1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun * Functions related to setting various queue properties from drivers
4*4882a593Smuzhiyun */
5*4882a593Smuzhiyun #include <linux/kernel.h>
6*4882a593Smuzhiyun #include <linux/module.h>
7*4882a593Smuzhiyun #include <linux/init.h>
8*4882a593Smuzhiyun #include <linux/bio.h>
9*4882a593Smuzhiyun #include <linux/blkdev.h>
10*4882a593Smuzhiyun #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
11*4882a593Smuzhiyun #include <linux/gcd.h>
12*4882a593Smuzhiyun #include <linux/lcm.h>
13*4882a593Smuzhiyun #include <linux/jiffies.h>
14*4882a593Smuzhiyun #include <linux/gfp.h>
15*4882a593Smuzhiyun #include <linux/dma-mapping.h>
16*4882a593Smuzhiyun
17*4882a593Smuzhiyun #include "blk.h"
18*4882a593Smuzhiyun #include "blk-wbt.h"
19*4882a593Smuzhiyun
20*4882a593Smuzhiyun unsigned long blk_max_low_pfn;
21*4882a593Smuzhiyun EXPORT_SYMBOL(blk_max_low_pfn);
22*4882a593Smuzhiyun
23*4882a593Smuzhiyun unsigned long blk_max_pfn;
24*4882a593Smuzhiyun
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)25*4882a593Smuzhiyun void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
26*4882a593Smuzhiyun {
27*4882a593Smuzhiyun q->rq_timeout = timeout;
28*4882a593Smuzhiyun }
29*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
30*4882a593Smuzhiyun
31*4882a593Smuzhiyun /**
32*4882a593Smuzhiyun * blk_set_default_limits - reset limits to default values
33*4882a593Smuzhiyun * @lim: the queue_limits structure to reset
34*4882a593Smuzhiyun *
35*4882a593Smuzhiyun * Description:
36*4882a593Smuzhiyun * Returns a queue_limit struct to its default state.
37*4882a593Smuzhiyun */
blk_set_default_limits(struct queue_limits * lim)38*4882a593Smuzhiyun void blk_set_default_limits(struct queue_limits *lim)
39*4882a593Smuzhiyun {
40*4882a593Smuzhiyun lim->max_segments = BLK_MAX_SEGMENTS;
41*4882a593Smuzhiyun lim->max_discard_segments = 1;
42*4882a593Smuzhiyun lim->max_integrity_segments = 0;
43*4882a593Smuzhiyun lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44*4882a593Smuzhiyun lim->virt_boundary_mask = 0;
45*4882a593Smuzhiyun lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
46*4882a593Smuzhiyun lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
47*4882a593Smuzhiyun lim->max_dev_sectors = 0;
48*4882a593Smuzhiyun lim->chunk_sectors = 0;
49*4882a593Smuzhiyun lim->max_write_same_sectors = 0;
50*4882a593Smuzhiyun lim->max_write_zeroes_sectors = 0;
51*4882a593Smuzhiyun lim->max_zone_append_sectors = 0;
52*4882a593Smuzhiyun lim->max_discard_sectors = 0;
53*4882a593Smuzhiyun lim->max_hw_discard_sectors = 0;
54*4882a593Smuzhiyun lim->discard_granularity = 0;
55*4882a593Smuzhiyun lim->discard_alignment = 0;
56*4882a593Smuzhiyun lim->discard_misaligned = 0;
57*4882a593Smuzhiyun lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
58*4882a593Smuzhiyun lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
59*4882a593Smuzhiyun lim->alignment_offset = 0;
60*4882a593Smuzhiyun lim->io_opt = 0;
61*4882a593Smuzhiyun lim->misaligned = 0;
62*4882a593Smuzhiyun lim->zoned = BLK_ZONED_NONE;
63*4882a593Smuzhiyun }
64*4882a593Smuzhiyun EXPORT_SYMBOL(blk_set_default_limits);
65*4882a593Smuzhiyun
66*4882a593Smuzhiyun /**
67*4882a593Smuzhiyun * blk_set_stacking_limits - set default limits for stacking devices
68*4882a593Smuzhiyun * @lim: the queue_limits structure to reset
69*4882a593Smuzhiyun *
70*4882a593Smuzhiyun * Description:
71*4882a593Smuzhiyun * Returns a queue_limit struct to its default state. Should be used
72*4882a593Smuzhiyun * by stacking drivers like DM that have no internal limits.
73*4882a593Smuzhiyun */
blk_set_stacking_limits(struct queue_limits * lim)74*4882a593Smuzhiyun void blk_set_stacking_limits(struct queue_limits *lim)
75*4882a593Smuzhiyun {
76*4882a593Smuzhiyun blk_set_default_limits(lim);
77*4882a593Smuzhiyun
78*4882a593Smuzhiyun /* Inherit limits from component devices */
79*4882a593Smuzhiyun lim->max_segments = USHRT_MAX;
80*4882a593Smuzhiyun lim->max_discard_segments = USHRT_MAX;
81*4882a593Smuzhiyun lim->max_hw_sectors = UINT_MAX;
82*4882a593Smuzhiyun lim->max_segment_size = UINT_MAX;
83*4882a593Smuzhiyun lim->max_sectors = UINT_MAX;
84*4882a593Smuzhiyun lim->max_dev_sectors = UINT_MAX;
85*4882a593Smuzhiyun lim->max_write_same_sectors = UINT_MAX;
86*4882a593Smuzhiyun lim->max_write_zeroes_sectors = UINT_MAX;
87*4882a593Smuzhiyun lim->max_zone_append_sectors = UINT_MAX;
88*4882a593Smuzhiyun }
89*4882a593Smuzhiyun EXPORT_SYMBOL(blk_set_stacking_limits);
90*4882a593Smuzhiyun
91*4882a593Smuzhiyun /**
92*4882a593Smuzhiyun * blk_queue_bounce_limit - set bounce buffer limit for queue
93*4882a593Smuzhiyun * @q: the request queue for the device
94*4882a593Smuzhiyun * @max_addr: the maximum address the device can handle
95*4882a593Smuzhiyun *
96*4882a593Smuzhiyun * Description:
97*4882a593Smuzhiyun * Different hardware can have different requirements as to what pages
98*4882a593Smuzhiyun * it can do I/O directly to. A low level driver can call
99*4882a593Smuzhiyun * blk_queue_bounce_limit to have lower memory pages allocated as bounce
100*4882a593Smuzhiyun * buffers for doing I/O to pages residing above @max_addr.
