1 /* drivers/input/sensors/access/dmard10.c
2 *
3 * Copyright (C) 2012-2015 ROCKCHIP.
4 * Author: guoyi <gy@rock-chips.com>
5 *
6 * This software is licensed under the terms of the GNU General Public
7 * License version 2, as published by the Free Software Foundation, and
8 * may be copied, distributed, and modified under those terms.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16 #include <linux/interrupt.h>
17 #include <linux/i2c.h>
18 #include <linux/slab.h>
19 #include <linux/irq.h>
20 #include <linux/miscdevice.h>
21 #include <linux/gpio.h>
22 #include <linux/uaccess.h>
23 #include <asm/atomic.h>
24 #include <linux/delay.h>
25 #include <linux/input.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 #include <linux/of_gpio.h>
29 #ifdef CONFIG_HAS_EARLYSUSPEND
30 #include <linux/earlysuspend.h>
31 #endif
32 #include <linux/sensor-dev.h>
33
34 /* Default register settings */
35 #define RBUFF_SIZE 12 /* Rx buffer size */
36
37 #define REG_ACTR 0x00
38 #define REG_WDAL 0x01
39 #define REG_TAPNS 0x0f
40 #define REG_MISC2 0x1f
41 #define REG_AFEM 0x0c
42 #define REG_CKSEL 0x0d
43 #define REG_INTC 0x0e
44 #define REG_STADR 0x12
45 #define REG_STAINT 0x1C
46 #define REG_PD 0x21
47 #define REG_TCGYZ 0x26
48 #define REG_X_OUT 0x41
49
50 #define MODE_Off 0x00
51 #define MODE_ResetAtOff 0x01
52 #define MODE_Standby 0x02
53 #define MODE_ResetAtStandby 0x03
54 #define MODE_Active 0x06
55 #define MODE_Trigger 0x0a
56 #define MODE_ReadOTP 0x12
57 #define MODE_WriteOTP 0x22
58 #define MODE_WriteOTPBuf 0x42
59 #define MODE_ResetDataPath 0x82
60
61 #define VALUE_STADR 0x55
62 #define VALUE_STAINT 0xAA
63 #define VALUE_AFEM_AFEN_Normal 0x8f// AFEN set 1 , ATM[2:0]=b'000(normal),EN_Z/Y/X/T=1
64 #define VALUE_AFEM_Normal 0x0f// AFEN set 0 , ATM[2:0]=b'000(normal),EN_Z/Y/X/T=1
65 #define VALUE_INTC 0x00// INTC[6:5]=b'00
66 #define VALUE_INTC_Interrupt_En 0x20// INTC[6:5]=b'01 (Data ready interrupt enable, active high at INT0)
67 #define VALUE_CKSEL_ODR_0_204 0x04// ODR[3:0]=b'0000 (0.78125Hz), CCK[3:0]=b'0100 (204.8kHZ)
68 #define VALUE_CKSEL_ODR_1_204 0x14// ODR[3:0]=b'0001 (1.5625Hz), CCK[3:0]=b'0100 (204.8kHZ)
69 #define VALUE_CKSEL_ODR_3_204 0x24// ODR[3:0]=b'0010 (3.125Hz), CCK[3:0]=b'0100 (204.8kHZ)
70 #define VALUE_CKSEL_ODR_6_204 0x34// ODR[3:0]=b'0011 (6.25Hz), CCK[3:0]=b'0100 (204.8kHZ)
71 #define VALUE_CKSEL_ODR_12_204 0x44// ODR[3:0]=b'0100 (12.5Hz), CCK[3:0]=b'0100 (204.8kHZ)
72 #define VALUE_CKSEL_ODR_25_204 0x54// ODR[3:0]=b'0101 (25Hz), CCK[3:0]=b'0100 (204.8kHZ)
73 #define VALUE_CKSEL_ODR_50_204 0x64// ODR[3:0]=b'0110 (50Hz), CCK[3:0]=b'0100 (204.8kHZ)
74 #define VALUE_CKSEL_ODR_100_204 0x74// ODR[3:0]=b'0111 (100Hz), CCK[3:0]=b'0100 (204.8kHZ)
75
76 #define VALUE_TAPNS_NoFilter 0x00 // TAP1/TAP2 NO FILTER
77 #define VALUE_TAPNS_Ave_2 0x11 // TAP1/TAP2 Average 2
78 #define VALUE_TAPNS_Ave_4 0x22 // TAP1/TAP2 Average 4
79 #define VALUE_TAPNS_Ave_8 0x33 // TAP1/TAP2 Average 8
80 #define VALUE_TAPNS_Ave_16 0x44 // TAP1/TAP2 Average 16
