1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
4*4882a593Smuzhiyun */
5*4882a593Smuzhiyun
6*4882a593Smuzhiyun #include <linux/cpu.h>
7*4882a593Smuzhiyun #include <linux/cpufreq.h>
8*4882a593Smuzhiyun #include <linux/delay.h>
9*4882a593Smuzhiyun #include <linux/dma-mapping.h>
10*4882a593Smuzhiyun #include <linux/module.h>
11*4882a593Smuzhiyun #include <linux/of.h>
12*4882a593Smuzhiyun #include <linux/of_platform.h>
13*4882a593Smuzhiyun #include <linux/platform_device.h>
14*4882a593Smuzhiyun #include <linux/slab.h>
15*4882a593Smuzhiyun
16*4882a593Smuzhiyun #include <asm/smp_plat.h>
17*4882a593Smuzhiyun
18*4882a593Smuzhiyun #include <soc/tegra/bpmp.h>
19*4882a593Smuzhiyun #include <soc/tegra/bpmp-abi.h>
20*4882a593Smuzhiyun
21*4882a593Smuzhiyun #define KHZ 1000
22*4882a593Smuzhiyun #define REF_CLK_MHZ 408 /* 408 MHz */
23*4882a593Smuzhiyun #define US_DELAY 500
24*4882a593Smuzhiyun #define US_DELAY_MIN 2
25*4882a593Smuzhiyun #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
26*4882a593Smuzhiyun #define MAX_CNT ~0U
27*4882a593Smuzhiyun
28*4882a593Smuzhiyun /* cpufreq transisition latency */
29*4882a593Smuzhiyun #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
30*4882a593Smuzhiyun
31*4882a593Smuzhiyun enum cluster {
32*4882a593Smuzhiyun CLUSTER0,
33*4882a593Smuzhiyun CLUSTER1,
34*4882a593Smuzhiyun CLUSTER2,
35*4882a593Smuzhiyun CLUSTER3,
36*4882a593Smuzhiyun MAX_CLUSTERS,
37*4882a593Smuzhiyun };
38*4882a593Smuzhiyun
39*4882a593Smuzhiyun struct tegra194_cpufreq_data {
40*4882a593Smuzhiyun void __iomem *regs;
41*4882a593Smuzhiyun size_t num_clusters;
42*4882a593Smuzhiyun struct cpufreq_frequency_table **tables;
43*4882a593Smuzhiyun };
44*4882a593Smuzhiyun
45*4882a593Smuzhiyun struct tegra_cpu_ctr {
46*4882a593Smuzhiyun u32 cpu;
47*4882a593Smuzhiyun u32 delay;
48*4882a593Smuzhiyun u32 coreclk_cnt, last_coreclk_cnt;
49*4882a593Smuzhiyun u32 refclk_cnt, last_refclk_cnt;
50*4882a593Smuzhiyun };
51*4882a593Smuzhiyun
52*4882a593Smuzhiyun struct read_counters_work {
53*4882a593Smuzhiyun struct work_struct work;
54*4882a593Smuzhiyun struct tegra_cpu_ctr c;
55*4882a593Smuzhiyun };
56*4882a593Smuzhiyun
57*4882a593Smuzhiyun static struct workqueue_struct *read_counters_wq;
58*4882a593Smuzhiyun
get_cpu_cluster(void * cluster)59*4882a593Smuzhiyun static void get_cpu_cluster(void *cluster)
60*4882a593Smuzhiyun {
61*4882a593Smuzhiyun u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
62*4882a593Smuzhiyun
63*4882a593Smuzhiyun *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
64*4882a593Smuzhiyun }
65*4882a593Smuzhiyun
66*4882a593Smuzhiyun /*
67*4882a593Smuzhiyun * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
68*4882a593Smuzhiyun * The register provides frequency feedback information to
69*4882a593Smuzhiyun * determine the average actual frequency a core has run at over
70*4882a593Smuzhiyun * a period of time.
