xref: /OK3568_Linux_fs/kernel/drivers/mmc/core/mmc.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/mmc.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/slab.h>
14 #include <linux/stat.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/mm.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/resource.h>
21 
22 #include "core.h"
23 #include "card.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "quirks.h"
28 #include "sd_ops.h"
29 #include "pwrseq.h"
30 
31 #define DEFAULT_CMD6_TIMEOUT_MS	500
32 #define MIN_CACHE_EN_TIMEOUT_MS 1600
33 
34 static const unsigned int tran_exp[] = {
35 	10000,		100000,		1000000,	10000000,
36 	0,		0,		0,		0
37 };
38 
39 static const unsigned char tran_mant[] = {
40 	0,	10,	12,	13,	15,	20,	25,	30,
41 	35,	40,	45,	50,	55,	60,	70,	80,
42 };
43 
44 static const unsigned int taac_exp[] = {
45 	1,	10,	100,	1000,	10000,	100000,	1000000, 10000000,
46 };
47 
48 static const unsigned int taac_mant[] = {
49 	0,	10,	12,	13,	15,	20,	25,	30,
50 	35,	40,	45,	50,	55,	60,	70,	80,
51 };
52 
53 #define UNSTUFF_BITS(resp,start,size)					\
54 	({								\
55 		const int __size = size;				\
56 		const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1;	\
57 		const int __off = 3 - ((start) / 32);			\
58 		const int __shft = (start) & 31;			\
59 		u32 __res;						\
60 									\
61 		__res = resp[__off] >> __shft;				\
62 		if (__size + __shft > 32)				\
63 			__res |= resp[__off-1] << ((32 - __shft) % 32);	\
64 		__res & __mask;						\
65 	})
66 
67 /*
68  * Given the decoded CSD structure, decode the raw CID to our CID structure.
69  */
70 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
mmc_decode_cid(struct mmc_card * card)71 static int mmc_decode_cid(struct mmc_card *card)
72 {
73 	u32 *resp = card->raw_cid;
74 
75 	/*
76 	 * The selection of the format here is based upon published
77 	 * specs from sandisk and from what people have reported.
78 	 */
79 	switch (card->csd.mmca_vsn) {
80 	case 0: /* MMC v1.0 - v1.2 */
81 	case 1: /* MMC v1.4 */
82 		card->cid.manfid	= UNSTUFF_BITS(resp, 104, 24);
83 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
84 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
85 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
86 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
87 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
88 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
89 		card->cid.prod_name[6]	= UNSTUFF_BITS(resp, 48, 8);
90 		card->cid.hwrev		= UNSTUFF_BITS(resp, 44, 4);
91 		card->cid.fwrev		= UNSTUFF_BITS(resp, 40, 4);
92 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 24);
93 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
94 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
95 		break;
96 
97 	case 2: /* MMC v2.0 - v2.2 */
98 	case 3: /* MMC v3.1 - v3.3 */
99 	case 4: /* MMC v4 */
100 		card->cid.manfid	= UNSTUFF_BITS(resp, 120, 8);
101 		card->cid.oemid		= UNSTUFF_BITS(resp, 104, 16);
102 		card->cid.prod_name[0]	= UNSTUFF_BITS(resp, 96, 8);
103 		card->cid.prod_name[1]	= UNSTUFF_BITS(resp, 88, 8);
104 		card->cid.prod_name[2]	= UNSTUFF_BITS(resp, 80, 8);
105 		card->cid.prod_name[3]	= UNSTUFF_BITS(resp, 72, 8);
106 		card->cid.prod_name[4]	= UNSTUFF_BITS(resp, 64, 8);
107 		card->cid.prod_name[5]	= UNSTUFF_BITS(resp, 56, 8);
108 		card->cid.prv		= UNSTUFF_BITS(resp, 48, 8);
109 		card->cid.serial	= UNSTUFF_BITS(resp, 16, 32);
110 		card->cid.month		= UNSTUFF_BITS(resp, 12, 4);
111 		card->cid.year		= UNSTUFF_BITS(resp, 8, 4) + 1997;
112 		break;
113 
114 	default:
115 		pr_err("%s: card has unknown MMCA version %d\n",
116 			mmc_hostname(card->host), card->csd.mmca_vsn);
117 		return -EINVAL;
118 	}
119 
120 	return 0;
121 }
122 #endif
123 
mmc_set_erase_size(struct mmc_card * card)124 static void mmc_set_erase_size(struct mmc_card *card)
125 {
126 	if (card->ext_csd.erase_group_def & 1)
127 		card->erase_size = card->ext_csd.hc_erase_size;
128 	else
129 		card->erase_size = card->csd.erase_size;
130 
131 	mmc_init_erase(card);
132 }
133 
134 /*
135  * Given a 128-bit response, decode to our card CSD structure.
136  */
mmc_decode_csd(struct mmc_card * card)137 static int mmc_decode_csd(struct mmc_card *card)
138 {
139 	struct mmc_csd *csd = &card->csd;
140 	unsigned int e, m, a, b;
141 	u32 *resp = card->raw_csd;
142 
143 	/*
144 	 * We only understand CSD structure v1.1 and v1.2.
145 	 * v1.2 has extra information in bits 15, 11 and 10.
146 	 * We also support eMMC v4.4 & v4.41.
147 	 */
148 	csd->structure = UNSTUFF_BITS(resp, 126, 2);
149 	if (csd->structure == 0) {
150 		pr_err("%s: unrecognised CSD structure version %d\n",
151 			mmc_hostname(card->host), csd->structure);
152 		return -EINVAL;
153 	}
154 
155 	csd->mmca_vsn	 = UNSTUFF_BITS(resp, 122, 4);
156 	m = UNSTUFF_BITS(resp, 115, 4);
157 	e = UNSTUFF_BITS(resp, 112, 3);
158 	csd->taac_ns	 = (taac_exp[e] * taac_mant[m] + 9) / 10;
159 	csd->taac_clks	 = UNSTUFF_BITS(resp, 104, 8) * 100;
160 
161 	m = UNSTUFF_BITS(resp, 99, 4);
162 	e = UNSTUFF_BITS(resp, 96, 3);
163 	csd->max_dtr	  = tran_exp[e] * tran_mant[m];
164 	csd->cmdclass	  = UNSTUFF_BITS(resp, 84, 12);
165 
166 	e = UNSTUFF_BITS(resp, 47, 3);
167 	m = UNSTUFF_BITS(resp, 62, 12);
168 	csd->capacity	  = (1 + m) << (e + 2);
169 
170 	csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
171 	csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
172 	csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
173 	csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
174 	csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
175 	csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
176 	csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
177 	csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
178 
179 	if (csd->write_blkbits >= 9) {
180 		a = UNSTUFF_BITS(resp, 42, 5);
181 		b = UNSTUFF_BITS(resp, 37, 5);
182 		csd->erase_size = (a + 1) * (b + 1);
183 		csd->erase_size <<= csd->write_blkbits - 9;
184 	}
185 
186 	return 0;
187 }
188 
mmc_select_card_type(struct mmc_card * card)189 static void mmc_select_card_type(struct mmc_card *card)
190 {
191 	struct mmc_host *host = card->host;
192 	u8 card_type = card->ext_csd.raw_card_type;
193 	u32 caps = host->caps, caps2 = host->caps2;
194 	unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
195 	unsigned int avail_type = 0;
196 
197 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
198 	    card_type & EXT_CSD_CARD_TYPE_HS_26) {
199 		hs_max_dtr = MMC_HIGH_26_MAX_DTR;
200 		avail_type |= EXT_CSD_CARD_TYPE_HS_26;
201 	}
202 
203 	if (caps & MMC_CAP_MMC_HIGHSPEED &&
204 	    card_type & EXT_CSD_CARD_TYPE_HS_52) {
205 		hs_max_dtr = MMC_HIGH_52_MAX_DTR;
206 		avail_type |= EXT_CSD_CARD_TYPE_HS_52;
207 	}
208 
209 	if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
210 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
211 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
212 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
213 	}
214 
215 	if (caps & MMC_CAP_1_2V_DDR &&
216 	    card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
217 		hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
218 		avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
219 	}
220 
221 	if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
222 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
223 		hs200_max_dtr = MMC_HS200_MAX_DTR;
224 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
225 	}
226 
227 	if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
228 	    card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
229 		hs200_max_dtr = MMC_HS200_MAX_DTR;
230 		avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
231 	}
232 
233 	if (caps2 & MMC_CAP2_HS400_1_8V &&
234 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
235 		hs200_max_dtr = MMC_HS200_MAX_DTR;
236 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
237 	}
238 
239 	if (caps2 & MMC_CAP2_HS400_1_2V &&
240 	    card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
241 		hs200_max_dtr = MMC_HS200_MAX_DTR;
242 		avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
243 	}
244 
245 	if ((caps2 & MMC_CAP2_HS400_ES) &&
246 	    card->ext_csd.strobe_support &&
247 	    (avail_type & EXT_CSD_CARD_TYPE_HS400))
248 		avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
249 
250 	card->ext_csd.hs_max_dtr = hs_max_dtr;
251 	card->ext_csd.hs200_max_dtr = hs200_max_dtr;
252 	card->mmc_avail_type = avail_type;
253 }
254 
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)255 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
256 {
257 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
258 
259 	/*
260 	 * Disable these attributes by default
261 	 */
262 	card->ext_csd.enhanced_area_offset = -EINVAL;
263 	card->ext_csd.enhanced_area_size = -EINVAL;
264 
265 	/*
266 	 * Enhanced area feature support -- check whether the eMMC
267 	 * card has the Enhanced area enabled.  If so, export enhanced
268 	 * area offset and size to user by adding sysfs interface.
