1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sensor driver
4 *
5 * Copyright (C) 2022 Rockchip Electronics Co., Ltd.
6 *
7 */
8 //#define DEBUG
9 #include <linux/clk.h>
10 #include <linux/device.h>
11 #include <linux/delay.h>
12 #include <linux/gpio/consumer.h>
13 #include <linux/i2c.h>
14 #include <linux/module.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/sysfs.h>
18 #include <linux/slab.h>
19 #include <linux/version.h>
20 #include <linux/rk-camera-module.h>
21 #include <media/media-entity.h>
22 #include <media/v4l2-async.h>
23 #include <media/v4l2-ctrls.h>
24 #include <media/v4l2-subdev.h>
25 #include <media/v4l2-fwnode.h>
26 #include <media/v4l2-mediabus.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/rk-preisp.h>
29 #include <linux/of_graph.h>
30 #include "../platform/rockchip/cif/rkcif-externel.h"
31
32 #define DRIVER_VERSION KERNEL_VERSION(0, 0x01, 0x0)
33
34 #ifndef V4L2_CID_DIGITAL_GAIN
35 #define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN
36 #endif
37
38 #define MIPI_FREQ_360M 360000000
39
40 #define SENSOR_XVCLK_FREQ_24M 24000000
41
42 #define OF_CAMERA_PINCTRL_STATE_DEFAULT "rockchip,camera_default"
43 #define OF_CAMERA_PINCTRL_STATE_SLEEP "rockchip,camera_sleep"
44
45 #define SENSOR_NAME "sensor"
46 #define MAX_MIPICLK_NUM 5
47
48 struct sensor_crop {
49 bool is_enable;
50 u32 top;
51 u32 left;
52 u32 width;
53 u32 height;
54 };
55
56 struct sensor_mode {
57 u32 bus_fmt;
58 u32 width;
59 u32 height;
60 struct v4l2_fract max_fps;
61 u64 mipi_freq;
62 u32 mclk;
63 u32 bpp;
64 struct rkmodule_hdr_cfg hdr_cfg;
65 u32 vc[PAD_MAX];
66 };
67
68 struct sensor {
69 struct i2c_client *client;
70 struct clk *clks[MAX_MIPICLK_NUM];
71 struct pinctrl *pinctrl;
72 struct pinctrl_state *pins_default;
73 struct pinctrl_state *pins_sleep;
74
75 struct v4l2_subdev subdev;
76 struct media_pad pad;
77 struct v4l2_ctrl_handler ctrl_handler;
78 struct v4l2_ctrl *pixel_rate;
79 struct v4l2_ctrl *link_freq;
80 struct v4l2_ctrl *hblank;
81 struct v4l2_ctrl *vblank;
82 struct mutex mutex;
83 bool streaming;
84 bool power_on;
85 struct sensor_mode *cur_mode;
86 struct rkmodule_bus_config bus_config;
87 struct sensor_crop crop;
88 struct rkmodule_csi_dphy_param dphy_param;
89 u32 module_index;
90 const char *module_facing;
91 const char *module_name;
92 const char *len_name;
93 enum rkmodule_sync_mode sync_mode;
94 u8 i2cdev;
95 bool is_link;
96 };
97
98 static struct sensor *g_sensor[RKMODULE_MAX_SENSOR_NUM];
99 static u8 cam_idx;
100
101 static s64 link_freq_menu_items[] = {
102 MIPI_FREQ_360M,
103 };
104
105 static const char * const mipi_clks[] = {
106 "clk_mipi0",
107 "clk_mipi1",
108 "clk_mipi2",
109 "clk_mipi3",
110 "clk_mipi4",
111 };
112
113 static struct rkmodule_csi_dphy_param rk3588_dcphy_param = {
114 .vendor = PHY_VENDOR_SAMSUNG,
115 .lp_vol_ref = 3,
116 .lp_hys_sw = {3, 0, 0, 0},
117 .lp_escclk_pol_sel = {1, 0, 0, 0},
118 .skew_data_cal_clk = {0, 3, 3, 3},
119 .clk_hs_term_sel = 2,
120 .data_hs_term_sel = {2, 2, 2, 2},
121 .reserved = {0},
122 };
123
124 #define to_sensor(sd) container_of(sd, struct sensor, subdev)
125
126 /*
127 * The width and height must be configured to be
128 * the same as the current output resolution of the sensor.
129 * The input width of the isp needs to be 16 aligned.
130 * The input height of the isp needs to be 8 aligned.
131 * If the width or height does not meet the alignment rules,
132 * you can configure the cropping parameters with the following function to
133 * crop out the appropriate resolution.
134 * struct v4l2_subdev_pad_ops {
135 * .get_selection
136 * }
137 */
138 static struct sensor_mode supported_modes[] = {
139 {
140 .bus_fmt = MEDIA_BUS_FMT_SRGGB10_1X10,
141 .width = 2688,
142 .height = 1520,
143 .max_fps = {
144 .numerator = 10000,
145 .denominator = 300000,
146 },
147 .mipi_freq = MIPI_FREQ_360M,
148 .bpp = 10,
149 .mclk = SENSOR_XVCLK_FREQ_24M,
150 .hdr_cfg = {
151 .hdr_mode = NO_HDR,
152 .esp = {
153 .mode = HDR_NORMAL_VC,
154 },
155 },
156 },
157 };
158
sensor_write_reg(struct i2c_client * client,u16 reg,u32 reg_len,u32 val,u32 val_len)159 static int sensor_write_reg(struct i2c_client *client, u16 reg,
160 u32 reg_len, u32 val, u32 val_len)
161 {
162 u32 buf_i, val_i;
163 u8 buf[8];
164 u8 *val_p;
165 u8 *reg_p;
166 __be32 val_be;
167 __be32 reg_be;
168
169 if (reg_len > 4 || val_len > 4)
170 return -EINVAL;
171
172 reg_be = cpu_to_be32(reg);
173 reg_p = (u8 *)®_be;
174 for (buf_i = 0; buf_i < reg_len; buf_i++)
175 buf[buf_i] = reg_p[4 - reg_len + buf_i];
176
177 val_be = cpu_to_be32(val);
178 val_p = (u8 *)&val_be;
179 buf_i = reg_len;
180 val_i = 4 - val_len;
181
182 while (val_i < 4)
183 buf[buf_i++] = val_p[val_i++];
184
185 if (i2c_master_send(client, buf, reg_len + val_len) != reg_len + val_len)
186 return -EIO;
187
188 return 0;
189 }
190
sensor_set_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)191 static int sensor_set_fmt(struct v4l2_subdev *sd,
192 struct v4l2_subdev_pad_config *cfg,
193 struct v4l2_subdev_format *fmt)
194 {
195 struct sensor *sensor = to_sensor(sd);
196
197 mutex_lock(&sensor->mutex);
198
199 //application set resolution
200 sensor->cur_mode->bus_fmt = fmt->format.code;
201 sensor->cur_mode->width = fmt->format.width;
202 sensor->cur_mode->height = fmt->format.height;
203
204 mutex_unlock(&sensor->mutex);
205
206 return 0;
207 }
208
sensor_get_fmt(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_format * fmt)209 static int sensor_get_fmt(struct v4l2_subdev *sd,
210 struct v4l2_subdev_pad_config *cfg,
