1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 #include <linux/part_stat.h>
37
38 #include "zram_drv.h"
39
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43
44 static int zram_major;
45 static const char *default_compressor = "lzo-rle";
46
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
49 /*
50 * Pages that compress to sizes equals or greater than this are stored
51 * uncompressed in memory.
52 */
53 static size_t huge_class_size;
54
55 static const struct block_device_operations zram_devops;
56 static const struct block_device_operations zram_wb_devops;
57
58 static void zram_free_page(struct zram *zram, size_t index);
59 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
60 u32 index, int offset, struct bio *bio);
61
62
zram_slot_trylock(struct zram * zram,u32 index)63 static int zram_slot_trylock(struct zram *zram, u32 index)
64 {
65 return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
66 }
67
zram_slot_lock(struct zram * zram,u32 index)68 static void zram_slot_lock(struct zram *zram, u32 index)
69 {
70 bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
71 }
72
zram_slot_unlock(struct zram * zram,u32 index)73 static void zram_slot_unlock(struct zram *zram, u32 index)
74 {
75 bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
76 }
77
init_done(struct zram * zram)78 static inline bool init_done(struct zram *zram)
79 {
80 return zram->disksize;
81 }
82
dev_to_zram(struct device * dev)83 static inline struct zram *dev_to_zram(struct device *dev)
84 {
85 return (struct zram *)dev_to_disk(dev)->private_data;
86 }
87
zram_get_handle(struct zram * zram,u32 index)88 static unsigned long zram_get_handle(struct zram *zram, u32 index)
89 {
90 return zram->table[index].handle;
91 }
92
zram_set_handle(struct zram * zram,u32 index,unsigned long handle)93 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
94 {
95 zram->table[index].handle = handle;
96 }
97
98 /* flag operations require table entry bit_spin_lock() being held */
zram_test_flag(struct zram * zram,u32 index,enum zram_pageflags flag)99 static bool zram_test_flag(struct zram *zram, u32 index,
100 enum zram_pageflags flag)
101 {
102 return zram->table[index].flags & BIT(flag);
103 }
104
zram_set_flag(struct zram * zram,u32 index,enum zram_pageflags flag)105 static void zram_set_flag(struct zram *zram, u32 index,
106 enum zram_pageflags flag)
107 {
108 zram->table[index].flags |= BIT(flag);
109 }
110
zram_clear_flag(struct zram * zram,u32 index,enum zram_pageflags flag)111 static void zram_clear_flag(struct zram *zram, u32 index,
112 enum zram_pageflags flag)
113 {
114 zram->table[index].flags &= ~BIT(flag);
115 }
116
zram_set_element(struct zram * zram,u32 index,unsigned long element)117 static inline void zram_set_element(struct zram *zram, u32 index,
118 unsigned long element)
119 {
120 zram->table[index].element = element;
121 }
122
zram_get_element(struct zram * zram,u32 index)123 static unsigned long zram_get_element(struct zram *zram, u32 index)
124 {
125 return zram->table[index].element;
126 }
127
zram_get_obj_size(struct zram * zram,u32 index)128 static size_t zram_get_obj_size(struct zram *zram, u32 index)
129 {
130 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
131 }
132
zram_set_obj_size(struct zram * zram,u32 index,size_t size)133 static void zram_set_obj_size(struct zram *zram,
134 u32 index, size_t size)
135 {
136 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
137
138 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
139 }
140
zram_allocated(struct zram * zram,u32 index)141 static inline bool zram_allocated(struct zram *zram, u32 index)
142 {
143 return zram_get_obj_size(zram, index) ||
144 zram_test_flag(zram, index, ZRAM_SAME) ||
145 zram_test_flag(zram, index, ZRAM_WB);
146 }
147
148 #if PAGE_SIZE != 4096
is_partial_io(struct bio_vec * bvec)149 static inline bool is_partial_io(struct bio_vec *bvec)
150 {
151 return bvec->bv_len != PAGE_SIZE;
152 }
153 #else
is_partial_io(struct bio_vec * bvec)154 static inline bool is_partial_io(struct bio_vec *bvec)
155 {
156 return false;
157 }
158 #endif
159
160 /*
161 * Check if request is within bounds and aligned on zram logical blocks.
162 */
valid_io_request(struct zram * zram,sector_t start,unsigned int size)163 static inline bool valid_io_request(struct zram *zram,
164 sector_t start, unsigned int size)
165 {
166 u64 end, bound;
167
168 /* unaligned request */
169 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
170 return false;
171 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
172 return false;
173
174 end = start + (size >> SECTOR_SHIFT);
175 bound = zram->disksize >> SECTOR_SHIFT;
176 /* out of range range */
177 if (unlikely(start >= bound || end > bound || start > end))
178 return false;
179
180 /* I/O request is valid */
181 return true;
182 }
183
update_position(u32 * index,int * offset,struct bio_vec * bvec)184 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
185 {
186 *index += (*offset + bvec->bv_len) / PAGE_SIZE;
187 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
188 }
189
update_used_max(struct zram * zram,const unsigned long pages)190 static inline void update_used_max(struct zram *zram,
191 const unsigned long pages)
192 {
193 unsigned long old_max, cur_max;
194
195 old_max = atomic_long_read(&zram->stats.max_used_pages);
196
197 do {
198 cur_max = old_max;
199 if (pages > cur_max)
200 old_max = atomic_long_cmpxchg(
201 &zram->stats.max_used_pages, cur_max, pages);
202 } while (old_max != cur_max);
203 }
204
zram_fill_page(void * ptr,unsigned long len,unsigned long value)205 static inline void zram_fill_page(void *ptr, unsigned long len,
206 unsigned long value)
207 {
208 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
209 memset_l(ptr, value, len / sizeof(unsigned long));
210 }
211
page_same_filled(void * ptr,unsigned long * element)212 static bool page_same_filled(void *ptr, unsigned long *element)
213 {
214 unsigned long *page;
215 unsigned long val;
216 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
217
218 page = (unsigned long *)ptr;
219 val = page[0];
220
221 if (val != page[last_pos])
222 return false;
223
224 for (pos = 1; pos < last_pos; pos++) {
225 if (val != page[pos])
226 return false;
227 }
228
229 *element = val;
230
231 return true;
232 }
233
initstate_show(struct device * dev,struct device_attribute * attr,char * buf)234 static ssize_t initstate_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236 {
237 u32 val;
238 struct zram *zram = dev_to_zram(dev);
239
240 down_read(&zram->init_lock);
241 val = init_done(zram);
242 up_read(&zram->init_lock);
243
244 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
245 }
246
disksize_show(struct device * dev,struct device_attribute * attr,char * buf)247 static ssize_t disksize_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
249 {
250 struct zram *zram = dev_to_zram(dev);
251
252 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
253 }
254
mem_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)255 static ssize_t mem_limit_store(struct device *dev,
256 struct device_attribute *attr, const char *buf, size_t len)
257 {
258 u64 limit;
259 char *tmp;
260 struct zram *zram = dev_to_zram(dev);
261
262 limit = memparse(buf, &tmp);
263 if (buf == tmp) /* no chars parsed, invalid input */
264 return -EINVAL;
265
266 down_write(&zram->init_lock);
267 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
268 up_write(&zram->init_lock);
269
270 return len;
271 }
272
mem_used_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)273 static ssize_t mem_used_max_store(struct device *dev,
274 struct device_attribute *attr, const char *buf, size_t len)
275 {
276 int err;
277 unsigned long val;
278 struct zram *zram = dev_to_zram(dev);
279
280 err = kstrtoul(buf, 10, &val);
281 if (err || val != 0)
282 return -EINVAL;
283
284 down_read(&zram->init_lock);
285 if (init_done(zram)) {
286 atomic_long_set(&zram->stats.max_used_pages,
287 zs_get_total_pages(zram->mem_pool));
288 }
289 up_read(&zram->init_lock);
290
291 return len;
292 }
293
idle_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)294 static ssize_t idle_store(struct device *dev,
295 struct device_attribute *attr, const char *buf, size_t len)
296 {
297 struct zram *zram = dev_to_zram(dev);
298 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
299 int index;
300
301 if (!sysfs_streq(buf, "all"))
302 return -EINVAL;
303
304 down_read(&zram->init_lock);
305 if (!init_done(zram)) {
306 up_read(&zram->init_lock);
307 return -EINVAL;
308 }
309
310 for (index = 0; index < nr_pages; index++) {
311 /*
312 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
313 * See the comment in writeback_store.