81 #define VALUE_TAPNS_Ave_32 0x55 // TAP1/TAP2 Average 32
82 #define VALUE_MISC2_OSCA_EN 0x08
83 #define VALUE_PD_RST 0x52
84
85
86 //#define DMARD10_REG_INTSU 0x47
87 //#define DMARD10_REG_MODE 0x44
88 //#define DMARD10_REG_SR 0x44
89
90
91 #define DMARD10_REG_DS 0X49
92 #define DMARD10_REG_ID 0X0F
93 #define DMARD10_REG_IT 0X4D
94 #define DMARD10_REG_INTSRC1_C 0X4A
95 #define DMARD10_REG_INTSRC1_S 0X4B
96 #define MMAIO 0xA1
97
98 // IOCTLs for DMARD10 library
99 #define ECS_IOCTL_INIT _IO(MMAIO, 0x01)
100 #define ECS_IOCTL_RESET _IO(MMAIO, 0x04)
101 #define ECS_IOCTL_CLOSE _IO(MMAIO, 0x02)
102 #define ECS_IOCTL_START _IO(MMAIO, 0x03)
103 #define ECS_IOCTL_GETDATA _IOR(MMAIO, 0x08, char[RBUFF_SIZE+1])
104 #define SENSOR_CALIBRATION _IOWR(MMAIO, 0x05 , int[SENSOR_DATA_SIZE])
105
106 // IOCTLs for APPs
107 #define ECS_IOCTL_APP_SET_RATE _IOW(MMAIO, 0x10, char)
108
109 //rate
110 #define DMARD10_RATE_32 32
111 /*
112 #define DMARD10_RATE_64 64
113 #define DMARD10_RATE_120 128
114 #define DMARD10_RATE_MIN DMARD10_RATE_1
115 #define DMARD10_RATE_MAX DMARD10_RATE_120
116 */
117 /*status*/
118 #define DMARD10_OPEN 1
119 #define DMARD10_CLOSE 0
120 #define DMARD10_NORMAL 2
121 #define DMARD10_LOWPOWER 3
122
123
124
125 #define DMARD10_IIC_ADDR 0x18
126 #define DMARD10_REG_LEN 11
127
128
129 #define DMARD10_FATOR 15
130
131
132 #define DMARD10_X_OUT 0x41
133 #define SENSOR_DATA_SIZE 3
134 #define DMARD10_SENSOR_RATE_1 0
135 #define DMARD10_SENSOR_RATE_2 1
136 #define DMARD10_SENSOR_RATE_3 2
137 #define DMARD10_SENSOR_RATE_4 3
138
139 #define POWER_OR_RATE 1
140 #define SW_RESET 1
141 #define DMARD10_INTERRUPUT 1
142 #define DMARD10_POWERDOWN 0
143 #define DMARD10_POWERON 1
144
145 //g-senor layout configuration, choose one of the following configuration
146
147 #define AVG_NUM 16
148 #define SENSOR_DATA_SIZE 3
149 #define DEFAULT_SENSITIVITY 1024
150
151
152
153 #define DMARD10_ENABLE 1
154
155 #define DMARD10_REG_X_OUT 0x12
156 #define DMARD10_REG_Y_OUT 0x1
157 #define DMARD10_REG_Z_OUT 0x2
158 #define DMARD10_REG_TILT 0x3
159 #define DMARD10_REG_SRST 0x4
160 #define DMARD10_REG_SPCNT 0x5
161 #define DMARD10_REG_INTSU 0x6
162 #define DMARD10_REG_MODE 0x7
163 #define DMARD10_REG_SR 0x8
164 #define DMARD10_REG_PDET 0x9
165 #define DMARD10_REG_PD 0xa
166
167 #define DMARD10_RANGE 4000000
168 #define DMARD10_PRECISION 10
169 #define DMARD10_BOUNDARY (0x1 << (DMARD10_PRECISION - 1))
170 #define DMARD10_GRAVITY_STEP (DMARD10_RANGE / DMARD10_BOUNDARY)
171
172
173 struct sensor_axis_average {
174 int x_average;
175 int y_average;
176 int z_average;
177 int count;
178 };
179
180 static struct sensor_axis_average axis_average;
gsensor_reset(struct i2c_client * client)181 int gsensor_reset(struct i2c_client *client){
182 char buffer[7], buffer2[2];
183 /* 1. check D10 , VALUE_STADR = 0x55 , VALUE_STAINT = 0xAA */
184 buffer[0] = REG_STADR;
185 buffer2[0] = REG_STAINT;
186
187 sensor_rx_data(client, buffer, 2);
188 sensor_rx_data(client, buffer2, 2);
