xref: /OK3568_Linux_fs/kernel/crypto/gf128mul.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /* gf128mul.c - GF(2^128) multiplication functions
2*4882a593Smuzhiyun  *
3*4882a593Smuzhiyun  * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4*4882a593Smuzhiyun  * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
5*4882a593Smuzhiyun  *
6*4882a593Smuzhiyun  * Based on Dr Brian Gladman's (GPL'd) work published at
7*4882a593Smuzhiyun  * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8*4882a593Smuzhiyun  * See the original copyright notice below.
9*4882a593Smuzhiyun  *
10*4882a593Smuzhiyun  * This program is free software; you can redistribute it and/or modify it
11*4882a593Smuzhiyun  * under the terms of the GNU General Public License as published by the Free
12*4882a593Smuzhiyun  * Software Foundation; either version 2 of the License, or (at your option)
13*4882a593Smuzhiyun  * any later version.
14*4882a593Smuzhiyun  */
15*4882a593Smuzhiyun 
16*4882a593Smuzhiyun /*
17*4882a593Smuzhiyun  ---------------------------------------------------------------------------
18*4882a593Smuzhiyun  Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
19*4882a593Smuzhiyun 
20*4882a593Smuzhiyun  LICENSE TERMS
21*4882a593Smuzhiyun 
22*4882a593Smuzhiyun  The free distribution and use of this software in both source and binary
23*4882a593Smuzhiyun  form is allowed (with or without changes) provided that:
24*4882a593Smuzhiyun 
25*4882a593Smuzhiyun    1. distributions of this source code include the above copyright
26*4882a593Smuzhiyun       notice, this list of conditions and the following disclaimer;
27*4882a593Smuzhiyun 
28*4882a593Smuzhiyun    2. distributions in binary form include the above copyright
29*4882a593Smuzhiyun       notice, this list of conditions and the following disclaimer
30*4882a593Smuzhiyun       in the documentation and/or other associated materials;
31*4882a593Smuzhiyun 
32*4882a593Smuzhiyun    3. the copyright holder's name is not used to endorse products
33*4882a593Smuzhiyun       built using this software without specific written permission.
34*4882a593Smuzhiyun 
35*4882a593Smuzhiyun  ALTERNATIVELY, provided that this notice is retained in full, this product
36*4882a593Smuzhiyun  may be distributed under the terms of the GNU General Public License (GPL),
37*4882a593Smuzhiyun  in which case the provisions of the GPL apply INSTEAD OF those given above.
38*4882a593Smuzhiyun 
39*4882a593Smuzhiyun  DISCLAIMER
40*4882a593Smuzhiyun 
41*4882a593Smuzhiyun  This software is provided 'as is' with no explicit or implied warranties
42*4882a593Smuzhiyun  in respect of its properties, including, but not limited to, correctness
43*4882a593Smuzhiyun  and/or fitness for purpose.
44*4882a593Smuzhiyun  ---------------------------------------------------------------------------
45*4882a593Smuzhiyun  Issue 31/01/2006
46*4882a593Smuzhiyun 
47*4882a593Smuzhiyun  This file provides fast multiplication in GF(2^128) as required by several
48*4882a593Smuzhiyun  cryptographic authentication modes
49*4882a593Smuzhiyun */
50*4882a593Smuzhiyun 
51*4882a593Smuzhiyun #include <crypto/gf128mul.h>
52*4882a593Smuzhiyun #include <linux/kernel.h>
53*4882a593Smuzhiyun #include <linux/module.h>
54*4882a593Smuzhiyun #include <linux/slab.h>
55*4882a593Smuzhiyun 
56*4882a593Smuzhiyun #define gf128mul_dat(q) { \
57*4882a593Smuzhiyun 	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
58*4882a593Smuzhiyun 	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
59*4882a593Smuzhiyun 	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
60*4882a593Smuzhiyun 	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
61*4882a593Smuzhiyun 	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
62*4882a593Smuzhiyun 	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
63*4882a593Smuzhiyun 	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
64*4882a593Smuzhiyun 	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
65*4882a593Smuzhiyun 	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
66*4882a593Smuzhiyun 	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
67*4882a593Smuzhiyun 	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
68*4882a593Smuzhiyun 	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
69*4882a593Smuzhiyun 	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
70*4882a593Smuzhiyun 	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
71*4882a593Smuzhiyun 	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
