd[EXT_CSD_TRIM_MULT];
490
491 /*
492 * Note that the call to mmc_part_add above defaults to read
493 * only. If this default assumption is changed, the call must
494 * take into account the value of boot_locked below.
495 */
496 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
497 card->ext_csd.boot_ro_lockable = true;
498
499 /* Save power class values */
500 card->ext_csd.raw_pwr_cl_52_195 =
501 ext_csd[EXT_CSD_PWR_CL_52_195];
502 card->ext_csd.raw_pwr_cl_26_195 =
503 ext_csd[EXT_CSD_PWR_CL_26_195];
504 card->ext_csd.raw_pwr_cl_52_360 =
505 ext_csd[EXT_CSD_PWR_CL_52_360];
506 card->ext_csd.raw_pwr_cl_26_360 =
507 ext_csd[EXT_CSD_PWR_CL_26_360];
508 card->ext_csd.raw_pwr_cl_200_195 =
509 ext_csd[EXT_CSD_PWR_CL_200_195];
510 card->ext_csd.raw_pwr_cl_200_360 =
511 ext_csd[EXT_CSD_PWR_CL_200_360];
512 card->ext_csd.raw_pwr_cl_ddr_52_195 =
513 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
514 card->ext_csd.raw_pwr_cl_ddr_52_360 =
515 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
516 card->ext_csd.raw_pwr_cl_ddr_200_360 =
517 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
518 }
519
520 if (card->ext_csd.rev >= 5) {
521 /* Adjust production date as per JEDEC JESD84-B451 */
522 if (card->cid.year < 2010)
523 card->cid.year += 16;
524
525 /* check whether the eMMC card supports BKOPS */
526 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 card->ext_csd.bkops = 1;
528 card->ext_csd.man_bkops_en =
529 (ext_csd[EXT_CSD_BKOPS_EN] &
530 EXT_CSD_MANUAL_BKOPS_MASK);
531 card->ext_csd.raw_bkops_status =
532 ext_csd[EXT_CSD_BKOPS_STATUS];
533 if (card->ext_csd.man_bkops_en)
534 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 mmc_hostname(card->host));
536 card->ext_csd.auto_bkops_en =
537 (ext_csd[EXT_CSD_BKOPS_EN] &
538 EXT_CSD_AUTO_BKOPS_MASK);
539 if (card->ext_csd.auto_bkops_en)
540 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 mmc_hostname(card->host));
542 }
543
544 /* check whether the eMMC card supports HPI */
545 if (!mmc_card_broken_hpi(card) &&
546 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
547 card->ext_csd.hpi = 1;
548 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
549 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
550 else
551 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
552 /*
553 * Indicate the maximum timeout to close
554 * a command interrupted by HPI
555 */
556 card->ext_csd.out_of_int_time =
557 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
558 }
559
560 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
561 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
562
563 /*
564 * RPMB regions are defined in multiples of 128K.
565 */
566 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
567 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
568 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
569 EXT_CSD_PART_CONFIG_ACC_RPMB,
570 "rpmb", 0, false,
571 MMC_BLK_DATA_AREA_RPMB);
572 }
573 }
574
575 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
576 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
577 card->erased_byte = 0xFF;
578 else
579 card->erased_byte = 0x0;
580
581 /* eMMC v4.5 or later */
582 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
583 if (card->ext_csd.rev >= 6) {
584 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
585
586 card->ext_csd.generic_cmd6_time = 10 *
587 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
588 card->ext_csd.power_off_longtime = 10 *
589 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
590
591 card->ext_csd.cache_size =
592 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
593 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
594 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
595 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
596
597 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
598 card->ext_csd.data_sector_size = 4096;
599 else
600 card->ext_csd.data_sector_size = 512;
601
602 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
603 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
604 card->ext_csd.data_tag_unit_size =
605 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
606 (card->ext_csd.data_sector_size);
607 } else {
608 card->ext_csd.data_tag_unit_size = 0;
609 }
610
611 card->ext_csd.max_packed_writes =
612 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
613 card->ext_csd.max_packed_reads =
614 ext_csd[EXT_CSD_MAX_PACKED_READS];
615 } else {
616 card->ext_csd.data_sector_size = 512;
617 }
618
619 /*
620 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
621 * when accessing a specific field", so use it here if there is no
622 * PARTITION_SWITCH_TIME.
623 */
624 if (!card->ext_csd.part_time)
625 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
626 /* Some eMMC set the value too low so set a minimum */
627 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
628 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
629
630 /* eMMC v5 or later */
631 if (card->ext_csd.rev >= 7) {
632 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
633 MMC_FIRMWARE_LEN);
634 card->ext_csd.ffu_capable =
635 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
636 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
637
638 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
639 card->ext_csd.device_life_time_est_typ_a =
640 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
641 card->ext_csd.device_life_time_est_typ_b =
642 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
643 }
644
645 /* eMMC v5.1 or later */
646 if (card->ext_csd.rev >= 8) {
647 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
648 EXT_CSD_CMDQ_SUPPORTED;
649 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
650 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
651 /* Exclude inefficiently small queue depths */
652 if (card->ext_csd.cmdq_depth <= 2) {
653 card->ext_csd.cmdq_support = false;
654 card->ext_csd.cmdq_depth = 0;
655 }
656 if (card->ext_csd.cmdq_support) {
657 pr_debug("%s: Command Queue supported depth %u\n",
658 mmc_hostname(card->host),
659 card->ext_csd.cmdq_depth);
660 }
661 card->ext_csd.enhanced_rpmb_supported =
662 (card->ext_csd.rel_param &
663 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
664 }
665 out:
666 return err;
667 }
668
669 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
mmc_tb_map_ecsd(phys_addr_t start,size_t len)670 static void *mmc_tb_map_ecsd(phys_addr_t start, size_t len)
671 {
672 int i;
673 void *vaddr;
674 pgprot_t pgprot = PAGE_KERNEL;
675 phys_addr_t phys;
676 int npages = PAGE_ALIGN(len) / PAGE_SIZE;
677 struct page **p = vmalloc(sizeof(struct page *) * npages);
678
679 if (!p)
680 return NULL;
681
682 phys = start;
683 for (i = 0; i < npages; i++) {
684 p[i] = phys_to_page(phys);
685 phys += PAGE_SIZE;
686 }
687
688 vaddr = vmap(p, npages, VM_MAP, pgprot);
689 vfree(p);
690
691 return vaddr;
692 }
693 #endif
694
mmc_read_ext_csd(struct mmc_card * card)695 static int mmc_read_ext_csd(struct mmc_card *card)
696 {
697 u8 *ext_csd;
698 int err;
699 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
700 void *ecsd;
701 bool valid_ecsd = false;
702 bool valid_reserved = false;
703 struct device_node *mem;
704 struct resource reg;
705 struct device *dev = card->host->parent;
706 #endif
707 if (!mmc_can_ext_csd(card))
708 return 0;
709
710 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
711 mem = of_parse_phandle(dev->of_node, "memory-region-ecsd", 0);
712 if (mem) {
713 err = of_address_to_resource(mem, 0, ®);
714 if (err < 0) {
715 dev_err(dev, "fail to get resource\n");
716 goto get_ecsd;
717 }
718 valid_reserved = true;
719
720 ecsd = mmc_tb_map_ecsd(reg.start, resource_size(®));
721 if (!ecsd)
722 goto get_ecsd;
723
724 if (readl(ecsd + SZ_512) == 0x55aa55aa) {
725 ext_csd = ecsd;
726 valid_ecsd = true;
727 goto decode;
728 } else {
729 dev_dbg(dev, "invalid ecsd tag!");
730 }
731 } else {
732 dev_info(dev, "not find \"memory-region\" property\n");
733 }
734
735 get_ecsd:
736 #endif
737 err = mmc_get_ext_csd(card, &ext_csd);
738 if (err) {
739 /* If the host or the card can't do the switch,
740 * fail more gracefully. */
741 if ((err != -EINVAL)
742 && (err != -ENOSYS)
743 && (err != -EFAULT))
744 return err;
745
746 /*
747 * High capacity cards should have this "magic" size
748 * stored in their CSD.