189
190 if( buffer[0] == VALUE_STADR || buffer2[0] == VALUE_STAINT){
191 DBG(KERN_INFO " REG_STADR_VALUE = %d , REG_STAINT_VALUE = %d\n", buffer[0], buffer2[0]);
192 DBG(KERN_INFO " %s DMT_DEVICE_NAME registered I2C driver!\n",__FUNCTION__);
193 }
194 else{
195 DBG(KERN_INFO " %s gsensor I2C err @@@ REG_STADR_VALUE = %d , REG_STAINT_VALUE = %d \n", __func__, buffer[0], buffer2[0]);
196 return -1;
197 }
198 /* 2. Powerdown reset */
199 buffer[0] = REG_PD;
200 buffer[1] = VALUE_PD_RST;
201 sensor_tx_data(client, buffer, 2);
202 /* 3. ACTR => Standby mode => Download OTP to parameter reg => Standby mode => Reset data path => Standby mode */
203 buffer[0] = REG_ACTR;
204 buffer[1] = MODE_Standby;
205 buffer[2] = MODE_ReadOTP;
206 buffer[3] = MODE_Standby;
207 buffer[4] = MODE_ResetDataPath;
208 buffer[5] = MODE_Standby;
209 sensor_tx_data(client, buffer, 6);
210 /* 4. OSCA_EN = 1 ,TSTO = b'000(INT1 = normal, TEST0 = normal) */
211 buffer[0] = REG_MISC2;
212 buffer[1] = VALUE_MISC2_OSCA_EN;
213 sensor_tx_data(client, buffer, 2);
214 /* 5. AFEN = 1(AFE will powerdown after ADC) */
215 buffer[0] = REG_AFEM;
216 buffer[1] = VALUE_AFEM_AFEN_Normal;
217 buffer[2] = VALUE_CKSEL_ODR_100_204;
218 buffer[3] = VALUE_INTC;
219 buffer[4] = VALUE_TAPNS_Ave_2;
220 buffer[5] = 0x00; // DLYC, no delay timing
221 buffer[6] = 0x07; // INTD=1 (push-pull), INTA=1 (active high), AUTOT=1 (enable T)
222 sensor_tx_data(client, buffer, 7);
223 /* 6. write TCGYZ & TCGX */
224 buffer[0] = REG_WDAL; // REG:0x01
225 buffer[1] = 0x00; // set TC of Y,Z gain value
226 buffer[2] = 0x00; // set TC of X gain value
227 buffer[3] = 0x03; // Temperature coefficient of X,Y,Z gain
228 sensor_tx_data(client, buffer, 4);
229
230 buffer[0] = REG_ACTR; // REG:0x00
231 buffer[1] = MODE_Standby; // Standby
232 buffer[2] = MODE_WriteOTPBuf; // WriteOTPBuf
233 buffer[3] = MODE_Standby; // Standby
234
235 /* 7. Activation mode */
236 buffer[0] = REG_ACTR;
237 buffer[1] = MODE_Active;
238 sensor_tx_data(client, buffer, 2);
239 printk("\n dmard10 gsensor _reset SUCCESS!!\n");
240 return 0;
241 }
242
243 /****************operate according to sensor chip:start************/
244
sensor_active(struct i2c_client * client,int enable,int rate)245 static int sensor_active(struct i2c_client *client, int enable, int rate)
246 {
247 struct sensor_private_data *sensor =
248 (struct sensor_private_data *) i2c_get_clientdata(client);
249 int result = 0;
250 int status = 0;
251 gsensor_reset(client);
252 sensor->ops->ctrl_data = sensor_read_reg(client, sensor->ops->ctrl_reg);
253 //register setting according to chip datasheet
254 if(enable)
255 {
256 status = DMARD10_ENABLE; //dmard10
257 sensor->ops->ctrl_data |= status;
258 }
259 else
260 {
261 status = ~DMARD10_ENABLE; //dmard10
262 sensor->ops->ctrl_data &= status;
263 }
264
265 DBG("%s:reg=0x%x,reg_ctrl=0x%x,enable=%d\n",__func__,sensor->ops->ctrl_reg, sensor->ops->ctrl_data, enable);
266 result = sensor_write_reg(client, sensor->ops->ctrl_reg, sensor->ops->ctrl_data);
