xref: /OK3568_Linux_fs/kernel/drivers/media/i2c/sensor_adapter.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sensor driver
4  *
5  * Copyright (C) 2022 Rockchip Electronics Co., Ltd.
6  *
7  */
8 //#define DEBUG
9 #include <linux/clk.h>
10 #include <linux/device.h>
11 #include <linux/delay.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/i2c.h>
14 #include <linux/module.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/sysfs.h>
18 #include <linux/slab.h>
19 #include <linux/version.h>
20 #include <linux/rk-camera-module.h>
21 #include <media/media-entity.h>
22 #include <media/v4l2-async.h>
23 #include <media/v4l2-ctrls.h>
24 #include <media/v4l2-subdev.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-mediabus.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/rk-preisp.h>
29 #include <linux/of_graph.h>
30 #include "../platform/rockchip/cif/rkcif-externel.h"
31 
32 #define DRIVER_VERSION			KERNEL_VERSION(0, 0x01, 0x0)
33 
34 #ifndef V4L2_CID_DIGITAL_GAIN
35 #define V4L2_CID_DIGITAL_GAIN		V4L2_CID_GAIN
36 #endif
37 
38 #define MIPI_FREQ_360M			360000000
39 
40 #define SENSOR_XVCLK_FREQ_24M		24000000
41 
42 #define OF_CAMERA_PINCTRL_STATE_DEFAULT	"rockchip,camera_default"
43 #define OF_CAMERA_PINCTRL_STATE_SLEEP	"rockchip,camera_sleep"
44 
45 #define SENSOR_NAME			"sensor"
46 #define MAX_MIPICLK_NUM			5
47 
48 struct sensor_crop {
49 	bool is_enable;
50 	u32 top;
51 	u32 left;
52 	u32 width;
53 	u32 height;
54 };
55 
56 struct sensor_mode {
57 	u32 bus_fmt;
58 	u32 width;
59 	u32 height;
60 	struct v4l2_fract max_fps;
61 	u64 mipi_freq;
62 	u32 mclk;
63 	u32 bpp;
64 	struct rkmodule_hdr_cfg hdr_cfg;
65 	u32 vc[PAD_MAX];
66 };
67 
68 struct sensor {
69 	struct i2c_client	*client;
70 	struct clk		*clks[MAX_MIPICLK_NUM];
71 	struct pinctrl		*pinctrl;
72 	struct pinctrl_state	*pins_default;
73 	struct pinctrl_state	*pins_sleep;
74 
75 	struct v4l2_subdev	subdev;
76 	struct media_pad	pad;
77 	struct v4l2_ctrl_handler ctrl_handler;
78 	struct v4l2_ctrl	*pixel_rate;
79 	struct v4l2_ctrl	*link_freq;
80 	struct v4l2_ctrl	*hblank;
81 	struct v4l2_ctrl	*vblank;
82 	struct mutex		mutex;
83 	bool			streaming;
84 	bool			power_on;
85 	struct sensor_mode	*cur_mode;
86 	struct rkmodule_bus_config bus_config;
87 	struct sensor_crop	crop;
88 	struct rkmodule_csi_dphy_param dphy_param;
89 	u32			module_index;
90 	const char		*module_facing;
91 	const char		*module_name;
92 	const char		*len_name;
93 	enum rkmodule_sync_mode sync_mode;
94 	u8			i2cdev;
95 	bool			is_link;
96 };
97 
98 static struct sensor *g_sensor[RKMODULE_MAX_SENSOR_NUM];
99 static u8 cam_idx;
100 
101 static s64 link_freq_menu_items[] = {
102 	MIPI_FREQ_360M,
103 };
104 
105 static const char * const mipi_clks[] = {
106 	"clk_mipi0",
107 	"clk_mipi1",
108 	"clk_mipi2",
109 	"clk_mipi3",
110 	"clk_mipi4",
111 };
112 
113 static struct rkmodule_csi_dphy_param rk3588_dcphy_param = {
114 	.vendor = PHY_VENDOR_SAMSUNG,
115 	.lp_vol_ref = 3,
116 	.lp_hys_sw = {3, 0, 0, 0},
117 	.lp_escclk_pol_sel = {1, 0, 0, 0},
118 	.skew_data_cal_clk = {0, 3, 3, 3},
119 	.clk_hs_term_sel = 2,
120 	.data_hs_term_sel = {2, 2, 2, 2},
121 	.reserved = {0},
122 };
123 
124 #define to_sensor(sd) container_of(sd, struct sensor, subdev)
125 
126 /*
127  * The width and height must be configured to be
128  * the same as the current output resolution of the sensor.
129  * The input width of the isp needs to be 16 aligned.
130  * The input height of the isp needs to be 8 aligned.
131  * If the width or height does not meet the alignment rules,
132  * you can configure the cropping parameters with the following function to
133  * crop out the appropriate resolution.
134  * struct v4l2_subdev_pad_ops {
135  *	.get_selection
136  * }
137  */
138 static struct sensor_mode supported_modes[] = {
139 	{
140 		.bus_fmt = MEDIA_BUS_FMT_SRGGB10_1X10,
141 		.width = 2688,
142 		.height = 1520,
143 		.max_fps = {
144 			.numerator = 10000,
145 			.denominator = 300000,
146 		},
147 		.mipi_freq = MIPI_FREQ_360M,
148 		.bpp = 10,
149 		.mclk = SENSOR_XVCLK_FREQ_24M,
150 		.hdr_cfg = {
151 			.hdr_mode = NO_HDR,
152 			.esp = {
153 				.mode = HDR_NORMAL_VC,
154 			},
155 		},
156 	},
157 };
158 
sensor_write_reg(struct i2c_client * client,u16 reg,u32 reg_len,u32 val,u32 val_len)159 static int sensor_write_reg(struct i2c_client *client, u16 reg,
160 			    u32 reg_len, u32 val, u32 val_len)
161 {
162 	u32 buf_i, val_i;
163 	u8 buf[8];
164 	u8 *val_p;
165 	u8 *reg_p;
166 	__be32 val_be;
167 	__be32 reg_be;
168 
169 	if (reg_len > 4 || val_len > 4)
170 		return -EINVAL;
171 
172 	reg_be = cpu_to_be32(reg);
173 	reg_p = (u8 *)&reg_be;
174 	for (buf_i = 0; buf_i < reg_len; buf_i++)
175 		buf[buf_i] = reg_p[4 - reg_len + buf_i];
176 
177 	val_be = cpu_to_be32(val);
178 	val_p = (u8 *)&val_be;
179 	buf_i = reg_len;
180 	val_i = 4 - val_len;
181 
182 	while (val_i < 4)
183 		buf[buf_i++] = val_p[val_i++];
184 
185 	if (i2c_master_send(client, buf, reg_len + val_len) != reg_len + val_len)
186 		return -EIO;
187 
188 	return 0;
189 }
190 
sensor_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)191 static int sensor_set_fmt(struct v4l2_subdev *sd,
192 			  struct v4l2_subdev_pad_config *cfg,
193 			  struct v4l2_subdev_format *fmt)
194 {
195 	struct sensor *sensor = to_sensor(sd);
196 
197 	mutex_lock(&sensor->mutex);
198 
199 	//application set resolution
200 	sensor->cur_mode->bus_fmt = fmt->format.code;
201 	sensor->cur_mode->width = fmt->format.width;
202 	sensor->cur_mode->height = fmt->format.height;
203 
204 	mutex_unlock(&sensor->mutex);
205 
206 	return 0;
207 }
208 
sensor_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)209 static int sensor_get_fmt(struct v4l2_subdev *sd,
210 			  struct v4l2_subdev_pad_config *cfg,
211 			  struct v4l2_subdev_format *fmt)
212 {
213 	struct sensor *sensor = to_sensor(sd);