101*4882a593Smuzhiyun **/
blk_queue_bounce_limit(struct request_queue * q,u64 max_addr)102*4882a593Smuzhiyun void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
103*4882a593Smuzhiyun {
104*4882a593Smuzhiyun unsigned long b_pfn = max_addr >> PAGE_SHIFT;
105*4882a593Smuzhiyun int dma = 0;
106*4882a593Smuzhiyun
107*4882a593Smuzhiyun q->bounce_gfp = GFP_NOIO;
108*4882a593Smuzhiyun #if BITS_PER_LONG == 64
109*4882a593Smuzhiyun /*
110*4882a593Smuzhiyun * Assume anything <= 4GB can be handled by IOMMU. Actually
111*4882a593Smuzhiyun * some IOMMUs can handle everything, but I don't know of a
112*4882a593Smuzhiyun * way to test this here.
113*4882a593Smuzhiyun */
114*4882a593Smuzhiyun if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
115*4882a593Smuzhiyun dma = 1;
116*4882a593Smuzhiyun q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
117*4882a593Smuzhiyun #else
118*4882a593Smuzhiyun if (b_pfn < blk_max_low_pfn)
119*4882a593Smuzhiyun dma = 1;
120*4882a593Smuzhiyun q->limits.bounce_pfn = b_pfn;
121*4882a593Smuzhiyun #endif
122*4882a593Smuzhiyun if (dma) {
123*4882a593Smuzhiyun init_emergency_isa_pool();
124*4882a593Smuzhiyun q->bounce_gfp = GFP_NOIO | GFP_DMA;
125*4882a593Smuzhiyun q->limits.bounce_pfn = b_pfn;
126*4882a593Smuzhiyun }
127*4882a593Smuzhiyun }
128*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_bounce_limit);
129*4882a593Smuzhiyun
130*4882a593Smuzhiyun /**
131*4882a593Smuzhiyun * blk_queue_max_hw_sectors - set max sectors for a request for this queue
132*4882a593Smuzhiyun * @q: the request queue for the device
133*4882a593Smuzhiyun * @max_hw_sectors: max hardware sectors in the usual 512b unit
134*4882a593Smuzhiyun *
135*4882a593Smuzhiyun * Description:
136*4882a593Smuzhiyun * Enables a low level driver to set a hard upper limit,
137*4882a593Smuzhiyun * max_hw_sectors, on the size of requests. max_hw_sectors is set by
138*4882a593Smuzhiyun * the device driver based upon the capabilities of the I/O
139*4882a593Smuzhiyun * controller.
140*4882a593Smuzhiyun *
141*4882a593Smuzhiyun * max_dev_sectors is a hard limit imposed by the storage device for
142*4882a593Smuzhiyun * READ/WRITE requests. It is set by the disk driver.
143*4882a593Smuzhiyun *
144*4882a593Smuzhiyun * max_sectors is a soft limit imposed by the block layer for
145*4882a593Smuzhiyun * filesystem type requests. This value can be overridden on a
146*4882a593Smuzhiyun * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
147*4882a593Smuzhiyun * The soft limit can not exceed max_hw_sectors.
148*4882a593Smuzhiyun **/
blk_queue_max_hw_sectors(struct request_queue * q,unsigned int max_hw_sectors)149*4882a593Smuzhiyun void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
150*4882a593Smuzhiyun {
151*4882a593Smuzhiyun struct queue_limits *limits = &q->limits;
152*4882a593Smuzhiyun unsigned int max_sectors;
153*4882a593Smuzhiyun
154*4882a593Smuzhiyun if ((max_hw_sectors << 9) < PAGE_SIZE) {
155*4882a593Smuzhiyun max_hw_sectors = 1 << (PAGE_SHIFT - 9);
156*4882a593Smuzhiyun printk(KERN_INFO "%s: set to minimum %d\n",
157*4882a593Smuzhiyun __func__, max_hw_sectors);
158*4882a593Smuzhiyun }
159*4882a593Smuzhiyun
160*4882a593Smuzhiyun limits->max_hw_sectors = max_hw_sectors;
161*4882a593Smuzhiyun max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
162*4882a593Smuzhiyun max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
163*4882a593Smuzhiyun limits->max_sectors = max_sectors;
164*4882a593Smuzhiyun q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
165*4882a593Smuzhiyun }
166*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_max_hw_sectors);
167*4882a593Smuzhiyun
168*4882a593Smuzhiyun /**
169*4882a593Smuzhiyun * blk_queue_chunk_sectors - set size of the chunk for this queue
170*4882a593Smuzhiyun * @q: the request queue for the device
171*4882a593Smuzhiyun * @chunk_sectors: chunk sectors in the usual 512b unit
172*4882a593Smuzhiyun *
173*4882a593Smuzhiyun * Description:
174*4882a593Smuzhiyun * If a driver doesn't want IOs to cross a given chunk size, it can set
175*4882a593Smuzhiyun * this limit and prevent merging across chunks. Note that the block layer
176*4882a593Smuzhiyun * must accept a page worth of data at any offset. So if the crossing of
177*4882a593Smuzhiyun * chunks is a hard limitation in the driver, it must still be prepared
178*4882a593Smuzhiyun * to split single page bios.