269 	 */
270 	if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
271 	    (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
272 		if (card->ext_csd.partition_setting_completed) {
273 			hc_erase_grp_sz =
274 				ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
275 			hc_wp_grp_sz =
276 				ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
277 
278 			/*
279 			 * calculate the enhanced data area offset, in bytes
280 			 */
281 			card->ext_csd.enhanced_area_offset =
282 				(((unsigned long long)ext_csd[139]) << 24) +
283 				(((unsigned long long)ext_csd[138]) << 16) +
284 				(((unsigned long long)ext_csd[137]) << 8) +
285 				(((unsigned long long)ext_csd[136]));
286 			if (mmc_card_blockaddr(card))
287 				card->ext_csd.enhanced_area_offset <<= 9;
288 			/*
289 			 * calculate the enhanced data area size, in kilobytes
290 			 */
291 			card->ext_csd.enhanced_area_size =
292 				(ext_csd[142] << 16) + (ext_csd[141] << 8) +
293 				ext_csd[140];
294 			card->ext_csd.enhanced_area_size *=
295 				(size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
296 			card->ext_csd.enhanced_area_size <<= 9;
297 		} else {
298 			pr_warn("%s: defines enhanced area without partition setting complete\n",
299 				mmc_hostname(card->host));
300 		}
301 	}
302 }
303 
mmc_part_add(struct mmc_card * card,u64 size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)304 static void mmc_part_add(struct mmc_card *card, u64 size,
305 			 unsigned int part_cfg, char *name, int idx, bool ro,
306 			 int area_type)
307 {
308 	card->part[card->nr_parts].size = size;
309 	card->part[card->nr_parts].part_cfg = part_cfg;
310 	sprintf(card->part[card->nr_parts].name, name, idx);
311 	card->part[card->nr_parts].force_ro = ro;
312 	card->part[card->nr_parts].area_type = area_type;
313 	card->nr_parts++;
314 }
315 
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)316 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
317 {
318 	int idx;
319 	u8 hc_erase_grp_sz, hc_wp_grp_sz;
320 	u64 part_size;
321 
322 	/*
323 	 * General purpose partition feature support --
324 	 * If ext_csd has the size of general purpose partitions,
325 	 * set size, part_cfg, partition name in mmc_part.
326 	 */
327 	if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
328 	    EXT_CSD_PART_SUPPORT_PART_EN) {
329 		hc_erase_grp_sz =
330 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
331 		hc_wp_grp_sz =
332 			ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
333 
334 		for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
335 			if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
336 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
337 			    !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
338 				continue;
339 			if (card->ext_csd.partition_setting_completed == 0) {
340 				pr_warn("%s: has partition size defined without partition complete\n",
341 					mmc_hostname(card->host));
342 				break;
343 			}
344 			part_size =
345 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
346 				<< 16) +
347 				(ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
348 				<< 8) +
349 				ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
350 			part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
351 			mmc_part_add(card, part_size << 19,
352 				EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
353 				"gp%d", idx, false,
354 				MMC_BLK_DATA_AREA_GP);
355 		}
356 	}
357 }
358 
359 /* Minimum partition switch timeout in milliseconds */
360 #define MMC_MIN_PART_SWITCH_TIME	300
361 
362 /*
363  * Decode extended CSD.
364  */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)365 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
366 {
367 	int err = 0, idx;
368 	u64 part_size;
369 	struct device_node *np;
370 	bool broken_hpi = false;
371 
372 	/* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
373 	card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
374 	if (card->csd.structure == 3) {
375 		if (card->ext_csd.raw_ext_csd_structure > 2) {
376 			pr_err("%s: unrecognised EXT_CSD structure "
377 				"version %d\n", mmc_hostname(card->host),
378 					card->ext_csd.raw_ext_csd_structure);
379 			err = -EINVAL;
380 			goto out;
381 		}
382 	}
383 
384 	np = mmc_of_find_child_device(card->host, 0);
385 	if (np && of_device_is_compatible(np, "mmc-card"))
386 		broken_hpi = of_property_read_bool(np, "broken-hpi");
387 	of_node_put(np);
388 
389 	/*
390 	 * The EXT_CSD format is meant to be forward compatible. As long
391 	 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
392 	 * are authorized, see JEDEC JESD84-B50 section B.8.
393 	 */
394 	card->ext_csd.rev = ext_csd[EXT_CSD_REV];
395 
396 	/* fixup device after ext_csd revision field is updated */
397 	mmc_fixup_device(card, mmc_ext_csd_fixups);
398 
399 	card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
400 	card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
401 	card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
402 	card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
403 	if (card->ext_csd.rev >= 2) {
404 		card->ext_csd.sectors =
405 			ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
406 			ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
407 			ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
408 			ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
409 
410 		/* Cards with density > 2GiB are sector addressed */
411 		if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
412 			mmc_card_set_blockaddr(card);
413 	}
414 
415 	card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
416 	card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
417 	mmc_select_card_type(card);
418 
419 	card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
420 	card->ext_csd.raw_erase_timeout_mult =
421 		ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
422 	card->ext_csd.raw_hc_erase_grp_size =
423 		ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
424 	if (card->ext_csd.rev >= 3) {
425 		u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
426 		card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
427 
428 		/* EXT_CSD value is in units of 10ms, but we store in ms */
429 		card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
430 
431 		/* Sleep / awake timeout in 100ns units */
432 		if (sa_shift > 0 && sa_shift <= 0x17)
433 			card->ext_csd.sa_timeout =
434 					1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
435 		card->ext_csd.erase_group_def =
436 			ext_csd[EXT_CSD_ERASE_GROUP_DEF];
437 		card->ext_csd.hc_erase_timeout = 300 *
438 			ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
439 		card->ext_csd.hc_erase_size =
440 			ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
441 
442 		card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
443 
444 		/*
445 		 * There are two boot regions of equal size, defined in
446 		 * multiples of 128K.
447 		 */
448 		if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
449 			for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
450 				part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
451 				mmc_part_add(card, part_size,
452 					EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
453 					"boot%d", idx, true,
454 					MMC_BLK_DATA_AREA_BOOT);
455 			}
456 		}
457 	}
458 
459 	card->ext_csd.raw_hc_erase_gap_size =
460 		ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
461 	card->ext_csd.raw_sec_trim_mult =
462 		ext_csd[EXT_CSD_SEC_TRIM_MULT];
463 	card->ext_csd.raw_sec_erase_mult =
464 		ext_csd[EXT_CSD_SEC_ERASE_MULT];
465 	card->ext_csd.raw_sec_feature_support =
466 		ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
467 	card->ext_csd.raw_trim_mult =
468 		ext_csd[EXT_CSD_TRIM_MULT];
469 	card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
470 	card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
471 	if (card->ext_csd.rev >= 4) {
472 		if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
473 		    EXT_CSD_PART_SETTING_COMPLETED)
474 			card->ext_csd.partition_setting_completed = 1;
475 		else
476 			card->ext_csd.partition_setting_completed = 0;
477 
478 		mmc_manage_enhanced_area(card, ext_csd);
479 
480 		mmc_manage_gp_partitions(card, ext_csd);
481 
482 		card->ext_csd.sec_trim_mult =
483 			ext_csd[EXT_CSD_SEC_TRIM_MULT];
484 		card->ext_csd.sec_erase_mult =
485 			ext_csd[EXT_CSD_SEC_ERASE_MULT];
486 		card->ext_csd.sec_feature_support =
487 			ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
488 		card->ext_csd.trim_timeout = 300 *
489 			ext_csd[EXT_CSD_TRIM_MULT];
490 
491 		/*
492 		 * Note that the call to mmc_part_add above defaults to read
493 		 * only. If this default assumption is changed, the call must
494 		 * take into account the value of boot_locked below.
495 		 */
496 		card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
497 		card->ext_csd.boot_ro_lockable = true;
498 
499 		/* Save power class values */
500 		card->ext_csd.raw_pwr_cl_52_195 =
501 			ext_csd[EXT_CSD_PWR_CL_52_195];
502 		card->ext_csd.raw_pwr_cl_26_195 =
503 			ext_csd[EXT_CSD_PWR_CL_26_195];
504 		card->ext_csd.raw_pwr_cl_52_360 =
505 			ext_csd[EXT_CSD_PWR_CL_52_360];
506 		card->ext_csd.raw_pwr_cl_26_360 =
507 			ext_csd[EXT_CSD_PWR_CL_26_360];
508 		card->ext_csd.raw_pwr_cl_200_195 =
509 			ext_csd[EXT_CSD_PWR_CL_200_195];
510 		card->ext_csd.raw_pwr_cl_200_360 =
511 			ext_csd[EXT_CSD_PWR_CL_200_360];
512 		card->ext_csd.raw_pwr_cl_ddr_52_195 =
513 			ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
514 		card->ext_csd.raw_pwr_cl_ddr_52_360 =
515 			ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
516 		card->ext_csd.raw_pwr_cl_ddr_200_360 =
517 			ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
518 	}
519 
520 	if (card->ext_csd.rev >= 5) {
521 		/* Adjust production date as per JEDEC JESD84-B451 */
522 		if (card->cid.year < 2010)
523 			card->cid.year += 16;
524 
525 		/* check whether the eMMC card supports BKOPS */
526 		if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
527 			card->ext_csd.bkops = 1;
528 			card->ext_csd.man_bkops_en =
529 					(ext_csd[EXT_CSD_BKOPS_EN] &
530 						EXT_CSD_MANUAL_BKOPS_MASK);
531 			card->ext_csd.raw_bkops_status =
532 				ext_csd[EXT_CSD_BKOPS_STATUS];
533 			if (card->ext_csd.man_bkops_en)
534 				pr_debug("%s: MAN_BKOPS_EN bit is set\n",
535 					mmc_hostname(card->host));
536 			card->ext_csd.auto_bkops_en =
537 					(ext_csd[EXT_CSD_BKOPS_EN] &
538 						EXT_CSD_AUTO_BKOPS_MASK);
539 			if (card->ext_csd.auto_bkops_en)
540 				pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
541 					mmc_hostname(card->host));
542 		}
543 
544 		/* check whether the eMMC card supports HPI */
545 		if (!mmc_card_broken_hpi(card) &&
546 		    !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
547 			card->ext_csd.hpi = 1;
548 			if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
549 				card->ext_csd.hpi_cmd =	MMC_STOP_TRANSMISSION;
550 			else
551 				card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
552 			/*
553 			 * Indicate the maximum timeout to close
554 			 * a command interrupted by HPI
555 			 */
556 			card->ext_csd.out_of_int_time =
557 				ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
558 		}
559 
560 		card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
561 		card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
562 
563 		/*
564 		 * RPMB regions are defined in multiples of 128K.