749 */
750 if (card->csd.capacity == (4096 * 512)) {
751 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
752 mmc_hostname(card->host));
753 } else {
754 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
755 mmc_hostname(card->host));
756 err = 0;
757 }
758
759 return err;
760 }
761 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
762 decode:
763 #endif
764 err = mmc_decode_ext_csd(card, ext_csd);
765 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
766 if (!valid_ecsd)
767 kfree(ext_csd);
768 else
769 vunmap(ecsd);
770 if (valid_reserved)
771 free_reserved_area(phys_to_virt(reg.start),
772 phys_to_virt(reg.start) + resource_size(®),
773 -1, "memory-region-ecsd");
774 #else
775 kfree(ext_csd);
776 #endif
777 return err;
778 }
779
780 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)781 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
782 {
783 u8 *bw_ext_csd;
784 int err;
785
786 if (bus_width == MMC_BUS_WIDTH_1)
787 return 0;
788
789 err = mmc_get_ext_csd(card, &bw_ext_csd);
790 if (err)
791 return err;
792
793 /* only compare read only fields */
794 err = !((card->ext_csd.raw_partition_support ==
795 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
796 (card->ext_csd.raw_erased_mem_count ==
797 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
798 (card->ext_csd.rev ==
799 bw_ext_csd[EXT_CSD_REV]) &&
800 (card->ext_csd.raw_ext_csd_structure ==
801 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
802 (card->ext_csd.raw_card_type ==
803 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
804 (card->ext_csd.raw_s_a_timeout ==
805 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
806 (card->ext_csd.raw_hc_erase_gap_size ==
807 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
808 (card->ext_csd.raw_erase_timeout_mult ==
809 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
810 (card->ext_csd.raw_hc_erase_grp_size ==
811 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
812 (card->ext_csd.raw_sec_trim_mult ==
813 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
814 (card->ext_csd.raw_sec_erase_mult ==
815 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
816 (card->ext_csd.raw_sec_feature_support ==
817 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
818 (card->ext_csd.raw_trim_mult ==
819 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
820 (card->ext_csd.raw_sectors[0] ==
821 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
822 (card->ext_csd.raw_sectors[1] ==
823 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
824 (card->ext_csd.raw_sectors[2] ==
825 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
826 (card->ext_csd.raw_sectors[3] ==
827 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
828 (card->ext_csd.raw_pwr_cl_52_195 ==
829 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
830 (card->ext_csd.raw_pwr_cl_26_195 ==
831 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
832 (card->ext_csd.raw_pwr_cl_52_360 ==
833 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
834 (card->ext_csd.raw_pwr_cl_26_360 ==
835 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
836 (card->ext_csd.raw_pwr_cl_200_195 ==
837 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
838 (card->ext_csd.raw_pwr_cl_200_360 ==
839 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
840 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
841 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
842 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
843 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
844 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
845 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
846
847 if (err)
848 err = -EINVAL;
849
850 kfree(bw_ext_csd);
851 return err;
852 }
853 #endif
854
855 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
856 card->raw_cid[2], card->raw_cid[3]);
857 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
858 card->raw_csd[2], card->raw_csd[3]);
859 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
860 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
861 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
862 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
863 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
864 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
865 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
866 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
867 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
868 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
869 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
870 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
871 card->ext_csd.device_life_time_est_typ_a,
872 card->ext_csd.device_life_time_est_typ_b);
873 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
874 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
875 card->ext_csd.enhanced_area_offset);
876 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
877 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
878 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
879 card->ext_csd.enhanced_rpmb_supported);
880 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
881 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
882 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
883 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
884
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)885 static ssize_t mmc_fwrev_show(struct device *dev,
886 struct device_attribute *attr,
887 char *buf)
888 {
889 struct mmc_card *card = mmc_dev_to_card(dev);
890
891 if (card->ext_csd.rev < 7) {
892 return sprintf(buf, "0x%x\n", card->cid.fwrev);
893 } else {
894 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
895 card->ext_csd.fwrev);
896 }
897 }
898
899 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
900
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)901 static ssize_t mmc_dsr_show(struct device *dev,
902 struct device_attribute *attr,
903 char *buf)
904 {
905 struct mmc_card *card = mmc_dev_to_card(dev);
906 struct mmc_host *host = card->host;
907
908 if (card->csd.dsr_imp && host->dsr_req)
909 return sprintf(buf, "0x%x\n", host->dsr);
910 else
911 /* return default DSR value */
912 return sprintf(buf, "0x%x\n", 0x404);
913 }
914
915 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
916
917 static struct attribute *mmc_std_attrs[] = {
918 &dev_attr_cid.attr,
919 &dev_attr_csd.attr,
920 &dev_attr_date.attr,
921 &dev_attr_erase_size.attr,
922 &dev_attr_preferred_erase_size.attr,
923 &dev_attr_fwrev.attr,
924 &dev_attr_ffu_capable.attr,
925 &dev_attr_hwrev.attr,
926 &dev_attr_manfid.attr,
927 &dev_attr_name.attr,
928 &dev_attr_oemid.attr,
929 &dev_attr_prv.attr,
930 &dev_attr_rev.attr,
931 &dev_attr_pre_eol_info.attr,
932 &dev_attr_life_time.attr,
933 &dev_attr_serial.attr,
934 &dev_attr_enhanced_area_offset.attr,
935 &dev_attr_enhanced_area_size.attr,
936 &dev_attr_raw_rpmb_size_mult.attr,
937 &dev_attr_enhanced_rpmb_supported.attr,
938 &dev_attr_rel_sectors.attr,
939 &dev_attr_ocr.attr,
940 &dev_attr_rca.attr,
941 &dev_attr_dsr.attr,
942 &dev_attr_cmdq_en.attr,
943 NULL,
944 };
945 ATTRIBUTE_GROUPS(mmc_std);
946
947 static struct device_type mmc_type = {
948 .groups = mmc_std_groups,
949 };
950
951 /*
952 * Select the PowerClass for the current bus width
953 * If power class is defined for 4/8 bit bus in the
954 * extended CSD register, select it by executing the
955 * mmc_switch command.