72*4882a593Smuzhiyun 	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
73*4882a593Smuzhiyun 	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
74*4882a593Smuzhiyun 	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
75*4882a593Smuzhiyun 	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
76*4882a593Smuzhiyun 	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
77*4882a593Smuzhiyun 	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
78*4882a593Smuzhiyun 	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
79*4882a593Smuzhiyun 	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
80*4882a593Smuzhiyun 	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
81*4882a593Smuzhiyun 	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
82*4882a593Smuzhiyun 	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
83*4882a593Smuzhiyun 	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
84*4882a593Smuzhiyun 	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
85*4882a593Smuzhiyun 	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
86*4882a593Smuzhiyun 	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
87*4882a593Smuzhiyun 	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
88*4882a593Smuzhiyun 	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
89*4882a593Smuzhiyun }
90*4882a593Smuzhiyun 
91*4882a593Smuzhiyun /*
92*4882a593Smuzhiyun  * Given a value i in 0..255 as the byte overflow when a field element
93*4882a593Smuzhiyun  * in GF(2^128) is multiplied by x^8, the following macro returns the
94*4882a593Smuzhiyun  * 16-bit value that must be XOR-ed into the low-degree end of the
95*4882a593Smuzhiyun  * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
96*4882a593Smuzhiyun  *
97*4882a593Smuzhiyun  * There are two versions of the macro, and hence two tables: one for
98*4882a593Smuzhiyun  * the "be" convention where the highest-order bit is the coefficient of
99*4882a593Smuzhiyun  * the highest-degree polynomial term, and one for the "le" convention
100*4882a593Smuzhiyun  * where the highest-order bit is the coefficient of the lowest-degree
101*4882a593Smuzhiyun  * polynomial term.  In both cases the values are stored in CPU byte
102*4882a593Smuzhiyun  * endianness such that the coefficients are ordered consistently across
103*4882a593Smuzhiyun  * bytes, i.e. in the "be" table bits 15..0 of the stored value
104*4882a593Smuzhiyun  * correspond to the coefficients of x^15..x^0, and in the "le" table
105*4882a593Smuzhiyun  * bits 15..0 correspond to the coefficients of x^0..x^15.
106*4882a593Smuzhiyun  *
107*4882a593Smuzhiyun  * Therefore, provided that the appropriate byte endianness conversions
108*4882a593Smuzhiyun  * are done by the multiplication functions (and these must be in place
109*4882a593Smuzhiyun  * anyway to support both little endian and big endian CPUs), the "be"
110*4882a593Smuzhiyun  * table can be used for multiplications of both "bbe" and "ble"
111*4882a593Smuzhiyun  * elements, and the "le" table can be used for multiplications of both
112*4882a593Smuzhiyun  * "lle" and "lbe" elements.
113*4882a593Smuzhiyun  */
114*4882a593Smuzhiyun 
115*4882a593Smuzhiyun #define xda_be(i) ( \
116*4882a593Smuzhiyun 	(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117*4882a593Smuzhiyun 	(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118*4882a593Smuzhiyun 	(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119*4882a593Smuzhiyun 	(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
120*4882a593Smuzhiyun )
121*4882a593Smuzhiyun 
122*4882a593Smuzhiyun #define xda_le(i) ( \
123*4882a593Smuzhiyun 	(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124*4882a593Smuzhiyun 	(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125*4882a593Smuzhiyun 	(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126*4882a593Smuzhiyun 	(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
127*4882a593Smuzhiyun )
128*4882a593Smuzhiyun 
129*4882a593Smuzhiyun static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130*4882a593Smuzhiyun static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
131*4882a593Smuzhiyun 
132*4882a593Smuzhiyun /*
133*4882a593Smuzhiyun  * The following functions multiply a field element by x^8 in
134*4882a593Smuzhiyun  * the polynomial field representation.  They use 64-bit word operations
135*4882a593Smuzhiyun  * to gain speed but compensate for machine endianness and hence work
136*4882a593Smuzhiyun  * correctly on both styles of machine.