179*4882a593Smuzhiyun **/
blk_queue_chunk_sectors(struct request_queue * q,unsigned int chunk_sectors)180*4882a593Smuzhiyun void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
181*4882a593Smuzhiyun {
182*4882a593Smuzhiyun q->limits.chunk_sectors = chunk_sectors;
183*4882a593Smuzhiyun }
184*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_chunk_sectors);
185*4882a593Smuzhiyun
186*4882a593Smuzhiyun /**
187*4882a593Smuzhiyun * blk_queue_max_discard_sectors - set max sectors for a single discard
188*4882a593Smuzhiyun * @q: the request queue for the device
189*4882a593Smuzhiyun * @max_discard_sectors: maximum number of sectors to discard
190*4882a593Smuzhiyun **/
blk_queue_max_discard_sectors(struct request_queue * q,unsigned int max_discard_sectors)191*4882a593Smuzhiyun void blk_queue_max_discard_sectors(struct request_queue *q,
192*4882a593Smuzhiyun unsigned int max_discard_sectors)
193*4882a593Smuzhiyun {
194*4882a593Smuzhiyun q->limits.max_hw_discard_sectors = max_discard_sectors;
195*4882a593Smuzhiyun q->limits.max_discard_sectors = max_discard_sectors;
196*4882a593Smuzhiyun }
197*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_max_discard_sectors);
198*4882a593Smuzhiyun
199*4882a593Smuzhiyun /**
200*4882a593Smuzhiyun * blk_queue_max_write_same_sectors - set max sectors for a single write same
201*4882a593Smuzhiyun * @q: the request queue for the device
202*4882a593Smuzhiyun * @max_write_same_sectors: maximum number of sectors to write per command
203*4882a593Smuzhiyun **/
blk_queue_max_write_same_sectors(struct request_queue * q,unsigned int max_write_same_sectors)204*4882a593Smuzhiyun void blk_queue_max_write_same_sectors(struct request_queue *q,
205*4882a593Smuzhiyun unsigned int max_write_same_sectors)
206*4882a593Smuzhiyun {
207*4882a593Smuzhiyun q->limits.max_write_same_sectors = max_write_same_sectors;
208*4882a593Smuzhiyun }
209*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
210*4882a593Smuzhiyun
211*4882a593Smuzhiyun /**
212*4882a593Smuzhiyun * blk_queue_max_write_zeroes_sectors - set max sectors for a single
213*4882a593Smuzhiyun * write zeroes
214*4882a593Smuzhiyun * @q: the request queue for the device
215*4882a593Smuzhiyun * @max_write_zeroes_sectors: maximum number of sectors to write per command
216*4882a593Smuzhiyun **/
blk_queue_max_write_zeroes_sectors(struct request_queue * q,unsigned int max_write_zeroes_sectors)217*4882a593Smuzhiyun void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
218*4882a593Smuzhiyun unsigned int max_write_zeroes_sectors)
219*4882a593Smuzhiyun {
220*4882a593Smuzhiyun q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
221*4882a593Smuzhiyun }
222*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
223*4882a593Smuzhiyun
224*4882a593Smuzhiyun /**
225*4882a593Smuzhiyun * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
226*4882a593Smuzhiyun * @q: the request queue for the device
227*4882a593Smuzhiyun * @max_zone_append_sectors: maximum number of sectors to write per command
228*4882a593Smuzhiyun **/
blk_queue_max_zone_append_sectors(struct request_queue * q,unsigned int max_zone_append_sectors)229*4882a593Smuzhiyun void blk_queue_max_zone_append_sectors(struct request_queue *q,
230*4882a593Smuzhiyun unsigned int max_zone_append_sectors)
231*4882a593Smuzhiyun {
232*4882a593Smuzhiyun unsigned int max_sectors;
233*4882a593Smuzhiyun
234*4882a593Smuzhiyun if (WARN_ON(!blk_queue_is_zoned(q)))
235*4882a593Smuzhiyun return;
236*4882a593Smuzhiyun
237*4882a593Smuzhiyun max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
238*4882a593Smuzhiyun max_sectors = min(q->limits.chunk_sectors, max_sectors);
239*4882a593Smuzhiyun
240*4882a593Smuzhiyun /*
241*4882a593Smuzhiyun * Signal eventual driver bugs resulting in the max_zone_append sectors limit
242*4882a593Smuzhiyun * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
243*4882a593Smuzhiyun * or the max_hw_sectors limit not set.
244*4882a593Smuzhiyun */
245*4882a593Smuzhiyun WARN_ON(!max_sectors);
246*4882a593Smuzhiyun
247*4882a593Smuzhiyun q->limits.max_zone_append_sectors = max_sectors;
248*4882a593Smuzhiyun }
249*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
250*4882a593Smuzhiyun
251*4882a593Smuzhiyun /**
252*4882a593Smuzhiyun * blk_queue_max_segments - set max hw segments for a request for this queue
253*4882a593Smuzhiyun * @q: the request queue for the device
254*4882a593Smuzhiyun * @max_segments: max number of segments
255*4882a593Smuzhiyun *
256*4882a593Smuzhiyun * Description:
257*4882a593Smuzhiyun * Enables a low level driver to set an upper limit on the number of
258*4882a593Smuzhiyun * hw data segments in a request.
259*4882a593Smuzhiyun **/
blk_queue_max_segments(struct request_queue * q,unsigned short max_segments)260*4882a593Smuzhiyun void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
261*4882a593Smuzhiyun {
262*4882a593Smuzhiyun if (!max_segments) {
263*4882a593Smuzhiyun max_segments = 1;
264*4882a593Smuzhiyun printk(KERN_INFO "%s: set to minimum %d\n",
265*4882a593Smuzhiyun __func__, max_segments);
266*4882a593Smuzhiyun }
267*4882a593Smuzhiyun
268*4882a593Smuzhiyun q->limits.max_segments = max_segments;
269*4882a593Smuzhiyun }
270*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_max_segments);
271*4882a593Smuzhiyun
272*4882a593Smuzhiyun /**
273*4882a593Smuzhiyun * blk_queue_max_discard_segments - set max segments for discard requests
274*4882a593Smuzhiyun * @q: the request queue for the device
275*4882a593Smuzhiyun * @max_segments: max number of segments
276*4882a593Smuzhiyun *
277*4882a593Smuzhiyun * Description:
278*4882a593Smuzhiyun * Enables a low level driver to set an upper limit on the number of
279*4882a593Smuzhiyun * segments in a discard request.