956 */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)957 static int __mmc_select_powerclass(struct mmc_card *card,
958 unsigned int bus_width)
959 {
960 struct mmc_host *host = card->host;
961 struct mmc_ext_csd *ext_csd = &card->ext_csd;
962 unsigned int pwrclass_val = 0;
963 int err = 0;
964
965 switch (1 << host->ios.vdd) {
966 case MMC_VDD_165_195:
967 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
968 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
969 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
970 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
971 ext_csd->raw_pwr_cl_52_195 :
972 ext_csd->raw_pwr_cl_ddr_52_195;
973 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
974 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
975 break;
976 case MMC_VDD_27_28:
977 case MMC_VDD_28_29:
978 case MMC_VDD_29_30:
979 case MMC_VDD_30_31:
980 case MMC_VDD_31_32:
981 case MMC_VDD_32_33:
982 case MMC_VDD_33_34:
983 case MMC_VDD_34_35:
984 case MMC_VDD_35_36:
985 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
986 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
987 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
988 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
989 ext_csd->raw_pwr_cl_52_360 :
990 ext_csd->raw_pwr_cl_ddr_52_360;
991 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
992 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
993 ext_csd->raw_pwr_cl_ddr_200_360 :
994 ext_csd->raw_pwr_cl_200_360;
995 break;
996 default:
997 pr_warn("%s: Voltage range not supported for power class\n",
998 mmc_hostname(host));
999 return -EINVAL;
1000 }
1001
1002 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
1003 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
1004 EXT_CSD_PWR_CL_8BIT_SHIFT;
1005 else
1006 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
1007 EXT_CSD_PWR_CL_4BIT_SHIFT;
1008
1009 /* If the power class is different from the default value */
1010 if (pwrclass_val > 0) {
1011 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1012 EXT_CSD_POWER_CLASS,
1013 pwrclass_val,
1014 card->ext_csd.generic_cmd6_time);
1015 }
1016
1017 return err;
1018 }
1019
mmc_select_powerclass(struct mmc_card * card)1020 static int mmc_select_powerclass(struct mmc_card *card)
1021 {
1022 struct mmc_host *host = card->host;
1023 u32 bus_width, ext_csd_bits;
1024 int err, ddr;
1025
1026 /* Power class selection is supported for versions >= 4.0 */
1027 if (!mmc_can_ext_csd(card))
1028 return 0;
1029
1030 bus_width = host->ios.bus_width;
1031 /* Power class values are defined only for 4/8 bit bus */
1032 if (bus_width == MMC_BUS_WIDTH_1)
1033 return 0;
1034
1035 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
1036 if (ddr)
1037 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1038 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1039 else
1040 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1041 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
1042
1043 err = __mmc_select_powerclass(card, ext_csd_bits);
1044 if (err)
1045 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
1046 mmc_hostname(host), 1 << bus_width, ddr);
1047
1048 return err;
1049 }
1050
1051 /*
1052 * Set the bus speed for the selected speed mode.
1053 */
mmc_set_bus_speed(struct mmc_card * card)1054 void mmc_set_bus_speed(struct mmc_card *card)
1055 {
1056 unsigned int max_dtr = (unsigned int)-1;
1057
1058 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
1059 max_dtr > card->ext_csd.hs200_max_dtr)
1060 max_dtr = card->ext_csd.hs200_max_dtr;
1061 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
1062 max_dtr = card->ext_csd.hs_max_dtr;
1063 else if (max_dtr > card->csd.max_dtr)
1064 max_dtr = card->csd.max_dtr;
1065
1066 mmc_set_clock(card->host, max_dtr);
1067 }
1068
1069 /*
1070 * Select the bus width amoung 4-bit and 8-bit(SDR).
1071 * If the bus width is changed successfully, return the selected width value.
1072 * Zero is returned instead of error value if the wide width is not supported.
1073 */
mmc_select_bus_width(struct mmc_card * card)1074 int mmc_select_bus_width(struct mmc_card *card)
1075 {
1076 static unsigned ext_csd_bits[] = {
1077 EXT_CSD_BUS_WIDTH_8,
1078 EXT_CSD_BUS_WIDTH_4,
1079 };
1080 static unsigned bus_widths[] = {
1081 MMC_BUS_WIDTH_8,
1082 MMC_BUS_WIDTH_4,
1083 };
1084 struct mmc_host *host = card->host;
1085 unsigned idx, bus_width = 0;
1086 int err = 0;
1087
1088 if (!mmc_can_ext_csd(card) ||
1089 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1090 return 0;
1091
1092 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1093
1094 /*
1095 * Unlike SD, MMC cards dont have a configuration register to notify
1096 * supported bus width. So bus test command should be run to identify
1097 * the supported bus width or compare the ext csd values of current
1098 * bus width and ext csd values of 1 bit mode read earlier.
1099 */
1100 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1101 /*
1102 * Host is capable of 8bit transfer, then switch
1103 * the device to work in 8bit transfer mode. If the
1104 * mmc switch command returns error then switch to
1105 * 4bit transfer mode. On success set the corresponding
1106 * bus width on the host.
1107 */
1108 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1109 EXT_CSD_BUS_WIDTH,
1110 ext_csd_bits[idx],
1111 card->ext_csd.generic_cmd6_time);
1112 if (err)
1113 continue;
1114
1115 bus_width = bus_widths[idx];
1116 mmc_set_bus_width(host, bus_width);
1117
1118 /*
1119 * If controller can't handle bus width test,
1120 * compare ext_csd previously read in 1 bit mode
1121 * against ext_csd at new bus width
1122 */
1123 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1124 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1125 err = mmc_compare_ext_csds(card, bus_width);
1126 else
1127 err = mmc_bus_test(card, bus_width);
1128 #endif
1129 if (!err) {
1130 err = bus_width;
1131 break;
1132 } else {
1133 pr_warn("%s: switch to bus width %d failed\n",
1134 mmc_hostname(host), 1 << bus_width);
1135 }
1136 }
1137
1138 return err;
1139 }
1140 EXPORT_SYMBOL_GPL(mmc_select_bus_width);
1141
1142 /*
1143 * Switch to the high-speed mode
1144 */
mmc_select_hs(struct mmc_card * card)1145 int mmc_select_hs(struct mmc_card *card)
1146 {
1147 int err;
1148
1149 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1150 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1151 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1152 true, true);
1153 if (err)
1154 pr_warn("%s: switch to high-speed failed, err:%d\n",
1155 mmc_hostname(card->host), err);
1156
1157 return err;
1158 }
1159 EXPORT_SYMBOL_GPL(mmc_select_hs);
1160
1161 /*
1162 * Activate wide bus and DDR if supported.
1163 */
mmc_select_hs_ddr(struct mmc_card * card)1164 int mmc_select_hs_ddr(struct mmc_card *card)
1165 {
1166 struct mmc_host *host = card->host;
1167 u32 bus_width, ext_csd_bits;
1168 int err = 0;
1169
1170 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1171 return 0;
1172
1173 bus_width = host->ios.bus_width;
1174 if (bus_width == MMC_BUS_WIDTH_1)
1175 return 0;
1176
1177 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1178 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1179
1180 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1181 EXT_CSD_BUS_WIDTH,
1182 ext_csd_bits,
1183 card->ext_csd.generic_cmd6_time,
1184 MMC_TIMING_MMC_DDR52,
1185 true, true);
1186 if (err) {
1187 pr_err("%s: switch to bus width %d ddr failed\n",
1188 mmc_hostname(host), 1 << bus_width);
1189 return err;
1190 }
1191
1192 /*
1193 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1194 * signaling.