211 struct v4l2_subdev_format *fmt)
212 {
213 struct sensor *sensor = to_sensor(sd);
214 const struct sensor_mode *mode = sensor->cur_mode;
215
216 //vicap or other device to get resolution configuration
217 mutex_lock(&sensor->mutex);
218 fmt->format.width = mode->width;
219 fmt->format.height = mode->height;
220 fmt->format.code = mode->bus_fmt;
221 fmt->format.field = V4L2_FIELD_NONE;
222 mutex_unlock(&sensor->mutex);
223
224 return 0;
225 }
226
sensor_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_mbus_code_enum * code)227 static int sensor_enum_mbus_code(struct v4l2_subdev *sd,
228 struct v4l2_subdev_pad_config *cfg,
229 struct v4l2_subdev_mbus_code_enum *code)
230 {
231 struct sensor *sensor = to_sensor(sd);
232
233 if (code->index != 0)
234 return -EINVAL;
235 code->code = sensor->cur_mode->bus_fmt;
236
237 return 0;
238 }
239
sensor_enum_frame_sizes(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_size_enum * fse)240 static int sensor_enum_frame_sizes(struct v4l2_subdev *sd,
241 struct v4l2_subdev_pad_config *cfg,
242 struct v4l2_subdev_frame_size_enum *fse)
243 {
244 if (fse->index > 1)
245 return -EINVAL;
246
247 fse->min_width = supported_modes[fse->index].width;
248 fse->max_width = supported_modes[fse->index].width;
249 fse->max_height = supported_modes[fse->index].height;
250 fse->min_height = supported_modes[fse->index].height;
251
252 return 0;
253 }
254
sensor_g_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)255 static int sensor_g_frame_interval(struct v4l2_subdev *sd,
256 struct v4l2_subdev_frame_interval *fi)
257 {
258 struct sensor *sensor = to_sensor(sd);
259 const struct sensor_mode *mode = sensor->cur_mode;
260
261 mutex_lock(&sensor->mutex);
262 fi->interval = mode->max_fps;
263 mutex_unlock(&sensor->mutex);
264
265 return 0;
266 }
267
sensor_s_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_frame_interval * fi)268 static int sensor_s_frame_interval(struct v4l2_subdev *sd,
269 struct v4l2_subdev_frame_interval *fi)
270 {
271 struct sensor *sensor = to_sensor(sd);
272 struct sensor_mode *mode = sensor->cur_mode;
273
274 mutex_lock(&sensor->mutex);
275 mode->max_fps = fi->interval;
276 mutex_unlock(&sensor->mutex);
277
278 return 0;
279 }
280
sensor_g_mbus_config(struct v4l2_subdev * sd,unsigned int pad_id,struct v4l2_mbus_config * config)281 static int sensor_g_mbus_config(struct v4l2_subdev *sd, unsigned int pad_id,
282 struct v4l2_mbus_config *config)
283 {
284 struct sensor *sensor = to_sensor(sd);
285 u32 val = 0;
286 u32 lane_num = sensor->bus_config.bus.lanes;
287
288 val = 1 << (lane_num - 1) |
289 V4L2_MBUS_CSI2_CHANNEL_0 |
290 V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
291 config->type = sensor->bus_config.bus.bus_type;
292 config->flags = val;
293
294 return 0;
295 }
296
sensor_get_module_inf(struct sensor * sensor,struct rkmodule_inf * inf)297 static void sensor_get_module_inf(struct sensor *sensor,
298 struct rkmodule_inf *inf)
299 {
300 memset(inf, 0, sizeof(*inf));
301 strscpy(inf->base.sensor, SENSOR_NAME, sizeof(inf->base.sensor));
302 strscpy(inf->base.module, sensor->module_name,
303 sizeof(inf->base.module));
304 strscpy(inf->base.lens, sensor->len_name, sizeof(inf->base.lens));
305 }
306
rkcam_sensor_enable_mclk(u8 i2cdev,u32 mclk_index,u32 mclk_rate)307 int rkcam_sensor_enable_mclk(u8 i2cdev, u32 mclk_index, u32 mclk_rate)
308 {
309 struct sensor *sensor;
310 struct device *dev;
311 int ret = 0;
312 int i = 0;
313
314 for (i = 0; i < RKMODULE_MAX_SENSOR_NUM; i++) {
315 sensor = g_sensor[i];
316 if (sensor->module_index == i2cdev)
317 break;
318 }
319
320 if (i == RKMODULE_MAX_SENSOR_NUM)
321 return -EINVAL;
322
323 dev = &sensor->client->dev;
324
325 ret = clk_set_rate(sensor->clks[mclk_index], mclk_rate);
326 if (ret < 0)
327 dev_warn(dev, "Failed to set xvclk rate\n");
328 if (clk_get_rate(sensor->clks[mclk_index]) != sensor->cur_mode->mclk)
329 dev_warn(dev, "xvclk mismatched, %lu\n", clk_get_rate(sensor->clks[mclk_index]));
330 ret = clk_prepare_enable(sensor->clks[mclk_index]);
331 if (ret < 0) {
332 dev_err(dev, "Failed to enable xvclk\n");
333 return ret;
334 }
335 sensor->cur_mode->mclk = clk_get_rate(sensor->clks[mclk_index]);
336 return 0;
337 }
338 EXPORT_SYMBOL(rkcam_sensor_enable_mclk);
339
rkcam_sensor_disable_mclk(u8 i2cdev,u32 mclk_index)340 int rkcam_sensor_disable_mclk(u8 i2cdev, u32 mclk_index)
341 {
342 struct sensor *sensor;
343 int i = 0;
344
345 for (i = 0; i < RKMODULE_MAX_SENSOR_NUM; i++) {
346 sensor = g_sensor[i];
347 if (sensor->module_index == i2cdev)
348 break;
349 }
350
351 if (i == RKMODULE_MAX_SENSOR_NUM)
352 return -EINVAL;
353
354 clk_disable_unprepare(sensor->clks[mclk_index]);
355 return 0;
356 }
357 EXPORT_SYMBOL(rkcam_sensor_disable_mclk);
358
sensor_config_link_freq(struct sensor * sensor,s64 link_freq)359 static int sensor_config_link_freq(struct sensor *sensor, s64 link_freq)
360 {
361 u32 pixel_rate = 0;
362 struct sensor_mode *mode = sensor->cur_mode;
363
364 link_freq_menu_items[0] = link_freq;
365 __v4l2_ctrl_modify_range(sensor->link_freq, 0, 0, 1, link_freq_menu_items[0]);
366 mode->mipi_freq = link_freq;
367 pixel_rate = (u32)mode->mipi_freq / mode->bpp * 2 *
368 sensor->bus_config.bus.lanes;
369 __v4l2_ctrl_modify_range(sensor->pixel_rate, pixel_rate, pixel_rate, 1, pixel_rate);
370 return 0;
371 }
372
373 enum rk_isp_bus_type_e {
374 ISP_BUS_TYPE_I2C = 0,
375 ISP_BUS_TYPE_SPI,
376 ISP_BUS_TYPE_UNKNOWN,
377 };
378
379 struct rkcam_bus_callbakck_s {
380 u32 (*prkcam_write_i2c_data)(u8 i2cdev, u8 dev_addr,
381 u32 reg_addr, u32 reg_bytes,