137*4882a593Smuzhiyun  */
138*4882a593Smuzhiyun 
gf128mul_x8_lle(be128 * x)139*4882a593Smuzhiyun static void gf128mul_x8_lle(be128 *x)
140*4882a593Smuzhiyun {
141*4882a593Smuzhiyun 	u64 a = be64_to_cpu(x->a);
142*4882a593Smuzhiyun 	u64 b = be64_to_cpu(x->b);
143*4882a593Smuzhiyun 	u64 _tt = gf128mul_table_le[b & 0xff];
144*4882a593Smuzhiyun 
145*4882a593Smuzhiyun 	x->b = cpu_to_be64((b >> 8) | (a << 56));
146*4882a593Smuzhiyun 	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
147*4882a593Smuzhiyun }
148*4882a593Smuzhiyun 
gf128mul_x8_bbe(be128 * x)149*4882a593Smuzhiyun static void gf128mul_x8_bbe(be128 *x)
150*4882a593Smuzhiyun {
151*4882a593Smuzhiyun 	u64 a = be64_to_cpu(x->a);
152*4882a593Smuzhiyun 	u64 b = be64_to_cpu(x->b);
153*4882a593Smuzhiyun 	u64 _tt = gf128mul_table_be[a >> 56];
154*4882a593Smuzhiyun 
155*4882a593Smuzhiyun 	x->a = cpu_to_be64((a << 8) | (b >> 56));
156*4882a593Smuzhiyun 	x->b = cpu_to_be64((b << 8) ^ _tt);
157*4882a593Smuzhiyun }
158*4882a593Smuzhiyun 
gf128mul_x8_ble(le128 * r,const le128 * x)159*4882a593Smuzhiyun void gf128mul_x8_ble(le128 *r, const le128 *x)
160*4882a593Smuzhiyun {
161*4882a593Smuzhiyun 	u64 a = le64_to_cpu(x->a);
162*4882a593Smuzhiyun 	u64 b = le64_to_cpu(x->b);
163*4882a593Smuzhiyun 	u64 _tt = gf128mul_table_be[a >> 56];
164*4882a593Smuzhiyun 
165*4882a593Smuzhiyun 	r->a = cpu_to_le64((a << 8) | (b >> 56));
166*4882a593Smuzhiyun 	r->b = cpu_to_le64((b << 8) ^ _tt);
167*4882a593Smuzhiyun }
168*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_x8_ble);
169*4882a593Smuzhiyun 
gf128mul_lle(be128 * r,const be128 * b)170*4882a593Smuzhiyun void gf128mul_lle(be128 *r, const be128 *b)
171*4882a593Smuzhiyun {
172*4882a593Smuzhiyun 	be128 p[8];
173*4882a593Smuzhiyun 	int i;
174*4882a593Smuzhiyun 
175*4882a593Smuzhiyun 	p[0] = *r;
176*4882a593Smuzhiyun 	for (i = 0; i < 7; ++i)
177*4882a593Smuzhiyun 		gf128mul_x_lle(&p[i + 1], &p[i]);
178*4882a593Smuzhiyun 
179*4882a593Smuzhiyun 	memset(r, 0, sizeof(*r));
180*4882a593Smuzhiyun 	for (i = 0;;) {
181*4882a593Smuzhiyun 		u8 ch = ((u8 *)b)[15 - i];
182*4882a593Smuzhiyun 
183*4882a593Smuzhiyun 		if (ch & 0x80)
184*4882a593Smuzhiyun 			be128_xor(r, r, &p[0]);
185*4882a593Smuzhiyun 		if (ch & 0x40)
186*4882a593Smuzhiyun 			be128_xor(r, r, &p[1]);
187*4882a593Smuzhiyun 		if (ch & 0x20)
188*4882a593Smuzhiyun 			be128_xor(r, r, &p[2]);
189*4882a593Smuzhiyun 		if (ch & 0x10)
190*4882a593Smuzhiyun 			be128_xor(r, r, &p[3]);
191*4882a593Smuzhiyun 		if (ch & 0x08)
192*4882a593Smuzhiyun 			be128_xor(r, r, &p[4]);
193*4882a593Smuzhiyun 		if (ch & 0x04)
194*4882a593Smuzhiyun 			be128_xor(r, r, &p[5]);
195*4882a593Smuzhiyun 		if (ch & 0x02)
196*4882a593Smuzhiyun 			be128_xor(r, r, &p[6]);
197*4882a593Smuzhiyun 		if (ch & 0x01)