314 */
315 zram_slot_lock(zram, index);
316 if (zram_allocated(zram, index) &&
317 !zram_test_flag(zram, index, ZRAM_UNDER_WB))
318 zram_set_flag(zram, index, ZRAM_IDLE);
319 zram_slot_unlock(zram, index);
320 }
321
322 up_read(&zram->init_lock);
323
324 return len;
325 }
326
327 #ifdef CONFIG_ZRAM_WRITEBACK
writeback_limit_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)328 static ssize_t writeback_limit_enable_store(struct device *dev,
329 struct device_attribute *attr, const char *buf, size_t len)
330 {
331 struct zram *zram = dev_to_zram(dev);
332 u64 val;
333 ssize_t ret = -EINVAL;
334
335 if (kstrtoull(buf, 10, &val))
336 return ret;
337
338 down_read(&zram->init_lock);
339 spin_lock(&zram->wb_limit_lock);
340 zram->wb_limit_enable = val;
341 spin_unlock(&zram->wb_limit_lock);
342 up_read(&zram->init_lock);
343 ret = len;
344
345 return ret;
346 }
347
writeback_limit_enable_show(struct device * dev,struct device_attribute * attr,char * buf)348 static ssize_t writeback_limit_enable_show(struct device *dev,
349 struct device_attribute *attr, char *buf)
350 {
351 bool val;
352 struct zram *zram = dev_to_zram(dev);
353
354 down_read(&zram->init_lock);
355 spin_lock(&zram->wb_limit_lock);
356 val = zram->wb_limit_enable;
357 spin_unlock(&zram->wb_limit_lock);
358 up_read(&zram->init_lock);
359
360 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
361 }
362
writeback_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)363 static ssize_t writeback_limit_store(struct device *dev,
364 struct device_attribute *attr, const char *buf, size_t len)
365 {
366 struct zram *zram = dev_to_zram(dev);
367 u64 val;
368 ssize_t ret = -EINVAL;
369
370 if (kstrtoull(buf, 10, &val))
371 return ret;
372
373 down_read(&zram->init_lock);
374 spin_lock(&zram->wb_limit_lock);
375 zram->bd_wb_limit = val;
376 spin_unlock(&zram->wb_limit_lock);
377 up_read(&zram->init_lock);
378 ret = len;
379
380 return ret;
381 }
382
writeback_limit_show(struct device * dev,struct device_attribute * attr,char * buf)383 static ssize_t writeback_limit_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385 {
386 u64 val;
387 struct zram *zram = dev_to_zram(dev);
388
389 down_read(&zram->init_lock);
390 spin_lock(&zram->wb_limit_lock);
391 val = zram->bd_wb_limit;
392 spin_unlock(&zram->wb_limit_lock);
393 up_read(&zram->init_lock);
394
395 return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
396 }
397
reset_bdev(struct zram * zram)398 static void reset_bdev(struct zram *zram)
399 {
400 struct block_device *bdev;
401
402 if (!zram->backing_dev)
403 return;
404
405 bdev = zram->bdev;
406 if (zram->old_block_size)
407 set_blocksize(bdev, zram->old_block_size);
408 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
409 /* hope filp_close flush all of IO */
410 filp_close(zram->backing_dev, NULL);
411 zram->backing_dev = NULL;
412 zram->old_block_size = 0;
413 zram->bdev = NULL;
414 zram->disk->fops = &zram_devops;
415 kvfree(zram->bitmap);
416 zram->bitmap = NULL;
417 }
418
backing_dev_show(struct device * dev,struct device_attribute * attr,char * buf)419 static ssize_t backing_dev_show(struct device *dev,
420 struct device_attribute *attr, char *buf)
421 {
422 struct file *file;
423 struct zram *zram = dev_to_zram(dev);
424 char *p;
425 ssize_t ret;
426
427 down_read(&zram->init_lock);
428 file = zram->backing_dev;
429 if (!file) {
430 memcpy(buf, "none\n", 5);
431 up_read(&zram->init_lock);
432 return 5;
433 }
434
435 p = file_path(file, buf, PAGE_SIZE - 1);
436 if (IS_ERR(p)) {
437 ret = PTR_ERR(p);
438 goto out;
439 }
440
441 ret = strlen(p);
442 memmove(buf, p, ret);
443 buf[ret++] = '\n';
444 out:
445 up_read(&zram->init_lock);
446 return ret;
447 }
448
backing_dev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)449 static ssize_t backing_dev_store(struct device *dev,
450 struct device_attribute *attr, const char *buf, size_t len)
451 {
452 char *file_name;
453 size_t sz;
454 struct file *backing_dev = NULL;
455 struct inode *inode;
456 struct address_space *mapping;
457 unsigned int bitmap_sz, old_block_size = 0;
458 unsigned long nr_pages, *bitmap = NULL;
459 struct block_device *bdev = NULL;
460 int err;
461 struct zram *zram = dev_to_zram(dev);
462
463 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
464 if (!file_name)
465 return -ENOMEM;
466
467 down_write(&zram->init_lock);
468 if (init_done(zram)) {
469 pr_info("Can't setup backing device for initialized device\n");
470 err = -EBUSY;
471 goto out;
472 }
473
474 strlcpy(file_name, buf, PATH_MAX);
475 /* ignore trailing newline */
476 sz = strlen(file_name);
477 if (sz > 0 && file_name[sz - 1] == '\n')
478 file_name[sz - 1] = 0x00;
479
480 backing_dev = filp_open_block(file_name, O_RDWR|O_LARGEFILE, 0);
481 if (IS_ERR(backing_dev)) {
482 err = PTR_ERR(backing_dev);
483 backing_dev = NULL;
484 goto out;
485 }
486
487 mapping = backing_dev->f_mapping;
488 inode = mapping->host;
489
490 /* Support only block device in this moment */
491 if (!S_ISBLK(inode->i_mode)) {
492 err = -ENOTBLK;
493 goto out;
494 }
495
496 bdev = blkdev_get_by_dev(inode->i_rdev,
497 FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
498 if (IS_ERR(bdev)) {
499 err = PTR_ERR(bdev);
500 bdev = NULL;
501 goto out;
502 }
503
504 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
505 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
506 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
507 if (!bitmap) {
508 err = -ENOMEM;
509 goto out;
510 }
511
512 old_block_size = block_size(bdev);
513 err = set_blocksize(bdev, PAGE_SIZE);
514 if (err)
515 goto out;
516
517 reset_bdev(zram);
518
519 zram->old_block_size = old_block_size;
520 zram->bdev = bdev;
521 zram->backing_dev = backing_dev;
522 zram->bitmap = bitmap;
523 zram->nr_pages = nr_pages;
524 /*
525 * With writeback feature, zram does asynchronous IO so it's no longer
526 * synchronous device so let's remove synchronous io flag. Othewise,
527 * upper layer(e.g., swap) could wait IO completion rather than
528 * (submit and return), which will cause system sluggish.
529 * Furthermore, when the IO function returns(e.g., swap_readpage),
530 * upper layer expects IO was done so it could deallocate the page
531 * freely but in fact, IO is going on so finally could cause
532 * use-after-free when the IO is really done.
533 */
534 zram->disk->fops = &zram_wb_devops;
535 up_write(&zram->init_lock);
536
537 pr_info("setup backing device %s\n", file_name);
538 kfree(file_name);
539
540 return len;
541 out:
542 if (bitmap)
543 kvfree(bitmap);
544
545 if (bdev)
546 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
547
548 if (backing_dev)
549 filp_close(backing_dev, NULL);
550
551 up_write(&zram->init_lock);
552
553 kfree(file_name);
554
555 return err;
556 }
557
alloc_block_bdev(struct zram * zram)558 static unsigned long alloc_block_bdev(struct zram *zram)
559 {
560 unsigned long blk_idx = 1;
561 retry:
562 /* skip 0 bit to confuse zram.handle = 0 */
563 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
564 if (blk_idx == zram->nr_pages)
565 return 0;
566
567 if (test_and_set_bit(blk_idx, zram->bitmap))
568 goto retry;
569
570 atomic64_inc(&zram->stats.bd_count);
571 return blk_idx;
572 }
573
free_block_bdev(struct zram * zram,unsigned long blk_idx)574 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
575 {
576 int was_set;
577
578 was_set = test_and_clear_bit(blk_idx, zram->bitmap);
579 WARN_ON_ONCE(!was_set);
580 atomic64_dec(&zram->stats.bd_count);
581 }
582
zram_page_end_io(struct bio * bio)583 static void zram_page_end_io(struct bio *bio)
584 {
585 struct page *page = bio_first_page_all(bio);
586
587 page_endio(page, op_is_write(bio_op(bio)),
588 blk_status_to_errno(bio->bi_status));
589 bio_put(bio);
590 }
591
592 /*
593 * Returns 1 if the submission is successful.