1195 *
1196 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1197 *
1198 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1199 * in the JEDEC spec for DDR.
1200 *
1201 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1202 * host controller can support this, like some of the SDHCI
1203 * controller which connect to an eMMC device. Some of these
1204 * host controller still needs to use 1.8v vccq for supporting
1205 * DDR mode.
1206 *
1207 * So the sequence will be:
1208 * if (host and device can both support 1.2v IO)
1209 * use 1.2v IO;
1210 * else if (host and device can both support 1.8v IO)
1211 * use 1.8v IO;
1212 * so if host and device can only support 3.3v IO, this is the
1213 * last choice.
1214 *
1215 * WARNING: eMMC rules are NOT the same as SD DDR
1216 */
1217 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1218 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1219 if (!err)
1220 return 0;
1221 }
1222
1223 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1224 host->caps & MMC_CAP_1_8V_DDR)
1225 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1226
1227 /* make sure vccq is 3.3v after switching disaster */
1228 if (err)
1229 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1230
1231 return err;
1232 }
1233 EXPORT_SYMBOL_GPL(mmc_select_hs_ddr);
1234
mmc_select_hs400(struct mmc_card * card)1235 int mmc_select_hs400(struct mmc_card *card)
1236 {
1237 struct mmc_host *host = card->host;
1238 unsigned int max_dtr;
1239 int err = 0;
1240 u8 val;
1241
1242 /*
1243 * HS400 mode requires 8-bit bus width
1244 */
1245 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1246 host->ios.bus_width == MMC_BUS_WIDTH_8))
1247 return 0;
1248
1249 /* Switch card to HS mode */
1250 val = EXT_CSD_TIMING_HS;
1251 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1252 EXT_CSD_HS_TIMING, val,
1253 card->ext_csd.generic_cmd6_time, 0,
1254 false, true);
1255 if (err) {
1256 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1257 mmc_hostname(host), err);
1258 return err;
1259 }
1260
1261 /* Prepare host to downgrade to HS timing */
1262 if (host->ops->hs400_downgrade)
1263 host->ops->hs400_downgrade(host);
1264
1265 /* Set host controller to HS timing */
1266 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1267
1268 /* Reduce frequency to HS frequency */
1269 max_dtr = card->ext_csd.hs_max_dtr;
1270 mmc_set_clock(host, max_dtr);
1271
1272 err = mmc_switch_status(card, true);
1273 if (err)
1274 goto out_err;
1275
1276 if (host->ops->hs400_prepare_ddr)
1277 host->ops->hs400_prepare_ddr(host);
1278
1279 /* Switch card to DDR */
1280 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1281 EXT_CSD_BUS_WIDTH,
1282 EXT_CSD_DDR_BUS_WIDTH_8,
1283 card->ext_csd.generic_cmd6_time);
1284 if (err) {
1285 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1286 mmc_hostname(host), err);
1287 return err;
1288 }
1289
1290 /* Switch card to HS400 */
1291 val = EXT_CSD_TIMING_HS400 |
1292 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1293 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1294 EXT_CSD_HS_TIMING, val,
1295 card->ext_csd.generic_cmd6_time, 0,
1296 false, true);
1297 if (err) {
1298 pr_err("%s: switch to hs400 failed, err:%d\n",
1299 mmc_hostname(host), err);
1300 return err;
1301 }
1302
1303 /* Set host controller to HS400 timing and frequency */
1304 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1305 mmc_set_bus_speed(card);
1306
1307 if (host->ops->hs400_complete)
1308 host->ops->hs400_complete(host);
1309
1310 err = mmc_switch_status(card, true);
1311 if (err)
1312 goto out_err;
1313
1314 return 0;
1315
1316 out_err:
1317 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1318 __func__, err);
1319 return err;
1320 }
1321 EXPORT_SYMBOL_GPL(mmc_select_hs400);
1322
mmc_hs200_to_hs400(struct mmc_card * card)1323 int mmc_hs200_to_hs400(struct mmc_card *card)
1324 {
1325 return mmc_select_hs400(card);
1326 }
1327
mmc_hs400_to_hs200(struct mmc_card * card)1328 int mmc_hs400_to_hs200(struct mmc_card *card)
1329 {
1330 struct mmc_host *host = card->host;
1331 unsigned int max_dtr;
1332 int err;
1333 u8 val;
1334
1335 /* Reduce frequency to HS */
1336 max_dtr = card->ext_csd.hs_max_dtr;
1337 mmc_set_clock(host, max_dtr);
1338
1339 /* Switch HS400 to HS DDR */
1340 val = EXT_CSD_TIMING_HS;
1341 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1342 val, card->ext_csd.generic_cmd6_time, 0,
1343 false, true);
1344 if (err)
1345 goto out_err;
1346
1347 if (host->ops->hs400_downgrade)
1348 host->ops->hs400_downgrade(host);
1349
1350 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1351
1352 err = mmc_switch_status(card, true);
1353 if (err)
1354 goto out_err;
1355
1356 /* Switch HS DDR to HS */
1357 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1358 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1359 0, false, true);
1360 if (err)
1361 goto out_err;
1362
1363 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1364
1365 err = mmc_switch_status(card, true);
1366 if (err)
1367 goto out_err;
1368
1369 /* Switch HS to HS200 */
1370 val = EXT_CSD_TIMING_HS200 |
1371 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1372 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1373 val, card->ext_csd.generic_cmd6_time, 0,
1374 false, true);
1375 if (err)
1376 goto out_err;
1377
1378 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1379
1380 /*
1381 * For HS200, CRC errors are not a reliable way to know the switch
1382 * failed. If there really is a problem, we would expect tuning will
1383 * fail and the result ends up the same.
1384 */
1385 err = mmc_switch_status(card, false);
1386 if (err)
1387 goto out_err;
1388
1389 mmc_set_bus_speed(card);
1390
1391 /* Prepare tuning for HS400 mode. */
1392 if (host->ops->prepare_hs400_tuning)
1393 host->ops->prepare_hs400_tuning(host, &host->ios);
1394
1395 return 0;
1396
1397 out_err:
1398 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1399 __func__, err);
1400 return err;
1401 }
1402
mmc_select_driver_type(struct mmc_card * card)1403 static void mmc_select_driver_type(struct mmc_card *card)
1404 {
1405 int card_drv_type, drive_strength, drv_type = 0;
1406 int fixed_drv_type = card->host->fixed_drv_type;
1407
1408 card_drv_type = card->ext_csd.raw_driver_strength |
1409 mmc_driver_type_mask(0);
1410
1411 if (fixed_drv_type >= 0)
1412 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1413 ? fixed_drv_type : 0;
1414 else
1415 drive_strength = mmc_select_drive_strength(card,
1416 card->ext_csd.hs200_max_dtr,
1417 card_drv_type, &drv_type);
1418
1419 card->drive_strength = drive_strength;
1420
1421 if (drv_type)
1422 mmc_set_driver_type(card->host, drv_type);
1423 }
1424
mmc_select_hs400es(struct mmc_card * card)1425 static int mmc_select_hs400es(struct mmc_card *card)
1426 {
1427 struct mmc_host *host = card->host;
1428 int err = -EINVAL;
1429 u8 val;
1430
1431 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1432 err = -ENOTSUPP;
1433 goto out_err;
1434 }
1435
1436 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1437 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1438
1439 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1440 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1441
1442 /* If fails try again during next card power cycle */
1443 if (err)
1444 goto out_err;
1445
1446 err = mmc_select_bus_width(card);
1447 if (err != MMC_BUS_WIDTH_8) {
1448 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1449 mmc_hostname(host), err);
1450 err = err < 0 ? err : -ENOTSUPP;
1451 goto out_err;
1452 }
1453
1454 /* Switch card to HS mode */
1455 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1456 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1457 card->ext_csd.generic_cmd6_time, 0,
1458 false, true);
1459 if (err) {
1460 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1461 mmc_hostname(host), err);
1462 goto out_err;
1463 }
1464
1465 /*
1466 * Bump to HS timing and frequency. Some cards don't handle
1467 * SEND_STATUS reliably at the initial frequency.