198*4882a593Smuzhiyun 			be128_xor(r, r, &p[7]);
199*4882a593Smuzhiyun 
200*4882a593Smuzhiyun 		if (++i >= 16)
201*4882a593Smuzhiyun 			break;
202*4882a593Smuzhiyun 
203*4882a593Smuzhiyun 		gf128mul_x8_lle(r);
204*4882a593Smuzhiyun 	}
205*4882a593Smuzhiyun }
206*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_lle);
207*4882a593Smuzhiyun 
gf128mul_bbe(be128 * r,const be128 * b)208*4882a593Smuzhiyun void gf128mul_bbe(be128 *r, const be128 *b)
209*4882a593Smuzhiyun {
210*4882a593Smuzhiyun 	be128 p[8];
211*4882a593Smuzhiyun 	int i;
212*4882a593Smuzhiyun 
213*4882a593Smuzhiyun 	p[0] = *r;
214*4882a593Smuzhiyun 	for (i = 0; i < 7; ++i)
215*4882a593Smuzhiyun 		gf128mul_x_bbe(&p[i + 1], &p[i]);
216*4882a593Smuzhiyun 
217*4882a593Smuzhiyun 	memset(r, 0, sizeof(*r));
218*4882a593Smuzhiyun 	for (i = 0;;) {
219*4882a593Smuzhiyun 		u8 ch = ((u8 *)b)[i];
220*4882a593Smuzhiyun 
221*4882a593Smuzhiyun 		if (ch & 0x80)
222*4882a593Smuzhiyun 			be128_xor(r, r, &p[7]);
223*4882a593Smuzhiyun 		if (ch & 0x40)
224*4882a593Smuzhiyun 			be128_xor(r, r, &p[6]);
225*4882a593Smuzhiyun 		if (ch & 0x20)
226*4882a593Smuzhiyun 			be128_xor(r, r, &p[5]);
227*4882a593Smuzhiyun 		if (ch & 0x10)
228*4882a593Smuzhiyun 			be128_xor(r, r, &p[4]);
229*4882a593Smuzhiyun 		if (ch & 0x08)
230*4882a593Smuzhiyun 			be128_xor(r, r, &p[3]);
231*4882a593Smuzhiyun 		if (ch & 0x04)
232*4882a593Smuzhiyun 			be128_xor(r, r, &p[2]);
233*4882a593Smuzhiyun 		if (ch & 0x02)
234*4882a593Smuzhiyun 			be128_xor(r, r, &p[1]);
235*4882a593Smuzhiyun 		if (ch & 0x01)
236*4882a593Smuzhiyun 			be128_xor(r, r, &p[0]);
237*4882a593Smuzhiyun 
238*4882a593Smuzhiyun 		if (++i >= 16)
239*4882a593Smuzhiyun 			break;
240*4882a593Smuzhiyun 
241*4882a593Smuzhiyun 		gf128mul_x8_bbe(r);
242*4882a593Smuzhiyun 	}
243*4882a593Smuzhiyun }
244*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_bbe);
245*4882a593Smuzhiyun 
246*4882a593Smuzhiyun /*      This version uses 64k bytes of table space.
247*4882a593Smuzhiyun     A 16 byte buffer has to be multiplied by a 16 byte key
248*4882a593Smuzhiyun     value in GF(2^128).  If we consider a GF(2^128) value in
249*4882a593Smuzhiyun     the buffer's lowest byte, we can construct a table of
250*4882a593Smuzhiyun     the 256 16 byte values that result from the 256 values
251*4882a593Smuzhiyun     of this byte.  This requires 4096 bytes. But we also
252*4882a593Smuzhiyun     need tables for each of the 16 higher bytes in the
253*4882a593Smuzhiyun     buffer as well, which makes 64 kbytes in total.
254*4882a593Smuzhiyun */
255*4882a593Smuzhiyun /* additional explanation
256*4882a593Smuzhiyun  * t[0][BYTE] contains g*BYTE
257*4882a593Smuzhiyun  * t[1][BYTE] contains g*x^8*BYTE
258*4882a593Smuzhiyun  *  ..