565 		 */
566 		card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
567 		if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
568 			mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
569 				EXT_CSD_PART_CONFIG_ACC_RPMB,
570 				"rpmb", 0, false,
571 				MMC_BLK_DATA_AREA_RPMB);
572 		}
573 	}
574 
575 	card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
576 	if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
577 		card->erased_byte = 0xFF;
578 	else
579 		card->erased_byte = 0x0;
580 
581 	/* eMMC v4.5 or later */
582 	card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
583 	if (card->ext_csd.rev >= 6) {
584 		card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
585 
586 		card->ext_csd.generic_cmd6_time = 10 *
587 			ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
588 		card->ext_csd.power_off_longtime = 10 *
589 			ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
590 
591 		card->ext_csd.cache_size =
592 			ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
593 			ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
594 			ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
595 			ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
596 
597 		if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
598 			card->ext_csd.data_sector_size = 4096;
599 		else
600 			card->ext_csd.data_sector_size = 512;
601 
602 		if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
603 		    (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
604 			card->ext_csd.data_tag_unit_size =
605 			((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
606 			(card->ext_csd.data_sector_size);
607 		} else {
608 			card->ext_csd.data_tag_unit_size = 0;
609 		}
610 
611 		card->ext_csd.max_packed_writes =
612 			ext_csd[EXT_CSD_MAX_PACKED_WRITES];
613 		card->ext_csd.max_packed_reads =
614 			ext_csd[EXT_CSD_MAX_PACKED_READS];
615 	} else {
616 		card->ext_csd.data_sector_size = 512;
617 	}
618 
619 	/*
620 	 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
621 	 * when accessing a specific field", so use it here if there is no
622 	 * PARTITION_SWITCH_TIME.
623 	 */
624 	if (!card->ext_csd.part_time)
625 		card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
626 	/* Some eMMC set the value too low so set a minimum */
627 	if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
628 		card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
629 
630 	/* eMMC v5 or later */
631 	if (card->ext_csd.rev >= 7) {
632 		memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
633 		       MMC_FIRMWARE_LEN);
634 		card->ext_csd.ffu_capable =
635 			(ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
636 			!(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
637 
638 		card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
639 		card->ext_csd.device_life_time_est_typ_a =
640 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
641 		card->ext_csd.device_life_time_est_typ_b =
642 			ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
643 	}
644 
645 	/* eMMC v5.1 or later */
646 	if (card->ext_csd.rev >= 8) {
647 		card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
648 					     EXT_CSD_CMDQ_SUPPORTED;
649 		card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
650 					    EXT_CSD_CMDQ_DEPTH_MASK) + 1;
651 		/* Exclude inefficiently small queue depths */
652 		if (card->ext_csd.cmdq_depth <= 2) {
653 			card->ext_csd.cmdq_support = false;
654 			card->ext_csd.cmdq_depth = 0;
655 		}
656 		if (card->ext_csd.cmdq_support) {
657 			pr_debug("%s: Command Queue supported depth %u\n",
658 				 mmc_hostname(card->host),
659 				 card->ext_csd.cmdq_depth);
660 		}
661 		card->ext_csd.enhanced_rpmb_supported =
662 					(card->ext_csd.rel_param &
663 					 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
664 	}
665 out:
666 	return err;
667 }
668 
669 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
mmc_tb_map_ecsd(phys_addr_t start,size_t len)670 static void *mmc_tb_map_ecsd(phys_addr_t start, size_t len)
671 {
672 	int i;
673 	void *vaddr;
674 	pgprot_t pgprot = PAGE_KERNEL;
675 	phys_addr_t phys;
676 	int npages = PAGE_ALIGN(len) / PAGE_SIZE;
677 	struct page **p = vmalloc(sizeof(struct page *) * npages);
678 
679 	if (!p)
680 		return NULL;
681 
682 	phys = start;
683 	for (i = 0; i < npages; i++) {
684 		p[i] = phys_to_page(phys);
685 		phys += PAGE_SIZE;
686 	}
687 
688 	vaddr = vmap(p, npages, VM_MAP, pgprot);
689 	vfree(p);
690 
691 	return vaddr;
692 }
693 #endif
694 
mmc_read_ext_csd(struct mmc_card * card)695 static int mmc_read_ext_csd(struct mmc_card *card)
696 {
697 	u8 *ext_csd;
698 	int err;
699 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
700 	void *ecsd;
701 	bool valid_ecsd = false;
702 	bool valid_reserved = false;
703 	struct device_node *mem;
704 	struct resource reg;
705 	struct device *dev = card->host->parent;
706 #endif
707 	if (!mmc_can_ext_csd(card))
708 		return 0;
709 
710 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
711 	mem = of_parse_phandle(dev->of_node, "memory-region-ecsd", 0);
712 	if (mem) {
713 		err = of_address_to_resource(mem, 0, &reg);
714 		if (err < 0) {
715 			dev_err(dev, "fail to get resource\n");
716 			goto get_ecsd;
717 		}
718 		valid_reserved = true;
719 
720 		ecsd = mmc_tb_map_ecsd(reg.start, resource_size(&reg));
721 		if (!ecsd)
722 			goto get_ecsd;
723 
724 		if (readl(ecsd + SZ_512) == 0x55aa55aa) {
725 			ext_csd = ecsd;
726 			valid_ecsd = true;
727 			goto decode;
728 		} else {
729 			dev_dbg(dev, "invalid ecsd tag!");
730 		}
731 	} else {
732 		dev_info(dev, "not find \"memory-region\" property\n");
733 	}
734 
735 get_ecsd:
736 #endif
737 	err = mmc_get_ext_csd(card, &ext_csd);
738 	if (err) {
739 		/* If the host or the card can't do the switch,
740 		 * fail more gracefully. */
741 		if ((err != -EINVAL)
742 		 && (err != -ENOSYS)
743 		 && (err != -EFAULT))
744 			return err;
745 
746 		/*
747 		 * High capacity cards should have this "magic" size
748 		 * stored in their CSD.
749 		 */
750 		if (card->csd.capacity == (4096 * 512)) {
751 			pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
752 				mmc_hostname(card->host));
753 		} else {
754 			pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
755 				mmc_hostname(card->host));
756 			err = 0;
757 		}
758 
759 		return err;
760 	}
761 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
762 decode:
763 #endif
764 	err = mmc_decode_ext_csd(card, ext_csd);
765 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
766 	if (!valid_ecsd)
767 		kfree(ext_csd);
768 	else
769 		vunmap(ecsd);
770 	if (valid_reserved)
771 		free_reserved_area(phys_to_virt(reg.start),
772 				   phys_to_virt(reg.start) + resource_size(&reg),
773 				   -1, "memory-region-ecsd");
774 #else
775 	kfree(ext_csd);
776 #endif
777 	return err;
778 }
779 
780 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)781 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
782 {
783 	u8 *bw_ext_csd;
784 	int err;
785 
786 	if (bus_width == MMC_BUS_WIDTH_1)
787 		return 0;
788 
789 	err = mmc_get_ext_csd(card, &bw_ext_csd);
790 	if (err)
791 		return err;
792 
793 	/* only compare read only fields */
794 	err = !((card->ext_csd.raw_partition_support ==
795 			bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
796 		(card->ext_csd.raw_erased_mem_count ==
797 			bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
798 		(card->ext_csd.rev ==
799 			bw_ext_csd[EXT_CSD_REV]) &&
800 		(card->ext_csd.raw_ext_csd_structure ==
801 			bw_ext_csd[EXT_CSD_STRUCTURE]) &&
802 		(card->ext_csd.raw_card_type ==
803 			bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
804 		(card->ext_csd.raw_s_a_timeout ==
805 			bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
806 		(card->ext_csd.raw_hc_erase_gap_size ==
807 			bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
808 		(card->ext_csd.raw_erase_timeout_mult ==
809 			bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
810 		(card->ext_csd.raw_hc_erase_grp_size ==
811 			bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
812 		(card->ext_csd.raw_sec_trim_mult ==
813 			bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
814 		(card->ext_csd.raw_sec_erase_mult ==
815 			bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
816 		(card->ext_csd.raw_sec_feature_support ==
817 			bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
818 		(card->ext_csd.raw_trim_mult ==
819 			bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
820 		(card->ext_csd.raw_sectors[0] ==
821 			bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
822 		(card->ext_csd.raw_sectors[1] ==
823 			bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
824 		(card->ext_csd.raw_sectors[2] ==
825 			bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
826 		(card->ext_csd.raw_sectors[3] ==
827 			bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
828 		(card->ext_csd.raw_pwr_cl_52_195 ==
829 			bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
830 		(card->ext_csd.raw_pwr_cl_26_195 ==
831 			bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
832 		(card->ext_csd.raw_pwr_cl_52_360 ==
833 			bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
834 		(card->ext_csd.raw_pwr_cl_26_360 ==
835 			bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
836 		(card->ext_csd.raw_pwr_cl_200_195 ==
837 			bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
838 		(card->ext_csd.raw_pwr_cl_200_360 ==
839 			bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
840 		(card->ext_csd.raw_pwr_cl_ddr_52_195 ==
841 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
842 		(card->ext_csd.raw_pwr_cl_ddr_52_360 ==
843 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
844 		(card->ext_csd.raw_pwr_cl_ddr_200_360 ==
845 			bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
846 
847 	if (err)
848 		err = -EINVAL;
849 
850 	kfree(bw_ext_csd);
851 	return err;
852 }
853 #endif
854 
855 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
856 	card->raw_cid[2], card->raw_cid[3]);
857 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
858 	card->raw_csd[2], card->raw_csd[3]);
859 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
860 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
861 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
862 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
863 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
864 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
865 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
866 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
867 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
868 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
869 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
870 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
871 	card->ext_csd.device_life_time_est_typ_a,
872 	card->ext_csd.device_life_time_est_typ_b);
873 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
874 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
875 		card->ext_csd.enhanced_area_offset);
876 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
877 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
878 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
879 	card->ext_csd.enhanced_rpmb_supported);
880 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
881 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
882 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
883 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
884 
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)885 static ssize_t mmc_fwrev_show(struct device *dev,
886 			      struct device_attribute *attr,
887 			      char *buf)
888 {
889 	struct mmc_card *card = mmc_dev_to_card(dev);
890 
891 	if (card->ext_csd.rev < 7) {
892 		return sprintf(buf, "0x%x\n", card->cid.fwrev);
893 	} else {
894 		return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
895 			       card->ext_csd.fwrev);
896 	}
897 }
898 
899 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
900 
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)901 static ssize_t mmc_dsr_show(struct device *dev,
902 			    struct device_attribute *attr,
903 			    char *buf)
904 {
905 	struct mmc_card *card = mmc_dev_to_card(dev);
906 	struct mmc_host *host = card->host;
907 
908 	if (card->csd.dsr_imp && host->dsr_req)
909 		return sprintf(buf, "0x%x\n", host->dsr);
910 	else
911 		/* return default DSR value */
912 		return sprintf(buf, "0x%x\n", 0x404);
913 }
914 
915 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
916 
917 static struct attribute *mmc_std_attrs[] = {
918 	&dev_attr_cid.attr,
919 	&dev_attr_csd.attr,
920 	&dev_attr_date.attr,
921 	&dev_attr_erase_size.attr,
922 	&dev_attr_preferred_erase_size.attr,
923 	&dev_attr_fwrev.attr,
924 	&dev_attr_ffu_capable.attr,
925 	&dev_attr_hwrev.attr,
926 	&dev_attr_manfid.attr,
927 	&dev_attr_name.attr,
928 	&dev_attr_oemid.attr,
929 	&dev_attr_prv.attr,
930 	&dev_attr_rev.attr,
931 	&dev_attr_pre_eol_info.attr,
932 	&dev_attr_life_time.attr,
933 	&dev_attr_serial.attr,
934 	&dev_attr_enhanced_area_offset.attr,
935 	&dev_attr_enhanced_area_size.attr,
936 	&dev_attr_raw_rpmb_size_mult.attr,
937 	&dev_attr_enhanced_rpmb_supported.attr,
938 	&dev_attr_rel_sectors.attr,
939 	&dev_attr_ocr.attr,
940 	&dev_attr_rca.attr,
941 	&dev_attr_dsr.attr,
942 	&dev_attr_cmdq_en.attr,
943 	NULL,
944 };
945 ATTRIBUTE_GROUPS(mmc_std);
946 
947 static struct device_type mmc_type = {
948 	.groups = mmc_std_groups,
949 };
950 
951 /*
952  * Select the PowerClass for the current bus width
953  * If power class is defined for 4/8 bit bus in the
954  * extended CSD register, select it by executing the
955  * mmc_switch command.