382 u32 data, u32 data_bytes);
383 u32 (*prkcam_write_spi_data)(u32 spidev, u32 spi_csn,
384 u32 dev_addr, u32 dev_addr_bytes,
385 u32 reg_addr, u32 reg_addr_bytes,
386 u32 data, u32 data_bytes);
387 u32 (*prkcam_s_stream)(u32 dev, bool on);
388 };
389
390 static struct rkcam_bus_callbakck_s g_rkcam_bus_callback[RKMODULE_MAX_SENSOR_NUM];
391
rkcam_register_bus_callback(int sensor_id,enum rk_isp_bus_type_e bus_type,struct rkcam_bus_callbakck_s * bus_callbaclk)392 static int rkcam_register_bus_callback(int sensor_id,
393 enum rk_isp_bus_type_e bus_type,
394 struct rkcam_bus_callbakck_s *bus_callbaclk)
395 {
396 if (bus_type == ISP_BUS_TYPE_I2C) {
397 g_rkcam_bus_callback[sensor_id].prkcam_write_i2c_data = bus_callbaclk->prkcam_write_i2c_data;
398 } else if (bus_type == ISP_BUS_TYPE_SPI) {
399 g_rkcam_bus_callback[sensor_id].prkcam_write_spi_data = bus_callbaclk->prkcam_write_spi_data;
400 } else {
401 dev_err(&g_sensor[sensor_id]->client->dev,
402 "sensor[%d] error bus type %d\n", sensor_id, bus_type);
403 return -EFAULT;
404 }
405 if (bus_callbaclk->prkcam_s_stream)
406 g_rkcam_bus_callback[sensor_id].prkcam_s_stream = bus_callbaclk->prkcam_s_stream;
407
408 return 0;
409 }
410
411 struct rkcam_export_func_s {
412 int (*p_rkcam_register_bus_callback)(int sensor_id,
413 enum rk_isp_bus_type_e bus_type,
414 struct rkcam_bus_callbakck_s *bus_callbaclk);
415 };
416
417 struct rkcam_export_func_s g_rkcam_export_func = {
418 .p_rkcam_register_bus_callback = rkcam_register_bus_callback,
419 };
420 EXPORT_SYMBOL(g_rkcam_export_func);
421
422
sensor_get_remote_dev(struct media_entity * sensor_entity,struct video_device ** video)423 static void sensor_get_remote_dev(struct media_entity *sensor_entity,
424 struct video_device **video)
425 {
426 struct media_graph graph;
427 struct media_device *mdev = sensor_entity->graph_obj.mdev;
428 struct media_entity *entity;
429 int ret = 0;
430
431 mutex_lock(&mdev->graph_mutex);
432 ret = media_graph_walk_init(&graph, mdev);
433 if (ret) {
434 mutex_unlock(&mdev->graph_mutex);
435 return;
436 }
437
438 media_graph_walk_start(&graph, sensor_entity);
439 while ((entity = media_graph_walk_next(&graph))) {
440 if (strcmp(entity->name, "stream_cif_mipi_id0") == 0)
441 break;
442 }
443 mutex_unlock(&mdev->graph_mutex);
444 media_graph_walk_cleanup(&graph);
445
446 if (entity)
447 *video = media_entity_to_video_device(entity);
448 else
449 *video = NULL;
450 }
451
sensor_sync_dev_pipeline(u8 dev_num)452 static int sensor_sync_dev_pipeline(u8 dev_num)
453 {
454 struct sensor *sensor = NULL;
455 struct video_device *vdev = NULL;
456 int i = 0;
457 int disconnect_num = 0;
458 int ret = 0;
459
460 for (i = 0; i < cam_idx; i++) {
461 sensor = g_sensor[i];
462 if (!sensor)
463 continue;
464 if (!sensor->is_link) {
465 sensor_get_remote_dev(&sensor->subdev.entity, &vdev);
466 if (vdev != NULL) {
467 rkcif_sditf_disconnect(vdev);
468 disconnect_num++;
469 dev_info(&sensor->client->dev, "cam%d disconnect with isp\n", sensor->module_index);
470 }
471 }
472 }
473 if (sensor == NULL) {
474 ret = -EFAULT;
475 } else if (dev_num != (cam_idx - disconnect_num)) {
476 dev_err(&sensor->client->dev, "failed to sync i2cdev, dev_num not match\n");
477 ret = -EINVAL;
478 }
479 return ret;
480 }
481
find_sensor(int index)482 static struct sensor *find_sensor(int index)
483 {
484 int i = 0;
485
486 for (i = 0; i < cam_idx; i++) {
487 if (index == g_sensor[i]->module_index)
488 return g_sensor[i];
489 }
490 return NULL;
491 }
492
sensor_set_sensor_info(struct rkmodule_sensor_infos * sensor_infos)493 static int sensor_set_sensor_info(struct rkmodule_sensor_infos *sensor_infos)
494 {
495 int i = 0;
496 int dev_num = 0;
497
498 for (i = 0; i < cam_idx; i++) {
499 struct sensor *sensor = find_sensor(sensor_infos->sensor_fmt[i].sensor_index);
500
501 if (sensor_infos->sensor_fmt[i].sensor_width == 0 ||
502 sensor_infos->sensor_fmt[i].sensor_height == 0)
503 break;
504 if (sensor) {
505 sensor->cur_mode->width = sensor_infos->sensor_fmt[i].sensor_width;
506 sensor->cur_mode->height = sensor_infos->sensor_fmt[i].sensor_height;
507 sensor->is_link = true;
508 dev_num++;
509 } else {
510 dev_err(&g_sensor[0]->client->dev,
511 "not find the sensor, index %d\n", sensor_infos->sensor_fmt[i].sensor_index);
512 return -EINVAL;
513 }
514 }
515 sensor_sync_dev_pipeline(dev_num);
516 return 0;
517 }
518
sensor_ioctl(struct v4l2_subdev * sd,unsigned int cmd,void * arg)519 static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
520 {
521 void __user *up;
522 struct sensor *sensor = to_sensor(sd);
523 struct rkmodule_hdr_cfg *hdr;
524 struct rkmodule_bus_config *bus_config;
525 struct rkmodule_reg *reg_s;
526 long ret = 0;
527 s64 link_freq = 0;
528 int i = 0;
529 u32 *preg_addr = NULL;
530 u32 *preg_value = NULL;
531 u32 *preg_addr_bytes = NULL;
532 u32 *preg_value_bytes = NULL;
533 u32 lens = 0;
534 u8 dev_num = 0;
535 u32 stream = 0;
536 u32 *sync_mode = NULL;
537 struct rkmodule_mclk_data *mclk;
538 struct rkmodule_dev_info *dev_info;
539 struct rkmodule_csi_dphy_param *dphy_param;
540 struct rkmodule_sensor_infos *sensor_infos;
541
542 switch (cmd) {
543 case RKMODULE_GET_MODULE_INFO:
544 sensor_get_module_inf(sensor, (struct rkmodule_inf *)arg);
545 break;
546 case RKMODULE_GET_HDR_CFG:
547 hdr = (struct rkmodule_hdr_cfg *)arg;
548 *hdr = sensor->cur_mode->hdr_cfg;
549 dev_info(&sensor->client->dev,
550 "sensor get hdr esp_mode %d, hdr_mode %d\n",
551 hdr->esp.mode,
552 hdr->hdr_mode);
553 break;
554 case RKMODULE_SET_HDR_CFG:
555 hdr = (struct rkmodule_hdr_cfg *)arg;
556 sensor->cur_mode->hdr_cfg = *hdr;
557 dev_info(&sensor->client->dev,
558 "sensor set hdr esp_mode %d, hdr_mode %d\n",
559 hdr->esp.mode,
560 hdr->hdr_mode);
561 break;
562 case RKMODULE_SET_LINK_FREQ:
563 link_freq = *(s64 *)arg;
564 ret = sensor_config_link_freq(sensor, link_freq);
565 dev_info(&sensor->client->dev,
566 "sensor set link_freq %llu\n",
567 link_freq);
568 break;
569 case RKMODULE_SET_BUS_CONFIG:
570 bus_config = (struct rkmodule_bus_config *)arg;
571 sensor->bus_config = *bus_config;
572 dev_info(&sensor->client->dev,
573 "sensor set bus config, phy_mode %d, lanes %d\n",
574 bus_config->bus.phy_mode, bus_config->bus.lanes);
575 break;
576 case RKMODULE_GET_BUS_CONFIG:
577 bus_config = (struct rkmodule_bus_config *)arg;
578 bus_config->bus.bus_type = sensor->bus_config.bus.bus_type;
579 bus_config->bus.lanes = sensor->bus_config.bus.lanes;
580 bus_config->bus.phy_mode = sensor->bus_config.bus.phy_mode;
581 dev_info(&sensor->client->dev,
582 "sensor get bus config, phy_mode %d, lanes %d\n",
583 bus_config->bus.phy_mode, bus_config->bus.lanes);
584 break;
585 case RKMODULE_SET_REGISTER:
586 reg_s = (struct rkmodule_reg *)arg;
587 if (reg_s->num_regs == 0) {
588 dev_err(&sensor->client->dev, "sensor reg array num %llu\n", reg_s->num_regs);
589 return -EINVAL;
590 }
591
592 dev_dbg(&sensor->client->dev, "sensor reg array num %llu\n",
593 reg_s->num_regs);
594 lens = sizeof(u32) * reg_s->num_regs;
595 preg_addr = kzalloc(lens, GFP_KERNEL);
596 if (!preg_addr)
597 return -EFAULT;
598 up = (void __user *)reg_s->preg_addr;
599 ret = copy_from_user(preg_addr, up, lens);
600 if (ret) {
601 ret = -EFAULT;
602 goto end_set_reg;
603 }
604 preg_value = kzalloc(lens, GFP_KERNEL);
605 if (!preg_value) {
606 ret = -EFAULT;
607 goto end_set_reg;
608 }
609 up = (void __user *)reg_s->preg_value;
610 ret = copy_from_user(preg_value, up, lens);
611 if (ret) {
612 ret = -EFAULT;
613 goto end_set_reg;
614 }
615 preg_addr_bytes = kzalloc(lens, GFP_KERNEL);
616 if (!preg_addr_bytes) {
617 ret = -EFAULT;
618 goto end_set_reg;
619 }
620 up = (void __user *)reg_s->preg_addr_bytes;
621 ret = copy_from_user(preg_addr_bytes, up, lens);
622 if (ret) {
623 ret = -EFAULT;
624 goto end_set_reg;
625 }
626 preg_value_bytes = kzalloc(lens, GFP_KERNEL);
627 if (!preg_value_bytes) {
628 ret = -EFAULT;
629 goto end_set_reg;
630 }
631 up = (void __user *)reg_s->preg_value_bytes;
632 ret = copy_from_user(preg_value_bytes, up, lens);
633 if (ret) {
634 ret = -EFAULT;
635 goto end_set_reg;
636 }
637 for (i = 0; i < reg_s->num_regs; i++) {
638 dev_dbg(&sensor->client->dev, "sensor reg 0x%x, reg_bytes %u, val 0x%x, val_bytes %u\n",
639 preg_addr[i], preg_addr_bytes[i], preg_value[i], preg_value_bytes[i]);
640 if (g_rkcam_bus_callback[sensor->i2cdev].prkcam_write_i2c_data) {
641 ret = g_rkcam_bus_callback[sensor->i2cdev].prkcam_write_i2c_data(sensor->i2cdev,
642 0,
643 (u32)preg_addr[i], (u32)preg_addr_bytes[i],
644 (u32)preg_value[i], (u32)preg_value_bytes[i]);
645 if (ret)
646 dev_err(&sensor->client->dev, "failed to write sensor reg\n");
647 } else {
648 ret = sensor_write_reg(sensor->client,
649 (u32)preg_addr[i],
650 (u32)preg_addr_bytes[i],
651 (u32)preg_value[i],
652 (u32)preg_value_bytes[i]);
653 if (ret)
654 dev_err(&sensor->client->dev, "failed to write sensor by sensor_write_reg\n");
655 }
656 }
657 end_set_reg:
658 kfree(preg_addr);
659 kfree(preg_value);
660 kfree(preg_addr_bytes);
661 kfree(preg_value_bytes);
662 break;
663 case RKMODULE_SET_QUICK_STREAM:
664 if (g_rkcam_bus_callback[sensor->i2cdev].prkcam_s_stream) {
665 stream = *(u32 *)arg;
666 ret = g_rkcam_bus_callback[sensor->i2cdev].prkcam_s_stream(sensor->i2cdev, !!stream);
667 if (ret)
668 dev_err(&sensor->client->dev, "failed to set quick stream\n");
669 else
670 dev_info(&sensor->client->dev, "success to set quick stream\n");
671 } else {
672 dev_err(&sensor->client->dev,
673 "The callback function of sensor s_stream is not exist\n");
674 }
675 break;
676 case RKMODULE_SYNC_I2CDEV:
677 sensor->i2cdev = *(u8 *)arg;
678 sensor->is_link = true;
679 dev_info(&sensor->client->dev,
680 "sensor sync i2cdev, dev_index %d\n",
681 sensor->i2cdev);
682 break;
683 case RKMODULE_SYNC_I2CDEV_COMPLETE:
684 dev_num = *(u8 *)arg;
685 ret = sensor_sync_dev_pipeline(dev_num);
686 dev_info(&sensor->client->dev,
687 "sensor sync i2cdev complete, dev_num %d\n",
688 dev_num);
689 break;
690 case RKMODULE_GET_SYNC_MODE:
691 sync_mode = (u32 *)arg;
692 *sync_mode = sensor->sync_mode;
693 dev_info(&sensor->client->dev,
694 "sensor get sync_mode %d\n",
695 *sync_mode);
696 break;
697 case RKMODULE_SET_SYNC_MODE:
698 sync_mode = (u32 *)arg;
699 sensor->sync_mode = *sync_mode;
700 dev_info(&sensor->client->dev,
701 "sensor set sync_mode %d\n",
702 *sync_mode);
703 break;
704 case RKMODULE_SET_MCLK:
705 mclk = (struct rkmodule_mclk_data *)arg;
706 if (mclk->enable)
707 rkcam_sensor_enable_mclk(0, mclk->mclk_index, mclk->mclk_rate);
708 else
709 rkcam_sensor_disable_mclk(0, mclk->mclk_index);
710
711 dev_info(&sensor->client->dev,
712 "sensor set mclk, enable %u, index %u, rate %u\n",
713 mclk->enable, mclk->mclk_index, mclk->mclk_rate);
714 break;
715 case RKMODULE_SET_DEV_INFO:
716 dev_info = (struct rkmodule_dev_info *)arg;
717 if (dev_info->i2c_dev.slave_addr)
718 sensor->client->addr = dev_info->i2c_dev.slave_addr;
719 dev_info(&sensor->client->dev,
720 "sensor set dev info ,slave addr 0x%x\n",
721 dev_info->i2c_dev.slave_addr);
722 break;
723 case RKMODULE_SET_CSI_DPHY_PARAM:
724 dphy_param = (struct rkmodule_csi_dphy_param *)arg;
725 if (dphy_param->vendor == PHY_VENDOR_SAMSUNG)
726 sensor->dphy_param = *dphy_param;
727 dev_dbg(&sensor->client->dev,
728 "sensor set dphy param\n");
729 break;
730 case RKMODULE_GET_CSI_DPHY_PARAM:
731 dphy_param = (struct rkmodule_csi_dphy_param *)arg;
732 *dphy_param = sensor->dphy_param;
733 dev_dbg(&sensor->client->dev,
734 "sensor get dphy param\n");
735 break;
736 case RKMODULE_SET_SENSOR_INFOS:
737 sensor_infos = (struct rkmodule_sensor_infos *)arg;
738 ret = sensor_set_sensor_info(sensor_infos);
739 break;
740 default:
741 ret = -ENOIOCTLCMD;
742 break;
743 }
744
745 return ret;
746 }
747
748 #ifdef CONFIG_COMPAT
sensor_compat_ioctl32(struct v4l2_subdev * sd,unsigned int cmd,unsigned long arg)749 static long sensor_compat_ioctl32(struct v4l2_subdev *sd,
750 unsigned int cmd, unsigned long arg)
751 {
752 void __user *up = compat_ptr(arg);
753 struct rkmodule_inf *inf;
754 struct rkmodule_hdr_cfg *hdr;
755 struct rkmodule_bus_config *bus_config;
756 struct rkmodule_reg *reg_s;
757 long ret;
758 u32 stream = 0;
759 s64 link_freq = 0;
760 u8 i2cdev = 0;
761 u8 dev_num = 0;
762 u32 *sync_mode = NULL;
763 struct rkmodule_mclk_data *mclk;
764 struct rkmodule_dev_info *dev_info;
765 struct rkmodule_csi_dphy_param *dphy_param;
766 struct rkmodule_sensor_infos *sensor_infos;
767
768 switch (cmd) {
769 case RKMODULE_GET_MODULE_INFO:
770 inf = kzalloc(sizeof(*inf), GFP_KERNEL);
771 if (!inf) {
772 ret = -ENOMEM;
773 return ret;
774 }
775
776 ret = sensor_ioctl(sd, cmd, inf);
777 if (!ret) {
778 ret = copy_to_user(up, inf, sizeof(*inf));
779 if (ret)
780 ret = -EFAULT;
781 }
782 kfree(inf);
783 break;
784 case RKMODULE_GET_HDR_CFG:
785 hdr = kzalloc(sizeof(*hdr), GFP_KERNEL);
786 if (!hdr) {
787 ret = -ENOMEM;
788 return ret;
789 }
790
791 ret = sensor_ioctl(sd, cmd, hdr);
792 if (!ret) {
793 ret = copy_to_user(up, hdr, sizeof(*hdr));
794 if (ret)
795 ret = -EFAULT;
796 }
797 kfree(hdr);
798 break;
799 case RKMODULE_SET_HDR_CFG:
800 hdr = kzalloc(sizeof(*hdr), GFP_KERNEL);
801 if (!hdr) {
802 ret = -ENOMEM;
803 return ret;
804 }
805
806 ret = copy_from_user(hdr, up, sizeof(*hdr));
807 if (!ret)
808 ret = sensor_ioctl(sd, cmd, hdr);
809 else
810 ret = -EFAULT;
811 kfree(hdr);
812 break;
813 case RKMODULE_SET_QUICK_STREAM:
814 ret = copy_from_user(&stream, up, sizeof(u32));
815 if (!ret)
816 ret = sensor_ioctl(sd, cmd, &stream);
817 else
818 ret = -EFAULT;
819
820 break;
821 case RKMODULE_SET_LINK_FREQ:
822 ret = copy_from_user(&link_freq, up, sizeof(s64));
823 if (!ret)
824 ret = sensor_ioctl(sd, cmd, &link_freq);
825 else
826 ret = -EFAULT;
827 break;
828 case RKMODULE_GET_BUS_CONFIG:
829 bus_config = kzalloc(sizeof(*bus_config), GFP_KERNEL);
830 if (!bus_config) {
831 ret = -ENOMEM;
832 return ret;
833 }
834
835 ret = sensor_ioctl(sd, cmd, bus_config);
836 if (!ret) {
837 ret = copy_to_user(up, bus_config, sizeof(*bus_config));
838 if (ret)
839 ret = -EFAULT;
840 }
841 kfree(bus_config);
842 break;
843 case RKMODULE_SET_BUS_CONFIG:
844 bus_config = kzalloc(sizeof(*bus_config), GFP_KERNEL);
845 if (!bus_config) {
846 ret = -ENOMEM;
847 return ret;
848 }
849
850 ret = copy_from_user(bus_config, up, sizeof(*bus_config));
851 if (!ret)
852 ret = sensor_ioctl(sd, cmd, bus_config);
853 else
854 ret = -EFAULT;
855 kfree(bus_config);
856 break;
857 case RKMODULE_SET_REGISTER:
858 reg_s = kzalloc(sizeof(*reg_s), GFP_KERNEL);
859 if (!reg_s) {
860 ret = -ENOMEM;
861 return ret;
862 }
863
864 ret = copy_from_user(reg_s, up, sizeof(*reg_s));
865 if (!ret) {
866 ret = sensor_ioctl(sd, cmd, reg_s);
867 kfree(reg_s);
868 } else {
869 kfree(reg_s);
870 ret = -EFAULT;
871 }
872 break;
873 case RKMODULE_SYNC_I2CDEV:
874 ret = copy_from_user(&i2cdev, up, sizeof(u8));
875 if (!ret)
876 ret = sensor_ioctl(sd, cmd, &i2cdev);
877 else
878 ret = -EFAULT;
879
880 break;
881 case RKMODULE_SYNC_I2CDEV_COMPLETE:
882 ret = copy_from_user(&dev_num, up, sizeof(u8));
883 if (!ret)
884 ret = sensor_ioctl(sd, cmd, &dev_num);
885 else
886 ret = -EFAULT;
887
888 break;
889 case RKMODULE_GET_SYNC_MODE:
890 ret = sensor_ioctl(sd, cmd, &sync_mode);
891 if (!ret) {
892 ret = copy_to_user(up, &sync_mode, sizeof(u32));
893 if (ret)
894 ret = -EFAULT;
895 }
896 break;
897 case RKMODULE_SET_SYNC_MODE:
898 ret = copy_from_user(&sync_mode, up, sizeof(u32));
899 if (!ret)
900 ret = sensor_ioctl(sd, cmd, &sync_mode);
901 else
902 ret = -EFAULT;
903 break;
904 case RKMODULE_SET_MCLK:
905 mclk = kzalloc(sizeof(*mclk), GFP_KERNEL);
906 if (!mclk) {
907 ret = -ENOMEM;
908 return ret;
909 }
910
911 ret = copy_from_user(mclk, up, sizeof(*mclk));
912 if (!ret)
913 ret = sensor_ioctl(sd, cmd, mclk);
914 else
915 ret = -EFAULT;
916 kfree(mclk);
917 break;
918 case RKMODULE_SET_DEV_INFO:
919 dev_info = kzalloc(sizeof(*dev_info), GFP_KERNEL);
920 if (!dev_info) {
921 ret = -ENOMEM;
922 return ret;
923 }
924
925 ret = copy_from_user(dev_info, up, sizeof(*dev_info));
926 if (!ret)
927 ret = sensor_ioctl(sd, cmd, dev_info);
928 else
929 ret = -EFAULT;
930 kfree(dev_info);
931 break;
932 case RKMODULE_SET_CSI_DPHY_PARAM:
933 dphy_param = kzalloc(sizeof(*dphy_param), GFP_KERNEL);
934 if (!dphy_param) {
935 ret = -ENOMEM;
936 return ret;
937 }
938
939 ret = copy_from_user(dphy_param, up, sizeof(*dphy_param));
940 if (!ret)
941 ret = sensor_ioctl(sd, cmd, dphy_param);
942 else
943 ret = -EFAULT;
944 kfree(dphy_param);
945 break;
946 case RKMODULE_GET_CSI_DPHY_PARAM:
947 dphy_param = kzalloc(sizeof(*dphy_param), GFP_KERNEL);
948 if (!dphy_param) {
949 ret = -ENOMEM;