214 	const struct sensor_mode *mode = sensor->cur_mode;
215 
216 	//vicap or other device to get resolution configuration
217 	mutex_lock(&sensor->mutex);
218 	fmt->format.width = mode->width;
219 	fmt->format.height = mode->height;
220 	fmt->format.code = mode->bus_fmt;
221 	fmt->format.field = V4L2_FIELD_NONE;
222 	mutex_unlock(&sensor->mutex);
223 
224 	return 0;
225 }
226 
sensor_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_mbus_code_enum * code)227 static int sensor_enum_mbus_code(struct v4l2_subdev *sd,
228 				 struct v4l2_subdev_pad_config *cfg,
229 				 struct v4l2_subdev_mbus_code_enum *code)
230 {
231 	struct sensor *sensor = to_sensor(sd);
232 
233 	if (code->index != 0)
234 		return -EINVAL;
235 	code->code = sensor->cur_mode->bus_fmt;
236 
237 	return 0;
238 }
239 
sensor_enum_frame_sizes(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_size_enum * fse)240 static int sensor_enum_frame_sizes(struct v4l2_subdev *sd,
241 				   struct v4l2_subdev_pad_config *cfg,
242 				   struct v4l2_subdev_frame_size_enum *fse)
243 {
244 	if (fse->index > 1)
245 		return -EINVAL;
246 
247 	fse->min_width  = supported_modes[fse->index].width;
248 	fse->max_width  = supported_modes[fse->index].width;
249 	fse->max_height = supported_modes[fse->index].height;
250 	fse->min_height = supported_modes[fse->index].height;
251 
252 	return 0;
253 }
254 
sensor_g_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)255 static int sensor_g_frame_interval(struct v4l2_subdev *sd,
256 				   struct v4l2_subdev_frame_interval *fi)
257 {
258 	struct sensor *sensor = to_sensor(sd);
259 	const struct sensor_mode *mode = sensor->cur_mode;
260 
261 	mutex_lock(&sensor->mutex);
262 	fi->interval = mode->max_fps;
263 	mutex_unlock(&sensor->mutex);
264 
265 	return 0;
266 }
267 
sensor_s_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)268 static int sensor_s_frame_interval(struct v4l2_subdev *sd,
269 				   struct v4l2_subdev_frame_interval *fi)
270 {
271 	struct sensor *sensor = to_sensor(sd);
272 	struct sensor_mode *mode = sensor->cur_mode;
273 
274 	mutex_lock(&sensor->mutex);
275 	mode->max_fps = fi->interval;
276 	mutex_unlock(&sensor->mutex);
277 
278 	return 0;
279 }
280 
sensor_g_mbus_config(struct v4l2_subdev * sd,unsigned int pad_id,struct v4l2_mbus_config * config)281 static int sensor_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad_id,
282 				struct v4l2_mbus_config *config)
283 {
284 	struct sensor *sensor = to_sensor(sd);
285 	u32 val = 0;
286 	u32 lane_num = sensor->bus_config.bus.lanes;
287 
288 	val = 1 << (lane_num - 1) |
289 	      V4L2_MBUS_CSI2_CHANNEL_0 |
290 	      V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
291 	config->type = sensor->bus_config.bus.bus_type;
292 	config->flags = val;
293 
294 	return 0;
295 }
296 
sensor_get_module_inf(struct sensor * sensor,struct rkmodule_inf * inf)297 static void sensor_get_module_inf(struct sensor *sensor,
298 				  struct rkmodule_inf *inf)
299 {
300 	memset(inf, 0, sizeof(*inf));
301 	strscpy(inf->base.sensor, SENSOR_NAME, sizeof(inf->base.sensor));
302 	strscpy(inf->base.module, sensor->module_name,
303 		sizeof(inf->base.module));
304 	strscpy(inf->base.lens, sensor->len_name, sizeof(inf->base.lens));
305 }
306 
rkcam_sensor_enable_mclk(u8 i2cdev,u32 mclk_index,u32 mclk_rate)307 int rkcam_sensor_enable_mclk(u8 i2cdev, u32 mclk_index, u32 mclk_rate)
308 {
309 	struct sensor *sensor;
310 	struct device *dev;
311 	int ret = 0;
312 	int i = 0;
313 
314 	for (i = 0; i < RKMODULE_MAX_SENSOR_NUM; i++) {
315 		sensor = g_sensor[i];
316 		if (sensor->module_index == i2cdev)
317 			break;
318 	}
319 
320 	if (i == RKMODULE_MAX_SENSOR_NUM)
321 		return -EINVAL;
322 
323 	dev = &sensor->client->dev;
324 
325 	ret = clk_set_rate(sensor->clks[mclk_index], mclk_rate);
326 	if (ret < 0)
327 		dev_warn(dev, "Failed to set xvclk rate\n");
328 	if (clk_get_rate(sensor->clks[mclk_index]) != sensor->cur_mode->mclk)
329 		dev_warn(dev, "xvclk mismatched, %lu\n", clk_get_rate(sensor->clks[mclk_index]));
330 	ret = clk_prepare_enable(sensor->clks[mclk_index]);
331 	if (ret < 0) {
332 		dev_err(dev, "Failed to enable xvclk\n");
333 		return ret;
334 	}
335 	sensor->cur_mode->mclk = clk_get_rate(sensor->clks[mclk_index]);
336 	return 0;
337 }
338 EXPORT_SYMBOL(rkcam_sensor_enable_mclk);
339 
rkcam_sensor_disable_mclk(u8 i2cdev,u32 mclk_index)340 int rkcam_sensor_disable_mclk(u8 i2cdev, u32 mclk_index)
341 {
342 	struct sensor *sensor;
343 	int i = 0;
344 
345 	for (i = 0; i < RKMODULE_MAX_SENSOR_NUM; i++) {
346 		sensor = g_sensor[i];
347 		if (sensor->module_index == i2cdev)
348 			break;
349 	}
350 
351 	if (i == RKMODULE_MAX_SENSOR_NUM)
352 		return -EINVAL;
353 
354 	clk_disable_unprepare(sensor->clks[mclk_index]);
355 	return 0;
356 }
357 EXPORT_SYMBOL(rkcam_sensor_disable_mclk);
358 
sensor_config_link_freq(struct sensor * sensor,s64 link_freq)359 static int sensor_config_link_freq(struct sensor *sensor, s64 link_freq)
360 {
361 	u32 pixel_rate = 0;
362 	struct sensor_mode *mode = sensor->cur_mode;
363 
364 	link_freq_menu_items[0] = link_freq;
365 	__v4l2_ctrl_modify_range(sensor->link_freq, 0, 0, 1, link_freq_menu_items[0]);
366 	mode->mipi_freq = link_freq;
367 	pixel_rate = (u32)mode->mipi_freq / mode->bpp * 2 *
368 		     sensor->bus_config.bus.lanes;
369 	__v4l2_ctrl_modify_range(sensor->pixel_rate, pixel_rate, pixel_rate, 1, pixel_rate);
370 	return 0;
371 }
372 
373 enum rk_isp_bus_type_e {
374 	ISP_BUS_TYPE_I2C = 0,
375 	ISP_BUS_TYPE_SPI,
376 	ISP_BUS_TYPE_UNKNOWN,
377 };
378 
379 struct rkcam_bus_callbakck_s {
380 	u32 (*prkcam_write_i2c_data)(u8 i2cdev, u8 dev_addr,
381 				     u32 reg_addr, u32 reg_bytes,
382 				     u32 data, u32 data_bytes);
383 	u32 (*prkcam_write_spi_data)(u32 spidev, u32 spi_csn,
384 				     u32 dev_addr, u32 dev_addr_bytes,