956  */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)957 static int __mmc_select_powerclass(struct mmc_card *card,
958 				   unsigned int bus_width)
959 {
960 	struct mmc_host *host = card->host;
961 	struct mmc_ext_csd *ext_csd = &card->ext_csd;
962 	unsigned int pwrclass_val = 0;
963 	int err = 0;
964 
965 	switch (1 << host->ios.vdd) {
966 	case MMC_VDD_165_195:
967 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
968 			pwrclass_val = ext_csd->raw_pwr_cl_26_195;
969 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
970 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
971 				ext_csd->raw_pwr_cl_52_195 :
972 				ext_csd->raw_pwr_cl_ddr_52_195;
973 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
974 			pwrclass_val = ext_csd->raw_pwr_cl_200_195;
975 		break;
976 	case MMC_VDD_27_28:
977 	case MMC_VDD_28_29:
978 	case MMC_VDD_29_30:
979 	case MMC_VDD_30_31:
980 	case MMC_VDD_31_32:
981 	case MMC_VDD_32_33:
982 	case MMC_VDD_33_34:
983 	case MMC_VDD_34_35:
984 	case MMC_VDD_35_36:
985 		if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
986 			pwrclass_val = ext_csd->raw_pwr_cl_26_360;
987 		else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
988 			pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
989 				ext_csd->raw_pwr_cl_52_360 :
990 				ext_csd->raw_pwr_cl_ddr_52_360;
991 		else if (host->ios.clock <= MMC_HS200_MAX_DTR)
992 			pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
993 				ext_csd->raw_pwr_cl_ddr_200_360 :
994 				ext_csd->raw_pwr_cl_200_360;
995 		break;
996 	default:
997 		pr_warn("%s: Voltage range not supported for power class\n",
998 			mmc_hostname(host));
999 		return -EINVAL;
1000 	}
1001 
1002 	if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
1003 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
1004 				EXT_CSD_PWR_CL_8BIT_SHIFT;
1005 	else
1006 		pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
1007 				EXT_CSD_PWR_CL_4BIT_SHIFT;
1008 
1009 	/* If the power class is different from the default value */
1010 	if (pwrclass_val > 0) {
1011 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1012 				 EXT_CSD_POWER_CLASS,
1013 				 pwrclass_val,
1014 				 card->ext_csd.generic_cmd6_time);
1015 	}
1016 
1017 	return err;
1018 }
1019 
mmc_select_powerclass(struct mmc_card * card)1020 static int mmc_select_powerclass(struct mmc_card *card)
1021 {
1022 	struct mmc_host *host = card->host;
1023 	u32 bus_width, ext_csd_bits;
1024 	int err, ddr;
1025 
1026 	/* Power class selection is supported for versions >= 4.0 */
1027 	if (!mmc_can_ext_csd(card))
1028 		return 0;
1029 
1030 	bus_width = host->ios.bus_width;
1031 	/* Power class values are defined only for 4/8 bit bus */
1032 	if (bus_width == MMC_BUS_WIDTH_1)
1033 		return 0;
1034 
1035 	ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
1036 	if (ddr)
1037 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1038 			EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1039 	else
1040 		ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1041 			EXT_CSD_BUS_WIDTH_8 :  EXT_CSD_BUS_WIDTH_4;
1042 
1043 	err = __mmc_select_powerclass(card, ext_csd_bits);
1044 	if (err)
1045 		pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
1046 			mmc_hostname(host), 1 << bus_width, ddr);
1047 
1048 	return err;
1049 }
1050 
1051 /*
1052  * Set the bus speed for the selected speed mode.
1053  */
mmc_set_bus_speed(struct mmc_card * card)1054 void mmc_set_bus_speed(struct mmc_card *card)
1055 {
1056 	unsigned int max_dtr = (unsigned int)-1;
1057 
1058 	if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
1059 	     max_dtr > card->ext_csd.hs200_max_dtr)
1060 		max_dtr = card->ext_csd.hs200_max_dtr;
1061 	else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
1062 		max_dtr = card->ext_csd.hs_max_dtr;
1063 	else if (max_dtr > card->csd.max_dtr)
1064 		max_dtr = card->csd.max_dtr;
1065 
1066 	mmc_set_clock(card->host, max_dtr);
1067 }
1068 
1069 /*
1070  * Select the bus width amoung 4-bit and 8-bit(SDR).
1071  * If the bus width is changed successfully, return the selected width value.
1072  * Zero is returned instead of error value if the wide width is not supported.
1073  */
mmc_select_bus_width(struct mmc_card * card)1074 int mmc_select_bus_width(struct mmc_card *card)
1075 {
1076 	static unsigned ext_csd_bits[] = {
1077 		EXT_CSD_BUS_WIDTH_8,
1078 		EXT_CSD_BUS_WIDTH_4,
1079 	};
1080 	static unsigned bus_widths[] = {
1081 		MMC_BUS_WIDTH_8,
1082 		MMC_BUS_WIDTH_4,
1083 	};
1084 	struct mmc_host *host = card->host;
1085 	unsigned idx, bus_width = 0;
1086 	int err = 0;
1087 
1088 	if (!mmc_can_ext_csd(card) ||
1089 	    !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1090 		return 0;
1091 
1092 	idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1093 
1094 	/*
1095 	 * Unlike SD, MMC cards dont have a configuration register to notify
1096 	 * supported bus width. So bus test command should be run to identify
1097 	 * the supported bus width or compare the ext csd values of current
1098 	 * bus width and ext csd values of 1 bit mode read earlier.
1099 	 */
1100 	for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1101 		/*
1102 		 * Host is capable of 8bit transfer, then switch
1103 		 * the device to work in 8bit transfer mode. If the
1104 		 * mmc switch command returns error then switch to
1105 		 * 4bit transfer mode. On success set the corresponding
1106 		 * bus width on the host.
1107 		 */
1108 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1109 				 EXT_CSD_BUS_WIDTH,
1110 				 ext_csd_bits[idx],
1111 				 card->ext_csd.generic_cmd6_time);
1112 		if (err)
1113 			continue;
1114 
1115 		bus_width = bus_widths[idx];
1116 		mmc_set_bus_width(host, bus_width);
1117 
1118 		/*
1119 		 * If controller can't handle bus width test,
1120 		 * compare ext_csd previously read in 1 bit mode
1121 		 * against ext_csd at new bus width
1122 		 */
1123 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1124 		if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1125 			err = mmc_compare_ext_csds(card, bus_width);
1126 		else
1127 			err = mmc_bus_test(card, bus_width);
1128 #endif
1129 		if (!err) {
1130 			err = bus_width;
1131 			break;
1132 		} else {
1133 			pr_warn("%s: switch to bus width %d failed\n",
1134 				mmc_hostname(host), 1 << bus_width);
1135 		}
1136 	}
1137 
1138 	return err;
1139 }
1140 EXPORT_SYMBOL_GPL(mmc_select_bus_width);
1141 
1142 /*
1143  * Switch to the high-speed mode
1144  */
mmc_select_hs(struct mmc_card * card)1145 int mmc_select_hs(struct mmc_card *card)
1146 {
1147 	int err;
1148 
1149 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1150 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1151 			   card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1152 			   true, true);
1153 	if (err)
1154 		pr_warn("%s: switch to high-speed failed, err:%d\n",
1155 			mmc_hostname(card->host), err);
1156 
1157 	return err;
1158 }
1159 EXPORT_SYMBOL_GPL(mmc_select_hs);
1160 
1161 /*
1162  * Activate wide bus and DDR if supported.