950 return ret;
951 }
952
953 ret = sensor_ioctl(sd, cmd, dphy_param);
954 if (!ret) {
955 ret = copy_to_user(up, dphy_param, sizeof(*dphy_param));
956 if (ret)
957 ret = -EFAULT;
958 }
959 kfree(dphy_param);
960 break;
961 case RKMODULE_SET_SENSOR_INFOS:
962 sensor_infos = kzalloc(sizeof(*sensor_infos), GFP_KERNEL);
963 if (!sensor_infos) {
964 ret = -ENOMEM;
965 return ret;
966 }
967 ret = copy_from_user(sensor_infos, up, sizeof(*sensor_infos));
968 if (!ret)
969 ret = sensor_ioctl(sd, cmd, sensor_infos);
970 else
971 ret = -EFAULT;
972 kfree(sensor_infos);
973 break;
974 default:
975 ret = -ENOIOCTLCMD;
976 break;
977 }
978
979 return ret;
980 }
981 #endif
982
__sensor_start_stream(struct sensor * sensor)983 static int __sensor_start_stream(struct sensor *sensor)
984 {
985 /* user to write sensor setting or
986 * may control by aiq callback to set sensor setting by customer driver
987 */
988 return 0;
989 }
990
__sensor_stop_stream(struct sensor * sensor)991 static int __sensor_stop_stream(struct sensor *sensor)
992 {
993 /* user to write sensor setting or
994 * may control by aiq callback to set sensor setting by customer driver
995 */
996 return 0;
997 }
998
sensor_s_stream(struct v4l2_subdev * sd,int on)999 static int sensor_s_stream(struct v4l2_subdev *sd, int on)
1000 {
1001 struct sensor *sensor = to_sensor(sd);
1002 struct i2c_client *client = sensor->client;
1003 int ret = 0;
1004
1005 mutex_lock(&sensor->mutex);
1006 on = !!on;
1007 if (on == sensor->streaming)
1008 goto unlock_and_return;
1009
1010 if (on) {
1011
1012 ret = __sensor_start_stream(sensor);
1013 if (ret) {
1014 v4l2_err(sd, "start stream failed while write regs\n");
1015 pm_runtime_put(&client->dev);
1016 goto unlock_and_return;
1017 }
1018 } else {
1019 __sensor_stop_stream(sensor);
1020 }
1021
1022 sensor->streaming = on;
1023
1024 unlock_and_return:
1025 mutex_unlock(&sensor->mutex);
1026
1027 return ret;
1028 }
1029
sensor_s_power(struct v4l2_subdev * sd,int on)1030 static int sensor_s_power(struct v4l2_subdev *sd, int on)
1031 {
1032 struct sensor *sensor = to_sensor(sd);
1033 struct i2c_client *client = sensor->client;
1034 int ret = 0;
1035
1036 mutex_lock(&sensor->mutex);
1037
1038 /* If the power state is not modified - no work to do. */
1039 if (sensor->power_on == !!on)
1040 goto unlock_and_return;
1041
1042 if (on) {
1043 ret = pm_runtime_get_sync(&client->dev);
1044 if (ret < 0) {
1045 pm_runtime_put_noidle(&client->dev);
1046 goto unlock_and_return;
1047 }
1048
1049 sensor->power_on = true;
1050 } else {
1051 pm_runtime_put(&client->dev);
1052 sensor->power_on = false;
1053 }
1054
1055 unlock_and_return:
1056 mutex_unlock(&sensor->mutex);
1057
1058 return ret;
1059 }
1060
__sensor_power_on(struct sensor * sensor)1061 static int __sensor_power_on(struct sensor *sensor)
1062 {
1063
1064 //todo
1065 //call sensor power on
1066 return 0;
1067 }
1068
__sensor_power_off(struct sensor * sensor)1069 static void __sensor_power_off(struct sensor *sensor)
1070 {
1071 //todo
1072 //call sensor power off
1073 }
1074
sensor_runtime_resume(struct device * dev)1075 static int sensor_runtime_resume(struct device *dev)
1076 {
1077 struct i2c_client *client = to_i2c_client(dev);
1078 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1079 struct sensor *sensor = to_sensor(sd);
1080
1081 return __sensor_power_on(sensor);
1082 }
1083
sensor_runtime_suspend(struct device * dev)1084 static int sensor_runtime_suspend(struct device *dev)
1085 {
1086 struct i2c_client *client = to_i2c_client(dev);
1087 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1088 struct sensor *sensor = to_sensor(sd);
1089
1090 __sensor_power_off(sensor);
1091
1092 return 0;
1093 }
1094
sensor_get_selection(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)1095 static int sensor_get_selection(struct v4l2_subdev *sd,
1096 struct v4l2_subdev_pad_config *cfg,
1097 struct v4l2_subdev_selection *sel)
1098 {
1099 struct sensor *sensor = to_sensor(sd);
1100
1101 if (sel->target == V4L2_SEL_TGT_CROP_BOUNDS) {
1102 if (sensor->crop.is_enable &&
1103 (sensor->crop.left + sensor->crop.width) <= sensor->cur_mode->width &&
1104 (sensor->crop.top + sensor->crop.height) <= sensor->cur_mode->height) {
1105 sel->r.left = sensor->crop.left;
1106 sel->r.width = sensor->crop.width;
1107 sel->r.top = sensor->crop.top;
1108 sel->r.height = sensor->crop.height;
1109 dev_dbg(&sensor->client->dev,
1110 "%s left %d, width %d, top %d, height %d\n",
1111 __func__,
1112 sensor->crop.left, sensor->crop.width,
1113 sensor->crop.top, sensor->crop.height);
1114 } else {
1115 sel->r.left = 0;
1116 sel->r.width = sensor->cur_mode->width;
1117 sel->r.top = 0;
1118 sel->r.height = sensor->cur_mode->height;
1119 }
1120 return 0;
1121 }
1122 dev_err(&sensor->client->dev,
1123 "%s failed\n", __func__);
1124 return -EINVAL;
1125 }
1126
sensor_set_selection(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_selection * sel)1127 static int sensor_set_selection(struct v4l2_subdev *sd,
1128 struct v4l2_subdev_pad_config *cfg,
1129 struct v4l2_subdev_selection *sel)
1130 {
1131 struct sensor *sensor = to_sensor(sd);
1132
1133 if (sel->target == V4L2_SEL_TGT_CROP_BOUNDS) {
1134 sensor->crop.top = sel->r.top;
1135 sensor->crop.left = sel->r.left;
1136 sensor->crop.width = sel->r.width;
1137 sensor->crop.height = sel->r.height;
1138 sensor->crop.is_enable = true;
1139 dev_info(&sensor->client->dev,
1140 "%s left %d, width %d, top %d, height %d\n",
1141 __func__,
1142 sensor->crop.left, sensor->crop.width,