1468 */
1469 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1470 /* Set clock immediately after changing timing */
1471 mmc_set_bus_speed(card);
1472
1473 err = mmc_switch_status(card, true);
1474 if (err)
1475 goto out_err;
1476
1477 /* Switch card to DDR with strobe bit */
1478 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1479 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1480 EXT_CSD_BUS_WIDTH,
1481 val,
1482 card->ext_csd.generic_cmd6_time);
1483 if (err) {
1484 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1485 mmc_hostname(host), err);
1486 goto out_err;
1487 }
1488
1489 mmc_select_driver_type(card);
1490
1491 /* Switch card to HS400 */
1492 val = EXT_CSD_TIMING_HS400 |
1493 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1494 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1495 EXT_CSD_HS_TIMING, val,
1496 card->ext_csd.generic_cmd6_time, 0,
1497 false, true);
1498 if (err) {
1499 pr_err("%s: switch to hs400es failed, err:%d\n",
1500 mmc_hostname(host), err);
1501 goto out_err;
1502 }
1503
1504 /* Set host controller to HS400 timing and frequency */
1505 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1506
1507 /* Controller enable enhanced strobe function */
1508 host->ios.enhanced_strobe = true;
1509 if (host->ops->hs400_enhanced_strobe)
1510 host->ops->hs400_enhanced_strobe(host, &host->ios);
1511
1512 err = mmc_switch_status(card, true);
1513 if (err)
1514 goto out_err;
1515
1516 return 0;
1517
1518 out_err:
1519 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1520 __func__, err);
1521 return err;
1522 }
1523
1524 /*
1525 * For device supporting HS200 mode, the following sequence
1526 * should be done before executing the tuning process.
1527 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1528 * 2. switch to HS200 mode
1529 * 3. set the clock to > 52Mhz and <=200MHz
1530 */
mmc_select_hs200(struct mmc_card * card)1531 static int mmc_select_hs200(struct mmc_card *card)
1532 {
1533 struct mmc_host *host = card->host;
1534 unsigned int old_timing, old_signal_voltage, old_clock;
1535 int err = -EINVAL;
1536 u8 val;
1537
1538 old_signal_voltage = host->ios.signal_voltage;
1539 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1540 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1541
1542 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1543 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1544
1545 /* If fails try again during next card power cycle */
1546 if (err)
1547 return err;
1548
1549 mmc_select_driver_type(card);
1550
1551 /*
1552 * Set the bus width(4 or 8) with host's support and
1553 * switch to HS200 mode if bus width is set successfully.
1554 */
1555 err = mmc_select_bus_width(card);
1556 if (err > 0) {
1557 val = EXT_CSD_TIMING_HS200 |
1558 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1559 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1560 EXT_CSD_HS_TIMING, val,
1561 card->ext_csd.generic_cmd6_time, 0,
1562 false, true);
1563 if (err)
1564 goto err;
1565
1566 /*
1567 * Bump to HS timing and frequency. Some cards don't handle
1568 * SEND_STATUS reliably at the initial frequency.
1569 * NB: We can't move to full (HS200) speeds until after we've
1570 * successfully switched over.
1571 */
1572 old_timing = host->ios.timing;
1573 old_clock = host->ios.clock;
1574 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1575 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1576
1577 /*
1578 * For HS200, CRC errors are not a reliable way to know the
1579 * switch failed. If there really is a problem, we would expect
1580 * tuning will fail and the result ends up the same.
1581 */
1582 err = mmc_switch_status(card, false);
1583
1584 /*
1585 * mmc_select_timing() assumes timing has not changed if
1586 * it is a switch error.
1587 */
1588 if (err == -EBADMSG) {
1589 mmc_set_clock(host, old_clock);
1590 mmc_set_timing(host, old_timing);
1591 }
1592 }
1593 err:
1594 if (err) {
1595 /* fall back to the old signal voltage, if fails report error */
1596 if (mmc_set_signal_voltage(host, old_signal_voltage))
1597 err = -EIO;
1598
1599 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1600 __func__, err);
1601 }
1602 return err;
1603 }
1604
1605 /*
1606 * Activate High Speed, HS200 or HS400ES mode if supported.
1607 */
mmc_select_timing(struct mmc_card * card)1608 int mmc_select_timing(struct mmc_card *card)
1609 {
1610 int err = 0;
1611
1612 if (!mmc_can_ext_csd(card))
1613 goto bus_speed;
1614
1615 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1616 err = mmc_select_hs400es(card);
1617 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1618 err = mmc_select_hs200(card);
1619 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1620 err = mmc_select_hs(card);
1621
1622 if (err && err != -EBADMSG)
1623 return err;
1624
1625 bus_speed:
1626 /*
1627 * Set the bus speed to the selected bus timing.
1628 * If timing is not selected, backward compatible is the default.
1629 */
1630 mmc_set_bus_speed(card);
1631 return 0;
1632 }
1633 EXPORT_SYMBOL_GPL(mmc_select_timing);
1634
1635 /*
1636 * Execute tuning sequence to seek the proper bus operating
1637 * conditions for HS200 and HS400, which sends CMD21 to the device.
1638 */
mmc_hs200_tuning(struct mmc_card * card)1639 int mmc_hs200_tuning(struct mmc_card *card)
1640 {
1641 struct mmc_host *host = card->host;
1642
1643 /*
1644 * Timing should be adjusted to the HS400 target
1645 * operation frequency for tuning process
1646 */
1647 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1648 host->ios.bus_width == MMC_BUS_WIDTH_8)
1649 if (host->ops->prepare_hs400_tuning)
1650 host->ops->prepare_hs400_tuning(host, &host->ios);
1651
1652 return mmc_execute_tuning(card);
1653 }
1654 EXPORT_SYMBOL_GPL(mmc_hs200_tuning);
1655
1656 /*
1657 * Handle the detection and initialisation of a card.
1658 *
1659 * In the case of a resume, "oldcard" will contain the card
1660 * we're trying to reinitialise.
1661 */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1662 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1663 struct mmc_card *oldcard)
1664 {
1665 struct mmc_card *card;
1666 int err;
1667 u32 cid[4];
1668 u32 rocr;
1669
1670 WARN_ON(!host->claimed);
1671
1672 /* Set correct bus mode for MMC before attempting init */
1673 if (!mmc_host_is_spi(host))
1674 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1675
1676 /*
1677 * Since we're changing the OCR value, we seem to
1678 * need to tell some cards to go back to the idle
1679 * state. We wait 1ms to give cards time to
1680 * respond.