259*4882a593Smuzhiyun  * t[15][BYTE] contains g*x^120*BYTE */
gf128mul_init_64k_bbe(const be128 * g)260*4882a593Smuzhiyun struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
261*4882a593Smuzhiyun {
262*4882a593Smuzhiyun 	struct gf128mul_64k *t;
263*4882a593Smuzhiyun 	int i, j, k;
264*4882a593Smuzhiyun 
265*4882a593Smuzhiyun 	t = kzalloc(sizeof(*t), GFP_KERNEL);
266*4882a593Smuzhiyun 	if (!t)
267*4882a593Smuzhiyun 		goto out;
268*4882a593Smuzhiyun 
269*4882a593Smuzhiyun 	for (i = 0; i < 16; i++) {
270*4882a593Smuzhiyun 		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
271*4882a593Smuzhiyun 		if (!t->t[i]) {
272*4882a593Smuzhiyun 			gf128mul_free_64k(t);
273*4882a593Smuzhiyun 			t = NULL;
274*4882a593Smuzhiyun 			goto out;
275*4882a593Smuzhiyun 		}
276*4882a593Smuzhiyun 	}
277*4882a593Smuzhiyun 
278*4882a593Smuzhiyun 	t->t[0]->t[1] = *g;
279*4882a593Smuzhiyun 	for (j = 1; j <= 64; j <<= 1)
280*4882a593Smuzhiyun 		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
281*4882a593Smuzhiyun 
282*4882a593Smuzhiyun 	for (i = 0;;) {
283*4882a593Smuzhiyun 		for (j = 2; j < 256; j += j)
284*4882a593Smuzhiyun 			for (k = 1; k < j; ++k)
285*4882a593Smuzhiyun 				be128_xor(&t->t[i]->t[j + k],
286*4882a593Smuzhiyun 					  &t->t[i]->t[j], &t->t[i]->t[k]);
287*4882a593Smuzhiyun 
288*4882a593Smuzhiyun 		if (++i >= 16)
289*4882a593Smuzhiyun 			break;
290*4882a593Smuzhiyun 
291*4882a593Smuzhiyun 		for (j = 128; j > 0; j >>= 1) {
292*4882a593Smuzhiyun 			t->t[i]->t[j] = t->t[i - 1]->t[j];
293*4882a593Smuzhiyun 			gf128mul_x8_bbe(&t->t[i]->t[j]);
294*4882a593Smuzhiyun 		}
295*4882a593Smuzhiyun 	}
296*4882a593Smuzhiyun 
297*4882a593Smuzhiyun out:
298*4882a593Smuzhiyun 	return t;
299*4882a593Smuzhiyun }
300*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_init_64k_bbe);
301*4882a593Smuzhiyun 
gf128mul_free_64k(struct gf128mul_64k * t)302*4882a593Smuzhiyun void gf128mul_free_64k(struct gf128mul_64k *t)
303*4882a593Smuzhiyun {
304*4882a593Smuzhiyun 	int i;
305*4882a593Smuzhiyun 
306*4882a593Smuzhiyun 	for (i = 0; i < 16; i++)
307*4882a593Smuzhiyun 		kfree_sensitive(t->t[i]);
308*4882a593Smuzhiyun 	kfree_sensitive(t);
309*4882a593Smuzhiyun }
310*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_free_64k);
311*4882a593Smuzhiyun 
gf128mul_64k_bbe(be128 * a,const struct gf128mul_64k * t)312*4882a593Smuzhiyun void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
313*4882a593Smuzhiyun {
314*4882a593Smuzhiyun 	u8 *ap = (u8 *)a;
315*4882a593Smuzhiyun 	be128 r[1];
316*4882a593Smuzhiyun 	int i;
317*4882a593Smuzhiyun 
318*4882a593Smuzhiyun 	*r = t->t[0]->t[ap[15]];
319*4882a593Smuzhiyun 	for (i = 1; i < 16; ++i)
320*4882a593Smuzhiyun 		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
321*4882a593Smuzhiyun 	*a = *r;
322*4882a593Smuzhiyun }
323*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_64k_bbe);
324*4882a593Smuzhiyun 
325*4882a593Smuzhiyun /*      This version uses 4k bytes of table space.
326*4882a593Smuzhiyun     A 16 byte buffer has to be multiplied by a 16 byte key
327*4882a593Smuzhiyun     value in GF(2^128).  If we consider a GF(2^128) value in a
328*4882a593Smuzhiyun     single byte, we can construct a table of the 256 16 byte
329*4882a593Smuzhiyun     values that result from the 256 values of this byte.
330*4882a593Smuzhiyun     This requires 4096 bytes. If we take the highest byte in
331*4882a593Smuzhiyun     the buffer and use this table to get the result, we then
332*4882a593Smuzhiyun     have to multiply by x^120 to get the final value. For the
333*4882a593Smuzhiyun     next highest byte the result has to be multiplied by x^112
334*4882a593Smuzhiyun     and so on. But we can do this by accumulating the result
335*4882a593Smuzhiyun     in an accumulator starting with the result for the top
336*4882a593Smuzhiyun     byte.  We repeatedly multiply the accumulator value by
337*4882a593Smuzhiyun     x^8 and then add in (i.e. xor) the 16 bytes of the next
338*4882a593Smuzhiyun     lower byte in the buffer, stopping when we reach the
339*4882a593Smuzhiyun     lowest byte. This requires a 4096 byte table.