594 */
read_from_bdev_async(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent)595 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
596 unsigned long entry, struct bio *parent)
597 {
598 struct bio *bio;
599
600 bio = bio_alloc(GFP_ATOMIC, 1);
601 if (!bio)
602 return -ENOMEM;
603
604 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
605 bio_set_dev(bio, zram->bdev);
606 if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
607 bio_put(bio);
608 return -EIO;
609 }
610
611 if (!parent) {
612 bio->bi_opf = REQ_OP_READ;
613 bio->bi_end_io = zram_page_end_io;
614 } else {
615 bio->bi_opf = parent->bi_opf;
616 bio_chain(bio, parent);
617 }
618
619 submit_bio(bio);
620 return 1;
621 }
622
623 #define PAGE_WB_SIG "page_index="
624
625 #define PAGE_WRITEBACK 0
626 #define HUGE_WRITEBACK 1
627 #define IDLE_WRITEBACK 2
628
629
writeback_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)630 static ssize_t writeback_store(struct device *dev,
631 struct device_attribute *attr, const char *buf, size_t len)
632 {
633 struct zram *zram = dev_to_zram(dev);
634 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
635 unsigned long index = 0;
636 struct bio bio;
637 struct bio_vec bio_vec;
638 struct page *page;
639 ssize_t ret = len;
640 int mode, err;
641 unsigned long blk_idx = 0;
642
643 if (sysfs_streq(buf, "idle"))
644 mode = IDLE_WRITEBACK;
645 else if (sysfs_streq(buf, "huge"))
646 mode = HUGE_WRITEBACK;
647 else {
648 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
649 return -EINVAL;
650
651 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
652 index >= nr_pages)
653 return -EINVAL;
654
655 nr_pages = 1;
656 mode = PAGE_WRITEBACK;
657 }
658
659 down_read(&zram->init_lock);
660 if (!init_done(zram)) {
661 ret = -EINVAL;
662 goto release_init_lock;
663 }
664
665 if (!zram->backing_dev) {
666 ret = -ENODEV;
667 goto release_init_lock;
668 }
669
670 page = alloc_page(GFP_KERNEL);
671 if (!page) {
672 ret = -ENOMEM;
673 goto release_init_lock;
674 }
675
676 for (; nr_pages != 0; index++, nr_pages--) {
677 struct bio_vec bvec;
678
679 bvec.bv_page = page;
680 bvec.bv_len = PAGE_SIZE;
681 bvec.bv_offset = 0;
682
683 spin_lock(&zram->wb_limit_lock);
684 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
685 spin_unlock(&zram->wb_limit_lock);
686 ret = -EIO;
687 break;
688 }
689 spin_unlock(&zram->wb_limit_lock);
690
691 if (!blk_idx) {
692 blk_idx = alloc_block_bdev(zram);
693 if (!blk_idx) {
694 ret = -ENOSPC;
695 break;
696 }
697 }
698
699 zram_slot_lock(zram, index);
700 if (!zram_allocated(zram, index))
701 goto next;
702
703 if (zram_test_flag(zram, index, ZRAM_WB) ||
704 zram_test_flag(zram, index, ZRAM_SAME) ||
705 zram_test_flag(zram, index, ZRAM_UNDER_WB))
706 goto next;
707
708 if (mode == IDLE_WRITEBACK &&
709 !zram_test_flag(zram, index, ZRAM_IDLE))
710 goto next;
711 if (mode == HUGE_WRITEBACK &&
712 !zram_test_flag(zram, index, ZRAM_HUGE))
713 goto next;
714 /*
715 * Clearing ZRAM_UNDER_WB is duty of caller.
716 * IOW, zram_free_page never clear it.
717 */
718 zram_set_flag(zram, index, ZRAM_UNDER_WB);
719 /* Need for hugepage writeback racing */
720 zram_set_flag(zram, index, ZRAM_IDLE);
721 zram_slot_unlock(zram, index);
722 if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
723 zram_slot_lock(zram, index);
724 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
725 zram_clear_flag(zram, index, ZRAM_IDLE);
726 zram_slot_unlock(zram, index);
727 continue;
728 }
729
730 bio_init(&bio, &bio_vec, 1);
731 bio_set_dev(&bio, zram->bdev);
732 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
733 bio.bi_opf = REQ_OP_WRITE | REQ_SYNC;
734
735 bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
736 bvec.bv_offset);
737 /*
738 * XXX: A single page IO would be inefficient for write
739 * but it would be not bad as starter.
740 */
741 err = submit_bio_wait(&bio);
742 if (err) {
743 zram_slot_lock(zram, index);
744 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
745 zram_clear_flag(zram, index, ZRAM_IDLE);
746 zram_slot_unlock(zram, index);
747 /*
748 * Return last IO error unless every IO were
749 * not suceeded.
750 */
751 ret = err;
752 continue;
753 }
754
755 atomic64_inc(&zram->stats.bd_writes);
756 /*
757 * We released zram_slot_lock so need to check if the slot was
758 * changed. If there is freeing for the slot, we can catch it
759 * easily by zram_allocated.
760 * A subtle case is the slot is freed/reallocated/marked as
761 * ZRAM_IDLE again. To close the race, idle_store doesn't
762 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
763 * Thus, we could close the race by checking ZRAM_IDLE bit.
764 */
765 zram_slot_lock(zram, index);
766 if (!zram_allocated(zram, index) ||
767 !zram_test_flag(zram, index, ZRAM_IDLE)) {
768 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
769 zram_clear_flag(zram, index, ZRAM_IDLE);
770 goto next;
771 }
772
773 zram_free_page(zram, index);
774 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
775 zram_set_flag(zram, index, ZRAM_WB);
776 zram_set_element(zram, index, blk_idx);
777 blk_idx = 0;
778 atomic64_inc(&zram->stats.pages_stored);
779 spin_lock(&zram->wb_limit_lock);
780 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
781 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
782 spin_unlock(&zram->wb_limit_lock);
783 next:
784 zram_slot_unlock(zram, index);
785 }
786
787 if (blk_idx)
788 free_block_bdev(zram, blk_idx);
789 __free_page(page);
790 release_init_lock:
791 up_read(&zram->init_lock);
792
793 return ret;
794 }
795
796 struct zram_work {
797 struct work_struct work;
798 struct zram *zram;
799 unsigned long entry;
800 struct bio *bio;
801 struct bio_vec bvec;
802 };
803
804 #if PAGE_SIZE != 4096
zram_sync_read(struct work_struct * work)805 static void zram_sync_read(struct work_struct *work)
806 {
807 struct zram_work *zw = container_of(work, struct zram_work, work);
808 struct zram *zram = zw->zram;
809 unsigned long entry = zw->entry;
810 struct bio *bio = zw->bio;
811
812 read_from_bdev_async(zram, &zw->bvec, entry, bio);
813 }
814
815 /*
816 * Block layer want one ->submit_bio to be active at a time, so if we use
817 * chained IO with parent IO in same context, it's a deadlock. To avoid that,
818 * use a worker thread context.