1681 * mmc_go_idle is needed for eMMC that are asleep
1682 */
1683 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1684 mmc_go_idle(host);
1685 #endif
1686
1687 /* The extra bit indicates that we support high capacity */
1688 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1689 if (err)
1690 goto err;
1691
1692 /*
1693 * For SPI, enable CRC as appropriate.
1694 */
1695 if (mmc_host_is_spi(host)) {
1696 err = mmc_spi_set_crc(host, use_spi_crc);
1697 if (err)
1698 goto err;
1699 }
1700
1701 /*
1702 * Fetch CID from card.
1703 */
1704 err = mmc_send_cid(host, cid);
1705 if (err)
1706 goto err;
1707
1708 if (oldcard) {
1709 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1710 pr_debug("%s: Perhaps the card was replaced\n",
1711 mmc_hostname(host));
1712 err = -ENOENT;
1713 goto err;
1714 }
1715
1716 card = oldcard;
1717 } else {
1718 /*
1719 * Allocate card structure.
1720 */
1721 card = mmc_alloc_card(host, &mmc_type);
1722 if (IS_ERR(card)) {
1723 err = PTR_ERR(card);
1724 goto err;
1725 }
1726
1727 card->ocr = ocr;
1728 card->type = MMC_TYPE_MMC;
1729 card->rca = 1;
1730 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1731 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1732 #endif
1733 }
1734
1735 /*
1736 * Call the optional HC's init_card function to handle quirks.
1737 */
1738 if (host->ops->init_card)
1739 host->ops->init_card(host, card);
1740
1741 /*
1742 * For native busses: set card RCA and quit open drain mode.
1743 */
1744 if (!mmc_host_is_spi(host)) {
1745 err = mmc_set_relative_addr(card);
1746 if (err)
1747 goto free_card;
1748
1749 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1750 }
1751
1752 if (!oldcard) {
1753 /*
1754 * Fetch CSD from card.
1755 */
1756 err = mmc_send_csd(card, card->raw_csd);
1757 if (err)
1758 goto free_card;
1759
1760 err = mmc_decode_csd(card);
1761 if (err)
1762 goto free_card;
1763 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1764 err = mmc_decode_cid(card);
1765 if (err)
1766 goto free_card;
1767 #endif
1768 }
1769
1770 /*
1771 * handling only for cards supporting DSR and hosts requesting
1772 * DSR configuration
1773 */
1774 if (card->csd.dsr_imp && host->dsr_req)
1775 mmc_set_dsr(host);
1776
1777 /*
1778 * Select card, as all following commands rely on that.
1779 */
1780 if (!mmc_host_is_spi(host)) {
1781 err = mmc_select_card(card);
1782 if (err)
1783 goto free_card;
1784 }
1785
1786 if (!oldcard) {
1787 /* Read extended CSD. */
1788 err = mmc_read_ext_csd(card);
1789 if (err)
1790 goto free_card;
1791
1792 /*
1793 * If doing byte addressing, check if required to do sector
1794 * addressing. Handle the case of <2GB cards needing sector
1795 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1796 * ocr register has bit 30 set for sector addressing.
1797 */
1798 if (rocr & BIT(30))
1799 mmc_card_set_blockaddr(card);
1800
1801 /* Erase size depends on CSD and Extended CSD */
1802 mmc_set_erase_size(card);
1803 }
1804
1805 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1806 if (card->ext_csd.rev >= 3) {
1807 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1808 EXT_CSD_ERASE_GROUP_DEF, 1,
1809 card->ext_csd.generic_cmd6_time);
1810
1811 if (err && err != -EBADMSG)
1812 goto free_card;
1813
1814 if (err) {
1815 err = 0;
1816 /*
1817 * Just disable enhanced area off & sz
1818 * will try to enable ERASE_GROUP_DEF
1819 * during next time reinit
1820 */
1821 card->ext_csd.enhanced_area_offset = -EINVAL;
1822 card->ext_csd.enhanced_area_size = -EINVAL;
1823 } else {
1824 card->ext_csd.erase_group_def = 1;
1825 /*
1826 * enable ERASE_GRP_DEF successfully.
1827 * This will affect the erase size, so
1828 * here need to reset erase size
1829 */
1830 mmc_set_erase_size(card);
1831 }
1832 }
1833
1834 /*
1835 * Ensure eMMC user default partition is enabled
1836 */
1837 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1838 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1839 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1840 card->ext_csd.part_config,
1841 card->ext_csd.part_time);
1842 if (err && err != -EBADMSG)
1843 goto free_card;
1844 }
1845
1846 /*
1847 * Enable power_off_notification byte in the ext_csd register
1848 */
1849 if (card->ext_csd.rev >= 6) {
1850 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1851 EXT_CSD_POWER_OFF_NOTIFICATION,
1852 EXT_CSD_POWER_ON,
1853 card->ext_csd.generic_cmd6_time);
1854 if (err && err != -EBADMSG)
1855 goto free_card;
1856
1857 /*
1858 * The err can be -EBADMSG or 0,
1859 * so check for success and update the flag
1860 */
1861 if (!err)
1862 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1863 }
1864
1865 /* set erase_arg */
1866 if (mmc_can_discard(card))
1867 card->erase_arg = MMC_DISCARD_ARG;
1868 else if (mmc_can_trim(card))
1869 card->erase_arg = MMC_TRIM_ARG;
1870 else
1871 card->erase_arg = MMC_ERASE_ARG;
1872
1873 /*
1874 * Select timing interface
1875 */
1876 err = mmc_select_timing(card);
1877 if (err)
1878 goto free_card;
1879
1880 if (mmc_card_hs200(card)) {
1881 host->doing_init_tune = 1;
1882
1883 err = mmc_hs200_tuning(card);
1884 if (!err)
1885 err = mmc_select_hs400(card);
1886
1887 host->doing_init_tune = 0;
1888
1889 if (err)
1890 goto free_card;
1891
1892 } else if (!mmc_card_hs400es(card)) {
1893 /* Select the desired bus width optionally */
1894 err = mmc_select_bus_width(card);
1895 if (err > 0 && mmc_card_hs(card)) {
1896 err = mmc_select_hs_ddr(card);
1897 if (err)
1898 goto free_card;
1899 }
1900 }
1901
1902 /*
1903 * Choose the power class with selected bus interface
1904 */
1905 mmc_select_powerclass(card);
1906
1907 /*
1908 * Enable HPI feature (if supported)
1909 */
1910 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1911 if (card->ext_csd.hpi) {
1912 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1913 EXT_CSD_HPI_MGMT, 1,
1914 card->ext_csd.generic_cmd6_time);
1915 if (err && err != -EBADMSG)
1916 goto free_card;
1917 if (err) {
1918 pr_warn("%s: Enabling HPI failed\n",
1919 mmc_hostname(card->host));
1920 card->ext_csd.hpi_en = 0;
1921 err = 0;
1922 } else {
1923 card->ext_csd.hpi_en = 1;
1924 }
1925 }
1926 #endif
1927 /*
1928 * If cache size is higher than 0, this indicates the existence of cache
1929 * and it can be turned on. Note that some eMMCs from Micron has been
1930 * reported to need ~800 ms timeout, while enabling the cache after
1931 * sudden power failure tests. Let's extend the timeout to a minimum of
1932 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1933 */
1934 if (card->ext_csd.cache_size > 0) {
1935 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1936
1937 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1938 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1939 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1940 if (err && err != -EBADMSG)
1941 goto free_card;
1942
1943 /*
1944 * Only if no error, cache is turned on successfully.