385 				     u32 reg_addr, u32 reg_addr_bytes,
386 				     u32 data, u32 data_bytes);
387 	u32 (*prkcam_s_stream)(u32 dev, bool on);
388 };
389 
390 static struct rkcam_bus_callbakck_s g_rkcam_bus_callback[RKMODULE_MAX_SENSOR_NUM];
391 
rkcam_register_bus_callback(int sensor_id,enum rk_isp_bus_type_e bus_type,struct rkcam_bus_callbakck_s * bus_callbaclk)392 static int rkcam_register_bus_callback(int sensor_id,
393 				 enum rk_isp_bus_type_e bus_type,
394 				 struct rkcam_bus_callbakck_s *bus_callbaclk)
395 {
396 	if (bus_type == ISP_BUS_TYPE_I2C) {
397 		g_rkcam_bus_callback[sensor_id].prkcam_write_i2c_data = bus_callbaclk->prkcam_write_i2c_data;
398 	} else if (bus_type == ISP_BUS_TYPE_SPI) {
399 		g_rkcam_bus_callback[sensor_id].prkcam_write_spi_data = bus_callbaclk->prkcam_write_spi_data;
400 	} else {
401 		dev_err(&g_sensor[sensor_id]->client->dev,
402 			"sensor[%d] error bus type %d\n", sensor_id, bus_type);
403 		return -EFAULT;
404 	}
405 	if (bus_callbaclk->prkcam_s_stream)
406 		g_rkcam_bus_callback[sensor_id].prkcam_s_stream = bus_callbaclk->prkcam_s_stream;
407 
408 	return 0;
409 }
410 
411 struct rkcam_export_func_s {
412 	int (*p_rkcam_register_bus_callback)(int sensor_id,
413 					     enum rk_isp_bus_type_e bus_type,
414 					     struct rkcam_bus_callbakck_s *bus_callbaclk);
415 };
416 
417 struct rkcam_export_func_s g_rkcam_export_func = {
418 	.p_rkcam_register_bus_callback = rkcam_register_bus_callback,
419 };
420 EXPORT_SYMBOL(g_rkcam_export_func);
421 
422 
sensor_get_remote_dev(struct media_entity * sensor_entity,struct video_device ** video)423 static void sensor_get_remote_dev(struct media_entity *sensor_entity,
424 				  struct video_device **video)
425 {
426 	struct media_graph graph;
427 	struct media_device *mdev = sensor_entity->graph_obj.mdev;
428 	struct media_entity *entity;
429 	int ret = 0;
430 
431 	mutex_lock(&mdev->graph_mutex);
432 	ret = media_graph_walk_init(&graph, mdev);
433 	if (ret) {
434 		mutex_unlock(&mdev->graph_mutex);
435 		return;
436 	}
437 
438 	media_graph_walk_start(&graph, sensor_entity);
439 	while ((entity = media_graph_walk_next(&graph))) {
440 		if (strcmp(entity->name, "stream_cif_mipi_id0") == 0)
441 			break;
442 	}
443 	mutex_unlock(&mdev->graph_mutex);
444 	media_graph_walk_cleanup(&graph);
445 
446 	if (entity)
447 		*video = media_entity_to_video_device(entity);
448 	else
449 		*video = NULL;
450 }
451 
sensor_sync_dev_pipeline(u8 dev_num)452 static int sensor_sync_dev_pipeline(u8 dev_num)
453 {
454 	struct sensor *sensor = NULL;
455 	struct video_device *vdev = NULL;
456 	int i = 0;
457 	int disconnect_num = 0;
458 	int ret = 0;
459 
460 	for (i = 0; i < cam_idx; i++) {
461 		sensor = g_sensor[i];
462 		if (!sensor)
463 			continue;
464 		if (!sensor->is_link) {
465 			sensor_get_remote_dev(&sensor->subdev.entity, &vdev);
466 			if (vdev != NULL) {
467 				rkcif_sditf_disconnect(vdev);
468 				disconnect_num++;
469 				dev_info(&sensor->client->dev, "cam%d disconnect with isp\n", sensor->module_index);
470 			}
471 		}
472 	}
473 	if (sensor == NULL) {
474 		ret = -EFAULT;
475 	} else if (dev_num != (cam_idx - disconnect_num)) {
476 		dev_err(&sensor->client->dev, "failed to sync i2cdev, dev_num not match\n");
477 		ret = -EINVAL;
478 	}
479 	return ret;
480 }
481 
find_sensor(int index)482 static struct sensor *find_sensor(int index)
483 {
484 	int i = 0;
485 
486 	for (i = 0; i < cam_idx; i++) {
487 		if (index == g_sensor[i]->module_index)
488 			return g_sensor[i];
489 	}
490 	return NULL;
491 }
492 
sensor_set_sensor_info(struct rkmodule_sensor_infos * sensor_infos)493 static int sensor_set_sensor_info(struct rkmodule_sensor_infos *sensor_infos)
494 {
495 	int i = 0;
496 	int dev_num = 0;
497 
498 	for (i = 0; i < cam_idx; i++) {
499 		struct sensor *sensor = find_sensor(sensor_infos->sensor_fmt[i].sensor_index);
500 
501 		if (sensor_infos->sensor_fmt[i].sensor_width == 0 ||
502 		    sensor_infos->sensor_fmt[i].sensor_height == 0)
503 			break;
504 		if (sensor) {
505 			sensor->cur_mode->width = sensor_infos->sensor_fmt[i].sensor_width;
506 			sensor->cur_mode->height = sensor_infos->sensor_fmt[i].sensor_height;
507 			sensor->is_link = true;
508 			dev_num++;
509 		} else {
510 			dev_err(&g_sensor[0]->client->dev,
511 				"not find the sensor, index %d\n", sensor_infos->sensor_fmt[i].sensor_index);
512 			return -EINVAL;
513 		}
514 	}
515 	sensor_sync_dev_pipeline(dev_num);
516 	return 0;
517 }
518 
sensor_ioctl(struct v4l2_subdev * sd,unsigned int cmd,void * arg)519 static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
520 {
521 	void __user *up;
522 	struct sensor *sensor = to_sensor(sd);
523 	struct rkmodule_hdr_cfg *hdr;
524 	struct rkmodule_bus_config *bus_config;
525 	struct rkmodule_reg *reg_s;
526 	long ret = 0;
527 	s64 link_freq = 0;
528 	int i = 0;
529 	u32 *preg_addr = NULL;
530 	u32 *preg_value = NULL;
531 	u32 *preg_addr_bytes = NULL;
532 	u32 *preg_value_bytes = NULL;
533 	u32 lens = 0;
534 	u8 dev_num = 0;
535 	u32 stream = 0;
536 	u32 *sync_mode = NULL;
537 	struct rkmodule_mclk_data *mclk;
538 	struct rkmodule_dev_info *dev_info;
539 	struct rkmodule_csi_dphy_param *dphy_param;
540 	struct rkmodule_sensor_infos *sensor_infos;
541 
542 	switch (cmd) {
543 	case RKMODULE_GET_MODULE_INFO:
544 		sensor_get_module_inf(sensor, (struct rkmodule_inf *)arg);
545 		break;
546 	case RKMODULE_GET_HDR_CFG:
547 		hdr = (struct rkmodule_hdr_cfg *)arg;
548 		*hdr = sensor->cur_mode->hdr_cfg;
549 		dev_info(&sensor->client->dev,
550 			 "sensor get hdr esp_mode %d, hdr_mode %d\n",
551 			 hdr->esp.mode,
552 			 hdr->hdr_mode);
553 		break;
554 	case RKMODULE_SET_HDR_CFG:
555 		hdr = (struct rkmodule_hdr_cfg *)arg;
556 		sensor->cur_mode->hdr_cfg = *hdr;
557 		dev_info(&sensor->client->dev,
558 			 "sensor set hdr esp_mode %d, hdr_mode %d\n",