819 */
read_from_bdev_sync(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * bio)820 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
821 unsigned long entry, struct bio *bio)
822 {
823 struct zram_work work;
824
825 work.bvec = *bvec;
826 work.zram = zram;
827 work.entry = entry;
828 work.bio = bio;
829
830 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
831 queue_work(system_unbound_wq, &work.work);
832 flush_work(&work.work);
833 destroy_work_on_stack(&work.work);
834
835 return 1;
836 }
837 #else
read_from_bdev_sync(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * bio)838 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
839 unsigned long entry, struct bio *bio)
840 {
841 WARN_ON(1);
842 return -EIO;
843 }
844 #endif
845
read_from_bdev(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent,bool sync)846 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
847 unsigned long entry, struct bio *parent, bool sync)
848 {
849 atomic64_inc(&zram->stats.bd_reads);
850 if (sync)
851 return read_from_bdev_sync(zram, bvec, entry, parent);
852 else
853 return read_from_bdev_async(zram, bvec, entry, parent);
854 }
855 #else
reset_bdev(struct zram * zram)856 static inline void reset_bdev(struct zram *zram) {};
read_from_bdev(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent,bool sync)857 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
858 unsigned long entry, struct bio *parent, bool sync)
859 {
860 return -EIO;
861 }
862
free_block_bdev(struct zram * zram,unsigned long blk_idx)863 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
864 #endif
865
866 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
867
868 static struct dentry *zram_debugfs_root;
869
zram_debugfs_create(void)870 static void zram_debugfs_create(void)
871 {
872 zram_debugfs_root = debugfs_create_dir("zram", NULL);
873 }
874
zram_debugfs_destroy(void)875 static void zram_debugfs_destroy(void)
876 {
877 debugfs_remove_recursive(zram_debugfs_root);
878 }
879
zram_accessed(struct zram * zram,u32 index)880 static void zram_accessed(struct zram *zram, u32 index)
881 {
882 zram_clear_flag(zram, index, ZRAM_IDLE);
883 zram->table[index].ac_time = ktime_get_boottime();
884 }
885
read_block_state(struct file * file,char __user * buf,size_t count,loff_t * ppos)886 static ssize_t read_block_state(struct file *file, char __user *buf,
887 size_t count, loff_t *ppos)
888 {
889 char *kbuf;
890 ssize_t index, written = 0;
891 struct zram *zram = file->private_data;
892 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
893 struct timespec64 ts;
894
895 kbuf = kvmalloc(count, GFP_KERNEL);
896 if (!kbuf)
897 return -ENOMEM;
898
899 down_read(&zram->init_lock);
900 if (!init_done(zram)) {
901 up_read(&zram->init_lock);
902 kvfree(kbuf);
903 return -EINVAL;
904 }
905
906 for (index = *ppos; index < nr_pages; index++) {
907 int copied;
908
909 zram_slot_lock(zram, index);
910 if (!zram_allocated(zram, index))
911 goto next;
912
913 ts = ktime_to_timespec64(zram->table[index].ac_time);
914 copied = snprintf(kbuf + written, count,
915 "%12zd %12lld.%06lu %c%c%c%c\n",
916 index, (s64)ts.tv_sec,
917 ts.tv_nsec / NSEC_PER_USEC,
918 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
919 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
920 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
921 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
922
923 if (count <= copied) {
924 zram_slot_unlock(zram, index);
925 break;
926 }
927 written += copied;
928 count -= copied;
929 next:
930 zram_slot_unlock(zram, index);
931 *ppos += 1;
932 }
933
934 up_read(&zram->init_lock);
935 if (copy_to_user(buf, kbuf, written))
936 written = -EFAULT;
937 kvfree(kbuf);
938
939 return written;
940 }
941
942 static const struct file_operations proc_zram_block_state_op = {
943 .open = simple_open,
944 .read = read_block_state,
945 .llseek = default_llseek,
946 };
947
zram_debugfs_register(struct zram * zram)948 static void zram_debugfs_register(struct zram *zram)
949 {
950 if (!zram_debugfs_root)
951 return;
952
953 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
954 zram_debugfs_root);
955 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
956 zram, &proc_zram_block_state_op);
957 }
958
zram_debugfs_unregister(struct zram * zram)959 static void zram_debugfs_unregister(struct zram *zram)
960 {
961 debugfs_remove_recursive(zram->debugfs_dir);
962 }
963 #else
zram_debugfs_create(void)964 static void zram_debugfs_create(void) {};
zram_debugfs_destroy(void)965 static void zram_debugfs_destroy(void) {};
zram_accessed(struct zram * zram,u32 index)966 static void zram_accessed(struct zram *zram, u32 index)
967 {
968 zram_clear_flag(zram, index, ZRAM_IDLE);
969 };
zram_debugfs_register(struct zram * zram)970 static void zram_debugfs_register(struct zram *zram) {};
zram_debugfs_unregister(struct zram * zram)971 static void zram_debugfs_unregister(struct zram *zram) {};
972 #endif
973
974 /*
975 * We switched to per-cpu streams and this attr is not needed anymore.
976 * However, we will keep it around for some time, because:
977 * a) we may revert per-cpu streams in the future
978 * b) it's visible to user space and we need to follow our 2 years
979 * retirement rule; but we already have a number of 'soon to be
980 * altered' attrs, so max_comp_streams need to wait for the next
981 * layoff cycle.
982 */
max_comp_streams_show(struct device * dev,struct device_attribute * attr,char * buf)983 static ssize_t max_comp_streams_show(struct device *dev,
984 struct device_attribute *attr, char *buf)
985 {
986 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
987 }
988
max_comp_streams_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)989 static ssize_t max_comp_streams_store(struct device *dev,
990 struct device_attribute *attr, const char *buf, size_t len)
991 {
992 return len;
993 }
994
comp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)995 static ssize_t comp_algorithm_show(struct device *dev,
996 struct device_attribute *attr, char *buf)
997 {
998 size_t sz;
999 struct zram *zram = dev_to_zram(dev);
1000
1001 down_read(&zram->init_lock);
1002 sz = zcomp_available_show(zram->compressor, buf);
1003 up_read(&zram->init_lock);
1004
1005 return sz;
1006 }
1007
comp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1008 static ssize_t comp_algorithm_store(struct device *dev,
1009 struct device_attribute *attr, const char *buf, size_t len)
1010 {
1011 struct zram *zram = dev_to_zram(dev);
1012 char compressor[ARRAY_SIZE(zram->compressor)];
1013 size_t sz;
1014
1015 strlcpy(compressor, buf, sizeof(compressor));
1016 /* ignore trailing newline */
1017 sz = strlen(compressor);
1018 if (sz > 0 && compressor[sz - 1] == '\n')
1019 compressor[sz - 1] = 0x00;
1020
1021 if (!zcomp_available_algorithm(compressor))
1022 return -EINVAL;
1023
1024 down_write(&zram->init_lock);
1025 if (init_done(zram)) {
1026 up_write(&zram->init_lock);
1027 pr_info("Can't change algorithm for initialized device\n");
1028 return -EBUSY;
1029 }
1030
1031 strcpy(zram->compressor, compressor);
1032 up_write(&zram->init_lock);
1033 return len;
1034 }
1035
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1036 static ssize_t compact_store(struct device *dev,
1037 struct device_attribute *attr, const char *buf, size_t len)
1038 {
1039 struct zram *zram = dev_to_zram(dev);
1040
1041 down_read(&zram->init_lock);
1042 if (!init_done(zram)) {
1043 up_read(&zram->init_lock);
1044 return -EINVAL;
1045 }
1046
1047 zs_compact(zram->mem_pool);
1048 up_read(&zram->init_lock);
1049
1050 return len;
1051 }
1052
io_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1053 static ssize_t io_stat_show(struct device *dev,
1054 struct device_attribute *attr, char *buf)
1055 {
1056 struct zram *zram = dev_to_zram(dev);
1057 ssize_t ret;
1058
1059 down_read(&zram->init_lock);
1060 ret = scnprintf(buf, PAGE_SIZE,
1061 "%8llu %8llu %8llu %8llu\n",
1062 (u64)atomic64_read(&zram->stats.failed_reads),
1063 (u64)atomic64_read(&zram->stats.failed_writes),
1064 (u64)atomic64_read(&zram->stats.invalid_io),
1065 (u64)atomic64_read(&zram->stats.notify_free));
1066 up_read(&zram->init_lock);
1067
1068 return ret;
1069 }
1070
mm_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1071 static ssize_t mm_stat_show(struct device *dev,
1072 struct device_attribute *attr, char *buf)
1073 {
1074 struct zram *zram = dev_to_zram(dev);
1075 struct zs_pool_stats pool_stats;
1076 u64 orig_size, mem_used = 0;
1077 long max_used;
1078 ssize_t ret;
1079
1080 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1081
1082 down_read(&zram->init_lock);
1083 if (init_done(zram)) {
1084 mem_used = zs_get_total_pages(zram->mem_pool);
1085 zs_pool_stats(zram->mem_pool, &pool_stats);
1086 }
1087
1088 orig_size = atomic64_read(&zram->stats.pages_stored);
1089 max_used = atomic_long_read(&zram->stats.max_used_pages);
1090
1091 ret = scnprintf(buf, PAGE_SIZE,
1092 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
1093 orig_size << PAGE_SHIFT,
1094 (u64)atomic64_read(&zram->stats.compr_data_size),
1095 mem_used << PAGE_SHIFT,
1096 zram->limit_pages << PAGE_SHIFT,
1097 max_used << PAGE_SHIFT,
1098 (u64)atomic64_read(&zram->stats.same_pages),
1099 atomic_long_read(&pool_stats.pages_compacted),
1100 (u64)atomic64_read(&zram->stats.huge_pages));
1101 up_read(&zram->init_lock);
1102
1103 return ret;
1104 }
1105
1106 #ifdef CONFIG_ZRAM_WRITEBACK
1107 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
bd_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1108 static ssize_t bd_stat_show(struct device *dev,
1109 struct device_attribute *attr, char *buf)
1110 {
1111 struct zram *zram = dev_to_zram(dev);
1112 ssize_t ret;
1113
1114 down_read(&zram->init_lock);
1115 ret = scnprintf(buf, PAGE_SIZE,
1116 "%8llu %8llu %8llu\n",
1117 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1118 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1119 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1120 up_read(&zram->init_lock);
1121
1122 return ret;
1123 }
1124 #endif
1125
debug_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1126 static ssize_t debug_stat_show(struct device *dev,
1127 struct device_attribute *attr, char *buf)
1128 {
1129 int version = 1;
1130 struct zram *zram = dev_to_zram(dev);
1131 ssize_t ret;
1132
1133 down_read(&zram->init_lock);
1134 ret = scnprintf(buf, PAGE_SIZE,
1135 "version: %d\n%8llu %8llu\n",
1136 version,
1137 (u64)atomic64_read(&zram->stats.writestall),
1138 (u64)atomic64_read(&zram->stats.miss_free));
1139 up_read(&zram->init_lock);
1140
1141 return ret;
1142 }
1143
1144 static DEVICE_ATTR_RO(io_stat);
1145 static DEVICE_ATTR_RO(mm_stat);
1146 #ifdef CONFIG_ZRAM_WRITEBACK
1147 static DEVICE_ATTR_RO(bd_stat);
1148 #endif
1149 static DEVICE_ATTR_RO(debug_stat);
1150
zram_meta_free(struct zram * zram,u64 disksize)1151 static void zram_meta_free(struct zram *zram, u64 disksize)
1152 {
1153 size_t num_pages = disksize >> PAGE_SHIFT;
1154 size_t index;
1155
1156 /* Free all pages that are still in this zram device */
1157 for (index = 0; index < num_pages; index++)
1158 zram_free_page(zram, index);
1159
1160 zs_destroy_pool(zram->mem_pool);
1161 vfree(zram->table);
1162 }
1163
zram_meta_alloc(struct zram * zram,u64 disksize)1164 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1165 {
1166 size_t num_pages;
1167
1168 num_pages = disksize >> PAGE_SHIFT;
1169 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1170 if (!zram->table)
1171 return false;
1172
1173 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1174 if (!zram->mem_pool) {
1175 vfree(zram->table);
1176 return false;
1177 }
1178
1179 if (!huge_class_size)
1180 huge_class_size = zs_huge_class_size(zram->mem_pool);
1181 return true;
1182 }
1183
1184 /*
1185 * To protect concurrent access to the same index entry,
1186 * caller should hold this table index entry's bit_spinlock to
1187 * indicate this index entry is accessing.