1945 */
1946 if (err) {
1947 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1948 mmc_hostname(card->host), err);
1949 card->ext_csd.cache_ctrl = 0;
1950 err = 0;
1951 } else {
1952 card->ext_csd.cache_ctrl = 1;
1953 }
1954 }
1955
1956 /*
1957 * Enable Command Queue if supported. Note that Packed Commands cannot
1958 * be used with Command Queue.
1959 */
1960 card->ext_csd.cmdq_en = false;
1961 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1962 err = mmc_cmdq_enable(card);
1963 if (err && err != -EBADMSG)
1964 goto free_card;
1965 if (err) {
1966 pr_warn("%s: Enabling CMDQ failed\n",
1967 mmc_hostname(card->host));
1968 card->ext_csd.cmdq_support = false;
1969 card->ext_csd.cmdq_depth = 0;
1970 err = 0;
1971 }
1972 }
1973 /*
1974 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1975 * disabled for a time, so a flag is needed to indicate to re-enable the
1976 * Command Queue.
1977 */
1978 card->reenable_cmdq = card->ext_csd.cmdq_en;
1979
1980 if (host->cqe_ops && !host->cqe_enabled) {
1981 err = host->cqe_ops->cqe_enable(host, card);
1982 if (!err) {
1983 host->cqe_enabled = true;
1984
1985 if (card->ext_csd.cmdq_en) {
1986 pr_info("%s: Command Queue Engine enabled\n",
1987 mmc_hostname(host));
1988 } else {
1989 host->hsq_enabled = true;
1990 pr_info("%s: Host Software Queue enabled\n",
1991 mmc_hostname(host));
1992 }
1993 }
1994 }
1995
1996 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1997 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1998 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1999 mmc_hostname(host));
2000 err = -EINVAL;
2001 goto free_card;
2002 }
2003
2004 if (!oldcard)
2005 host->card = card;
2006
2007 return 0;
2008
2009 free_card:
2010 if (!oldcard)
2011 mmc_remove_card(card);
2012 err:
2013 return err;
2014 }
2015
mmc_can_sleep(struct mmc_card * card)2016 static int mmc_can_sleep(struct mmc_card *card)
2017 {
2018 return (card && card->ext_csd.rev >= 3);
2019 }
2020
mmc_sleep(struct mmc_host * host)2021 static int mmc_sleep(struct mmc_host *host)
2022 {
2023 struct mmc_command cmd = {};
2024 struct mmc_card *card = host->card;
2025 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
2026 int err;
2027
2028 /* Re-tuning can't be done once the card is deselected */
2029 mmc_retune_hold(host);
2030
2031 err = mmc_deselect_cards(host);
2032 if (err)
2033 goto out_release;
2034
2035 cmd.opcode = MMC_SLEEP_AWAKE;
2036 cmd.arg = card->rca << 16;
2037 cmd.arg |= 1 << 15;
2038
2039 /*
2040 * If the max_busy_timeout of the host is specified, validate it against
2041 * the sleep cmd timeout. A failure means we need to prevent the host
2042 * from doing hw busy detection, which is done by converting to a R1
2043 * response instead of a R1B. Note, some hosts requires R1B, which also
2044 * means they are on their own when it comes to deal with the busy
2045 * timeout.
2046 */
2047 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
2048 (timeout_ms > host->max_busy_timeout)) {
2049 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2050 } else {
2051 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
2052 cmd.busy_timeout = timeout_ms;
2053 }
2054
2055 err = mmc_wait_for_cmd(host, &cmd, 0);
2056 if (err)
2057 goto out_release;
2058
2059 /*
2060 * If the host does not wait while the card signals busy, then we will
2061 * will have to wait the sleep/awake timeout. Note, we cannot use the
2062 * SEND_STATUS command to poll the status because that command (and most
2063 * others) is invalid while the card sleeps.
2064 */
2065 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
2066 mmc_delay(timeout_ms);
2067
2068 out_release:
2069 mmc_retune_release(host);
2070 return err;
2071 }
2072
mmc_can_poweroff_notify(const struct mmc_card * card)2073 static int mmc_can_poweroff_notify(const struct mmc_card *card)
2074 {
2075 return card &&
2076 mmc_card_mmc(card) &&
2077 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2078 }
2079
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)2080 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2081 {
2082 unsigned int timeout = card->ext_csd.generic_cmd6_time;
2083 int err;
2084
2085 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2086 if (notify_type == EXT_CSD_POWER_OFF_LONG)
2087 timeout = card->ext_csd.power_off_longtime;
2088
2089 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2090 EXT_CSD_POWER_OFF_NOTIFICATION,
2091 notify_type, timeout, 0, false, false);
2092 if (err)
2093 pr_err("%s: Power Off Notification timed out, %u\n",
2094 mmc_hostname(card->host), timeout);
2095
2096 /* Disable the power off notification after the switch operation. */
2097 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2098
2099 return err;
2100 }
2101
2102 /*
2103 * Host is being removed. Free up the current card.
2104 */
mmc_remove(struct mmc_host * host)2105 static void mmc_remove(struct mmc_host *host)
2106 {
2107 mmc_remove_card(host->card);
2108 host->card = NULL;
2109 }
2110
2111 /*
2112 * Card detection - card is alive.
2113 */
mmc_alive(struct mmc_host * host)2114 static int mmc_alive(struct mmc_host *host)
2115 {
2116 return mmc_send_status(host->card, NULL);
2117 }
2118
2119 /*
2120 * Card detection callback from host.
2121 */
mmc_detect(struct mmc_host * host)2122 static void mmc_detect(struct mmc_host *host)
2123 {
2124 int err;
2125
2126 mmc_get_card(host->card, NULL);
2127
2128 /*
2129 * Just check if our card has been removed.
2130 */
2131 err = _mmc_detect_card_removed(host);
2132
2133 mmc_put_card(host->card, NULL);
2134
2135 if (err) {
2136 mmc_remove(host);
2137
2138 mmc_claim_host(host);
2139 mmc_detach_bus(host);
2140 mmc_power_off(host);
2141 mmc_release_host(host);
2142 }
2143 }
2144
_mmc_cache_enabled(struct mmc_host * host)2145 static bool _mmc_cache_enabled(struct mmc_host *host)
2146 {
2147 return host->card->ext_csd.cache_size > 0 &&
2148 host->card->ext_csd.cache_ctrl & 1;
2149 }
2150
_mmc_suspend(struct mmc_host * host,bool is_suspend)2151 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2152 {
2153 int err = 0;
2154 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2155 EXT_CSD_POWER_OFF_LONG;
2156
2157 mmc_claim_host(host);
2158
2159 if (mmc_card_suspended(host->card))
2160 goto out;
2161
2162 err = mmc_flush_cache(host->card);
2163 if (err)
2164 goto out;
2165
2166 if (mmc_can_poweroff_notify(host->card) &&
2167 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2168 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2169 err = mmc_poweroff_notify(host->card, notify_type);
2170 else if (mmc_can_sleep(host->card))
2171 err = mmc_sleep(host);
2172 else if (!mmc_host_is_spi(host))
2173 err = mmc_deselect_cards(host);
2174
2175 if (!err) {
2176 mmc_power_off(host);
2177 mmc_card_set_suspended(host->card);
2178 }
2179 out:
2180 mmc_release_host(host);
2181 return err;
2182 }
2183
2184 /*
2185 * Suspend callback
2186 */
mmc_suspend(struct mmc_host * host)2187 static int mmc_suspend(struct mmc_host *host)
2188 {
2189 int err;
2190
2191 err = _mmc_suspend(host, true);
2192 if (!err) {
2193 pm_runtime_disable(&host->card->dev);
2194 pm_runtime_set_suspended(&host->card->dev);
2195 }
2196
2197 return err;
2198 }
2199
2200 /*
2201 * This function tries to determine if the same card is still present
2202 * and, if so, restore all state to it.