559 			 hdr->esp.mode,
560 			 hdr->hdr_mode);
561 		break;
562 	case RKMODULE_SET_LINK_FREQ:
563 		link_freq = *(s64 *)arg;
564 		ret = sensor_config_link_freq(sensor, link_freq);
565 		dev_info(&sensor->client->dev,
566 			 "sensor set link_freq %llu\n",
567 			 link_freq);
568 		break;
569 	case RKMODULE_SET_BUS_CONFIG:
570 		bus_config = (struct rkmodule_bus_config *)arg;
571 		sensor->bus_config = *bus_config;
572 		dev_info(&sensor->client->dev,
573 			 "sensor set bus config, phy_mode %d, lanes %d\n",
574 			 bus_config->bus.phy_mode, bus_config->bus.lanes);
575 		break;
576 	case RKMODULE_GET_BUS_CONFIG:
577 		bus_config = (struct rkmodule_bus_config *)arg;
578 		bus_config->bus.bus_type = sensor->bus_config.bus.bus_type;
579 		bus_config->bus.lanes = sensor->bus_config.bus.lanes;
580 		bus_config->bus.phy_mode = sensor->bus_config.bus.phy_mode;
581 		dev_info(&sensor->client->dev,
582 			 "sensor get bus config, phy_mode %d, lanes %d\n",
583 			 bus_config->bus.phy_mode, bus_config->bus.lanes);
584 		break;
585 	case RKMODULE_SET_REGISTER:
586 		reg_s = (struct rkmodule_reg *)arg;
587 		if (reg_s->num_regs == 0) {
588 			dev_err(&sensor->client->dev, "sensor reg array num %llu\n", reg_s->num_regs);
589 			return -EINVAL;
590 		}
591 
592 		dev_dbg(&sensor->client->dev, "sensor reg array num %llu\n",
593 			 reg_s->num_regs);
594 		lens = sizeof(u32) * reg_s->num_regs;
595 		preg_addr = kzalloc(lens, GFP_KERNEL);
596 		if (!preg_addr)
597 			return -EFAULT;
598 		up = (void __user *)reg_s->preg_addr;
599 		ret = copy_from_user(preg_addr, up, lens);
600 		if (ret) {
601 			ret = -EFAULT;
602 			goto end_set_reg;
603 		}
604 		preg_value = kzalloc(lens, GFP_KERNEL);
605 		if (!preg_value) {
606 			ret = -EFAULT;
607 			goto end_set_reg;
608 		}
609 		up = (void __user *)reg_s->preg_value;
610 		ret = copy_from_user(preg_value, up, lens);
611 		if (ret) {
612 			ret = -EFAULT;
613 			goto end_set_reg;
614 		}
615 		preg_addr_bytes = kzalloc(lens, GFP_KERNEL);
616 		if (!preg_addr_bytes) {
617 			ret = -EFAULT;
618 			goto end_set_reg;
619 		}
620 		up = (void __user *)reg_s->preg_addr_bytes;
621 		ret = copy_from_user(preg_addr_bytes, up, lens);
622 		if (ret) {
623 			ret = -EFAULT;
624 			goto end_set_reg;
625 		}
626 		preg_value_bytes = kzalloc(lens, GFP_KERNEL);
627 		if (!preg_value_bytes) {
628 			ret = -EFAULT;
629 			goto end_set_reg;
630 		}
631 		up = (void __user *)reg_s->preg_value_bytes;
632 		ret = copy_from_user(preg_value_bytes, up, lens);
633 		if (ret) {
634 			ret = -EFAULT;
635 			goto end_set_reg;
636 		}
637 		for (i = 0; i < reg_s->num_regs; i++) {
638 			dev_dbg(&sensor->client->dev, "sensor reg 0x%x, reg_bytes %u, val 0x%x, val_bytes %u\n",
639 				preg_addr[i], preg_addr_bytes[i], preg_value[i], preg_value_bytes[i]);
640 			if (g_rkcam_bus_callback[sensor->i2cdev].prkcam_write_i2c_data) {
641 				ret = g_rkcam_bus_callback[sensor->i2cdev].prkcam_write_i2c_data(sensor->i2cdev,
642 					0,
643 					(u32)preg_addr[i], (u32)preg_addr_bytes[i],
644 					(u32)preg_value[i], (u32)preg_value_bytes[i]);
645 				if (ret)
646 					dev_err(&sensor->client->dev, "failed to write sensor reg\n");
647 			} else {
648 				ret = sensor_write_reg(sensor->client,
649 						       (u32)preg_addr[i],
650 						       (u32)preg_addr_bytes[i],
651 						       (u32)preg_value[i],
652 						       (u32)preg_value_bytes[i]);
653 				if (ret)
654 					dev_err(&sensor->client->dev, "failed to write sensor by sensor_write_reg\n");
655 			}
656 		}
657 end_set_reg:
658 		kfree(preg_addr);
659 		kfree(preg_value);
660 		kfree(preg_addr_bytes);
661 		kfree(preg_value_bytes);
662 		break;
663 	case RKMODULE_SET_QUICK_STREAM:
664 		if (g_rkcam_bus_callback[sensor->i2cdev].prkcam_s_stream) {
665 			stream = *(u32 *)arg;
666 			ret = g_rkcam_bus_callback[sensor->i2cdev].prkcam_s_stream(sensor->i2cdev, !!stream);
667 			if (ret)
668 				dev_err(&sensor->client->dev, "failed to set quick stream\n");
669 			else
670 				dev_info(&sensor->client->dev, "success to set quick stream\n");
671 		} else {
672 			dev_err(&sensor->client->dev,
673 				"The callback function of sensor s_stream is not exist\n");
674 		}
675 		break;
676 	case RKMODULE_SYNC_I2CDEV:
677 		sensor->i2cdev = *(u8 *)arg;
678 		sensor->is_link = true;
679 		dev_info(&sensor->client->dev,
680 			 "sensor sync i2cdev, dev_index %d\n",
681 			 sensor->i2cdev);
682 		break;
683 	case RKMODULE_SYNC_I2CDEV_COMPLETE:
684 		dev_num = *(u8 *)arg;
685 		ret = sensor_sync_dev_pipeline(dev_num);
686 		dev_info(&sensor->client->dev,
687 			 "sensor sync i2cdev complete, dev_num %d\n",
688 			 dev_num);
689 		break;
690 	case RKMODULE_GET_SYNC_MODE:
691 		sync_mode = (u32 *)arg;
692 		*sync_mode = sensor->sync_mode;
693 		dev_info(&sensor->client->dev,
694 			 "sensor get sync_mode %d\n",
695 			 *sync_mode);
696 		break;
697 	case RKMODULE_SET_SYNC_MODE:
698 		sync_mode = (u32 *)arg;
699 		sensor->sync_mode = *sync_mode;
700 		dev_info(&sensor->client->dev,
701 			 "sensor set sync_mode %d\n",
702 			 *sync_mode);
703 		break;
704 	case RKMODULE_SET_MCLK:
705 		mclk = (struct rkmodule_mclk_data *)arg;
706 		if (mclk->enable)
707 			rkcam_sensor_enable_mclk(0, mclk->mclk_index, mclk->mclk_rate);
708 		else
709 			rkcam_sensor_disable_mclk(0, mclk->mclk_index);
710 
711 		dev_info(&sensor->client->dev,
712 			 "sensor set mclk, enable %u, index %u, rate %u\n",
713 			 mclk->enable, mclk->mclk_index, mclk->mclk_rate);
714 		break;
715 	case RKMODULE_SET_DEV_INFO:
716 		dev_info = (struct rkmodule_dev_info *)arg;
717 		if (dev_info->i2c_dev.slave_addr)
718 			sensor->client->addr = dev_info->i2c_dev.slave_addr;
719 		dev_info(&sensor->client->dev,
720 			 "sensor set dev info ,slave addr 0x%x\n",
721 			 dev_info->i2c_dev.slave_addr);
722 		break;
723 	case RKMODULE_SET_CSI_DPHY_PARAM:
724 		dphy_param = (struct rkmodule_csi_dphy_param *)arg;
725 		if (dphy_param->vendor == PHY_VENDOR_SAMSUNG)
726 			sensor->dphy_param = *dphy_param;
727 		dev_dbg(&sensor->client->dev,
728 			"sensor set dphy param\n");
729 		break;
730 	case RKMODULE_GET_CSI_DPHY_PARAM:
731 		dphy_param = (struct rkmodule_csi_dphy_param *)arg;
732 		*dphy_param = sensor->dphy_param;
733 		dev_dbg(&sensor->client->dev,
734 			"sensor get dphy param\n");
735 		break;
736 	case RKMODULE_SET_SENSOR_INFOS:
737 		sensor_infos = (struct rkmodule_sensor_infos *)arg;
738 		ret = sensor_set_sensor_info(sensor_infos);
739 		break;
740 	default:
741 		ret = -ENOIOCTLCMD;
742 		break;
743 	}
744 
745 	return ret;
746 }
747 
748 #ifdef CONFIG_COMPAT
sensor_compat_ioctl32(struct v4l2_subdev * sd,unsigned int cmd,unsigned long arg)749 static long sensor_compat_ioctl32(struct v4l2_subdev *sd,
750 				  unsigned int cmd, unsigned long arg)
751 {
752 	void __user *up = compat_ptr(arg);
753 	struct rkmodule_inf *inf;
754 	struct rkmodule_hdr_cfg *hdr;
755 	struct rkmodule_bus_config *bus_config;
756 	struct rkmodule_reg *reg_s;
757 	long ret;
758 	u32 stream = 0;
759 	s64 link_freq = 0;
760 	u8 i2cdev = 0;
761 	u8 dev_num = 0;
762 	u32 *sync_mode = NULL;
763 	struct rkmodule_mclk_data *mclk;
764 	struct rkmodule_dev_info *dev_info;
765 	struct rkmodule_csi_dphy_param *dphy_param;
766 	struct rkmodule_sensor_infos *sensor_infos;
767 
768 	switch (cmd) {
769 	case RKMODULE_GET_MODULE_INFO:
770 		inf = kzalloc(sizeof(*inf), GFP_KERNEL);
771 		if (!inf) {
772 			ret = -ENOMEM;
773 			return ret;
774 		}
775 
776 		ret = sensor_ioctl(sd, cmd, inf);
777 		if (!ret) {
778 			ret = copy_to_user(up, inf, sizeof(*inf));
779 			if (ret)
780 				ret = -EFAULT;
781 		}
782 		kfree(inf);
783 		break;
784 	case RKMODULE_GET_HDR_CFG:
785 		hdr = kzalloc(sizeof(*hdr), GFP_KERNEL);
786 		if (!hdr) {
787 			ret = -ENOMEM;
788 			return ret;
789 		}
790 
791 		ret = sensor_ioctl(sd, cmd, hdr);
792 		if (!ret) {
793 			ret = copy_to_user(up, hdr, sizeof(*hdr));
794 			if (ret)
795 				ret = -EFAULT;
796 		}
797 		kfree(hdr);
798 		break;
799 	case RKMODULE_SET_HDR_CFG:
800 		hdr = kzalloc(sizeof(*hdr), GFP_KERNEL);
801 		if (!hdr) {
802 			ret = -ENOMEM;
803 			return ret;
804 		}
805 
806 		ret = copy_from_user(hdr, up, sizeof(*hdr));
807 		if (!ret)
808 			ret = sensor_ioctl(sd, cmd, hdr);
809 		else
810 			ret = -EFAULT;
811 		kfree(hdr);
812 		break;
813 	case RKMODULE_SET_QUICK_STREAM:
814 		ret = copy_from_user(&stream, up, sizeof(u32));
815 		if (!ret)
816 			ret = sensor_ioctl(sd, cmd, &stream);
817 		else
818 			ret = -EFAULT;
819 
820 		break;
821 	case RKMODULE_SET_LINK_FREQ:
822 		ret = copy_from_user(&link_freq, up, sizeof(s64));
823 		if (!ret)
824 			ret = sensor_ioctl(sd, cmd, &link_freq);
825 		else
826 			ret = -EFAULT;
827 		break;
828 	case RKMODULE_GET_BUS_CONFIG:
829 		bus_config = kzalloc(sizeof(*bus_config), GFP_KERNEL);
830 		if (!bus_config) {
831 			ret = -ENOMEM;
832 			return ret;
833 		}
834 
835 		ret = sensor_ioctl(sd, cmd, bus_config);
836 		if (!ret) {
837 			ret = copy_to_user(up, bus_config, sizeof(*bus_config));
838 			if (ret)
839 				ret = -EFAULT;
840 		}
841 		kfree(bus_config);
842 		break;
843 	case RKMODULE_SET_BUS_CONFIG:
844 		bus_config = kzalloc(sizeof(*bus_config), GFP_KERNEL);
845 		if (!bus_config) {
846 			ret = -ENOMEM;
847 			return ret;
848 		}
849 
850 		ret = copy_from_user(bus_config, up, sizeof(*bus_config));
851 		if (!ret)
852 			ret = sensor_ioctl(sd, cmd, bus_config);
853 		else
854 			ret = -EFAULT;
855 		kfree(bus_config);
856 		break;
857 	case RKMODULE_SET_REGISTER:
858 		reg_s = kzalloc(sizeof(*reg_s), GFP_KERNEL);
859 		if (!reg_s) {
860 			ret = -ENOMEM;
861 			return ret;
862 		}
863 
864 		ret = copy_from_user(reg_s, up, sizeof(*reg_s));
865 		if (!ret) {
866 			ret = sensor_ioctl(sd, cmd, reg_s);
867 			kfree(reg_s);
868 		} else {
869 			kfree(reg_s);
870 			ret = -EFAULT;
871 		}
872 		break;
873 	case RKMODULE_SYNC_I2CDEV:
874 		ret = copy_from_user(&i2cdev, up, sizeof(u8));
875 		if (!ret)
876 			ret = sensor_ioctl(sd, cmd, &i2cdev);
877 		else
878 			ret = -EFAULT;
879 
880 		break;
881 	case RKMODULE_SYNC_I2CDEV_COMPLETE:
882 		ret = copy_from_user(&dev_num, up, sizeof(u8));
883 		if (!ret)
884 			ret = sensor_ioctl(sd, cmd, &dev_num);
885 		else
886 			ret = -EFAULT;
887 
888 		break;
889 	case RKMODULE_GET_SYNC_MODE:
890 		ret = sensor_ioctl(sd, cmd, &sync_mode);
891 		if (!ret) {
892 			ret = copy_to_user(up, &sync_mode, sizeof(u32));
893 			if (ret)
894 				ret = -EFAULT;
895 		}
896 		break;
897 	case RKMODULE_SET_SYNC_MODE:
898 		ret = copy_from_user(&sync_mode, up, sizeof(u32));
899 		if (!ret)
900 			ret = sensor_ioctl(sd, cmd, &sync_mode);
901 		else
902 			ret = -EFAULT;
903 		break;
904 	case RKMODULE_SET_MCLK:
905 		mclk = kzalloc(sizeof(*mclk), GFP_KERNEL);
906 		if (!mclk) {
907 			ret = -ENOMEM;
908 			return ret;
909 		}
910 
911 		ret = copy_from_user(mclk, up, sizeof(*mclk));
912 		if (!ret)
913 			ret = sensor_ioctl(sd, cmd, mclk);
914 		else
915 			ret = -EFAULT;
916 		kfree(mclk);
917 		break;
918 	case RKMODULE_SET_DEV_INFO:
919 		dev_info = kzalloc(sizeof(*dev_info), GFP_KERNEL);
920 		if (!dev_info) {
921 			ret = -ENOMEM;
922 			return ret;
923 		}
924 
925 		ret = copy_from_user(dev_info, up, sizeof(*dev_info));
926 		if (!ret)
927 			ret = sensor_ioctl(sd, cmd, dev_info);
928 		else
929 			ret = -EFAULT;
930 		kfree(dev_info);
931 		break;
932 	case RKMODULE_SET_CSI_DPHY_PARAM:
933 		dphy_param = kzalloc(sizeof(*dphy_param), GFP_KERNEL);
934 		if (!dphy_param) {
935 			ret = -ENOMEM;
936 			return ret;
937 		}
938 
939 		ret = copy_from_user(dphy_param, up, sizeof(*dphy_param));
940 		if (!ret)
941 			ret = sensor_ioctl(sd, cmd, dphy_param);
942 		else
943 			ret = -EFAULT;