1143 sensor->crop.top, sensor->crop.height);
1144 return 0;
1145 }
1146 dev_err(&sensor->client->dev,
1147 "sensor_get_selection failed\n");
1148 return -EINVAL;
1149 }
1150
1151 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
sensor_open(struct v4l2_subdev * sd,struct v4l2_subdev_fh * fh)1152 static int sensor_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
1153 {
1154 struct sensor *sensor = to_sensor(sd);
1155 struct v4l2_mbus_framefmt *try_fmt =
1156 v4l2_subdev_get_try_format(sd, fh->pad, 0);
1157 const struct sensor_mode *def_mode = sensor->cur_mode;
1158
1159 mutex_lock(&sensor->mutex);
1160 /* Initialize try_fmt */
1161 try_fmt->width = def_mode->width;
1162 try_fmt->height = def_mode->height;
1163 try_fmt->code = def_mode->bus_fmt;
1164 try_fmt->field = V4L2_FIELD_NONE;
1165
1166 mutex_unlock(&sensor->mutex);
1167 /* No crop or compose */
1168
1169 return 0;
1170 }
1171 #endif
1172
sensor_enum_frame_interval(struct v4l2_subdev * sd,struct v4l2_subdev_pad_config * cfg,struct v4l2_subdev_frame_interval_enum * fie)1173 static int sensor_enum_frame_interval(struct v4l2_subdev *sd,
1174 struct v4l2_subdev_pad_config *cfg,
1175 struct v4l2_subdev_frame_interval_enum *fie)
1176 {
1177 struct sensor *sensor = to_sensor(sd);
1178
1179 if (fie->index > 1)
1180 return -EINVAL;
1181
1182 fie->code = sensor->cur_mode->bus_fmt;
1183 fie->width = sensor->cur_mode->width;
1184 fie->height = sensor->cur_mode->height;
1185 fie->interval = sensor->cur_mode->max_fps;
1186 fie->reserved[0] = sensor->cur_mode->hdr_cfg.hdr_mode;
1187 return 0;
1188 }
1189
1190 static const struct dev_pm_ops sensor_pm_ops = {
1191 SET_RUNTIME_PM_OPS(sensor_runtime_suspend,
1192 sensor_runtime_resume, NULL)
1193 };
1194
1195 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1196 static const struct v4l2_subdev_internal_ops sensor_internal_ops = {
1197 .open = sensor_open,
1198 };
1199 #endif
1200
1201 static const struct v4l2_subdev_core_ops sensor_core_ops = {
1202 .s_power = sensor_s_power,
1203 .ioctl = sensor_ioctl,
1204 #ifdef CONFIG_COMPAT
1205 .compat_ioctl32 = sensor_compat_ioctl32,
1206 #endif
1207 };
1208
1209 static const struct v4l2_subdev_video_ops sensor_video_ops = {
1210 .s_stream = sensor_s_stream,
1211 .g_frame_interval = sensor_g_frame_interval,
1212 .s_frame_interval = sensor_s_frame_interval,
1213 };
1214
1215 static const struct v4l2_subdev_pad_ops sensor_pad_ops = {
1216 .enum_mbus_code = sensor_enum_mbus_code,
1217 .enum_frame_size = sensor_enum_frame_sizes,
1218 .enum_frame_interval = sensor_enum_frame_interval,
1219 .get_fmt = sensor_get_fmt,
1220 .set_fmt = sensor_set_fmt,
1221 .get_selection = sensor_get_selection,
1222 .set_selection = sensor_set_selection,
1223 .get_mbus_config = sensor_g_mbus_config,
1224 };
1225
1226 static const struct v4l2_subdev_ops sensor_subdev_ops = {
1227 .core = &sensor_core_ops,
1228 .video = &sensor_video_ops,
1229 .pad = &sensor_pad_ops,
1230 };
1231
sensor_set_ctrl(struct v4l2_ctrl * ctrl)1232 static int sensor_set_ctrl(struct v4l2_ctrl *ctrl)
1233 {
1234 struct sensor *sensor = container_of(ctrl->handler,
1235 struct sensor, ctrl_handler);
1236 struct i2c_client *client = sensor->client;
1237 int ret = 0;
1238
1239 if (!pm_runtime_get_if_in_use(&client->dev))
1240 return 0;
1241
1242 switch (ctrl->id) {
1243 case V4L2_CID_HFLIP:
1244 //todo
1245 break;
1246 case V4L2_CID_VFLIP:
1247 //todo
1248 break;
1249 default:
1250 dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n",
1251 __func__, ctrl->id, ctrl->val);
1252 break;
1253 }
1254
1255 pm_runtime_put(&client->dev);
1256
1257 return ret;
1258 }
1259
1260 static const struct v4l2_ctrl_ops sensor_ctrl_ops = {
1261 .s_ctrl = sensor_set_ctrl,
1262 };
1263
sensor_initialize_controls(struct sensor * sensor)1264 static int sensor_initialize_controls(struct sensor *sensor)
1265 {
1266 const struct sensor_mode *mode;
1267 struct v4l2_ctrl_handler *handler;
1268 u64 pixel_rate = 0;
1269 int ret;
1270 u32 h_blank = 0;
1271 u32 vblank_def = 0;
1272
1273 handler = &sensor->ctrl_handler;
1274 mode = sensor->cur_mode;
1275 ret = v4l2_ctrl_handler_init(handler, 4);
1276 if (ret)
1277 return ret;
1278 handler->lock = &sensor->mutex;
1279
1280 sensor->link_freq = v4l2_ctrl_new_int_menu(handler,
1281 NULL, V4L2_CID_LINK_FREQ,
1282 0, 0, link_freq_menu_items);
1283 pixel_rate = (u32)mode->mipi_freq / mode->bpp * 2 *
1284 sensor->bus_config.bus.lanes;
1285 sensor->pixel_rate = v4l2_ctrl_new_std(handler, NULL,
1286 V4L2_CID_PIXEL_RATE, 0, pixel_rate,
1287 1, pixel_rate);
1288
1289 h_blank = 600;
1290 sensor->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK,
1291 h_blank, h_blank, 1, h_blank);
1292 if (sensor->hblank)
1293 sensor->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
1294
1295 vblank_def = 100;
1296 sensor->vblank = v4l2_ctrl_new_std(handler, &sensor_ctrl_ops,
1297 V4L2_CID_VBLANK, vblank_def,
1298 vblank_def,
1299 1, vblank_def);
1300
1301 v4l2_ctrl_new_std(handler, &sensor_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
1302 v4l2_ctrl_new_std(handler, &sensor_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
1303
1304 if (handler->error) {
1305 ret = handler->error;
1306 dev_err(&sensor->client->dev,
1307 "Failed to init controls(%d)\n", ret);
1308 goto err_free_handler;
1309 }
1310
1311 sensor->subdev.ctrl_handler = handler;
1312
1313 return 0;
1314
1315 err_free_handler:
1316 v4l2_ctrl_handler_free(handler);
1317
1318 return ret;
1319 }
1320
sensor_probe(struct i2c_client * client,const struct i2c_device_id * id)1321 static int sensor_probe(struct i2c_client *client,