280*4882a593Smuzhiyun **/
blk_queue_max_discard_segments(struct request_queue * q,unsigned short max_segments)281*4882a593Smuzhiyun void blk_queue_max_discard_segments(struct request_queue *q,
282*4882a593Smuzhiyun unsigned short max_segments)
283*4882a593Smuzhiyun {
284*4882a593Smuzhiyun q->limits.max_discard_segments = max_segments;
285*4882a593Smuzhiyun }
286*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
287*4882a593Smuzhiyun
288*4882a593Smuzhiyun /**
289*4882a593Smuzhiyun * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
290*4882a593Smuzhiyun * @q: the request queue for the device
291*4882a593Smuzhiyun * @max_size: max size of segment in bytes
292*4882a593Smuzhiyun *
293*4882a593Smuzhiyun * Description:
294*4882a593Smuzhiyun * Enables a low level driver to set an upper limit on the size of a
295*4882a593Smuzhiyun * coalesced segment
296*4882a593Smuzhiyun **/
blk_queue_max_segment_size(struct request_queue * q,unsigned int max_size)297*4882a593Smuzhiyun void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
298*4882a593Smuzhiyun {
299*4882a593Smuzhiyun if (max_size < PAGE_SIZE) {
300*4882a593Smuzhiyun max_size = PAGE_SIZE;
301*4882a593Smuzhiyun printk(KERN_INFO "%s: set to minimum %d\n",
302*4882a593Smuzhiyun __func__, max_size);
303*4882a593Smuzhiyun }
304*4882a593Smuzhiyun
305*4882a593Smuzhiyun /* see blk_queue_virt_boundary() for the explanation */
306*4882a593Smuzhiyun WARN_ON_ONCE(q->limits.virt_boundary_mask);
307*4882a593Smuzhiyun
308*4882a593Smuzhiyun q->limits.max_segment_size = max_size;
309*4882a593Smuzhiyun }
310*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_max_segment_size);
311*4882a593Smuzhiyun
312*4882a593Smuzhiyun /**
313*4882a593Smuzhiyun * blk_queue_logical_block_size - set logical block size for the queue
314*4882a593Smuzhiyun * @q: the request queue for the device
315*4882a593Smuzhiyun * @size: the logical block size, in bytes
316*4882a593Smuzhiyun *
317*4882a593Smuzhiyun * Description:
318*4882a593Smuzhiyun * This should be set to the lowest possible block size that the
319*4882a593Smuzhiyun * storage device can address. The default of 512 covers most
320*4882a593Smuzhiyun * hardware.
321*4882a593Smuzhiyun **/
blk_queue_logical_block_size(struct request_queue * q,unsigned int size)322*4882a593Smuzhiyun void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
323*4882a593Smuzhiyun {
324*4882a593Smuzhiyun q->limits.logical_block_size = size;
325*4882a593Smuzhiyun
326*4882a593Smuzhiyun if (q->limits.physical_block_size < size)
327*4882a593Smuzhiyun q->limits.physical_block_size = size;
328*4882a593Smuzhiyun
329*4882a593Smuzhiyun if (q->limits.io_min < q->limits.physical_block_size)
330*4882a593Smuzhiyun q->limits.io_min = q->limits.physical_block_size;
331*4882a593Smuzhiyun }
332*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_logical_block_size);
333*4882a593Smuzhiyun
334*4882a593Smuzhiyun /**
335*4882a593Smuzhiyun * blk_queue_physical_block_size - set physical block size for the queue
336*4882a593Smuzhiyun * @q: the request queue for the device
337*4882a593Smuzhiyun * @size: the physical block size, in bytes
338*4882a593Smuzhiyun *
339*4882a593Smuzhiyun * Description:
340*4882a593Smuzhiyun * This should be set to the lowest possible sector size that the
341*4882a593Smuzhiyun * hardware can operate on without reverting to read-modify-write
342*4882a593Smuzhiyun * operations.
343*4882a593Smuzhiyun */
blk_queue_physical_block_size(struct request_queue * q,unsigned int size)344*4882a593Smuzhiyun void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
345*4882a593Smuzhiyun {
346*4882a593Smuzhiyun q->limits.physical_block_size = size;
347*4882a593Smuzhiyun
348*4882a593Smuzhiyun if (q->limits.physical_block_size < q->limits.logical_block_size)
349*4882a593Smuzhiyun q->limits.physical_block_size = q->limits.logical_block_size;
350*4882a593Smuzhiyun
351*4882a593Smuzhiyun if (q->limits.io_min < q->limits.physical_block_size)
352*4882a593Smuzhiyun q->limits.io_min = q->limits.physical_block_size;
353*4882a593Smuzhiyun }
354*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_physical_block_size);
355*4882a593Smuzhiyun
356*4882a593Smuzhiyun /**
357*4882a593Smuzhiyun * blk_queue_alignment_offset - set physical block alignment offset
358*4882a593Smuzhiyun * @q: the request queue for the device
359*4882a593Smuzhiyun * @offset: alignment offset in bytes
360*4882a593Smuzhiyun *
361*4882a593Smuzhiyun * Description:
362*4882a593Smuzhiyun * Some devices are naturally misaligned to compensate for things like
363*4882a593Smuzhiyun * the legacy DOS partition table 63-sector offset. Low-level drivers
364*4882a593Smuzhiyun * should call this function for devices whose first sector is not
365*4882a593Smuzhiyun * naturally aligned.