944 		kfree(dphy_param);
945 		break;
946 	case RKMODULE_GET_CSI_DPHY_PARAM:
947 		dphy_param = kzalloc(sizeof(*dphy_param), GFP_KERNEL);
948 		if (!dphy_param) {
949 			ret = -ENOMEM;
950 			return ret;
951 		}
952 
953 		ret = sensor_ioctl(sd, cmd, dphy_param);
954 		if (!ret) {
955 			ret = copy_to_user(up, dphy_param, sizeof(*dphy_param));
956 			if (ret)
957 				ret = -EFAULT;
958 		}
959 		kfree(dphy_param);
960 		break;
961 	case RKMODULE_SET_SENSOR_INFOS:
962 		sensor_infos = kzalloc(sizeof(*sensor_infos), GFP_KERNEL);
963 		if (!sensor_infos) {
964 			ret = -ENOMEM;
965 			return ret;
966 		}
967 		ret = copy_from_user(sensor_infos, up, sizeof(*sensor_infos));
968 		if (!ret)
969 			ret = sensor_ioctl(sd, cmd, sensor_infos);
970 		else
971 			ret = -EFAULT;
972 		kfree(sensor_infos);
973 		break;
974 	default:
975 		ret = -ENOIOCTLCMD;
976 		break;
977 	}
978 
979 	return ret;
980 }
981 #endif
982 
__sensor_start_stream(struct sensor * sensor)983 static int __sensor_start_stream(struct sensor *sensor)
984 {
985 	/* user to write sensor setting or
986 	 * may control by aiq callback to set sensor setting by customer driver
987 	 */
988 	return 0;
989 }
990 
__sensor_stop_stream(struct sensor * sensor)991 static int __sensor_stop_stream(struct sensor *sensor)
992 {
993 	/* user to write sensor setting or
994 	 * may control by aiq callback to set sensor setting by customer driver
995 	 */
996 	return 0;
997 }
998 
sensor_s_stream(struct v4l2_subdev * sd,int on)999 static int sensor_s_stream(struct v4l2_subdev *sd, int on)
1000 {
1001 	struct sensor *sensor = to_sensor(sd);
1002 	struct i2c_client *client = sensor->client;
1003 	int ret = 0;
1004 
1005 	mutex_lock(&sensor->mutex);
1006 	on = !!on;
1007 	if (on == sensor->streaming)
1008 		goto unlock_and_return;
1009 
1010 	if (on) {
1011 
1012 		ret = __sensor_start_stream(sensor);
1013 		if (ret) {
1014 			v4l2_err(sd, "start stream failed while write regs\n");
1015 			pm_runtime_put(&client->dev);
1016 			goto unlock_and_return;
1017 		}
1018 	} else {
1019 		__sensor_stop_stream(sensor);
1020 	}
1021 
1022 	sensor->streaming = on;
1023 
1024 unlock_and_return:
1025 	mutex_unlock(&sensor->mutex);
1026 
1027 	return ret;
1028 }
1029 
sensor_s_power(struct v4l2_subdev * sd,int on)1030 static int sensor_s_power(struct v4l2_subdev *sd, int on)
1031 {
1032 	struct sensor *sensor = to_sensor(sd);
1033 	struct i2c_client *client = sensor->client;
1034 	int ret = 0;
1035 
1036 	mutex_lock(&sensor->mutex);
1037 
1038 	/* If the power state is not modified - no work to do. */
1039 	if (sensor->power_on == !!on)
1040 		goto unlock_and_return;
1041 
1042 	if (on) {
1043 		ret = pm_runtime_get_sync(&client->dev);
1044 		if (ret < 0) {
1045 			pm_runtime_put_noidle(&client->dev);
1046 			goto unlock_and_return;
1047 		}
1048 
1049 		sensor->power_on = true;
1050 	} else {
1051 		pm_runtime_put(&client->dev);
1052 		sensor->power_on = false;
1053 	}
1054 
1055 unlock_and_return:
1056 	mutex_unlock(&sensor->mutex);
1057 
1058 	return ret;
1059 }
1060 
__sensor_power_on(struct sensor * sensor)1061 static int __sensor_power_on(struct sensor *sensor)
1062 {
1063 
1064 	//todo
1065 	//call  sensor power on
1066 	return 0;
1067 }
1068 
__sensor_power_off(struct sensor * sensor)1069 static void __sensor_power_off(struct sensor *sensor)
1070 {
1071 	//todo
1072 	//call sensor power off
1073 }
1074 
sensor_runtime_resume(struct device * dev)1075 static int sensor_runtime_resume(struct device *dev)
1076 {
1077 	struct i2c_client *client = to_i2c_client(dev);
1078 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1079 	struct sensor *sensor = to_sensor(sd);
1080 
1081 	return __sensor_power_on(sensor);
1082 }
1083 
sensor_runtime_suspend(struct device * dev)1084 static int sensor_runtime_suspend(struct device *dev)
1085 {
1086 	struct i2c_client *client = to_i2c_client(dev);
1087 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1088 	struct sensor *sensor = to_sensor(sd);
1089 
1090 	__sensor_power_off(sensor);
1091 
1092 	return 0;
1093 }
1094 
sensor_get_selection(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)1095 static int sensor_get_selection(struct v4l2_subdev *sd,
1096 				struct v4l2_subdev_pad_config *cfg,
1097 				struct v4l2_subdev_selection *sel)
1098 {
1099 	struct sensor *sensor = to_sensor(sd);
1100 
1101 	if (sel->target == V4L2_SEL_TGT_CROP_BOUNDS) {
1102 		if (sensor->crop.is_enable &&
1103 		    (sensor->crop.left + sensor->crop.width) <= sensor->cur_mode->width &&
1104 		    (sensor->crop.top + sensor->crop.height) <= sensor->cur_mode->height) {
1105 			sel->r.left = sensor->crop.left;
1106 			sel->r.width = sensor->crop.width;
1107 			sel->r.top = sensor->crop.top;
1108 			sel->r.height = sensor->crop.height;
1109 			dev_dbg(&sensor->client->dev,
1110 				"%s left %d, width %d, top %d, height %d\n",
1111 				__func__,
1112 				sensor->crop.left, sensor->crop.width,
1113 				sensor->crop.top, sensor->crop.height);
1114 		} else {
1115 			sel->r.left = 0;
1116 			sel->r.width = sensor->cur_mode->width;
1117 			sel->r.top = 0;
1118 			sel->r.height = sensor->cur_mode->height;
1119 		}
1120 		return 0;
1121 	}
1122 	dev_err(&sensor->client->dev,
1123 		"%s failed\n", __func__);
1124 	return -EINVAL;
1125 }
1126 
sensor_set_selection(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)1127 static int sensor_set_selection(struct v4l2_subdev *sd,
1128 				struct v4l2_subdev_pad_config *cfg,
1129 				struct v4l2_subdev_selection *sel)
1130 {
1131 	struct sensor *sensor = to_sensor(sd);
1132 
1133 	if (sel->target == V4L2_SEL_TGT_CROP_BOUNDS) {
1134 		sensor->crop.top = sel->r.top;
1135 		sensor->crop.left = sel->r.left;
1136 		sensor->crop.width = sel->r.width;
1137 		sensor->crop.height = sel->r.height;
1138 		sensor->crop.is_enable = true;