267 if(result)
268 printk("%s:fail to active sensor\n",__func__);
269
270 return result;
271
272 }
273
sensor_init(struct i2c_client * client)274 static int sensor_init(struct i2c_client *client)
275 {
276 struct sensor_private_data *sensor =
277 (struct sensor_private_data *) i2c_get_clientdata(client);
278 int result = 0;
279
280 result = sensor->ops->active(client,0,0);
281 if(result)
282 {
283 printk("%s:line=%d,error\n",__func__,__LINE__);
284 return result;
285 }
286
287 sensor->status_cur = SENSOR_OFF;
288
289 DBG("%s:DMARD10_REG_TILT=0x%x\n",__func__,sensor_read_reg(client, DMARD10_REG_TILT));
290
291 result = sensor_write_reg(client, DMARD10_REG_SR, (0x01<<5)| 0x02); //32 Samples/Second Active and Auto-Sleep Mode
292 if(result)
293 {
294 printk("%s:line=%d,error\n",__func__,__LINE__);
295 return result;
296 }
297
298 if(sensor->pdata->irq_enable) //open interrupt
299 {
300 result = sensor_write_reg(client, DMARD10_REG_INTSU, 1<<4);//enable int,GINT=1
301 if(result)
302 {
303 printk("%s:line=%d,error\n",__func__,__LINE__);
304 return result;
305 }
306 }
307
308 sensor->ops->ctrl_data = 1<<6; //Interrupt output INT is push-pull
309 result = sensor_write_reg(client, sensor->ops->ctrl_reg, sensor->ops->ctrl_data);
310 if(result)
311 {
312 printk("%s:line=%d,error\n",__func__,__LINE__);
313 return result;
314 }
315
316
317 memset(&axis_average, 0, sizeof(struct sensor_axis_average));
318
319 return result;
320 }
321
322
sensor_convert_data(struct i2c_client * client,char high_byte,char low_byte)323 static int sensor_convert_data(struct i2c_client *client, char high_byte, char low_byte)
324 {
325 s64 result;
326
327 result = ((int)high_byte << 8) | ((int)low_byte);
328
329 return result * 128;
330 }
331
gsensor_report_value(struct i2c_client * client,struct sensor_axis * axis)332 static int gsensor_report_value(struct i2c_client *client, struct sensor_axis *axis)
333 {
334 struct sensor_private_data *sensor =
335 (struct sensor_private_data *) i2c_get_clientdata(client);
336
337 if (sensor->status_cur == SENSOR_ON) {
338 /* Report acceleration sensor information */
339 input_report_abs(sensor->input_dev, ABS_X, axis->x);
340 input_report_abs(sensor->input_dev, ABS_Y, axis->y);
341 input_report_abs(sensor->input_dev, ABS_Z, axis->z);
342 input_sync(sensor->input_dev);
343 }
344 return 0;
345 }
346
347 #define DMARD10_COUNT_AVERAGE 2
348 #define GSENSOR_MIN 2
sensor_report_value(struct i2c_client * client)349 static int sensor_report_value(struct i2c_client *client)
350 {
351 struct sensor_private_data *sensor =
352 (struct sensor_private_data *) i2c_get_clientdata(client);
353 struct sensor_platform_data *pdata = sensor->pdata;
354 int ret = 0;
355 int x,y,z;
356 struct sensor_axis axis;
357 char buffer[8] = {0};
358 char value = 0;
359
360 if(sensor->ops->read_len < 3) //sensor->ops->read_len = 3
361 {
362 printk("%s:lenth is error,len=%d\n",__func__,sensor->ops->read_len);
363 return -1;
364 }
365