366*4882a593Smuzhiyun */
blk_queue_alignment_offset(struct request_queue * q,unsigned int offset)367*4882a593Smuzhiyun void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
368*4882a593Smuzhiyun {
369*4882a593Smuzhiyun q->limits.alignment_offset =
370*4882a593Smuzhiyun offset & (q->limits.physical_block_size - 1);
371*4882a593Smuzhiyun q->limits.misaligned = 0;
372*4882a593Smuzhiyun }
373*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_alignment_offset);
374*4882a593Smuzhiyun
blk_queue_update_readahead(struct request_queue * q)375*4882a593Smuzhiyun void blk_queue_update_readahead(struct request_queue *q)
376*4882a593Smuzhiyun {
377*4882a593Smuzhiyun /*
378*4882a593Smuzhiyun * For read-ahead of large files to be effective, we need to read ahead
379*4882a593Smuzhiyun * at least twice the optimal I/O size.
380*4882a593Smuzhiyun */
381*4882a593Smuzhiyun q->backing_dev_info->ra_pages =
382*4882a593Smuzhiyun max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
383*4882a593Smuzhiyun q->backing_dev_info->io_pages =
384*4882a593Smuzhiyun queue_max_sectors(q) >> (PAGE_SHIFT - 9);
385*4882a593Smuzhiyun }
386*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(blk_queue_update_readahead);
387*4882a593Smuzhiyun
388*4882a593Smuzhiyun /**
389*4882a593Smuzhiyun * blk_limits_io_min - set minimum request size for a device
390*4882a593Smuzhiyun * @limits: the queue limits
391*4882a593Smuzhiyun * @min: smallest I/O size in bytes
392*4882a593Smuzhiyun *
393*4882a593Smuzhiyun * Description:
394*4882a593Smuzhiyun * Some devices have an internal block size bigger than the reported
395*4882a593Smuzhiyun * hardware sector size. This function can be used to signal the
396*4882a593Smuzhiyun * smallest I/O the device can perform without incurring a performance
397*4882a593Smuzhiyun * penalty.
398*4882a593Smuzhiyun */
blk_limits_io_min(struct queue_limits * limits,unsigned int min)399*4882a593Smuzhiyun void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
400*4882a593Smuzhiyun {
401*4882a593Smuzhiyun limits->io_min = min;
402*4882a593Smuzhiyun
403*4882a593Smuzhiyun if (limits->io_min < limits->logical_block_size)
404*4882a593Smuzhiyun limits->io_min = limits->logical_block_size;
405*4882a593Smuzhiyun
406*4882a593Smuzhiyun if (limits->io_min < limits->physical_block_size)
407*4882a593Smuzhiyun limits->io_min = limits->physical_block_size;
408*4882a593Smuzhiyun }
409*4882a593Smuzhiyun EXPORT_SYMBOL(blk_limits_io_min);
410*4882a593Smuzhiyun
411*4882a593Smuzhiyun /**
412*4882a593Smuzhiyun * blk_queue_io_min - set minimum request size for the queue
413*4882a593Smuzhiyun * @q: the request queue for the device
414*4882a593Smuzhiyun * @min: smallest I/O size in bytes
415*4882a593Smuzhiyun *
416*4882a593Smuzhiyun * Description:
417*4882a593Smuzhiyun * Storage devices may report a granularity or preferred minimum I/O
418*4882a593Smuzhiyun * size which is the smallest request the device can perform without
419*4882a593Smuzhiyun * incurring a performance penalty. For disk drives this is often the
420*4882a593Smuzhiyun * physical block size. For RAID arrays it is often the stripe chunk
421*4882a593Smuzhiyun * size. A properly aligned multiple of minimum_io_size is the
422*4882a593Smuzhiyun * preferred request size for workloads where a high number of I/O
423*4882a593Smuzhiyun * operations is desired.
424*4882a593Smuzhiyun */
blk_queue_io_min(struct request_queue * q,unsigned int min)425*4882a593Smuzhiyun void blk_queue_io_min(struct request_queue *q, unsigned int min)
426*4882a593Smuzhiyun {
427*4882a593Smuzhiyun blk_limits_io_min(&q->limits, min);
428*4882a593Smuzhiyun }
429*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_io_min);
430*4882a593Smuzhiyun
431*4882a593Smuzhiyun /**
432*4882a593Smuzhiyun * blk_limits_io_opt - set optimal request size for a device
433*4882a593Smuzhiyun * @limits: the queue limits
434*4882a593Smuzhiyun * @opt: smallest I/O size in bytes
435*4882a593Smuzhiyun *
436*4882a593Smuzhiyun * Description:
437*4882a593Smuzhiyun * Storage devices may report an optimal I/O size, which is the
438*4882a593Smuzhiyun * device's preferred unit for sustained I/O. This is rarely reported
439*4882a593Smuzhiyun * for disk drives. For RAID arrays it is usually the stripe width or
440*4882a593Smuzhiyun * the internal track size. A properly aligned multiple of
441*4882a593Smuzhiyun * optimal_io_size is the preferred request size for workloads where
442*4882a593Smuzhiyun * sustained throughput is desired.
443*4882a593Smuzhiyun */
blk_limits_io_opt(struct queue_limits * limits,unsigned int opt)444*4882a593Smuzhiyun void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
445*4882a593Smuzhiyun {
446*4882a593Smuzhiyun limits->io_opt = opt;
447*4882a593Smuzhiyun }
448*4882a593Smuzhiyun EXPORT_SYMBOL(blk_limits_io_opt);
449*4882a593Smuzhiyun
450*4882a593Smuzhiyun /**
451*4882a593Smuzhiyun * blk_queue_io_opt - set optimal request size for the queue
452*4882a593Smuzhiyun * @q: the request queue for the device
453*4882a593Smuzhiyun * @opt: optimal request size in bytes
454*4882a593Smuzhiyun *
455*4882a593Smuzhiyun * Description:
456*4882a593Smuzhiyun * Storage devices may report an optimal I/O size, which is the
457*4882a593Smuzhiyun * device's preferred unit for sustained I/O. This is rarely reported
458*4882a593Smuzhiyun * for disk drives. For RAID arrays it is usually the stripe width or
459*4882a593Smuzhiyun * the internal track size. A properly aligned multiple of
460*4882a593Smuzhiyun * optimal_io_size is the preferred request size for workloads where
461*4882a593Smuzhiyun * sustained throughput is desired.