340*4882a593Smuzhiyun */
gf128mul_init_4k_lle(const be128 * g)341*4882a593Smuzhiyun struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
342*4882a593Smuzhiyun {
343*4882a593Smuzhiyun 	struct gf128mul_4k *t;
344*4882a593Smuzhiyun 	int j, k;
345*4882a593Smuzhiyun 
346*4882a593Smuzhiyun 	t = kzalloc(sizeof(*t), GFP_KERNEL);
347*4882a593Smuzhiyun 	if (!t)
348*4882a593Smuzhiyun 		goto out;
349*4882a593Smuzhiyun 
350*4882a593Smuzhiyun 	t->t[128] = *g;
351*4882a593Smuzhiyun 	for (j = 64; j > 0; j >>= 1)
352*4882a593Smuzhiyun 		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
353*4882a593Smuzhiyun 
354*4882a593Smuzhiyun 	for (j = 2; j < 256; j += j)
355*4882a593Smuzhiyun 		for (k = 1; k < j; ++k)
356*4882a593Smuzhiyun 			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
357*4882a593Smuzhiyun 
358*4882a593Smuzhiyun out:
359*4882a593Smuzhiyun 	return t;
360*4882a593Smuzhiyun }
361*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_init_4k_lle);
362*4882a593Smuzhiyun 
gf128mul_init_4k_bbe(const be128 * g)363*4882a593Smuzhiyun struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
364*4882a593Smuzhiyun {
365*4882a593Smuzhiyun 	struct gf128mul_4k *t;
366*4882a593Smuzhiyun 	int j, k;
367*4882a593Smuzhiyun 
368*4882a593Smuzhiyun 	t = kzalloc(sizeof(*t), GFP_KERNEL);
369*4882a593Smuzhiyun 	if (!t)
370*4882a593Smuzhiyun 		goto out;
371*4882a593Smuzhiyun 
372*4882a593Smuzhiyun 	t->t[1] = *g;
373*4882a593Smuzhiyun 	for (j = 1; j <= 64; j <<= 1)
374*4882a593Smuzhiyun 		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
375*4882a593Smuzhiyun 
376*4882a593Smuzhiyun 	for (j = 2; j < 256; j += j)
377*4882a593Smuzhiyun 		for (k = 1; k < j; ++k)
378*4882a593Smuzhiyun 			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
379*4882a593Smuzhiyun 
380*4882a593Smuzhiyun out:
381*4882a593Smuzhiyun 	return t;
382*4882a593Smuzhiyun }
383*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_init_4k_bbe);
384*4882a593Smuzhiyun 
gf128mul_4k_lle(be128 * a,const struct gf128mul_4k * t)385*4882a593Smuzhiyun void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
386*4882a593Smuzhiyun {
387*4882a593Smuzhiyun 	u8 *ap = (u8 *)a;
388*4882a593Smuzhiyun 	be128 r[1];
389*4882a593Smuzhiyun 	int i = 15;
390*4882a593Smuzhiyun 
391*4882a593Smuzhiyun 	*r = t->t[ap[15]];
392*4882a593Smuzhiyun 	while (i--) {
393*4882a593Smuzhiyun 		gf128mul_x8_lle(r);
394*4882a593Smuzhiyun 		be128_xor(r, r, &t->t[ap[i]]);
395*4882a593Smuzhiyun 	}
396*4882a593Smuzhiyun 	*a = *r;
397*4882a593Smuzhiyun }
398*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_4k_lle);
399*4882a593Smuzhiyun 
gf128mul_4k_bbe(be128 * a,const struct gf128mul_4k * t)400*4882a593Smuzhiyun void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
401*4882a593Smuzhiyun {
402*4882a593Smuzhiyun 	u8 *ap = (u8 *)a;
403*4882a593Smuzhiyun 	be128 r[1];
404*4882a593Smuzhiyun 	int i = 0;
405*4882a593Smuzhiyun 
406*4882a593Smuzhiyun 	*r = t->t[ap[0]];
407*4882a593Smuzhiyun 	while (++i < 16) {
408*4882a593Smuzhiyun 		gf128mul_x8_bbe(r);
409*4882a593Smuzhiyun 		be128_xor(r, r, &t->t[ap[i]]);
410*4882a593Smuzhiyun 	}
411*4882a593Smuzhiyun 	*a = *r;
412*4882a593Smuzhiyun }
413*4882a593Smuzhiyun EXPORT_SYMBOL(gf128mul_4k_bbe);
414*4882a593Smuzhiyun 
415*4882a593Smuzhiyun MODULE_LICENSE("GPL");
416*4882a593Smuzhiyun MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
417