1163  */
mmc_select_hs_ddr(struct mmc_card * card)1164 int mmc_select_hs_ddr(struct mmc_card *card)
1165 {
1166 	struct mmc_host *host = card->host;
1167 	u32 bus_width, ext_csd_bits;
1168 	int err = 0;
1169 
1170 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1171 		return 0;
1172 
1173 	bus_width = host->ios.bus_width;
1174 	if (bus_width == MMC_BUS_WIDTH_1)
1175 		return 0;
1176 
1177 	ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1178 		EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1179 
1180 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1181 			   EXT_CSD_BUS_WIDTH,
1182 			   ext_csd_bits,
1183 			   card->ext_csd.generic_cmd6_time,
1184 			   MMC_TIMING_MMC_DDR52,
1185 			   true, true);
1186 	if (err) {
1187 		pr_err("%s: switch to bus width %d ddr failed\n",
1188 			mmc_hostname(host), 1 << bus_width);
1189 		return err;
1190 	}
1191 
1192 	/*
1193 	 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1194 	 * signaling.
1195 	 *
1196 	 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1197 	 *
1198 	 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1199 	 * in the JEDEC spec for DDR.
1200 	 *
1201 	 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1202 	 * host controller can support this, like some of the SDHCI
1203 	 * controller which connect to an eMMC device. Some of these
1204 	 * host controller still needs to use 1.8v vccq for supporting
1205 	 * DDR mode.
1206 	 *
1207 	 * So the sequence will be:
1208 	 * if (host and device can both support 1.2v IO)
1209 	 *	use 1.2v IO;
1210 	 * else if (host and device can both support 1.8v IO)
1211 	 *	use 1.8v IO;
1212 	 * so if host and device can only support 3.3v IO, this is the
1213 	 * last choice.
1214 	 *
1215 	 * WARNING: eMMC rules are NOT the same as SD DDR
1216 	 */
1217 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1218 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1219 		if (!err)
1220 			return 0;
1221 	}
1222 
1223 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1224 	    host->caps & MMC_CAP_1_8V_DDR)
1225 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1226 
1227 	/* make sure vccq is 3.3v after switching disaster */
1228 	if (err)
1229 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1230 
1231 	return err;
1232 }
1233 EXPORT_SYMBOL_GPL(mmc_select_hs_ddr);
1234 
mmc_select_hs400(struct mmc_card * card)1235 int mmc_select_hs400(struct mmc_card *card)
1236 {
1237 	struct mmc_host *host = card->host;
1238 	unsigned int max_dtr;
1239 	int err = 0;
1240 	u8 val;
1241 
1242 	/*
1243 	 * HS400 mode requires 8-bit bus width
1244 	 */
1245 	if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1246 	      host->ios.bus_width == MMC_BUS_WIDTH_8))
1247 		return 0;
1248 
1249 	/* Switch card to HS mode */
1250 	val = EXT_CSD_TIMING_HS;
1251 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1252 			   EXT_CSD_HS_TIMING, val,
1253 			   card->ext_csd.generic_cmd6_time, 0,
1254 			   false, true);
1255 	if (err) {
1256 		pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1257 			mmc_hostname(host), err);
1258 		return err;
1259 	}
1260 
1261 	/* Prepare host to downgrade to HS timing */
1262 	if (host->ops->hs400_downgrade)
1263 		host->ops->hs400_downgrade(host);
1264 
1265 	/* Set host controller to HS timing */
1266 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1267 
1268 	/* Reduce frequency to HS frequency */
1269 	max_dtr = card->ext_csd.hs_max_dtr;
1270 	mmc_set_clock(host, max_dtr);
1271 
1272 	err = mmc_switch_status(card, true);
1273 	if (err)
1274 		goto out_err;
1275 
1276 	if (host->ops->hs400_prepare_ddr)
1277 		host->ops->hs400_prepare_ddr(host);
1278 
1279 	/* Switch card to DDR */
1280 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1281 			 EXT_CSD_BUS_WIDTH,
1282 			 EXT_CSD_DDR_BUS_WIDTH_8,
1283 			 card->ext_csd.generic_cmd6_time);
1284 	if (err) {
1285 		pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1286 			mmc_hostname(host), err);
1287 		return err;
1288 	}
1289 
1290 	/* Switch card to HS400 */
1291 	val = EXT_CSD_TIMING_HS400 |
1292 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1293 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1294 			   EXT_CSD_HS_TIMING, val,
1295 			   card->ext_csd.generic_cmd6_time, 0,
1296 			   false, true);
1297 	if (err) {
1298 		pr_err("%s: switch to hs400 failed, err:%d\n",
1299 			 mmc_hostname(host), err);
1300 		return err;
1301 	}
1302 
1303 	/* Set host controller to HS400 timing and frequency */
1304 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1305 	mmc_set_bus_speed(card);
1306 
1307 	if (host->ops->hs400_complete)
1308 		host->ops->hs400_complete(host);
1309 
1310 	err = mmc_switch_status(card, true);
1311 	if (err)
1312 		goto out_err;
1313 
1314 	return 0;
1315 
1316 out_err:
1317 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1318 	       __func__, err);
1319 	return err;
1320 }
1321 EXPORT_SYMBOL_GPL(mmc_select_hs400);
1322 
mmc_hs200_to_hs400(struct mmc_card * card)1323 int mmc_hs200_to_hs400(struct mmc_card *card)
1324 {
1325 	return mmc_select_hs400(card);
1326 }
1327 
mmc_hs400_to_hs200(struct mmc_card * card)1328 int mmc_hs400_to_hs200(struct mmc_card *card)
1329 {
1330 	struct mmc_host *host = card->host;
1331 	unsigned int max_dtr;
1332 	int err;
1333 	u8 val;
1334 
1335 	/* Reduce frequency to HS */
1336 	max_dtr = card->ext_csd.hs_max_dtr;
1337 	mmc_set_clock(host, max_dtr);
1338 
1339 	/* Switch HS400 to HS DDR */
1340 	val = EXT_CSD_TIMING_HS;
1341 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1342 			   val, card->ext_csd.generic_cmd6_time, 0,
1343 			   false, true);
1344 	if (err)
1345 		goto out_err;
1346 
1347 	if (host->ops->hs400_downgrade)
1348 		host->ops->hs400_downgrade(host);
1349 
1350 	mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1351 
1352 	err = mmc_switch_status(card, true);
1353 	if (err)
1354 		goto out_err;
1355 
1356 	/* Switch HS DDR to HS */
1357 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1358 			   EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1359 			   0, false, true);
1360 	if (err)
1361 		goto out_err;
1362 
1363 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1364 
1365 	err = mmc_switch_status(card, true);
1366 	if (err)
1367 		goto out_err;
1368 
1369 	/* Switch HS to HS200 */
1370 	val = EXT_CSD_TIMING_HS200 |
1371 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1372 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1373 			   val, card->ext_csd.generic_cmd6_time, 0,
1374 			   false, true);
1375 	if (err)
1376 		goto out_err;
1377 
1378 	mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1379 
1380 	/*
1381 	 * For HS200, CRC errors are not a reliable way to know the switch
1382 	 * failed. If there really is a problem, we would expect tuning will
1383 	 * fail and the result ends up the same.
1384 	 */
1385 	err = mmc_switch_status(card, false);
1386 	if (err)
1387 		goto out_err;
1388 
1389 	mmc_set_bus_speed(card);
1390 
1391 	/* Prepare tuning for HS400 mode. */
1392 	if (host->ops->prepare_hs400_tuning)
1393 		host->ops->prepare_hs400_tuning(host, &host->ios);
1394 
1395 	return 0;
1396 
1397 out_err:
1398 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1399 	       __func__, err);
1400 	return err;
1401 }
1402 
mmc_select_driver_type(struct mmc_card * card)1403 static void mmc_select_driver_type(struct mmc_card *card)
1404 {
1405 	int card_drv_type, drive_strength, drv_type = 0;
1406 	int fixed_drv_type = card->host->fixed_drv_type;
1407 
1408 	card_drv_type = card->ext_csd.raw_driver_strength |
1409 			mmc_driver_type_mask(0);
1410 
1411 	if (fixed_drv_type >= 0)
1412 		drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1413 				 ? fixed_drv_type : 0;
1414 	else
1415 		drive_strength = mmc_select_drive_strength(card,
1416 							   card->ext_csd.hs200_max_dtr,
1417 							   card_drv_type, &drv_type);
1418 
1419 	card->drive_strength = drive_strength;
1420 
1421 	if (drv_type)
1422 		mmc_set_driver_type(card->host, drv_type);
1423 }
1424 
mmc_select_hs400es(struct mmc_card * card)1425 static int mmc_select_hs400es(struct mmc_card *card)
1426 {
1427 	struct mmc_host *host = card->host;
1428 	int err = -EINVAL;
1429 	u8 val;
1430 
1431 	if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1432 		err = -ENOTSUPP;
1433 		goto out_err;
1434 	}
1435 
1436 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1437 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1438 
1439 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1440 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1441 
1442 	/* If fails try again during next card power cycle */
1443 	if (err)
1444 		goto out_err;
1445 
1446 	err = mmc_select_bus_width(card);
1447 	if (err != MMC_BUS_WIDTH_8) {
1448 		pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1449 			mmc_hostname(host), err);
1450 		err = err < 0 ? err : -ENOTSUPP;
1451 		goto out_err;
1452 	}
1453 
1454 	/* Switch card to HS mode */
1455 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1456 			   EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1457 			   card->ext_csd.generic_cmd6_time, 0,
1458 			   false, true);
1459 	if (err) {
1460 		pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1461 			mmc_hostname(host), err);
1462 		goto out_err;
1463 	}
1464 
1465 	/*
1466 	 * Bump to HS timing and frequency. Some cards don't handle
1467 	 * SEND_STATUS reliably at the initial frequency.