71*4882a593Smuzhiyun * [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
72*4882a593Smuzhiyun * [63:32] Core clock counter: counts on every core clock cycle
73*4882a593Smuzhiyun * where the core is architecturally clocking
74*4882a593Smuzhiyun */
read_freq_feedback(void)75*4882a593Smuzhiyun static u64 read_freq_feedback(void)
76*4882a593Smuzhiyun {
77*4882a593Smuzhiyun u64 val = 0;
78*4882a593Smuzhiyun
79*4882a593Smuzhiyun asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
80*4882a593Smuzhiyun
81*4882a593Smuzhiyun return val;
82*4882a593Smuzhiyun }
83*4882a593Smuzhiyun
map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response * nltbl,u16 ndiv)84*4882a593Smuzhiyun static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
85*4882a593Smuzhiyun *nltbl, u16 ndiv)
86*4882a593Smuzhiyun {
87*4882a593Smuzhiyun return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
88*4882a593Smuzhiyun }
89*4882a593Smuzhiyun
tegra_read_counters(struct work_struct * work)90*4882a593Smuzhiyun static void tegra_read_counters(struct work_struct *work)
91*4882a593Smuzhiyun {
92*4882a593Smuzhiyun struct read_counters_work *read_counters_work;
93*4882a593Smuzhiyun struct tegra_cpu_ctr *c;
94*4882a593Smuzhiyun u64 val;
95*4882a593Smuzhiyun
96*4882a593Smuzhiyun /*
97*4882a593Smuzhiyun * ref_clk_counter(32 bit counter) runs on constant clk,
98*4882a593Smuzhiyun * pll_p(408MHz).
99*4882a593Smuzhiyun * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
100*4882a593Smuzhiyun * = 10526880 usec = 10.527 sec to overflow
101*4882a593Smuzhiyun *
102*4882a593Smuzhiyun * Like wise core_clk_counter(32 bit counter) runs on core clock.
103*4882a593Smuzhiyun * It's synchronized to crab_clk (cpu_crab_clk) which runs at
104*4882a593Smuzhiyun * freq of cluster. Assuming max cluster clock ~2000MHz,
105*4882a593Smuzhiyun * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
106*4882a593Smuzhiyun * = ~2.147 sec to overflow
107*4882a593Smuzhiyun */
108*4882a593Smuzhiyun read_counters_work = container_of(work, struct read_counters_work,
109*4882a593Smuzhiyun work);
110*4882a593Smuzhiyun c = &read_counters_work->c;
111*4882a593Smuzhiyun
112*4882a593Smuzhiyun val = read_freq_feedback();
113*4882a593Smuzhiyun c->last_refclk_cnt = lower_32_bits(val);
114*4882a593Smuzhiyun c->last_coreclk_cnt = upper_32_bits(val);
115*4882a593Smuzhiyun udelay(c->delay);
116*4882a593Smuzhiyun val = read_freq_feedback();
117*4882a593Smuzhiyun c->refclk_cnt = lower_32_bits(val);
118*4882a593Smuzhiyun c->coreclk_cnt = upper_32_bits(val);
119*4882a593Smuzhiyun }
120*4882a593Smuzhiyun
121*4882a593Smuzhiyun /*
122*4882a593Smuzhiyun * Return instantaneous cpu speed
123*4882a593Smuzhiyun * Instantaneous freq is calculated as -
124*4882a593Smuzhiyun * -Takes sample on every query of getting the freq.