1188 */
zram_free_page(struct zram * zram,size_t index)1189 static void zram_free_page(struct zram *zram, size_t index)
1190 {
1191 unsigned long handle;
1192
1193 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
1194 zram->table[index].ac_time = 0;
1195 #endif
1196 if (zram_test_flag(zram, index, ZRAM_IDLE))
1197 zram_clear_flag(zram, index, ZRAM_IDLE);
1198
1199 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1200 zram_clear_flag(zram, index, ZRAM_HUGE);
1201 atomic64_dec(&zram->stats.huge_pages);
1202 }
1203
1204 if (zram_test_flag(zram, index, ZRAM_WB)) {
1205 zram_clear_flag(zram, index, ZRAM_WB);
1206 free_block_bdev(zram, zram_get_element(zram, index));
1207 goto out;
1208 }
1209
1210 /*
1211 * No memory is allocated for same element filled pages.
1212 * Simply clear same page flag.
1213 */
1214 if (zram_test_flag(zram, index, ZRAM_SAME)) {
1215 zram_clear_flag(zram, index, ZRAM_SAME);
1216 atomic64_dec(&zram->stats.same_pages);
1217 goto out;
1218 }
1219
1220 handle = zram_get_handle(zram, index);
1221 if (!handle)
1222 return;
1223
1224 zs_free(zram->mem_pool, handle);
1225
1226 atomic64_sub(zram_get_obj_size(zram, index),
1227 &zram->stats.compr_data_size);
1228 out:
1229 atomic64_dec(&zram->stats.pages_stored);
1230 zram_set_handle(zram, index, 0);
1231 zram_set_obj_size(zram, index, 0);
1232 WARN_ON_ONCE(zram->table[index].flags &
1233 ~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
1234 }
1235
__zram_bvec_read(struct zram * zram,struct page * page,u32 index,struct bio * bio,bool partial_io)1236 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
1237 struct bio *bio, bool partial_io)
1238 {
1239 struct zcomp_strm *zstrm;
1240 unsigned long handle;
1241 unsigned int size;
1242 void *src, *dst;
1243 int ret;
1244
1245 zram_slot_lock(zram, index);
1246 if (zram_test_flag(zram, index, ZRAM_WB)) {
1247 struct bio_vec bvec;
1248
1249 zram_slot_unlock(zram, index);
1250
1251 bvec.bv_page = page;
1252 bvec.bv_len = PAGE_SIZE;
1253 bvec.bv_offset = 0;
1254 return read_from_bdev(zram, &bvec,
1255 zram_get_element(zram, index),
1256 bio, partial_io);
1257 }
1258
1259 handle = zram_get_handle(zram, index);
1260 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1261 unsigned long value;
1262 void *mem;
1263
1264 value = handle ? zram_get_element(zram, index) : 0;
1265 mem = kmap_atomic(page);
1266 zram_fill_page(mem, PAGE_SIZE, value);
1267 kunmap_atomic(mem);
1268 zram_slot_unlock(zram, index);
1269 return 0;
1270 }
1271
1272 size = zram_get_obj_size(zram, index);
1273
1274 if (size != PAGE_SIZE)
1275 zstrm = zcomp_stream_get(zram->comp);
1276
1277 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1278 if (size == PAGE_SIZE) {
1279 dst = kmap_atomic(page);
1280 memcpy(dst, src, PAGE_SIZE);
1281 kunmap_atomic(dst);
1282 ret = 0;
1283 } else {
1284 dst = kmap_atomic(page);
1285 ret = zcomp_decompress(zstrm, src, size, dst);
1286 kunmap_atomic(dst);
1287 zcomp_stream_put(zram->comp);
1288 }
1289 zs_unmap_object(zram->mem_pool, handle);
1290 zram_slot_unlock(zram, index);
1291
1292 /* Should NEVER happen. Return bio error if it does. */
1293 if (WARN_ON(ret))
1294 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1295
1296 return ret;
1297 }
1298
zram_bvec_read(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1299 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1300 u32 index, int offset, struct bio *bio)
1301 {
1302 int ret;
1303 struct page *page;
1304
1305 page = bvec->bv_page;
1306 if (is_partial_io(bvec)) {
1307 /* Use a temporary buffer to decompress the page */
1308 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1309 if (!page)
1310 return -ENOMEM;
1311 }
1312
1313 ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1314 if (unlikely(ret))
1315 goto out;
1316
1317 if (is_partial_io(bvec)) {
1318 void *dst = kmap_atomic(bvec->bv_page);
1319 void *src = kmap_atomic(page);
1320
1321 memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1322 kunmap_atomic(src);
1323 kunmap_atomic(dst);
1324 }
1325 out:
1326 if (is_partial_io(bvec))
1327 __free_page(page);
1328
1329 return ret;
1330 }
1331
__zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,struct bio * bio)1332 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1333 u32 index, struct bio *bio)
1334 {
1335 int ret = 0;
1336 unsigned long alloced_pages;
1337 unsigned long handle = 0;
1338 unsigned int comp_len = 0;
1339 void *src, *dst, *mem;
1340 struct zcomp_strm *zstrm;
1341 struct page *page = bvec->bv_page;
1342 unsigned long element = 0;
1343 enum zram_pageflags flags = 0;
1344
1345 mem = kmap_atomic(page);
1346 if (page_same_filled(mem, &element)) {
1347 kunmap_atomic(mem);
1348 /* Free memory associated with this sector now. */
1349 flags = ZRAM_SAME;
1350 atomic64_inc(&zram->stats.same_pages);
1351 goto out;
1352 }
1353 kunmap_atomic(mem);
1354
1355 compress_again:
1356 zstrm = zcomp_stream_get(zram->comp);
1357 src = kmap_atomic(page);
1358 ret = zcomp_compress(zstrm, src, &comp_len);
1359 kunmap_atomic(src);
1360
1361 if (unlikely(ret)) {
1362 zcomp_stream_put(zram->comp);
1363 pr_err("Compression failed! err=%d\n", ret);
1364 zs_free(zram->mem_pool, handle);
1365 return ret;
1366 }
1367
1368 if (comp_len >= huge_class_size)
1369 comp_len = PAGE_SIZE;
1370 /*
1371 * handle allocation has 2 paths:
1372 * a) fast path is executed with preemption disabled (for
1373 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1374 * since we can't sleep;
1375 * b) slow path enables preemption and attempts to allocate
1376 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1377 * put per-cpu compression stream and, thus, to re-do
1378 * the compression once handle is allocated.
1379 *
1380 * if we have a 'non-null' handle here then we are coming
1381 * from the slow path and handle has already been allocated.