1468 	 */
1469 	mmc_set_timing(host, MMC_TIMING_MMC_HS);
1470 	/* Set clock immediately after changing timing */
1471 	mmc_set_bus_speed(card);
1472 
1473 	err = mmc_switch_status(card, true);
1474 	if (err)
1475 		goto out_err;
1476 
1477 	/* Switch card to DDR with strobe bit */
1478 	val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1479 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1480 			 EXT_CSD_BUS_WIDTH,
1481 			 val,
1482 			 card->ext_csd.generic_cmd6_time);
1483 	if (err) {
1484 		pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1485 			mmc_hostname(host), err);
1486 		goto out_err;
1487 	}
1488 
1489 	mmc_select_driver_type(card);
1490 
1491 	/* Switch card to HS400 */
1492 	val = EXT_CSD_TIMING_HS400 |
1493 	      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1494 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1495 			   EXT_CSD_HS_TIMING, val,
1496 			   card->ext_csd.generic_cmd6_time, 0,
1497 			   false, true);
1498 	if (err) {
1499 		pr_err("%s: switch to hs400es failed, err:%d\n",
1500 			mmc_hostname(host), err);
1501 		goto out_err;
1502 	}
1503 
1504 	/* Set host controller to HS400 timing and frequency */
1505 	mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1506 
1507 	/* Controller enable enhanced strobe function */
1508 	host->ios.enhanced_strobe = true;
1509 	if (host->ops->hs400_enhanced_strobe)
1510 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1511 
1512 	err = mmc_switch_status(card, true);
1513 	if (err)
1514 		goto out_err;
1515 
1516 	return 0;
1517 
1518 out_err:
1519 	pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1520 	       __func__, err);
1521 	return err;
1522 }
1523 
1524 /*
1525  * For device supporting HS200 mode, the following sequence
1526  * should be done before executing the tuning process.
1527  * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1528  * 2. switch to HS200 mode
1529  * 3. set the clock to > 52Mhz and <=200MHz
1530  */
mmc_select_hs200(struct mmc_card * card)1531 static int mmc_select_hs200(struct mmc_card *card)
1532 {
1533 	struct mmc_host *host = card->host;
1534 	unsigned int old_timing, old_signal_voltage, old_clock;
1535 	int err = -EINVAL;
1536 	u8 val;
1537 
1538 	old_signal_voltage = host->ios.signal_voltage;
1539 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1540 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1541 
1542 	if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1543 		err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1544 
1545 	/* If fails try again during next card power cycle */
1546 	if (err)
1547 		return err;
1548 
1549 	mmc_select_driver_type(card);
1550 
1551 	/*
1552 	 * Set the bus width(4 or 8) with host's support and
1553 	 * switch to HS200 mode if bus width is set successfully.
1554 	 */
1555 	err = mmc_select_bus_width(card);
1556 	if (err > 0) {
1557 		val = EXT_CSD_TIMING_HS200 |
1558 		      card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1559 		err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1560 				   EXT_CSD_HS_TIMING, val,
1561 				   card->ext_csd.generic_cmd6_time, 0,
1562 				   false, true);
1563 		if (err)
1564 			goto err;
1565 
1566 		/*
1567 		 * Bump to HS timing and frequency. Some cards don't handle
1568 		 * SEND_STATUS reliably at the initial frequency.
1569 		 * NB: We can't move to full (HS200) speeds until after we've
1570 		 * successfully switched over.
1571 		 */
1572 		old_timing = host->ios.timing;
1573 		old_clock = host->ios.clock;
1574 		mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1575 		mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1576 
1577 		/*
1578 		 * For HS200, CRC errors are not a reliable way to know the
1579 		 * switch failed. If there really is a problem, we would expect
1580 		 * tuning will fail and the result ends up the same.
1581 		 */
1582 		err = mmc_switch_status(card, false);
1583 
1584 		/*
1585 		 * mmc_select_timing() assumes timing has not changed if
1586 		 * it is a switch error.
1587 		 */
1588 		if (err == -EBADMSG) {
1589 			mmc_set_clock(host, old_clock);
1590 			mmc_set_timing(host, old_timing);
1591 		}
1592 	}
1593 err:
1594 	if (err) {
1595 		/* fall back to the old signal voltage, if fails report error */
1596 		if (mmc_set_signal_voltage(host, old_signal_voltage))
1597 			err = -EIO;
1598 
1599 		pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1600 		       __func__, err);
1601 	}
1602 	return err;
1603 }
1604 
1605 /*
1606  * Activate High Speed, HS200 or HS400ES mode if supported.
1607  */
mmc_select_timing(struct mmc_card * card)1608 int mmc_select_timing(struct mmc_card *card)
1609 {
1610 	int err = 0;
1611 
1612 	if (!mmc_can_ext_csd(card))
1613 		goto bus_speed;
1614 
1615 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1616 		err = mmc_select_hs400es(card);
1617 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1618 		err = mmc_select_hs200(card);
1619 	else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1620 		err = mmc_select_hs(card);
1621 
1622 	if (err && err != -EBADMSG)
1623 		return err;
1624 
1625 bus_speed:
1626 	/*
1627 	 * Set the bus speed to the selected bus timing.
1628 	 * If timing is not selected, backward compatible is the default.
1629 	 */
1630 	mmc_set_bus_speed(card);
1631 	return 0;
1632 }
1633 EXPORT_SYMBOL_GPL(mmc_select_timing);
1634 
1635 /*
1636  * Execute tuning sequence to seek the proper bus operating
1637  * conditions for HS200 and HS400, which sends CMD21 to the device.
1638  */
mmc_hs200_tuning(struct mmc_card * card)1639 int mmc_hs200_tuning(struct mmc_card *card)
1640 {
1641 	struct mmc_host *host = card->host;
1642 
1643 	/*
1644 	 * Timing should be adjusted to the HS400 target
1645 	 * operation frequency for tuning process
1646 	 */
1647 	if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1648 	    host->ios.bus_width == MMC_BUS_WIDTH_8)
1649 		if (host->ops->prepare_hs400_tuning)
1650 			host->ops->prepare_hs400_tuning(host, &host->ios);
1651 
1652 	return mmc_execute_tuning(card);
1653 }
1654 EXPORT_SYMBOL_GPL(mmc_hs200_tuning);
1655 
1656 /*
1657  * Handle the detection and initialisation of a card.
1658  *
1659  * In the case of a resume, "oldcard" will contain the card
1660  * we're trying to reinitialise.
1661  */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1662 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1663 	struct mmc_card *oldcard)
1664 {
1665 	struct mmc_card *card;
1666 	int err;
1667 	u32 cid[4];
1668 	u32 rocr;
1669 
1670 	WARN_ON(!host->claimed);
1671 
1672 	/* Set correct bus mode for MMC before attempting init */
1673 	if (!mmc_host_is_spi(host))
1674 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1675 
1676 	/*
1677 	 * Since we're changing the OCR value, we seem to
1678 	 * need to tell some cards to go back to the idle
1679 	 * state.  We wait 1ms to give cards time to
1680 	 * respond.
1681 	 * mmc_go_idle is needed for eMMC that are asleep
1682 	 */
1683 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1684 	mmc_go_idle(host);
1685 #endif
1686 
1687 	/* The extra bit indicates that we support high capacity */
1688 	err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1689 	if (err)
1690 		goto err;
1691 
1692 	/*
1693 	 * For SPI, enable CRC as appropriate.
1694 	 */
1695 	if (mmc_host_is_spi(host)) {
1696 		err = mmc_spi_set_crc(host, use_spi_crc);
1697 		if (err)
1698 			goto err;
1699 	}
1700 
1701 	/*
1702 	 * Fetch CID from card.
1703 	 */
1704 	err = mmc_send_cid(host, cid);
1705 	if (err)
1706 		goto err;
1707 
1708 	if (oldcard) {
1709 		if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1710 			pr_debug("%s: Perhaps the card was replaced\n",
1711 				mmc_hostname(host));
1712 			err = -ENOENT;
1713 			goto err;
1714 		}
1715 
1716 		card = oldcard;
1717 	} else {
1718 		/*
1719 		 * Allocate card structure.
1720 		 */
1721 		card = mmc_alloc_card(host, &mmc_type);
1722 		if (IS_ERR(card)) {
1723 			err = PTR_ERR(card);
1724 			goto err;
1725 		}
1726 
1727 		card->ocr = ocr;
1728 		card->type = MMC_TYPE_MMC;
1729 		card->rca = 1;
1730 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1731 		memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1732 #endif
1733 	}
1734 
1735 	/*
1736 	 * Call the optional HC's init_card function to handle quirks.
1737 	 */
1738 	if (host->ops->init_card)
1739 		host->ops->init_card(host, card);
1740 
1741 	/*
1742 	 * For native busses:  set card RCA and quit open drain mode.
1743 	 */
1744 	if (!mmc_host_is_spi(host)) {
1745 		err = mmc_set_relative_addr(card);
1746 		if (err)
1747 			goto free_card;
1748 
1749 		mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1750 	}
1751 
1752 	if (!oldcard) {
1753 		/*
1754 		 * Fetch CSD from card.
1755 		 */
1756 		err = mmc_send_csd(card, card->raw_csd);
1757 		if (err)
1758 			goto free_card;
1759 
1760 		err = mmc_decode_csd(card);
1761 		if (err)
1762 			goto free_card;
1763 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1764 		err = mmc_decode_cid(card);
1765 		if (err)
1766 			goto free_card;
1767 #endif
1768 	}
1769 
1770 	/*
1771 	 * handling only for cards supporting DSR and hosts requesting
1772 	 * DSR configuration
1773 	 */
1774 	if (card->csd.dsr_imp && host->dsr_req)
1775 		mmc_set_dsr(host);
1776 
1777 	/*
1778 	 * Select card, as all following commands rely on that.
1779 	 */
1780 	if (!mmc_host_is_spi(host)) {
1781 		err = mmc_select_card(card);
1782 		if (err)
1783 			goto free_card;
1784 	}
1785 
1786 	if (!oldcard) {
1787 		/* Read extended CSD. */
1788 		err = mmc_read_ext_csd(card);
1789 		if (err)
1790 			goto free_card;
1791 
1792 		/*
1793 		 * If doing byte addressing, check if required to do sector
1794 		 * addressing.  Handle the case of <2GB cards needing sector
1795 		 * addressing.  See section 8.1 JEDEC Standard JED84-A441;
1796 		 * ocr register has bit 30 set for sector addressing.