1139 		dev_info(&sensor->client->dev,
1140 			"%s left %d, width %d, top %d, height %d\n",
1141 			__func__,
1142 			sensor->crop.left, sensor->crop.width,
1143 			sensor->crop.top, sensor->crop.height);
1144 		return 0;
1145 	}
1146 	dev_err(&sensor->client->dev,
1147 		"sensor_get_selection failed\n");
1148 	return -EINVAL;
1149 }
1150 
1151 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
sensor_open(struct v4l2_subdev * sd,struct v4l2_subdev_fh * fh)1152 static int sensor_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
1153 {
1154 	struct sensor *sensor = to_sensor(sd);
1155 	struct v4l2_mbus_framefmt *try_fmt =
1156 				v4l2_subdev_get_try_format(sd, fh->pad, 0);
1157 	const struct sensor_mode *def_mode = sensor->cur_mode;
1158 
1159 	mutex_lock(&sensor->mutex);
1160 	/* Initialize try_fmt */
1161 	try_fmt->width = def_mode->width;
1162 	try_fmt->height = def_mode->height;
1163 	try_fmt->code = def_mode->bus_fmt;
1164 	try_fmt->field = V4L2_FIELD_NONE;
1165 
1166 	mutex_unlock(&sensor->mutex);
1167 	/* No crop or compose */
1168 
1169 	return 0;
1170 }
1171 #endif
1172 
sensor_enum_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_interval_enum * fie)1173 static int sensor_enum_frame_interval(struct v4l2_subdev *sd,
1174 	struct v4l2_subdev_pad_config *cfg,
1175 	struct v4l2_subdev_frame_interval_enum *fie)
1176 {
1177 	struct sensor *sensor = to_sensor(sd);
1178 
1179 	if (fie->index > 1)
1180 		return -EINVAL;
1181 
1182 	fie->code = sensor->cur_mode->bus_fmt;
1183 	fie->width = sensor->cur_mode->width;
1184 	fie->height = sensor->cur_mode->height;
1185 	fie->interval = sensor->cur_mode->max_fps;
1186 	fie->reserved[0] = sensor->cur_mode->hdr_cfg.hdr_mode;
1187 	return 0;
1188 }
1189 
1190 static const struct dev_pm_ops sensor_pm_ops = {
1191 	SET_RUNTIME_PM_OPS(sensor_runtime_suspend,
1192 			   sensor_runtime_resume, NULL)
1193 };
1194 
1195 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1196 static const struct v4l2_subdev_internal_ops sensor_internal_ops = {
1197 	.open = sensor_open,
1198 };
1199 #endif
1200 
1201 static const struct v4l2_subdev_core_ops sensor_core_ops = {
1202 	.s_power = sensor_s_power,
1203 	.ioctl = sensor_ioctl,
1204 #ifdef CONFIG_COMPAT
1205 	.compat_ioctl32 = sensor_compat_ioctl32,
1206 #endif
1207 };
1208 
1209 static const struct v4l2_subdev_video_ops sensor_video_ops = {
1210 	.s_stream = sensor_s_stream,
1211 	.g_frame_interval = sensor_g_frame_interval,
1212 	.s_frame_interval = sensor_s_frame_interval,
1213 };
1214 
1215 static const struct v4l2_subdev_pad_ops sensor_pad_ops = {
1216 	.enum_mbus_code = sensor_enum_mbus_code,
1217 	.enum_frame_size = sensor_enum_frame_sizes,
1218 	.enum_frame_interval = sensor_enum_frame_interval,
1219 	.get_fmt = sensor_get_fmt,
1220 	.set_fmt = sensor_set_fmt,
1221 	.get_selection = sensor_get_selection,
1222 	.set_selection = sensor_set_selection,
1223 	.get_mbus_config = sensor_g_mbus_config,
1224 };
1225 
1226 static const struct v4l2_subdev_ops sensor_subdev_ops = {
1227 	.core	= &sensor_core_ops,
1228 	.video	= &sensor_video_ops,
1229 	.pad	= &sensor_pad_ops,
1230 };
1231 
sensor_set_ctrl(struct v4l2_ctrl * ctrl)1232 static int sensor_set_ctrl(struct v4l2_ctrl *ctrl)
1233 {
1234 	struct sensor *sensor = container_of(ctrl->handler,
1235 					     struct sensor, ctrl_handler);
1236 	struct i2c_client *client = sensor->client;
1237 	int ret = 0;
1238 
1239 	if (!pm_runtime_get_if_in_use(&client->dev))
1240 		return 0;
1241 
1242 	switch (ctrl->id) {
1243 	case V4L2_CID_HFLIP:
1244 		//todo
1245 		break;
1246 	case V4L2_CID_VFLIP:
1247 		//todo
1248 		break;
1249 	default:
1250 		dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n",
1251 			 __func__, ctrl->id, ctrl->val);
1252 		break;
1253 	}
1254 
1255 	pm_runtime_put(&client->dev);
1256 
1257 	return ret;
1258 }
1259 
1260 static const struct v4l2_ctrl_ops sensor_ctrl_ops = {
1261 	.s_ctrl = sensor_set_ctrl,
1262 };
1263 
sensor_initialize_controls(struct sensor * sensor)1264 static int sensor_initialize_controls(struct sensor *sensor)
1265 {
1266 	const struct sensor_mode *mode;
1267 	struct v4l2_ctrl_handler *handler;
1268 	u64 pixel_rate = 0;
1269 	int ret;
1270 	u32 h_blank = 0;
1271 	u32 vblank_def = 0;
1272 
1273 	handler = &sensor->ctrl_handler;
1274 	mode = sensor->cur_mode;
1275 	ret = v4l2_ctrl_handler_init(handler, 4);
1276 	if (ret)
1277 		return ret;
1278 	handler->lock = &sensor->mutex;
1279 
1280 	sensor->link_freq = v4l2_ctrl_new_int_menu(handler,
1281 				NULL, V4L2_CID_LINK_FREQ,
1282 				0, 0, link_freq_menu_items);
1283 	pixel_rate = (u32)mode->mipi_freq / mode->bpp * 2 *
1284 		     sensor->bus_config.bus.lanes;
1285 	sensor->pixel_rate = v4l2_ctrl_new_std(handler, NULL,
1286 		V4L2_CID_PIXEL_RATE, 0, pixel_rate,
1287 		1, pixel_rate);
1288 
1289 	h_blank = 600;
1290 	sensor->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK,
1291 				h_blank, h_blank, 1, h_blank);
1292 	if (sensor->hblank)
1293 		sensor->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
1294 
1295 	vblank_def = 100;
1296 	sensor->vblank = v4l2_ctrl_new_std(handler, &sensor_ctrl_ops,
1297 				V4L2_CID_VBLANK, vblank_def,
1298 				vblank_def,
1299 				1, vblank_def);
1300 
1301 	v4l2_ctrl_new_std(handler, &sensor_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
1302 	v4l2_ctrl_new_std(handler, &sensor_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
1303 
1304 	if (handler->error) {
1305 		ret = handler->error;
1306 		dev_err(&sensor->client->dev,
1307 			"Failed to init controls(%d)\n", ret);
1308 		goto err_free_handler;
1309 	}
1310 
1311 	sensor->subdev.ctrl_handler = handler;
1312 
1313 	return 0;
1314 
1315 err_free_handler:
1316 	v4l2_ctrl_handler_free(handler);
1317 
1318 	return ret;
1319 }
1320 
sensor_probe(struct i2c_client * client,const struct i2c_device_id * id)1321 static int sensor_probe(struct i2c_client *client,