366 memset(buffer, 0, 8);
367 /* Data bytes from hardware xL, xH, yL, yH, zL, zH */
368 do {
369 *buffer = sensor->ops->read_reg;
370 ret = sensor_rx_data(client, buffer, sensor->ops->read_len);
371 if (ret < 0)
372 return ret;
373 } while (0);
374
375 //this gsensor need 6 bytes buffer
376 x = sensor_convert_data(sensor->client, buffer[3], buffer[2]); //buffer[1]:high bit
377 y = sensor_convert_data(sensor->client, buffer[5], buffer[4]);
378 z = sensor_convert_data(sensor->client, buffer[7], buffer[6]);
379
380 axis.x = (pdata->orientation[0])*x + (pdata->orientation[1])*y + (pdata->orientation[2])*z;
381 axis.y = (pdata->orientation[3])*x + (pdata->orientation[4])*y + (pdata->orientation[5])*z;
382 axis.z = (pdata->orientation[6])*x + (pdata->orientation[7])*y + (pdata->orientation[8])*z;
383
384 gsensor_report_value(client, &axis);
385
386 mutex_lock(&sensor->data_mutex);
387 sensor->axis = axis;
388 mutex_unlock(&sensor->data_mutex);
389
390 if((sensor->pdata->irq_enable)&& (sensor->ops->int_status_reg >= 0)) //read sensor intterupt status register
391 {
392
393 value = sensor_read_reg(client, sensor->ops->int_status_reg);
394 DBG("%s:sensor int status :0x%x\n",__func__,value);
395 }
396
397 return ret;
398 }
399
400
401 static struct sensor_operate gsensor_dmard10_ops = {
402 .name = "gs_dmard10",
403 .type = SENSOR_TYPE_ACCEL,
404 .id_i2c = ACCEL_ID_DMARD10,
405 .read_reg = DMARD10_REG_X_OUT,
406 .read_len = 8,
407 .id_reg = SENSOR_UNKNOW_DATA,
408 .id_data = SENSOR_UNKNOW_DATA,
409 .precision = DMARD10_PRECISION,
410 .ctrl_reg = DMARD10_REG_MODE,
411 .int_status_reg = SENSOR_UNKNOW_DATA,
412 .range = {-65536, 65536},
413 .trig = IRQF_TRIGGER_LOW | IRQF_ONESHOT,
414 .active = sensor_active,
415 .init = sensor_init,
416 .report = sensor_report_value,
417 };
418
419 /****************operate according to sensor chip:end************/
gsensor_dmard10_probe(struct i2c_client * client,const struct i2c_device_id * devid)420 static int gsensor_dmard10_probe(struct i2c_client *client,
421 const struct i2c_device_id *devid)
422 {
423 return sensor_register_device(client, NULL, devid, &gsensor_dmard10_ops);
424 }
425
gsensor_dmard10_remove(struct i2c_client * client)426 static int gsensor_dmard10_remove(struct i2c_client *client)
427 {
428 return sensor_unregister_device(client, NULL, &gsensor_dmard10_ops);
429 }
430
431 static const struct i2c_device_id gsensor_dmard10_id[] = {
432 {"gs_dmard10", ACCEL_ID_DMARD10},
433 {}
434 };
435
436 static struct i2c_driver gsensor_dmard10_driver = {
437 .probe = gsensor_dmard10_probe,
438 .remove = gsensor_dmard10_remove,
439 .shutdown = sensor_shutdown,
440 .id_table = gsensor_dmard10_id,
441 .driver = {
442 .name = "gsensor_dmard10",
443 #ifdef CONFIG_PM
444 .pm = &sensor_pm_ops,
445 #endif
446 },
447 };
448
449 module_i2c_driver(gsensor_dmard10_driver);
450
451 MODULE_AUTHOR("guoyi <gy@rock-chips.com>");
452 MODULE_DESCRIPTION("dmard10 3-Axis accelerometer driver");
453 MODULE_LICENSE("GPL");
454
455