1797 		 */
1798 		if (rocr & BIT(30))
1799 			mmc_card_set_blockaddr(card);
1800 
1801 		/* Erase size depends on CSD and Extended CSD */
1802 		mmc_set_erase_size(card);
1803 	}
1804 
1805 	/* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1806 	if (card->ext_csd.rev >= 3) {
1807 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1808 				 EXT_CSD_ERASE_GROUP_DEF, 1,
1809 				 card->ext_csd.generic_cmd6_time);
1810 
1811 		if (err && err != -EBADMSG)
1812 			goto free_card;
1813 
1814 		if (err) {
1815 			err = 0;
1816 			/*
1817 			 * Just disable enhanced area off & sz
1818 			 * will try to enable ERASE_GROUP_DEF
1819 			 * during next time reinit
1820 			 */
1821 			card->ext_csd.enhanced_area_offset = -EINVAL;
1822 			card->ext_csd.enhanced_area_size = -EINVAL;
1823 		} else {
1824 			card->ext_csd.erase_group_def = 1;
1825 			/*
1826 			 * enable ERASE_GRP_DEF successfully.
1827 			 * This will affect the erase size, so
1828 			 * here need to reset erase size
1829 			 */
1830 			mmc_set_erase_size(card);
1831 		}
1832 	}
1833 
1834 	/*
1835 	 * Ensure eMMC user default partition is enabled
1836 	 */
1837 	if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1838 		card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1839 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1840 				 card->ext_csd.part_config,
1841 				 card->ext_csd.part_time);
1842 		if (err && err != -EBADMSG)
1843 			goto free_card;
1844 	}
1845 
1846 	/*
1847 	 * Enable power_off_notification byte in the ext_csd register
1848 	 */
1849 	if (card->ext_csd.rev >= 6) {
1850 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1851 				 EXT_CSD_POWER_OFF_NOTIFICATION,
1852 				 EXT_CSD_POWER_ON,
1853 				 card->ext_csd.generic_cmd6_time);
1854 		if (err && err != -EBADMSG)
1855 			goto free_card;
1856 
1857 		/*
1858 		 * The err can be -EBADMSG or 0,
1859 		 * so check for success and update the flag
1860 		 */
1861 		if (!err)
1862 			card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1863 	}
1864 
1865 	/* set erase_arg */
1866 	if (mmc_can_discard(card))
1867 		card->erase_arg = MMC_DISCARD_ARG;
1868 	else if (mmc_can_trim(card))
1869 		card->erase_arg = MMC_TRIM_ARG;
1870 	else
1871 		card->erase_arg = MMC_ERASE_ARG;
1872 
1873 	/*
1874 	 * Select timing interface
1875 	 */
1876 	err = mmc_select_timing(card);
1877 	if (err)
1878 		goto free_card;
1879 
1880 	if (mmc_card_hs200(card)) {
1881 		host->doing_init_tune = 1;
1882 
1883 		err = mmc_hs200_tuning(card);
1884 		if (!err)
1885 			err = mmc_select_hs400(card);
1886 
1887 		host->doing_init_tune = 0;
1888 
1889 		if (err)
1890 			goto free_card;
1891 
1892 	} else if (!mmc_card_hs400es(card)) {
1893 		/* Select the desired bus width optionally */
1894 		err = mmc_select_bus_width(card);
1895 		if (err > 0 && mmc_card_hs(card)) {
1896 			err = mmc_select_hs_ddr(card);
1897 			if (err)
1898 				goto free_card;
1899 		}
1900 	}
1901 
1902 	/*
1903 	 * Choose the power class with selected bus interface
1904 	 */
1905 	mmc_select_powerclass(card);
1906 
1907 	/*
1908 	 * Enable HPI feature (if supported)
1909 	 */
1910 #ifndef CONFIG_ROCKCHIP_THUNDER_BOOT_MMC
1911 	if (card->ext_csd.hpi) {
1912 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1913 				EXT_CSD_HPI_MGMT, 1,
1914 				card->ext_csd.generic_cmd6_time);
1915 		if (err && err != -EBADMSG)
1916 			goto free_card;
1917 		if (err) {
1918 			pr_warn("%s: Enabling HPI failed\n",
1919 				mmc_hostname(card->host));
1920 			card->ext_csd.hpi_en = 0;
1921 			err = 0;
1922 		} else {
1923 			card->ext_csd.hpi_en = 1;
1924 		}
1925 	}
1926 #endif
1927 	/*
1928 	 * If cache size is higher than 0, this indicates the existence of cache
1929 	 * and it can be turned on. Note that some eMMCs from Micron has been
1930 	 * reported to need ~800 ms timeout, while enabling the cache after
1931 	 * sudden power failure tests. Let's extend the timeout to a minimum of
1932 	 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1933 	 */
1934 	if (card->ext_csd.cache_size > 0) {
1935 		unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1936 
1937 		timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1938 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1939 				EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1940 		if (err && err != -EBADMSG)
1941 			goto free_card;
1942 
1943 		/*
1944 		 * Only if no error, cache is turned on successfully.
1945 		 */
1946 		if (err) {
1947 			pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1948 				mmc_hostname(card->host), err);
1949 			card->ext_csd.cache_ctrl = 0;
1950 			err = 0;
1951 		} else {
1952 			card->ext_csd.cache_ctrl = 1;
1953 		}
1954 	}
1955 
1956 	/*
1957 	 * Enable Command Queue if supported. Note that Packed Commands cannot
1958 	 * be used with Command Queue.
1959 	 */
1960 	card->ext_csd.cmdq_en = false;
1961 	if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1962 		err = mmc_cmdq_enable(card);
1963 		if (err && err != -EBADMSG)
1964 			goto free_card;
1965 		if (err) {
1966 			pr_warn("%s: Enabling CMDQ failed\n",
1967 				mmc_hostname(card->host));
1968 			card->ext_csd.cmdq_support = false;
1969 			card->ext_csd.cmdq_depth = 0;
1970 			err = 0;
1971 		}
1972 	}
1973 	/*
1974 	 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1975 	 * disabled for a time, so a flag is needed to indicate to re-enable the
1976 	 * Command Queue.
1977 	 */
1978 	card->reenable_cmdq = card->ext_csd.cmdq_en;
1979 
1980 	if (host->cqe_ops && !host->cqe_enabled) {
1981 		err = host->cqe_ops->cqe_enable(host, card);
1982 		if (!err) {
1983 			host->cqe_enabled = true;
1984 
1985 			if (card->ext_csd.cmdq_en) {
1986 				pr_info("%s: Command Queue Engine enabled\n",
1987 					mmc_hostname(host));
1988 			} else {
1989 				host->hsq_enabled = true;
1990 				pr_info("%s: Host Software Queue enabled\n",
1991 					mmc_hostname(host));
1992 			}
1993 		}
1994 	}
1995 
1996 	if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1997 	    host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1998 		pr_err("%s: Host failed to negotiate down from 3.3V\n",
1999 			mmc_hostname(host));
2000 		err = -EINVAL;
2001 		goto free_card;
2002 	}
2003 
2004 	if (!oldcard)
2005 		host->card = card;
2006 
2007 	return 0;
2008 
2009 free_card:
2010 	if (!oldcard)
2011 		mmc_remove_card(card);
2012 err:
2013 	return err;
2014 }
2015 
mmc_can_sleep(struct mmc_card * card)2016 static int mmc_can_sleep(struct mmc_card *card)
2017 {
2018 	return (card && card->ext_csd.rev >= 3);
2019 }
2020 
mmc_sleep(struct mmc_host * host)2021 static int mmc_sleep(struct mmc_host *host)
2022 {
2023 	struct mmc_command cmd = {};
2024 	struct mmc_card *card = host->card;
2025 	unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
2026 	int err;
2027 
2028 	/* Re-tuning can't be done once the card is deselected */
2029 	mmc_retune_hold(host);
2030 
2031 	err = mmc_deselect_cards(host);
2032 	if (err)
2033 		goto out_release;
2034 
2035 	cmd.opcode = MMC_SLEEP_AWAKE;
2036 	cmd.arg = card->rca << 16;
2037 	cmd.arg |= 1 << 15;
2038 
2039 	/*
2040 	 * If the max_busy_timeout of the host is specified, validate it against
2041 	 * the sleep cmd timeout. A failure means we need to prevent the host
2042 	 * from doing hw busy detection, which is done by converting to a R1
2043 	 * response instead of a R1B. Note, some hosts requires R1B, which also
2044 	 * means they are on their own when it comes to deal with the busy
2045 	 * timeout.
2046 	 */
2047 	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
2048 	    (timeout_ms > host->max_busy_timeout)) {
2049 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2050 	} else {
2051 		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
2052 		cmd.busy_timeout = timeout_ms;
2053 	}
2054 
2055 	err = mmc_wait_for_cmd(host, &cmd, 0);
2056 	if (err)
2057 		goto out_release;
2058 
2059 	/*
2060 	 * If the host does not wait while the card signals busy, then we will
2061 	 * will have to wait the sleep/awake timeout.  Note, we cannot use the
2062 	 * SEND_STATUS command to poll the status because that command (and most
2063 	 * others) is invalid while the card sleeps.
2064 	 */
2065 	if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
2066 		mmc_delay(timeout_ms);
2067 
2068 out_release:
2069 	mmc_retune_release(host);
2070 	return err;
2071 }
2072 
mmc_can_poweroff_notify(const struct mmc_card * card)2073 static int mmc_can_poweroff_notify(const struct mmc_card *card)
2074 {
2075 	return card &&
2076 		mmc_card_mmc(card) &&
2077 		(card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2078 }
2079 
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)2080 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2081 {
2082 	unsigned int timeout = card->ext_csd.generic_cmd6_time;
2083 	int err;
2084 
2085 	/* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2086 	if (notify_type == EXT_CSD_POWER_OFF_LONG)
2087 		timeout = card->ext_csd.power_off_longtime;
2088 
2089 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2090 			EXT_CSD_POWER_OFF_NOTIFICATION,
2091 			notify_type, timeout, 0, false, false);
2092 	if (err)
2093 		pr_err("%s: Power Off Notification timed out, %u\n",
2094 		       mmc_hostname(card->host), timeout);
2095 
2096 	/* Disable the power off notification after the switch operation. */
2097 	card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2098 
2099 	return err;
2100 }
2101 
2102 /*
2103  * Host is being removed. Free up the current card.