1322 const struct i2c_device_id *id)
1323 {
1324 struct device *dev = &client->dev;
1325 struct device_node *node = dev->of_node;
1326 struct v4l2_subdev *sd;
1327 struct sensor *sensor;
1328 char facing[2];
1329 int ret;
1330 int i;
1331
1332 dev_info(dev, "driver version: %02x.%02x.%02x",
1333 DRIVER_VERSION >> 16,
1334 (DRIVER_VERSION & 0xff00) >> 8,
1335 DRIVER_VERSION & 0x00ff);
1336
1337 sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL);
1338 if (!sensor)
1339 return -ENOMEM;
1340 g_sensor[cam_idx] = sensor;
1341 ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
1342 &sensor->module_index);
1343 ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
1344 &sensor->module_facing);
1345 ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
1346 &sensor->module_name);
1347 ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
1348 &sensor->len_name);
1349 if (ret) {
1350 dev_err(dev, "could not get module information!\n");
1351 return -EINVAL;
1352 }
1353 sensor->client = client;
1354 sensor->cur_mode = &supported_modes[0];
1355 for (i = 0; i < MAX_MIPICLK_NUM; i++) {
1356 struct clk *clk = devm_clk_get(dev, mipi_clks[i]);
1357
1358 if (IS_ERR(clk)) {
1359 dev_err(dev, "failed to get %s\n", mipi_clks[i]);
1360 return PTR_ERR(clk);
1361 }
1362 sensor->clks[i] = clk;
1363 }
1364
1365 sensor->pinctrl = devm_pinctrl_get(dev);
1366 if (!IS_ERR(sensor->pinctrl)) {
1367 sensor->pins_default =
1368 pinctrl_lookup_state(sensor->pinctrl,
1369 OF_CAMERA_PINCTRL_STATE_DEFAULT);
1370 if (IS_ERR(sensor->pins_default))
1371 dev_err(dev, "could not get default pinstate\n");
1372
1373 sensor->pins_sleep =
1374 pinctrl_lookup_state(sensor->pinctrl,
1375 OF_CAMERA_PINCTRL_STATE_SLEEP);
1376 if (IS_ERR(sensor->pins_sleep))
1377 dev_err(dev, "could not get sleep pinstate\n");
1378 } else {
1379 dev_err(dev, "no pinctrl\n");
1380 }
1381 mutex_init(&sensor->mutex);
1382 sensor->bus_config.bus.lanes = 2;
1383 sensor->bus_config.bus.bus_type = V4L2_MBUS_CSI2_DPHY;
1384 sensor->is_link = false;
1385 sensor->sync_mode = NO_SYNC_MODE;
1386 sensor->crop.is_enable = false;
1387 sensor->dphy_param = rk3588_dcphy_param;
1388 sd = &sensor->subdev;
1389 v4l2_i2c_subdev_init(sd, client, &sensor_subdev_ops);
1390 ret = sensor_initialize_controls(sensor);
1391 if (ret)
1392 goto err_destroy_mutex;
1393
1394 #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
1395 sd->internal_ops = &sensor_internal_ops;
1396 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE |
1397 V4L2_SUBDEV_FL_HAS_EVENTS;
1398 #endif
1399 #if defined(CONFIG_MEDIA_CONTROLLER)
1400 sensor->pad.flags = MEDIA_PAD_FL_SOURCE;
1401 sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
1402 ret = media_entity_pads_init(&sd->entity, 1, &sensor->pad);
1403 if (ret < 0)
1404 goto err_power_off;
1405 #endif
1406
1407 memset(facing, 0, sizeof(facing));
1408 if (strcmp(sensor->module_facing, "back") == 0)
1409 facing[0] = 'b';
1410 else
1411 facing[0] = 'f';
1412
1413 snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
1414 sensor->module_index, facing,
1415 SENSOR_NAME, dev_name(sd->dev));
1416 ret = v4l2_async_register_subdev_sensor_common(sd);
1417 if (ret) {
1418 dev_err(dev, "v4l2 async register subdev failed\n");
1419 goto err_clean_entity;
1420 }
1421
1422 pm_runtime_set_active(dev);
1423 pm_runtime_enable(dev);
1424 pm_runtime_idle(dev);
1425 if (cam_idx < RKMODULE_MAX_SENSOR_NUM) {
1426 cam_idx++;
1427 } else {
1428 ret = -EINVAL;
1429 dev_err(dev, "max cam num %d\n", RKMODULE_MAX_SENSOR_NUM);
1430 goto err_clean_entity;
1431 }
1432
1433 return 0;
1434
1435 err_clean_entity:
1436 #if defined(CONFIG_MEDIA_CONTROLLER)
1437 media_entity_cleanup(&sd->entity);
1438 #endif
1439 err_power_off:
1440 __sensor_power_off(sensor);
1441 err_destroy_mutex:
1442 mutex_destroy(&sensor->mutex);
1443
1444 return ret;
1445 }
1446
sensor_remove(struct i2c_client * client)1447 static int sensor_remove(struct i2c_client *client)
1448 {
1449 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1450 struct sensor *sensor = to_sensor(sd);
1451
1452 v4l2_async_unregister_subdev(sd);
1453 #if defined(CONFIG_MEDIA_CONTROLLER)
1454 media_entity_cleanup(&sd->entity);
1455 #endif
1456 v4l2_ctrl_handler_free(&sensor->ctrl_handler);
1457 mutex_destroy(&sensor->mutex);
1458
1459 pm_runtime_disable(&client->dev);
1460 if (!pm_runtime_status_suspended(&client->dev))
1461 __sensor_power_off(sensor);
1462 pm_runtime_set_suspended(&client->dev);
1463
1464 return 0;
1465 }
1466
1467 #if IS_ENABLED(CONFIG_OF)
1468 static const struct of_device_id sensor_of_match[] = {
1469 { .compatible = "sensor,adapter" },
1470 {},
1471 };
1472 MODULE_DEVICE_TABLE(of, sensor_of_match);
1473 #endif
1474
1475 static const struct i2c_device_id sensor_match_id[] = {
1476 { "sensor,adapter", 0 },
1477 { },
1478 };
1479
1480 static struct i2c_driver sensor_i2c_driver = {
1481 .driver = {
1482 .name = SENSOR_NAME,
1483 .pm = &sensor_pm_ops,
1484 .of_match_table = of_match_ptr(sensor_of_match),
1485 },
1486 .probe = &sensor_probe,
1487 .remove = &sensor_remove,
1488 .id_table = sensor_match_id,
1489 };
1490
sensor_mod_init(void)1491 static int __init sensor_mod_init(void)
1492 {
1493 return i2c_add_driver(&sensor_i2c_driver);
1494 }
1495
sensor_mod_exit(void)1496 static void __exit sensor_mod_exit(void)
1497 {
1498 i2c_del_driver(&sensor_i2c_driver);
1499 }
1500
1501 device_initcall_sync(sensor_mod_init);
1502 module_exit(sensor_mod_exit);
1503
1504 MODULE_DESCRIPTION("sensor adapter driver");
1505 MODULE_LICENSE("GPL v2");
1506