125*4882a593Smuzhiyun * - Read core and ref clock counters;
126*4882a593Smuzhiyun * - Delay for X us
127*4882a593Smuzhiyun * - Read above cycle counters again
128*4882a593Smuzhiyun * - Calculates freq by subtracting current and previous counters
129*4882a593Smuzhiyun * divided by the delay time or eqv. of ref_clk_counter in delta time
130*4882a593Smuzhiyun * - Return Kcycles/second, freq in KHz
131*4882a593Smuzhiyun *
132*4882a593Smuzhiyun * delta time period = x sec
133*4882a593Smuzhiyun * = delta ref_clk_counter / (408 * 10^6) sec
134*4882a593Smuzhiyun * freq in Hz = cycles/sec
135*4882a593Smuzhiyun * = (delta cycles / x sec
136*4882a593Smuzhiyun * = (delta cycles * 408 * 10^6) / delta ref_clk_counter
137*4882a593Smuzhiyun * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter
138*4882a593Smuzhiyun *
139*4882a593Smuzhiyun * @cpu - logical cpu whose freq to be updated
140*4882a593Smuzhiyun * Returns freq in KHz on success, 0 if cpu is offline
141*4882a593Smuzhiyun */
tegra194_get_speed_common(u32 cpu,u32 delay)142*4882a593Smuzhiyun static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay)
143*4882a593Smuzhiyun {
144*4882a593Smuzhiyun struct read_counters_work read_counters_work;
145*4882a593Smuzhiyun struct tegra_cpu_ctr c;
146*4882a593Smuzhiyun u32 delta_refcnt;
147*4882a593Smuzhiyun u32 delta_ccnt;
148*4882a593Smuzhiyun u32 rate_mhz;
149*4882a593Smuzhiyun
150*4882a593Smuzhiyun /*
151*4882a593Smuzhiyun * udelay() is required to reconstruct cpu frequency over an
152*4882a593Smuzhiyun * observation window. Using workqueue to call udelay() with
153*4882a593Smuzhiyun * interrupts enabled.
154*4882a593Smuzhiyun */
155*4882a593Smuzhiyun read_counters_work.c.cpu = cpu;
156*4882a593Smuzhiyun read_counters_work.c.delay = delay;
157*4882a593Smuzhiyun INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
158*4882a593Smuzhiyun queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
159*4882a593Smuzhiyun flush_work(&read_counters_work.work);
160*4882a593Smuzhiyun c = read_counters_work.c;
161*4882a593Smuzhiyun
162*4882a593Smuzhiyun if (c.coreclk_cnt < c.last_coreclk_cnt)
163*4882a593Smuzhiyun delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
164*4882a593Smuzhiyun else
165*4882a593Smuzhiyun delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
166*4882a593Smuzhiyun if (!delta_ccnt)
167*4882a593Smuzhiyun return 0;
168*4882a593Smuzhiyun
169*4882a593Smuzhiyun /* ref clock is 32 bits */
170*4882a593Smuzhiyun if (c.refclk_cnt < c.last_refclk_cnt)
171*4882a593Smuzhiyun delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
172*4882a593Smuzhiyun else
173*4882a593Smuzhiyun delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
174*4882a593Smuzhiyun if (!delta_refcnt) {
175*4882a593Smuzhiyun pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
176*4882a593Smuzhiyun return 0;
177*4882a593Smuzhiyun }
178*4882a593Smuzhiyun rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
179*4882a593Smuzhiyun
180*4882a593Smuzhiyun return (rate_mhz * KHZ); /* in KHz */
181*4882a593Smuzhiyun }
182*4882a593Smuzhiyun
tegra194_get_speed(u32 cpu)183*4882a593Smuzhiyun static unsigned int tegra194_get_speed(u32 cpu)
184*4882a593Smuzhiyun {
185*4882a593Smuzhiyun return tegra194_get_speed_common(cpu, US_DELAY);
186*4882a593Smuzhiyun }
187*4882a593Smuzhiyun
tegra194_cpufreq_init(struct cpufreq_policy * policy)188*4882a593Smuzhiyun static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
189*4882a593Smuzhiyun {
190*4882a593Smuzhiyun struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
191*4882a593Smuzhiyun u32 cpu;
192*4882a593Smuzhiyun u32 cl;
193*4882a593Smuzhiyun
194*4882a593Smuzhiyun smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);
195*4882a593Smuzhiyun
196*4882a593Smuzhiyun if (cl >= data->num_clusters)
197*4882a593Smuzhiyun return -EINVAL;
198*4882a593Smuzhiyun
199*4882a593Smuzhiyun /* boot freq */
200*4882a593Smuzhiyun policy->cur = tegra194_get_speed_common(policy->cpu, US_DELAY_MIN);
201*4882a593Smuzhiyun