462*4882a593Smuzhiyun */
blk_queue_io_opt(struct request_queue * q,unsigned int opt)463*4882a593Smuzhiyun void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
464*4882a593Smuzhiyun {
465*4882a593Smuzhiyun blk_limits_io_opt(&q->limits, opt);
466*4882a593Smuzhiyun q->backing_dev_info->ra_pages =
467*4882a593Smuzhiyun max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
468*4882a593Smuzhiyun }
469*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_io_opt);
470*4882a593Smuzhiyun
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)471*4882a593Smuzhiyun static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
472*4882a593Smuzhiyun {
473*4882a593Smuzhiyun sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
474*4882a593Smuzhiyun if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
475*4882a593Smuzhiyun sectors = PAGE_SIZE >> SECTOR_SHIFT;
476*4882a593Smuzhiyun return sectors;
477*4882a593Smuzhiyun }
478*4882a593Smuzhiyun
479*4882a593Smuzhiyun /**
480*4882a593Smuzhiyun * blk_stack_limits - adjust queue_limits for stacked devices
481*4882a593Smuzhiyun * @t: the stacking driver limits (top device)
482*4882a593Smuzhiyun * @b: the underlying queue limits (bottom, component device)
483*4882a593Smuzhiyun * @start: first data sector within component device
484*4882a593Smuzhiyun *
485*4882a593Smuzhiyun * Description:
486*4882a593Smuzhiyun * This function is used by stacking drivers like MD and DM to ensure
487*4882a593Smuzhiyun * that all component devices have compatible block sizes and
488*4882a593Smuzhiyun * alignments. The stacking driver must provide a queue_limits
489*4882a593Smuzhiyun * struct (top) and then iteratively call the stacking function for
490*4882a593Smuzhiyun * all component (bottom) devices. The stacking function will
491*4882a593Smuzhiyun * attempt to combine the values and ensure proper alignment.
492*4882a593Smuzhiyun *
493*4882a593Smuzhiyun * Returns 0 if the top and bottom queue_limits are compatible. The
494*4882a593Smuzhiyun * top device's block sizes and alignment offsets may be adjusted to
495*4882a593Smuzhiyun * ensure alignment with the bottom device. If no compatible sizes
496*4882a593Smuzhiyun * and alignments exist, -1 is returned and the resulting top
497*4882a593Smuzhiyun * queue_limits will have the misaligned flag set to indicate that
498*4882a593Smuzhiyun * the alignment_offset is undefined.
499*4882a593Smuzhiyun */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)500*4882a593Smuzhiyun int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
501*4882a593Smuzhiyun sector_t start)
502*4882a593Smuzhiyun {
503*4882a593Smuzhiyun unsigned int top, bottom, alignment, ret = 0;
504*4882a593Smuzhiyun
505*4882a593Smuzhiyun t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
506*4882a593Smuzhiyun t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
507*4882a593Smuzhiyun t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
508*4882a593Smuzhiyun t->max_write_same_sectors = min(t->max_write_same_sectors,
509*4882a593Smuzhiyun b->max_write_same_sectors);
510*4882a593Smuzhiyun t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
511*4882a593Smuzhiyun b->max_write_zeroes_sectors);
512*4882a593Smuzhiyun t->max_zone_append_sectors = min(t->max_zone_append_sectors,
513*4882a593Smuzhiyun b->max_zone_append_sectors);
514*4882a593Smuzhiyun t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
515*4882a593Smuzhiyun
516*4882a593Smuzhiyun t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
517*4882a593Smuzhiyun b->seg_boundary_mask);
518*4882a593Smuzhiyun t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
519*4882a593Smuzhiyun b->virt_boundary_mask);
520*4882a593Smuzhiyun
521*4882a593Smuzhiyun t->max_segments = min_not_zero(t->max_segments, b->max_segments);
522*4882a593Smuzhiyun t->max_discard_segments = min_not_zero(t->max_discard_segments,
523*4882a593Smuzhiyun b->max_discard_segments);
524*4882a593Smuzhiyun t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
525*4882a593Smuzhiyun b->max_integrity_segments);
526*4882a593Smuzhiyun
527*4882a593Smuzhiyun t->max_segment_size = min_not_zero(t->max_segment_size,
528*4882a593Smuzhiyun b->max_segment_size);
529*4882a593Smuzhiyun
530*4882a593Smuzhiyun t->misaligned |= b->misaligned;
531*4882a593Smuzhiyun
532*4882a593Smuzhiyun alignment = queue_limit_alignment_offset(b, start);
533*4882a593Smuzhiyun
534*4882a593Smuzhiyun /* Bottom device has different alignment. Check that it is
535*4882a593Smuzhiyun * compatible with the current top alignment.