1322 			const struct i2c_device_id *id)
1323 {
1324 	struct device *dev = &client->dev;
1325 	struct device_node *node = dev->of_node;
1326 	struct v4l2_subdev *sd;
1327 	struct sensor *sensor;
1328 	char facing[2];
1329 	int ret;
1330 	int i;
1331 
1332 	dev_info(dev, "driver version: %02x.%02x.%02x",
1333 		DRIVER_VERSION >> 16,
1334 		(DRIVER_VERSION & 0xff00) >> 8,
1335 		DRIVER_VERSION & 0x00ff);
1336 
1337 	sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
1338 	if (!sensor)
1339 		return -ENOMEM;
1340 	g_sensor[cam_idx] = sensor;
1341 	ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
1342 				   &sensor->module_index);
1343 	ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
1344 				       &sensor->module_facing);
1345 	ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
1346 				       &sensor->module_name);
1347 	ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
1348 				       &sensor->len_name);
1349 	if (ret) {
1350 		dev_err(dev, "could not get module information!\n");
1351 		return -EINVAL;
1352 	}
1353 	sensor->client = client;
1354 	sensor->cur_mode = &supported_modes[0];
1355 	for (i = 0; i < MAX_MIPICLK_NUM; i++) {
1356 		struct clk *clk = devm_clk_get(dev, mipi_clks[i]);
1357 
1358 		if (IS_ERR(clk)) {
1359 			dev_err(dev, "failed to get %s\n", mipi_clks[i]);
1360 			return PTR_ERR(clk);
1361 		}
1362 		sensor->clks[i] = clk;
1363 	}
1364 
1365 	sensor->pinctrl = devm_pinctrl_get(dev);
1366 	if (!IS_ERR(sensor->pinctrl)) {
1367 		sensor->pins_default =
1368 			pinctrl_lookup_state(sensor->pinctrl,
1369 					     OF_CAMERA_PINCTRL_STATE_DEFAULT);
1370 		if (IS_ERR(sensor->pins_default))
1371 			dev_err(dev, "could not get default pinstate\n");
1372 
1373 		sensor->pins_sleep =
1374 			pinctrl_lookup_state(sensor->pinctrl,
1375 					     OF_CAMERA_PINCTRL_STATE_SLEEP);
1376 		if (IS_ERR(sensor->pins_sleep))
1377 			dev_err(dev, "could not get sleep pinstate\n");
1378 	} else {
1379 		dev_err(dev, "no pinctrl\n");
1380 	}
1381 	mutex_init(&sensor->mutex);
1382 	sensor->bus_config.bus.lanes = 2;
1383 	sensor->bus_config.bus.bus_type = V4L2_MBUS_CSI2_DPHY;
1384 	sensor->is_link = false;
1385 	sensor->sync_mode = NO_SYNC_MODE;
1386 	sensor->crop.is_enable = false;
1387 	sensor->dphy_param = rk3588_dcphy_param;
1388 	sd = &sensor->subdev;
1389 	v4l2_i2c_subdev_init(sd, client, &sensor_subdev_ops);
1390 	ret = sensor_initialize_controls(sensor);
1391 	if (ret)
1392 		goto err_destroy_mutex;
1393 
1394 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1395 	sd->internal_ops = &sensor_internal_ops;
1396 	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
1397 		     V4L2_SUBDEV_FL_HAS_EVENTS;
1398 #endif
1399 #if defined(CONFIG_MEDIA_CONTROLLER)
1400 	sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
1401 	sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
1402 	ret = media_entity_pads_init(&sd->entity, 1, &sensor->pad);
1403 	if (ret < 0)
1404 		goto err_power_off;
1405 #endif
1406 
1407 	memset(facing, 0, sizeof(facing));
1408 	if (strcmp(sensor->module_facing, "back") == 0)
1409 		facing[0] = 'b';
1410 	else
1411 		facing[0] = 'f';
1412 
1413 	snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
1414 		 sensor->module_index, facing,
1415 		 SENSOR_NAME, dev_name(sd->dev));
1416 	ret = v4l2_async_register_subdev_sensor_common(sd);
1417 	if (ret) {
1418 		dev_err(dev, "v4l2 async register subdev failed\n");
1419 		goto err_clean_entity;
1420 	}
1421 
1422 	pm_runtime_set_active(dev);
1423 	pm_runtime_enable(dev);
1424 	pm_runtime_idle(dev);
1425 	if (cam_idx < RKMODULE_MAX_SENSOR_NUM) {
1426 		cam_idx++;
1427 	} else {
1428 		ret = -EINVAL;
1429 		dev_err(dev, "max cam num %d\n", RKMODULE_MAX_SENSOR_NUM);
1430 		goto err_clean_entity;
1431 	}
1432 
1433 	return 0;
1434 
1435 err_clean_entity:
1436 #if defined(CONFIG_MEDIA_CONTROLLER)
1437 	media_entity_cleanup(&sd->entity);
1438 #endif
1439 err_power_off:
1440 	__sensor_power_off(sensor);
1441 err_destroy_mutex:
1442 	mutex_destroy(&sensor->mutex);
1443 
1444 	return ret;
1445 }
1446 
sensor_remove(struct i2c_client * client)1447 static int sensor_remove(struct i2c_client *client)
1448 {
1449 	struct v4l2_subdev *sd = i2c_get_clientdata(client);
1450 	struct sensor *sensor = to_sensor(sd);
1451 
1452 	v4l2_async_unregister_subdev(sd);
1453 #if defined(CONFIG_MEDIA_CONTROLLER)
1454 	media_entity_cleanup(&sd->entity);
1455 #endif
1456 	v4l2_ctrl_handler_free(&sensor->ctrl_handler);
1457 	mutex_destroy(&sensor->mutex);
1458 
1459 	pm_runtime_disable(&client->dev);
1460 	if (!pm_runtime_status_suspended(&client->dev))
1461 		__sensor_power_off(sensor);
1462 	pm_runtime_set_suspended(&client->dev);
1463 
1464 	return 0;
1465 }
1466 
1467 #if IS_ENABLED(CONFIG_OF)
1468 static const struct of_device_id sensor_of_match[] = {
1469 	{ .compatible = "sensor,adapter" },
1470 	{},
1471 };
1472 MODULE_DEVICE_TABLE(of, sensor_of_match);
1473 #endif
1474 
1475 static const struct i2c_device_id sensor_match_id[] = {
1476 	{ "sensor,adapter", 0 },
1477 	{ },
1478 };
1479 
1480 static struct i2c_driver sensor_i2c_driver = {
1481 	.driver = {
1482 		.name = SENSOR_NAME,
1483 		.pm = &sensor_pm_ops,
1484 		.of_match_table = of_match_ptr(sensor_of_match),
1485 	},
1486 	.probe		= &sensor_probe,
1487 	.remove		= &sensor_remove,
1488 	.id_table	= sensor_match_id,
1489 };
1490 
sensor_mod_init(void)1491 static int __init sensor_mod_init(void)
1492 {
1493 	return i2c_add_driver(&sensor_i2c_driver);
1494 }
1495 
sensor_mod_exit(void)1496 static void __exit sensor_mod_exit(void)
1497 {
1498 	i2c_del_driver(&sensor_i2c_driver);
1499 }
1500 
1501 device_initcall_sync(sensor_mod_init);
1502 module_exit(sensor_mod_exit);
1503 
1504 MODULE_DESCRIPTION("sensor adapter driver");
1505 MODULE_LICENSE("GPL v2");
1506