202*4882a593Smuzhiyun /* set same policy for all cpus in a cluster */
203*4882a593Smuzhiyun for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
204*4882a593Smuzhiyun cpumask_set_cpu(cpu, policy->cpus);
205*4882a593Smuzhiyun
206*4882a593Smuzhiyun policy->freq_table = data->tables[cl];
207*4882a593Smuzhiyun policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
208*4882a593Smuzhiyun
209*4882a593Smuzhiyun return 0;
210*4882a593Smuzhiyun }
211*4882a593Smuzhiyun
set_cpu_ndiv(void * data)212*4882a593Smuzhiyun static void set_cpu_ndiv(void *data)
213*4882a593Smuzhiyun {
214*4882a593Smuzhiyun struct cpufreq_frequency_table *tbl = data;
215*4882a593Smuzhiyun u64 ndiv_val = (u64)tbl->driver_data;
216*4882a593Smuzhiyun
217*4882a593Smuzhiyun asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
218*4882a593Smuzhiyun }
219*4882a593Smuzhiyun
tegra194_cpufreq_set_target(struct cpufreq_policy * policy,unsigned int index)220*4882a593Smuzhiyun static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
221*4882a593Smuzhiyun unsigned int index)
222*4882a593Smuzhiyun {
223*4882a593Smuzhiyun struct cpufreq_frequency_table *tbl = policy->freq_table + index;
224*4882a593Smuzhiyun
225*4882a593Smuzhiyun /*
226*4882a593Smuzhiyun * Each core writes frequency in per core register. Then both cores
227*4882a593Smuzhiyun * in a cluster run at same frequency which is the maximum frequency
228*4882a593Smuzhiyun * request out of the values requested by both cores in that cluster.
229*4882a593Smuzhiyun */
230*4882a593Smuzhiyun on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
231*4882a593Smuzhiyun
232*4882a593Smuzhiyun return 0;
233*4882a593Smuzhiyun }
234*4882a593Smuzhiyun
235*4882a593Smuzhiyun static struct cpufreq_driver tegra194_cpufreq_driver = {
236*4882a593Smuzhiyun .name = "tegra194",
237*4882a593Smuzhiyun .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS |
238*4882a593Smuzhiyun CPUFREQ_NEED_INITIAL_FREQ_CHECK,
239*4882a593Smuzhiyun .verify = cpufreq_generic_frequency_table_verify,
240*4882a593Smuzhiyun .target_index = tegra194_cpufreq_set_target,
241*4882a593Smuzhiyun .get = tegra194_get_speed,
242*4882a593Smuzhiyun .init = tegra194_cpufreq_init,
243*4882a593Smuzhiyun .attr = cpufreq_generic_attr,
244*4882a593Smuzhiyun };
245*4882a593Smuzhiyun
tegra194_cpufreq_free_resources(void)246*4882a593Smuzhiyun static void tegra194_cpufreq_free_resources(void)
247*4882a593Smuzhiyun {
248*4882a593Smuzhiyun destroy_workqueue(read_counters_wq);
249*4882a593Smuzhiyun }
250*4882a593Smuzhiyun
251*4882a593Smuzhiyun static struct cpufreq_frequency_table *
init_freq_table(struct platform_device * pdev,struct tegra_bpmp * bpmp,unsigned int cluster_id)252*4882a593Smuzhiyun init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
253*4882a593Smuzhiyun unsigned int cluster_id)
254*4882a593Smuzhiyun {
255*4882a593Smuzhiyun struct cpufreq_frequency_table *freq_table;
256*4882a593Smuzhiyun struct mrq_cpu_ndiv_limits_response resp;
257*4882a593Smuzhiyun unsigned int num_freqs, ndiv, delta_ndiv;
258*4882a593Smuzhiyun struct mrq_cpu_ndiv_limits_request req;
259*4882a593Smuzhiyun struct tegra_bpmp_message msg;
260*4882a593Smuzhiyun u16 freq_table_step_size;
261*4882a593Smuzhiyun int err, index;
262*4882a593Smuzhiyun
263*4882a593Smuzhiyun memset(&req, 0, sizeof(req));
264*4882a593Smuzhiyun req.cluster_id = cluster_id;
265*4882a593Smuzhiyun
266*4882a593Smuzhiyun memset(&msg, 0, sizeof(msg));
267*4882a593Smuzhiyun msg.mrq = MRQ_CPU_NDIV_LIMITS;
268*4882a593Smuzhiyun msg.tx.data = &req;
269*4882a593Smuzhiyun msg.tx.size = sizeof(req);
270*4882a593Smuzhiyun msg.rx.data = &resp;
271*4882a593Smuzhiyun msg.rx.size = sizeof(resp);
272*4882a593Smuzhiyun
273*4882a593Smuzhiyun err = tegra_bpmp_transfer(bpmp, &msg);
274*4882a593Smuzhiyun if (err)
275*4882a593Smuzhiyun return ERR_PTR(err);
276*4882a593Smuzhiyun
277*4882a593Smuzhiyun /*
278*4882a593Smuzhiyun * Make sure frequency table step is a multiple of mdiv to match
279*4882a593Smuzhiyun * vhint table granularity.