1382 */
1383 if (!handle)
1384 handle = zs_malloc(zram->mem_pool, comp_len,
1385 __GFP_KSWAPD_RECLAIM |
1386 __GFP_NOWARN |
1387 __GFP_HIGHMEM |
1388 __GFP_MOVABLE |
1389 __GFP_CMA);
1390 if (!handle) {
1391 zcomp_stream_put(zram->comp);
1392 atomic64_inc(&zram->stats.writestall);
1393 handle = zs_malloc(zram->mem_pool, comp_len,
1394 GFP_NOIO | __GFP_HIGHMEM |
1395 __GFP_MOVABLE | __GFP_CMA);
1396 if (handle)
1397 goto compress_again;
1398 return -ENOMEM;
1399 }
1400
1401 alloced_pages = zs_get_total_pages(zram->mem_pool);
1402 update_used_max(zram, alloced_pages);
1403
1404 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1405 zcomp_stream_put(zram->comp);
1406 zs_free(zram->mem_pool, handle);
1407 return -ENOMEM;
1408 }
1409
1410 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1411
1412 src = zstrm->buffer;
1413 if (comp_len == PAGE_SIZE)
1414 src = kmap_atomic(page);
1415 memcpy(dst, src, comp_len);
1416 if (comp_len == PAGE_SIZE)
1417 kunmap_atomic(src);
1418
1419 zcomp_stream_put(zram->comp);
1420 zs_unmap_object(zram->mem_pool, handle);
1421 atomic64_add(comp_len, &zram->stats.compr_data_size);
1422 out:
1423 /*
1424 * Free memory associated with this sector
1425 * before overwriting unused sectors.
1426 */
1427 zram_slot_lock(zram, index);
1428 zram_free_page(zram, index);
1429
1430 if (comp_len == PAGE_SIZE) {
1431 zram_set_flag(zram, index, ZRAM_HUGE);
1432 atomic64_inc(&zram->stats.huge_pages);
1433 }
1434
1435 if (flags) {
1436 zram_set_flag(zram, index, flags);
1437 zram_set_element(zram, index, element);
1438 } else {
1439 zram_set_handle(zram, index, handle);
1440 zram_set_obj_size(zram, index, comp_len);
1441 }
1442 zram_slot_unlock(zram, index);
1443
1444 /* Update stats */
1445 atomic64_inc(&zram->stats.pages_stored);
1446 return ret;
1447 }
1448
zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1449 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1450 u32 index, int offset, struct bio *bio)
1451 {
1452 int ret;
1453 struct page *page = NULL;
1454 void *src;
1455 struct bio_vec vec;
1456
1457 vec = *bvec;
1458 if (is_partial_io(bvec)) {
1459 void *dst;
1460 /*
1461 * This is a partial IO. We need to read the full page
1462 * before to write the changes.
1463 */
1464 page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1465 if (!page)
1466 return -ENOMEM;
1467
1468 ret = __zram_bvec_read(zram, page, index, bio, true);
1469 if (ret)
1470 goto out;
1471
1472 src = kmap_atomic(bvec->bv_page);
1473 dst = kmap_atomic(page);
1474 memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1475 kunmap_atomic(dst);
1476 kunmap_atomic(src);
1477
1478 vec.bv_page = page;
1479 vec.bv_len = PAGE_SIZE;
1480 vec.bv_offset = 0;
1481 }
1482
1483 ret = __zram_bvec_write(zram, &vec, index, bio);
1484 out:
1485 if (is_partial_io(bvec))
1486 __free_page(page);
1487 return ret;
1488 }
1489
1490 /*
1491 * zram_bio_discard - handler on discard request
1492 * @index: physical block index in PAGE_SIZE units
1493 * @offset: byte offset within physical block
1494 */
zram_bio_discard(struct zram * zram,u32 index,int offset,struct bio * bio)1495 static void zram_bio_discard(struct zram *zram, u32 index,
1496 int offset, struct bio *bio)
1497 {
1498 size_t n = bio->bi_iter.bi_size;
1499
1500 /*
1501 * zram manages data in physical block size units. Because logical block
1502 * size isn't identical with physical block size on some arch, we
1503 * could get a discard request pointing to a specific offset within a
1504 * certain physical block. Although we can handle this request by
1505 * reading that physiclal block and decompressing and partially zeroing
1506 * and re-compressing and then re-storing it, this isn't reasonable
1507 * because our intent with a discard request is to save memory. So
1508 * skipping this logical block is appropriate here.
1509 */
1510 if (offset) {
1511 if (n <= (PAGE_SIZE - offset))
1512 return;
1513
1514 n -= (PAGE_SIZE - offset);
1515 index++;
1516 }
1517
1518 while (n >= PAGE_SIZE) {
1519 zram_slot_lock(zram, index);
1520 zram_free_page(zram, index);
1521 zram_slot_unlock(zram, index);
1522 atomic64_inc(&zram->stats.notify_free);
1523 index++;
1524 n -= PAGE_SIZE;
1525 }
1526 }
1527
1528 /*
1529 * Returns errno if it has some problem. Otherwise return 0 or 1.
1530 * Returns 0 if IO request was done synchronously
1531 * Returns 1 if IO request was successfully submitted.
1532 */
zram_bvec_rw(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,unsigned int op,struct bio * bio)1533 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1534 int offset, unsigned int op, struct bio *bio)
1535 {
1536 int ret;
1537
1538 if (!op_is_write(op)) {
1539 atomic64_inc(&zram->stats.num_reads);
1540 ret = zram_bvec_read(zram, bvec, index, offset, bio);
1541 flush_dcache_page(bvec->bv_page);
1542 } else {
1543 atomic64_inc(&zram->stats.num_writes);
1544 ret = zram_bvec_write(zram, bvec, index, offset, bio);
1545 }
1546
1547 zram_slot_lock(zram, index);
1548 zram_accessed(zram, index);
1549 zram_slot_unlock(zram, index);
1550
1551 if (unlikely(ret < 0)) {
1552 if (!op_is_write(op))
1553 atomic64_inc(&zram->stats.failed_reads);
1554 else
1555 atomic64_inc(&zram->stats.failed_writes);
1556 }
1557
1558 return ret;
1559 }
1560
__zram_make_request(struct zram * zram,struct bio * bio)1561 static void __zram_make_request(struct zram *zram, struct bio *bio)
1562 {
1563 int offset;
1564 u32 index;
1565 struct bio_vec bvec;
1566 struct bvec_iter iter;
1567 unsigned long start_time;
1568
1569 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1570 offset = (bio->bi_iter.bi_sector &
1571 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1572
1573 switch (bio_op(bio)) {
1574 case REQ_OP_DISCARD:
1575 case REQ_OP_WRITE_ZEROES:
1576 zram_bio_discard(zram, index, offset, bio);
1577 bio_endio(bio);
1578 return;
1579 default:
1580 break;
1581 }
1582
1583 start_time = bio_start_io_acct(bio);
1584 bio_for_each_segment(bvec, bio, iter) {
1585 struct bio_vec bv = bvec;
1586 unsigned int unwritten = bvec.bv_len;
1587
1588 do {
1589 bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1590 unwritten);
1591 if (zram_bvec_rw(zram, &bv, index, offset,
1592 bio_op(bio), bio) < 0) {
1593 bio->bi_status = BLK_STS_IOERR;
1594 break;
1595 }
1596
1597 bv.bv_offset += bv.bv_len;
1598 unwritten -= bv.bv_len;
1599
1600 update_position(&index, &offset, &bv);
1601 } while (unwritten);
1602 }
1603 bio_end_io_acct(bio, start_time);
1604 bio_endio(bio);
1605 }
1606
1607 /*
1608 * Handler function for all zram I/O requests.