2203 */
_mmc_resume(struct mmc_host * host)2204 static int _mmc_resume(struct mmc_host *host)
2205 {
2206 int err = 0;
2207 int i;
2208
2209 mmc_claim_host(host);
2210
2211 if (!mmc_card_suspended(host->card))
2212 goto out;
2213
2214 /*
2215 * Let's try to fallback the host->f_init
2216 * if failing to init mmc card after resume.
2217 */
2218 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2219 if (host->f_init < max(freqs[i], host->f_min))
2220 continue;
2221 else
2222 host->f_init = max(freqs[i], host->f_min);
2223
2224 mmc_power_up(host, host->card->ocr);
2225 err = mmc_init_card(host, host->card->ocr, host->card);
2226 if (!err)
2227 break;
2228 }
2229
2230 mmc_card_clr_suspended(host->card);
2231
2232 out:
2233 mmc_release_host(host);
2234 return err;
2235 }
2236
2237 /*
2238 * Shutdown callback
2239 */
mmc_shutdown(struct mmc_host * host)2240 static int mmc_shutdown(struct mmc_host *host)
2241 {
2242 int err = 0;
2243
2244 /*
2245 * In a specific case for poweroff notify, we need to resume the card
2246 * before we can shutdown it properly.
2247 */
2248 if (mmc_can_poweroff_notify(host->card) &&
2249 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2250 err = _mmc_resume(host);
2251
2252 if (!err)
2253 err = _mmc_suspend(host, false);
2254
2255 return err;
2256 }
2257
2258 /*
2259 * Callback for resume.
2260 */
mmc_resume(struct mmc_host * host)2261 static int mmc_resume(struct mmc_host *host)
2262 {
2263 pm_runtime_enable(&host->card->dev);
2264 return 0;
2265 }
2266
2267 /*
2268 * Callback for runtime_suspend.
2269 */
mmc_runtime_suspend(struct mmc_host * host)2270 static int mmc_runtime_suspend(struct mmc_host *host)
2271 {
2272 int err;
2273
2274 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2275 return 0;
2276
2277 err = _mmc_suspend(host, true);
2278 if (err)
2279 pr_err("%s: error %d doing aggressive suspend\n",
2280 mmc_hostname(host), err);
2281
2282 return err;
2283 }
2284
2285 /*
2286 * Callback for runtime_resume.
2287 */
mmc_runtime_resume(struct mmc_host * host)2288 static int mmc_runtime_resume(struct mmc_host *host)
2289 {
2290 int err;
2291
2292 err = _mmc_resume(host);
2293 if (err && err != -ENOMEDIUM)
2294 pr_err("%s: error %d doing runtime resume\n",
2295 mmc_hostname(host), err);
2296
2297 return 0;
2298 }
2299
mmc_can_reset(struct mmc_card * card)2300 static int mmc_can_reset(struct mmc_card *card)
2301 {
2302 u8 rst_n_function;
2303
2304 rst_n_function = card->ext_csd.rst_n_function;
2305 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2306 return 0;
2307 return 1;
2308 }
2309
_mmc_hw_reset(struct mmc_host * host)2310 static int _mmc_hw_reset(struct mmc_host *host)
2311 {
2312 struct mmc_card *card = host->card;
2313
2314 /*
2315 * In the case of recovery, we can't expect flushing the cache to work
2316 * always, but we have a go and ignore errors.
2317 */
2318 mmc_flush_cache(host->card);
2319
2320 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2321 mmc_can_reset(card)) {
2322 /* If the card accept RST_n signal, send it. */
2323 mmc_set_clock(host, host->f_init);
2324 host->ops->hw_reset(host);
2325 /* Set initial state and call mmc_set_ios */
2326 mmc_set_initial_state(host);
2327 } else {
2328 /* Do a brute force power cycle */
2329 mmc_power_cycle(host, card->ocr);
2330 mmc_pwrseq_reset(host);
2331 }
2332 return mmc_init_card(host, card->ocr, card);
2333 }
2334
2335 static const struct mmc_bus_ops mmc_ops = {
2336 .remove = mmc_remove,
2337 .detect = mmc_detect,
2338 .suspend = mmc_suspend,
2339 .resume = mmc_resume,
2340 .runtime_suspend = mmc_runtime_suspend,
2341 .runtime_resume = mmc_runtime_resume,
2342 .alive = mmc_alive,
2343 .shutdown = mmc_shutdown,
2344 .hw_reset = _mmc_hw_reset,
2345 .cache_enabled = _mmc_cache_enabled,
2346 };
2347
2348 /*
2349 * Starting point for MMC card init.
2350 */
mmc_attach_mmc(struct mmc_host * host)2351 int mmc_attach_mmc(struct mmc_host *host)
2352 {
2353 int err;
2354 u32 ocr, rocr;
2355
2356 WARN_ON(!host->claimed);
2357
2358 /* Set correct bus mode for MMC before attempting attach */
2359 if (!mmc_host_is_spi(host))
2360 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2361
2362 err = mmc_send_op_cond(host, 0, &ocr);
2363 if (err)
2364 return err;
2365
2366 mmc_attach_bus(host, &mmc_ops);
2367 if (host->ocr_avail_mmc)
2368 host->ocr_avail = host->ocr_avail_mmc;
2369
2370 /*
2371 * We need to get OCR a different way for SPI.
2372 */
2373 if (mmc_host_is_spi(host)) {
2374 err = mmc_spi_read_ocr(host, 1, &ocr);
2375 if (err)
2376 goto err;
2377 }
2378
2379 rocr = mmc_select_voltage(host, ocr);
2380
2381 /*
2382 * Can we support the voltage of the card?
2383 */
2384 if (!rocr) {
2385 err = -EINVAL;
2386 goto err;
2387 }
2388
2389 /*
2390 * Detect and init the card.
2391 */
2392 err = mmc_init_card(host, rocr, NULL);
2393 if (err)
2394 goto err;
2395
2396 mmc_release_host(host);
2397 err = mmc_add_card(host->card);
2398 if (err)
2399 goto remove_card;
2400
2401 mmc_claim_host(host);
2402 return 0;
2403
2404 remove_card:
2405 mmc_remove_card(host->card);
2406 mmc_claim_host(host);
2407 host->card = NULL;
2408 err:
2409 mmc_detach_bus(host);
2410
2411 pr_err("%s: error %d whilst initialising MMC card\n",
2412 mmc_hostname(host), err);
2413
2414 return err;
2415 }
2416