280*4882a593Smuzhiyun */
281*4882a593Smuzhiyun freq_table_step_size = resp.mdiv *
282*4882a593Smuzhiyun DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
283*4882a593Smuzhiyun
284*4882a593Smuzhiyun dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
285*4882a593Smuzhiyun cluster_id, freq_table_step_size);
286*4882a593Smuzhiyun
287*4882a593Smuzhiyun delta_ndiv = resp.ndiv_max - resp.ndiv_min;
288*4882a593Smuzhiyun
289*4882a593Smuzhiyun if (unlikely(delta_ndiv == 0)) {
290*4882a593Smuzhiyun num_freqs = 1;
291*4882a593Smuzhiyun } else {
292*4882a593Smuzhiyun /* We store both ndiv_min and ndiv_max hence the +1 */
293*4882a593Smuzhiyun num_freqs = delta_ndiv / freq_table_step_size + 1;
294*4882a593Smuzhiyun }
295*4882a593Smuzhiyun
296*4882a593Smuzhiyun num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
297*4882a593Smuzhiyun
298*4882a593Smuzhiyun freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
299*4882a593Smuzhiyun sizeof(*freq_table), GFP_KERNEL);
300*4882a593Smuzhiyun if (!freq_table)
301*4882a593Smuzhiyun return ERR_PTR(-ENOMEM);
302*4882a593Smuzhiyun
303*4882a593Smuzhiyun for (index = 0, ndiv = resp.ndiv_min;
304*4882a593Smuzhiyun ndiv < resp.ndiv_max;
305*4882a593Smuzhiyun index++, ndiv += freq_table_step_size) {
306*4882a593Smuzhiyun freq_table[index].driver_data = ndiv;
307*4882a593Smuzhiyun freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
308*4882a593Smuzhiyun }
309*4882a593Smuzhiyun
310*4882a593Smuzhiyun freq_table[index].driver_data = resp.ndiv_max;
311*4882a593Smuzhiyun freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
312*4882a593Smuzhiyun freq_table[index].frequency = CPUFREQ_TABLE_END;
313*4882a593Smuzhiyun
314*4882a593Smuzhiyun return freq_table;
315*4882a593Smuzhiyun }
316*4882a593Smuzhiyun
tegra194_cpufreq_probe(struct platform_device * pdev)317*4882a593Smuzhiyun static int tegra194_cpufreq_probe(struct platform_device *pdev)
318*4882a593Smuzhiyun {
319*4882a593Smuzhiyun struct tegra194_cpufreq_data *data;
320*4882a593Smuzhiyun struct tegra_bpmp *bpmp;
321*4882a593Smuzhiyun int err, i;
322*4882a593Smuzhiyun
323*4882a593Smuzhiyun data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
324*4882a593Smuzhiyun if (!data)
325*4882a593Smuzhiyun return -ENOMEM;
326*4882a593Smuzhiyun
327*4882a593Smuzhiyun data->num_clusters = MAX_CLUSTERS;
328*4882a593Smuzhiyun data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
329*4882a593Smuzhiyun sizeof(*data->tables), GFP_KERNEL);
330*4882a593Smuzhiyun if (!data->tables)
331*4882a593Smuzhiyun return -ENOMEM;
332*4882a593Smuzhiyun
333*4882a593Smuzhiyun platform_set_drvdata(pdev, data);
334*4882a593Smuzhiyun
335*4882a593Smuzhiyun bpmp = tegra_bpmp_get(&pdev->dev);
336*4882a593Smuzhiyun if (IS_ERR(bpmp))