1609 */
zram_submit_bio(struct bio * bio)1610 static blk_qc_t zram_submit_bio(struct bio *bio)
1611 {
1612 struct zram *zram = bio->bi_disk->private_data;
1613
1614 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1615 bio->bi_iter.bi_size)) {
1616 atomic64_inc(&zram->stats.invalid_io);
1617 goto error;
1618 }
1619
1620 __zram_make_request(zram, bio);
1621 return BLK_QC_T_NONE;
1622
1623 error:
1624 bio_io_error(bio);
1625 return BLK_QC_T_NONE;
1626 }
1627
zram_slot_free_notify(struct block_device * bdev,unsigned long index)1628 static void zram_slot_free_notify(struct block_device *bdev,
1629 unsigned long index)
1630 {
1631 struct zram *zram;
1632
1633 zram = bdev->bd_disk->private_data;
1634
1635 atomic64_inc(&zram->stats.notify_free);
1636 if (!zram_slot_trylock(zram, index)) {
1637 atomic64_inc(&zram->stats.miss_free);
1638 return;
1639 }
1640
1641 zram_free_page(zram, index);
1642 zram_slot_unlock(zram, index);
1643 }
1644
zram_rw_page(struct block_device * bdev,sector_t sector,struct page * page,unsigned int op)1645 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1646 struct page *page, unsigned int op)
1647 {
1648 int offset, ret;
1649 u32 index;
1650 struct zram *zram;
1651 struct bio_vec bv;
1652 unsigned long start_time;
1653
1654 if (PageTransHuge(page))
1655 return -ENOTSUPP;
1656 zram = bdev->bd_disk->private_data;
1657
1658 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1659 atomic64_inc(&zram->stats.invalid_io);
1660 ret = -EINVAL;
1661 goto out;
1662 }
1663
1664 index = sector >> SECTORS_PER_PAGE_SHIFT;
1665 offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1666
1667 bv.bv_page = page;
1668 bv.bv_len = PAGE_SIZE;
1669 bv.bv_offset = 0;
1670
1671 start_time = disk_start_io_acct(bdev->bd_disk, SECTORS_PER_PAGE, op);
1672 ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1673 disk_end_io_acct(bdev->bd_disk, op, start_time);
1674 out:
1675 /*
1676 * If I/O fails, just return error(ie, non-zero) without
1677 * calling page_endio.
1678 * It causes resubmit the I/O with bio request by upper functions
1679 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1680 * bio->bi_end_io does things to handle the error
1681 * (e.g., SetPageError, set_page_dirty and extra works).
1682 */
1683 if (unlikely(ret < 0))
1684 return ret;
1685
1686 switch (ret) {
1687 case 0:
1688 page_endio(page, op_is_write(op), 0);
1689 break;
1690 case 1:
1691 ret = 0;
1692 break;
1693 default:
1694 WARN_ON(1);
1695 }
1696 return ret;
1697 }
1698
zram_reset_device(struct zram * zram)1699 static void zram_reset_device(struct zram *zram)
1700 {
1701 struct zcomp *comp;
1702 u64 disksize;
1703
1704 down_write(&zram->init_lock);
1705
1706 zram->limit_pages = 0;
1707
1708 if (!init_done(zram)) {
1709 up_write(&zram->init_lock);
1710 return;
1711 }
1712
1713 comp = zram->comp;
1714 disksize = zram->disksize;
1715 zram->disksize = 0;
1716
1717 set_capacity(zram->disk, 0);
1718 part_stat_set_all(&zram->disk->part0, 0);
1719
1720 up_write(&zram->init_lock);
1721 /* I/O operation under all of CPU are done so let's free */
1722 zram_meta_free(zram, disksize);
1723 memset(&zram->stats, 0, sizeof(zram->stats));
1724 zcomp_destroy(comp);
1725 reset_bdev(zram);
1726 }
1727
disksize_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1728 static ssize_t disksize_store(struct device *dev,
1729 struct device_attribute *attr, const char *buf, size_t len)
1730 {
1731 u64 disksize;
1732 struct zcomp *comp;
1733 struct zram *zram = dev_to_zram(dev);
1734 int err;
1735
1736 disksize = memparse(buf, NULL);
1737 if (!disksize)
1738 return -EINVAL;
1739
1740 down_write(&zram->init_lock);
1741 if (init_done(zram)) {
1742 pr_info("Cannot change disksize for initialized device\n");
1743 err = -EBUSY;
1744 goto out_unlock;
1745 }
1746
1747 disksize = PAGE_ALIGN(disksize);
1748 if (!zram_meta_alloc(zram, disksize)) {
1749 err = -ENOMEM;
1750 goto out_unlock;
1751 }
1752
1753 comp = zcomp_create(zram->compressor);
1754 if (IS_ERR(comp)) {
1755 pr_err("Cannot initialise %s compressing backend\n",
1756 zram->compressor);
1757 err = PTR_ERR(comp);
1758 goto out_free_meta;
1759 }
1760
1761 zram->comp = comp;
1762 zram->disksize = disksize;
1763 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1764
1765 revalidate_disk_size(zram->disk, true);
1766 up_write(&zram->init_lock);
1767
1768 return len;
1769
1770 out_free_meta:
1771 zram_meta_free(zram, disksize);
1772 out_unlock:
1773 up_write(&zram->init_lock);
1774 return err;
1775 }
1776
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1777 static ssize_t reset_store(struct device *dev,
1778 struct device_attribute *attr, const char *buf, size_t len)
1779 {
1780 int ret;
1781 unsigned short do_reset;
1782 struct zram *zram;
1783 struct block_device *bdev;
1784
1785 ret = kstrtou16(buf, 10, &do_reset);
1786 if (ret)
1787 return ret;
1788
1789 if (!do_reset)
1790 return -EINVAL;
1791
1792 zram = dev_to_zram(dev);
1793 bdev = bdget_disk(zram->disk, 0);
1794 if (!bdev)
1795 return -ENOMEM;
1796
1797 mutex_lock(&bdev->bd_mutex);
1798 /* Do not reset an active device or claimed device */
1799 if (bdev->bd_openers || zram->claim) {
1800 mutex_unlock(&bdev->bd_mutex);
1801 bdput(bdev);
1802 return -EBUSY;
1803 }
1804
1805 /* From now on, anyone can't open /dev/zram[0-9] */
1806 zram->claim = true;
1807 mutex_unlock(&bdev->bd_mutex);
1808
1809 /* Make sure all the pending I/O are finished */
1810 fsync_bdev(bdev);
1811 zram_reset_device(zram);
1812 revalidate_disk_size(zram->disk, true);
1813 bdput(bdev);
1814
1815 mutex_lock(&bdev->bd_mutex);
1816 zram->claim = false;
1817 mutex_unlock(&bdev->bd_mutex);
1818
1819 return len;
1820 }
1821
zram_open(struct block_device * bdev,fmode_t mode)1822 static int zram_open(struct block_device *bdev, fmode_t mode)
1823 {
1824 int ret = 0;
1825 struct zram *zram;
1826
1827 WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1828
1829 zram = bdev->bd_disk->private_data;
1830 /* zram was claimed to reset so open request fails */
1831 if (zram->claim)
1832 ret = -EBUSY;
1833
1834 return ret;
1835 }
1836
1837 static const struct block_device_operations zram_devops = {
1838 .open = zram_open,
1839 .submit_bio = zram_submit_bio,
1840 .swap_slot_free_notify = zram_slot_free_notify,
1841 .rw_page = zram_rw_page,
1842 .owner = THIS_MODULE
1843 };
1844
1845 static const struct block_device_operations zram_wb_devops = {
1846 .open = zram_open,
1847 .submit_bio = zram_submit_bio,
1848 .swap_slot_free_notify = zram_slot_free_notify,
1849 .owner = THIS_MODULE
1850 };
1851
1852 static DEVICE_ATTR_WO(compact);
1853 static DEVICE_ATTR_RW(disksize);
1854 static DEVICE_ATTR_RO(initstate);
1855 static DEVICE_ATTR_WO(reset);
1856 static DEVICE_ATTR_WO(mem_limit);
1857 static DEVICE_ATTR_WO(mem_used_max);
1858 static DEVICE_ATTR_WO(idle);
1859 static DEVICE_ATTR_RW(max_comp_streams);
1860 static DEVICE_ATTR_RW(comp_algorithm);
1861 #ifdef CONFIG_ZRAM_WRITEBACK
1862 static DEVICE_ATTR_RW(backing_dev);
1863 static DEVICE_ATTR_WO(writeback);
1864 static DEVICE_ATTR_RW(writeback_limit);
1865 static DEVICE_ATTR_RW(writeback_limit_enable);
1866 #endif
1867
1868 static struct attribute *zram_disk_attrs[] = {
1869 &dev_attr_disksize.attr,
1870 &dev_attr_initstate.attr,
1871 &dev_attr_reset.attr,
1872 &dev_attr_compact.attr,
1873 &dev_attr_mem_limit.attr,
1874 &dev_attr_mem_used_max.attr,
1875 &dev_attr_idle.attr,
1876 &dev_attr_max_comp_streams.attr,
1877 &dev_attr_comp_algorithm.attr,
1878 #ifdef CONFIG_ZRAM_WRITEBACK
1879 &dev_attr_backing_dev.attr,
1880 &dev_attr_writeback.attr,
1881 &dev_attr_writeback_limit.attr,
1882 &dev_attr_writeback_limit_enable.attr,
1883 #endif
1884 &dev_attr_io_stat.attr,
1885 &dev_attr_mm_stat.attr,
1886 #ifdef CONFIG_ZRAM_WRITEBACK
1887 &dev_attr_bd_stat.attr,
1888 #endif
1889 &dev_attr_debug_stat.attr,
1890 NULL,
1891 };
1892
1893 static const struct attribute_group zram_disk_attr_group = {
1894 .attrs = zram_disk_attrs,
1895 };
1896
1897 static const struct attribute_group *zram_disk_attr_groups[] = {
1898 &zram_disk_attr_group,
1899 NULL,
1900 };
1901
1902 /*
1903 * Allocate and initialize new zram device. the function returns
1904 * '>= 0' device_id upon success, and negative value otherwise.