536*4882a593Smuzhiyun */
537*4882a593Smuzhiyun if (t->alignment_offset != alignment) {
538*4882a593Smuzhiyun
539*4882a593Smuzhiyun top = max(t->physical_block_size, t->io_min)
540*4882a593Smuzhiyun + t->alignment_offset;
541*4882a593Smuzhiyun bottom = max(b->physical_block_size, b->io_min) + alignment;
542*4882a593Smuzhiyun
543*4882a593Smuzhiyun /* Verify that top and bottom intervals line up */
544*4882a593Smuzhiyun if (max(top, bottom) % min(top, bottom)) {
545*4882a593Smuzhiyun t->misaligned = 1;
546*4882a593Smuzhiyun ret = -1;
547*4882a593Smuzhiyun }
548*4882a593Smuzhiyun }
549*4882a593Smuzhiyun
550*4882a593Smuzhiyun t->logical_block_size = max(t->logical_block_size,
551*4882a593Smuzhiyun b->logical_block_size);
552*4882a593Smuzhiyun
553*4882a593Smuzhiyun t->physical_block_size = max(t->physical_block_size,
554*4882a593Smuzhiyun b->physical_block_size);
555*4882a593Smuzhiyun
556*4882a593Smuzhiyun t->io_min = max(t->io_min, b->io_min);
557*4882a593Smuzhiyun t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
558*4882a593Smuzhiyun
559*4882a593Smuzhiyun /* Set non-power-of-2 compatible chunk_sectors boundary */
560*4882a593Smuzhiyun if (b->chunk_sectors)
561*4882a593Smuzhiyun t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
562*4882a593Smuzhiyun
563*4882a593Smuzhiyun /* Physical block size a multiple of the logical block size? */
564*4882a593Smuzhiyun if (t->physical_block_size & (t->logical_block_size - 1)) {
565*4882a593Smuzhiyun t->physical_block_size = t->logical_block_size;
566*4882a593Smuzhiyun t->misaligned = 1;
567*4882a593Smuzhiyun ret = -1;
568*4882a593Smuzhiyun }
569*4882a593Smuzhiyun
570*4882a593Smuzhiyun /* Minimum I/O a multiple of the physical block size? */
571*4882a593Smuzhiyun if (t->io_min & (t->physical_block_size - 1)) {
572*4882a593Smuzhiyun t->io_min = t->physical_block_size;
573*4882a593Smuzhiyun t->misaligned = 1;
574*4882a593Smuzhiyun ret = -1;
575*4882a593Smuzhiyun }
576*4882a593Smuzhiyun
577*4882a593Smuzhiyun /* Optimal I/O a multiple of the physical block size? */
578*4882a593Smuzhiyun if (t->io_opt & (t->physical_block_size - 1)) {
579*4882a593Smuzhiyun t->io_opt = 0;
580*4882a593Smuzhiyun t->misaligned = 1;
581*4882a593Smuzhiyun ret = -1;
582*4882a593Smuzhiyun }
583*4882a593Smuzhiyun
584*4882a593Smuzhiyun /* chunk_sectors a multiple of the physical block size? */
585*4882a593Smuzhiyun if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
586*4882a593Smuzhiyun t->chunk_sectors = 0;
587*4882a593Smuzhiyun t->misaligned = 1;
588*4882a593Smuzhiyun ret = -1;
589*4882a593Smuzhiyun }
590*4882a593Smuzhiyun
591*4882a593Smuzhiyun t->raid_partial_stripes_expensive =
592*4882a593Smuzhiyun max(t->raid_partial_stripes_expensive,
593*4882a593Smuzhiyun b->raid_partial_stripes_expensive);
594*4882a593Smuzhiyun
595*4882a593Smuzhiyun /* Find lowest common alignment_offset */
596*4882a593Smuzhiyun t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
597*4882a593Smuzhiyun % max(t->physical_block_size, t->io_min);
598*4882a593Smuzhiyun
599*4882a593Smuzhiyun /* Verify that new alignment_offset is on a logical block boundary */
600*4882a593Smuzhiyun if (t->alignment_offset & (t->logical_block_size - 1)) {
601*4882a593Smuzhiyun t->misaligned = 1;
602*4882a593Smuzhiyun ret = -1;
603*4882a593Smuzhiyun }
604*4882a593Smuzhiyun
605*4882a593Smuzhiyun t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
606*4882a593Smuzhiyun t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
607*4882a593Smuzhiyun t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
608*4882a593Smuzhiyun
609*4882a593Smuzhiyun /* Discard alignment and granularity */
610*4882a593Smuzhiyun if (b->discard_granularity) {
611*4882a593Smuzhiyun alignment = queue_limit_discard_alignment(b, start);
612*4882a593Smuzhiyun
613*4882a593Smuzhiyun if (t->discard_granularity != 0 &&
614*4882a593Smuzhiyun t->discard_alignment != alignment) {
615*4882a593Smuzhiyun top = t->discard_granularity + t->discard_alignment;
616*4882a593Smuzhiyun bottom = b->discard_granularity + alignment;
617*4882a593Smuzhiyun
618*4882a593Smuzhiyun /* Verify that top and bottom intervals line up */
619*4882a593Smuzhiyun if ((max(top, bottom) % min(top, bottom)) != 0)
620*4882a593Smuzhiyun t->discard_misaligned = 1;
621*4882a593Smuzhiyun }
622*4882a593Smuzhiyun
623*4882a593Smuzhiyun t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
624*4882a593Smuzhiyun b->max_discard_sectors);
625*4882a593Smuzhiyun t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
626*4882a593Smuzhiyun b->max_hw_discard_sectors);
627*4882a593Smuzhiyun t->discard_granularity = max(t->discard_granularity,
628*4882a593Smuzhiyun b->discard_granularity);
629*4882a593Smuzhiyun t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
630*4882a593Smuzhiyun t->discard_granularity;
631*4882a593Smuzhiyun }
632*4882a593Smuzhiyun
633*4882a593Smuzhiyun t->zoned = max(t->zoned, b->zoned);
634*4882a593Smuzhiyun return ret;
635*4882a593Smuzhiyun }
636*4882a593Smuzhiyun EXPORT_SYMBOL(blk_stack_limits);
637*4882a593Smuzhiyun
638*4882a593Smuzhiyun /**
639*4882a593Smuzhiyun * disk_stack_limits - adjust queue limits for stacked drivers
640*4882a593Smuzhiyun * @disk: MD/DM gendisk (top)
641*4882a593Smuzhiyun * @bdev: the underlying block device (bottom)
642*4882a593Smuzhiyun * @offset: offset to beginning of data within component device
643*4882a593Smuzhiyun *
644*4882a593Smuzhiyun * Description:
645*4882a593Smuzhiyun * Merges the limits for a top level gendisk and a bottom level
646*4882a593Smuzhiyun * block_device.