2104  */
mmc_remove(struct mmc_host * host)2105 static void mmc_remove(struct mmc_host *host)
2106 {
2107 	mmc_remove_card(host->card);
2108 	host->card = NULL;
2109 }
2110 
2111 /*
2112  * Card detection - card is alive.
2113  */
mmc_alive(struct mmc_host * host)2114 static int mmc_alive(struct mmc_host *host)
2115 {
2116 	return mmc_send_status(host->card, NULL);
2117 }
2118 
2119 /*
2120  * Card detection callback from host.
2121  */
mmc_detect(struct mmc_host * host)2122 static void mmc_detect(struct mmc_host *host)
2123 {
2124 	int err;
2125 
2126 	mmc_get_card(host->card, NULL);
2127 
2128 	/*
2129 	 * Just check if our card has been removed.
2130 	 */
2131 	err = _mmc_detect_card_removed(host);
2132 
2133 	mmc_put_card(host->card, NULL);
2134 
2135 	if (err) {
2136 		mmc_remove(host);
2137 
2138 		mmc_claim_host(host);
2139 		mmc_detach_bus(host);
2140 		mmc_power_off(host);
2141 		mmc_release_host(host);
2142 	}
2143 }
2144 
_mmc_cache_enabled(struct mmc_host * host)2145 static bool _mmc_cache_enabled(struct mmc_host *host)
2146 {
2147 	return host->card->ext_csd.cache_size > 0 &&
2148 	       host->card->ext_csd.cache_ctrl & 1;
2149 }
2150 
_mmc_suspend(struct mmc_host * host,bool is_suspend)2151 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2152 {
2153 	int err = 0;
2154 	unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2155 					EXT_CSD_POWER_OFF_LONG;
2156 
2157 	mmc_claim_host(host);
2158 
2159 	if (mmc_card_suspended(host->card))
2160 		goto out;
2161 
2162 	err = mmc_flush_cache(host->card);
2163 	if (err)
2164 		goto out;
2165 
2166 	if (mmc_can_poweroff_notify(host->card) &&
2167 	    ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2168 	     (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2169 		err = mmc_poweroff_notify(host->card, notify_type);
2170 	else if (mmc_can_sleep(host->card))
2171 		err = mmc_sleep(host);
2172 	else if (!mmc_host_is_spi(host))
2173 		err = mmc_deselect_cards(host);
2174 
2175 	if (!err) {
2176 		mmc_power_off(host);
2177 		mmc_card_set_suspended(host->card);
2178 	}
2179 out:
2180 	mmc_release_host(host);
2181 	return err;
2182 }
2183 
2184 /*
2185  * Suspend callback
2186  */
mmc_suspend(struct mmc_host * host)2187 static int mmc_suspend(struct mmc_host *host)
2188 {
2189 	int err;
2190 
2191 	err = _mmc_suspend(host, true);
2192 	if (!err) {
2193 		pm_runtime_disable(&host->card->dev);
2194 		pm_runtime_set_suspended(&host->card->dev);
2195 	}
2196 
2197 	return err;
2198 }
2199 
2200 /*
2201  * This function tries to determine if the same card is still present
2202  * and, if so, restore all state to it.
2203  */
_mmc_resume(struct mmc_host * host)2204 static int _mmc_resume(struct mmc_host *host)
2205 {
2206 	int err = 0;
2207 	int i;
2208 
2209 	mmc_claim_host(host);
2210 
2211 	if (!mmc_card_suspended(host->card))
2212 		goto out;
2213 
2214 	/*
2215 	 * Let's try to fallback the host->f_init
2216 	 * if failing to init mmc card after resume.
2217 	 */
2218 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2219 		if (host->f_init < max(freqs[i], host->f_min))
2220 			continue;
2221 		else
2222 			host->f_init = max(freqs[i], host->f_min);
2223 
2224 		mmc_power_up(host, host->card->ocr);
2225 		err = mmc_init_card(host, host->card->ocr, host->card);
2226 		if (!err)
2227 			break;
2228 	}
2229 
2230 	mmc_card_clr_suspended(host->card);
2231 
2232 out:
2233 	mmc_release_host(host);
2234 	return err;
2235 }
2236 
2237 /*
2238  * Shutdown callback
2239  */
mmc_shutdown(struct mmc_host * host)2240 static int mmc_shutdown(struct mmc_host *host)
2241 {
2242 	int err = 0;
2243 
2244 	/*
2245 	 * In a specific case for poweroff notify, we need to resume the card
2246 	 * before we can shutdown it properly.
2247 	 */
2248 	if (mmc_can_poweroff_notify(host->card) &&
2249 		!(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2250 		err = _mmc_resume(host);
2251 
2252 	if (!err)
2253 		err = _mmc_suspend(host, false);
2254 
2255 	return err;
2256 }
2257 
2258 /*
2259  * Callback for resume.
2260  */
mmc_resume(struct mmc_host * host)2261 static int mmc_resume(struct mmc_host *host)
2262 {
2263 	pm_runtime_enable(&host->card->dev);
2264 	return 0;
2265 }
2266 
2267 /*
2268  * Callback for runtime_suspend.
2269  */
mmc_runtime_suspend(struct mmc_host * host)2270 static int mmc_runtime_suspend(struct mmc_host *host)
2271 {
2272 	int err;
2273 
2274 	if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2275 		return 0;
2276 
2277 	err = _mmc_suspend(host, true);
2278 	if (err)
2279 		pr_err("%s: error %d doing aggressive suspend\n",
2280 			mmc_hostname(host), err);
2281 
2282 	return err;
2283 }
2284 
2285 /*
2286  * Callback for runtime_resume.
2287  */
mmc_runtime_resume(struct mmc_host * host)2288 static int mmc_runtime_resume(struct mmc_host *host)
2289 {
2290 	int err;
2291 
2292 	err = _mmc_resume(host);
2293 	if (err && err != -ENOMEDIUM)
2294 		pr_err("%s: error %d doing runtime resume\n",
2295 			mmc_hostname(host), err);
2296 
2297 	return 0;
2298 }
2299 
mmc_can_reset(struct mmc_card * card)2300 static int mmc_can_reset(struct mmc_card *card)
2301 {
2302 	u8 rst_n_function;
2303 
2304 	rst_n_function = card->ext_csd.rst_n_function;
2305 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2306 		return 0;
2307 	return 1;
2308 }
2309 
_mmc_hw_reset(struct mmc_host * host)2310 static int _mmc_hw_reset(struct mmc_host *host)
2311 {
2312 	struct mmc_card *card = host->card;
2313 
2314 	/*
2315 	 * In the case of recovery, we can't expect flushing the cache to work
2316 	 * always, but we have a go and ignore errors.
2317 	 */
2318 	mmc_flush_cache(host->card);
2319 
2320 	if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2321 	     mmc_can_reset(card)) {
2322 		/* If the card accept RST_n signal, send it. */
2323 		mmc_set_clock(host, host->f_init);
2324 		host->ops->hw_reset(host);
2325 		/* Set initial state and call mmc_set_ios */
2326 		mmc_set_initial_state(host);
2327 	} else {
2328 		/* Do a brute force power cycle */
2329 		mmc_power_cycle(host, card->ocr);
2330 		mmc_pwrseq_reset(host);
2331 	}
2332 	return mmc_init_card(host, card->ocr, card);
2333 }
2334 
2335 static const struct mmc_bus_ops mmc_ops = {
2336 	.remove = mmc_remove,
2337 	.detect = mmc_detect,
2338 	.suspend = mmc_suspend,
2339 	.resume = mmc_resume,
2340 	.runtime_suspend = mmc_runtime_suspend,
2341 	.runtime_resume = mmc_runtime_resume,
2342 	.alive = mmc_alive,
2343 	.shutdown = mmc_shutdown,
2344 	.hw_reset = _mmc_hw_reset,
2345 	.cache_enabled = _mmc_cache_enabled,
2346 };
2347 
2348 /*
2349  * Starting point for MMC card init.
2350  */
mmc_attach_mmc(struct mmc_host * host)2351 int mmc_attach_mmc(struct mmc_host *host)
2352 {
2353 	int err;
2354 	u32 ocr, rocr;
2355 
2356 	WARN_ON(!host->claimed);
2357 
2358 	/* Set correct bus mode for MMC before attempting attach */
2359 	if (!mmc_host_is_spi(host))
2360 		mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2361 
2362 	err = mmc_send_op_cond(host, 0, &ocr);
2363 	if (err)
2364 		return err;
2365 
2366 	mmc_attach_bus(host, &mmc_ops);
2367 	if (host->ocr_avail_mmc)
2368 		host->ocr_avail = host->ocr_avail_mmc;
2369 
2370 	/*
2371 	 * We need to get OCR a different way for SPI.
2372 	 */
2373 	if (mmc_host_is_spi(host)) {
2374 		err = mmc_spi_read_ocr(host, 1, &ocr);
2375 		if (err)
2376 			goto err;
2377 	}
2378 
2379 	rocr = mmc_select_voltage(host, ocr);
2380 
2381 	/*
2382 	 * Can we support the voltage of the card?
2383 	 */
2384 	if (!rocr) {
2385 		err = -EINVAL;
2386 		goto err;
2387 	}
2388 
2389 	/*
2390 	 * Detect and init the card.
2391 	 */
2392 	err = mmc_init_card(host, rocr, NULL);
2393 	if (err)
2394 		goto err;
2395 
2396 	mmc_release_host(host);
2397 	err = mmc_add_card(host->card);
2398 	if (err)
2399 		goto remove_card;
2400 
2401 	mmc_claim_host(host);
2402 	return 0;
2403 
2404 remove_card:
2405 	mmc_remove_card(host->card);
2406 	mmc_claim_host(host);
2407 	host->card = NULL;
2408 err:
2409 	mmc_detach_bus(host);
2410 
2411 	pr_err("%s: error %d whilst initialising MMC card\n",
2412 		mmc_hostname(host), err);
2413 
2414 	return err;
2415 }
2416