337*4882a593Smuzhiyun return PTR_ERR(bpmp);
338*4882a593Smuzhiyun
339*4882a593Smuzhiyun read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
340*4882a593Smuzhiyun if (!read_counters_wq) {
341*4882a593Smuzhiyun dev_err(&pdev->dev, "fail to create_workqueue\n");
342*4882a593Smuzhiyun err = -EINVAL;
343*4882a593Smuzhiyun goto put_bpmp;
344*4882a593Smuzhiyun }
345*4882a593Smuzhiyun
346*4882a593Smuzhiyun for (i = 0; i < data->num_clusters; i++) {
347*4882a593Smuzhiyun data->tables[i] = init_freq_table(pdev, bpmp, i);
348*4882a593Smuzhiyun if (IS_ERR(data->tables[i])) {
349*4882a593Smuzhiyun err = PTR_ERR(data->tables[i]);
350*4882a593Smuzhiyun goto err_free_res;
351*4882a593Smuzhiyun }
352*4882a593Smuzhiyun }
353*4882a593Smuzhiyun
354*4882a593Smuzhiyun tegra194_cpufreq_driver.driver_data = data;
355*4882a593Smuzhiyun
356*4882a593Smuzhiyun err = cpufreq_register_driver(&tegra194_cpufreq_driver);
357*4882a593Smuzhiyun if (!err)
358*4882a593Smuzhiyun goto put_bpmp;
359*4882a593Smuzhiyun
360*4882a593Smuzhiyun err_free_res:
361*4882a593Smuzhiyun tegra194_cpufreq_free_resources();
362*4882a593Smuzhiyun put_bpmp:
363*4882a593Smuzhiyun tegra_bpmp_put(bpmp);
364*4882a593Smuzhiyun return err;
365*4882a593Smuzhiyun }
366*4882a593Smuzhiyun
tegra194_cpufreq_remove(struct platform_device * pdev)367*4882a593Smuzhiyun static int tegra194_cpufreq_remove(struct platform_device *pdev)
368*4882a593Smuzhiyun {
369*4882a593Smuzhiyun cpufreq_unregister_driver(&tegra194_cpufreq_driver);
370*4882a593Smuzhiyun tegra194_cpufreq_free_resources();
371*4882a593Smuzhiyun
372*4882a593Smuzhiyun return 0;
373*4882a593Smuzhiyun }
374*4882a593Smuzhiyun
375*4882a593Smuzhiyun static const struct of_device_id tegra194_cpufreq_of_match[] = {
376*4882a593Smuzhiyun { .compatible = "nvidia,tegra194-ccplex", },
377*4882a593Smuzhiyun { /* sentinel */ }
378*4882a593Smuzhiyun };
379*4882a593Smuzhiyun MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
380*4882a593Smuzhiyun
381*4882a593Smuzhiyun static struct platform_driver tegra194_ccplex_driver = {
382*4882a593Smuzhiyun .driver = {
383*4882a593Smuzhiyun .name = "tegra194-cpufreq",
384*4882a593Smuzhiyun .of_match_table = tegra194_cpufreq_of_match,
385*4882a593Smuzhiyun },
386*4882a593Smuzhiyun .probe = tegra194_cpufreq_probe,
387*4882a593Smuzhiyun .remove = tegra194_cpufreq_remove,
388*4882a593Smuzhiyun };
389*4882a593Smuzhiyun module_platform_driver(tegra194_ccplex_driver);
390*4882a593Smuzhiyun
391*4882a593Smuzhiyun MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
392*4882a593Smuzhiyun MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
393*4882a593Smuzhiyun MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
394*4882a593Smuzhiyun MODULE_LICENSE("GPL v2");
395