1905 */
zram_add(void)1906 static int zram_add(void)
1907 {
1908 struct zram *zram;
1909 struct request_queue *queue;
1910 int ret, device_id;
1911
1912 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1913 if (!zram)
1914 return -ENOMEM;
1915
1916 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1917 if (ret < 0)
1918 goto out_free_dev;
1919 device_id = ret;
1920
1921 init_rwsem(&zram->init_lock);
1922 #ifdef CONFIG_ZRAM_WRITEBACK
1923 spin_lock_init(&zram->wb_limit_lock);
1924 #endif
1925 queue = blk_alloc_queue(NUMA_NO_NODE);
1926 if (!queue) {
1927 pr_err("Error allocating disk queue for device %d\n",
1928 device_id);
1929 ret = -ENOMEM;
1930 goto out_free_idr;
1931 }
1932
1933 /* gendisk structure */
1934 zram->disk = alloc_disk(1);
1935 if (!zram->disk) {
1936 pr_err("Error allocating disk structure for device %d\n",
1937 device_id);
1938 ret = -ENOMEM;
1939 goto out_free_queue;
1940 }
1941
1942 zram->disk->major = zram_major;
1943 zram->disk->first_minor = device_id;
1944 zram->disk->fops = &zram_devops;
1945 zram->disk->queue = queue;
1946 zram->disk->private_data = zram;
1947 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1948
1949 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1950 set_capacity(zram->disk, 0);
1951 /* zram devices sort of resembles non-rotational disks */
1952 blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1953 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1954
1955 /*
1956 * To ensure that we always get PAGE_SIZE aligned
1957 * and n*PAGE_SIZED sized I/O requests.
1958 */
1959 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1960 blk_queue_logical_block_size(zram->disk->queue,
1961 ZRAM_LOGICAL_BLOCK_SIZE);
1962 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1963 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1964 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1965 blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1966 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1967
1968 /*
1969 * zram_bio_discard() will clear all logical blocks if logical block
1970 * size is identical with physical block size(PAGE_SIZE). But if it is
1971 * different, we will skip discarding some parts of logical blocks in
1972 * the part of the request range which isn't aligned to physical block
1973 * size. So we can't ensure that all discarded logical blocks are
1974 * zeroed.
1975 */
1976 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1977 blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1978
1979 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, zram->disk->queue);
1980 device_add_disk(NULL, zram->disk, zram_disk_attr_groups);
1981
1982 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1983
1984 zram_debugfs_register(zram);
1985 pr_info("Added device: %s\n", zram->disk->disk_name);
1986 return device_id;
1987
1988 out_free_queue:
1989 blk_cleanup_queue(queue);
1990 out_free_idr:
1991 idr_remove(&zram_index_idr, device_id);
1992 out_free_dev:
1993 kfree(zram);
1994 return ret;
1995 }
1996
zram_remove(struct zram * zram)1997 static int zram_remove(struct zram *zram)
1998 {
1999 struct block_device *bdev;
2000
2001 bdev = bdget_disk(zram->disk, 0);
2002 if (!bdev)
2003 return -ENOMEM;
2004
2005 mutex_lock(&bdev->bd_mutex);
2006 if (bdev->bd_openers || zram->claim) {
2007 mutex_unlock(&bdev->bd_mutex);
2008 bdput(bdev);
2009 return -EBUSY;
2010 }
2011
2012 zram->claim = true;
2013 mutex_unlock(&bdev->bd_mutex);
2014
2015 zram_debugfs_unregister(zram);
2016
2017 /* Make sure all the pending I/O are finished */
2018 fsync_bdev(bdev);
2019 zram_reset_device(zram);
2020 bdput(bdev);
2021
2022 pr_info("Removed device: %s\n", zram->disk->disk_name);
2023
2024 del_gendisk(zram->disk);
2025 blk_cleanup_queue(zram->disk->queue);
2026 put_disk(zram->disk);
2027 kfree(zram);
2028 return 0;
2029 }
2030
2031 /* zram-control sysfs attributes */
2032
2033 /*
2034 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2035 * sense that reading from this file does alter the state of your system -- it
2036 * creates a new un-initialized zram device and returns back this device's
2037 * device_id (or an error code if it fails to create a new device).
2038 */
hot_add_show(struct class * class,struct class_attribute * attr,char * buf)2039 static ssize_t hot_add_show(struct class *class,
2040 struct class_attribute *attr,
2041 char *buf)
2042 {
2043 int ret;
2044
2045 mutex_lock(&zram_index_mutex);
2046 ret = zram_add();
2047 mutex_unlock(&zram_index_mutex);
2048
2049 if (ret < 0)
2050 return ret;
2051 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2052 }
2053 static struct class_attribute class_attr_hot_add =
2054 __ATTR(hot_add, 0400, hot_add_show, NULL);
2055
hot_remove_store(struct class * class,struct class_attribute * attr,const char * buf,size_t count)2056 static ssize_t hot_remove_store(struct class *class,
2057 struct class_attribute *attr,
2058 const char *buf,
2059 size_t count)
2060 {
2061 struct zram *zram;
2062 int ret, dev_id;
2063
2064 /* dev_id is gendisk->first_minor, which is `int' */
2065 ret = kstrtoint(buf, 10, &dev_id);
2066 if (ret)
2067 return ret;
2068 if (dev_id < 0)
2069 return -EINVAL;
2070
2071 mutex_lock(&zram_index_mutex);
2072
2073 zram = idr_find(&zram_index_idr, dev_id);
2074 if (zram) {
2075 ret = zram_remove(zram);
2076 if (!ret)
2077 idr_remove(&zram_index_idr, dev_id);
2078 } else {
2079 ret = -ENODEV;
2080 }
2081
2082 mutex_unlock(&zram_index_mutex);
2083 return ret ? ret : count;
2084 }
2085 static CLASS_ATTR_WO(hot_remove);
2086
2087 static struct attribute *zram_control_class_attrs[] = {
2088 &class_attr_hot_add.attr,
2089 &class_attr_hot_remove.attr,
2090 NULL,
2091 };
2092 ATTRIBUTE_GROUPS(zram_control_class);
2093
2094 static struct class zram_control_class = {
2095 .name = "zram-control",
2096 .owner = THIS_MODULE,
2097 .class_groups = zram_control_class_groups,
2098 };
2099
zram_remove_cb(int id,void * ptr,void * data)2100 static int zram_remove_cb(int id, void *ptr, void *data)
2101 {
2102 zram_remove(ptr);
2103 return 0;
2104 }
2105
destroy_devices(void)2106 static void destroy_devices(void)
2107 {
2108 class_unregister(&zram_control_class);
2109 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2110 zram_debugfs_destroy();
2111 idr_destroy(&zram_index_idr);
2112 unregister_blkdev(zram_major, "zram");
2113 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2114 }
2115
zram_init(void)2116 static int __init zram_init(void)
2117 {
2118 int ret;
2119
2120 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2121 zcomp_cpu_up_prepare, zcomp_cpu_dead);
2122 if (ret < 0)
2123 return ret;
2124
2125 ret = class_register(&zram_control_class);
2126 if (ret) {
2127 pr_err("Unable to register zram-control class\n");
2128 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2129 return ret;
2130 }
2131
2132 zram_debugfs_create();
2133 zram_major = register_blkdev(0, "zram");
2134 if (zram_major <= 0) {
2135 pr_err("Unable to get major number\n");
2136 class_unregister(&zram_control_class);
2137 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2138 return -EBUSY;
2139 }
2140
2141 while (num_devices != 0) {
2142 mutex_lock(&zram_index_mutex);
2143 ret = zram_add();
2144 mutex_unlock(&zram_index_mutex);
2145 if (ret < 0)
2146 goto out_error;
2147 num_devices--;
2148 }
2149
2150 return 0;
2151
2152 out_error:
2153 destroy_devices();
2154 return ret;
2155 }
2156
zram_exit(void)2157 static void __exit zram_exit(void)
2158 {
2159 destroy_devices();
2160 }
2161
2162 module_init(zram_init);
2163 module_exit(zram_exit);
2164
2165 module_param(num_devices, uint, 0);
2166 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2167
2168 MODULE_LICENSE("Dual BSD/GPL");
2169 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2170 MODULE_DESCRIPTION("Compressed RAM Block Device");
2171