647*4882a593Smuzhiyun */
disk_stack_limits(struct gendisk * disk,struct block_device * bdev,sector_t offset)648*4882a593Smuzhiyun void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
649*4882a593Smuzhiyun sector_t offset)
650*4882a593Smuzhiyun {
651*4882a593Smuzhiyun struct request_queue *t = disk->queue;
652*4882a593Smuzhiyun
653*4882a593Smuzhiyun if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
654*4882a593Smuzhiyun get_start_sect(bdev) + (offset >> 9)) < 0) {
655*4882a593Smuzhiyun char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
656*4882a593Smuzhiyun
657*4882a593Smuzhiyun disk_name(disk, 0, top);
658*4882a593Smuzhiyun bdevname(bdev, bottom);
659*4882a593Smuzhiyun
660*4882a593Smuzhiyun printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
661*4882a593Smuzhiyun top, bottom);
662*4882a593Smuzhiyun }
663*4882a593Smuzhiyun
664*4882a593Smuzhiyun blk_queue_update_readahead(disk->queue);
665*4882a593Smuzhiyun }
666*4882a593Smuzhiyun EXPORT_SYMBOL(disk_stack_limits);
667*4882a593Smuzhiyun
668*4882a593Smuzhiyun /**
669*4882a593Smuzhiyun * blk_queue_update_dma_pad - update pad mask
670*4882a593Smuzhiyun * @q: the request queue for the device
671*4882a593Smuzhiyun * @mask: pad mask
672*4882a593Smuzhiyun *
673*4882a593Smuzhiyun * Update dma pad mask.
674*4882a593Smuzhiyun *
675*4882a593Smuzhiyun * Appending pad buffer to a request modifies the last entry of a
676*4882a593Smuzhiyun * scatter list such that it includes the pad buffer.
677*4882a593Smuzhiyun **/
blk_queue_update_dma_pad(struct request_queue * q,unsigned int mask)678*4882a593Smuzhiyun void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
679*4882a593Smuzhiyun {
680*4882a593Smuzhiyun if (mask > q->dma_pad_mask)
681*4882a593Smuzhiyun q->dma_pad_mask = mask;
682*4882a593Smuzhiyun }
683*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_update_dma_pad);
684*4882a593Smuzhiyun
685*4882a593Smuzhiyun /**
686*4882a593Smuzhiyun * blk_queue_segment_boundary - set boundary rules for segment merging
687*4882a593Smuzhiyun * @q: the request queue for the device
688*4882a593Smuzhiyun * @mask: the memory boundary mask
689*4882a593Smuzhiyun **/
blk_queue_segment_boundary(struct request_queue * q,unsigned long mask)690*4882a593Smuzhiyun void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
691*4882a593Smuzhiyun {
692*4882a593Smuzhiyun if (mask < PAGE_SIZE - 1) {
693*4882a593Smuzhiyun mask = PAGE_SIZE - 1;
694*4882a593Smuzhiyun printk(KERN_INFO "%s: set to minimum %lx\n",
695*4882a593Smuzhiyun __func__, mask);
696*4882a593Smuzhiyun }
697*4882a593Smuzhiyun
698*4882a593Smuzhiyun q->limits.seg_boundary_mask = mask;
699*4882a593Smuzhiyun }
700*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_segment_boundary);
701*4882a593Smuzhiyun
702*4882a593Smuzhiyun /**
703*4882a593Smuzhiyun * blk_queue_virt_boundary - set boundary rules for bio merging
704*4882a593Smuzhiyun * @q: the request queue for the device
705*4882a593Smuzhiyun * @mask: the memory boundary mask
706*4882a593Smuzhiyun **/
blk_queue_virt_boundary(struct request_queue * q,unsigned long mask)707*4882a593Smuzhiyun void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
708*4882a593Smuzhiyun {
709*4882a593Smuzhiyun q->limits.virt_boundary_mask = mask;
710*4882a593Smuzhiyun
711*4882a593Smuzhiyun /*
712*4882a593Smuzhiyun * Devices that require a virtual boundary do not support scatter/gather
713*4882a593Smuzhiyun * I/O natively, but instead require a descriptor list entry for each
714*4882a593Smuzhiyun * page (which might not be idential to the Linux PAGE_SIZE). Because
715*4882a593Smuzhiyun * of that they are not limited by our notion of "segment size".
716*4882a593Smuzhiyun */
717*4882a593Smuzhiyun if (mask)
718*4882a593Smuzhiyun q->limits.max_segment_size = UINT_MAX;
719*4882a593Smuzhiyun }
720*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_virt_boundary);
721*4882a593Smuzhiyun
722*4882a593Smuzhiyun /**
723*4882a593Smuzhiyun * blk_queue_dma_alignment - set dma length and memory alignment
724*4882a593Smuzhiyun * @q: the request queue for the device
725*4882a593Smuzhiyun * @mask: alignment mask
726*4882a593Smuzhiyun *
727*4882a593Smuzhiyun * description:
728*4882a593Smuzhiyun * set required memory and length alignment for direct dma transactions.
729*4882a593Smuzhiyun * this is used when building direct io requests for the queue.
730*4882a593Smuzhiyun *
731*4882a593Smuzhiyun **/
blk_queue_dma_alignment(struct request_queue * q,int mask)732*4882a593Smuzhiyun void blk_queue_dma_alignment(struct request_queue *q, int mask)
733*4882a593Smuzhiyun {
734*4882a593Smuzhiyun q->dma_alignment = mask;
735*4882a593Smuzhiyun }
736*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_dma_alignment);
737*4882a593Smuzhiyun
738*4882a593Smuzhiyun /**
739*4882a593Smuzhiyun * blk_queue_update_dma_alignment - update dma length and memory alignment
740*4882a593Smuzhiyun * @q: the request queue for the device
741*4882a593Smuzhiyun * @mask: alignment mask
742*4882a593Smuzhiyun *
743*4882a593Smuzhiyun * description:
744*4882a593Smuzhiyun * update required memory and length alignment for direct dma transactions.
745*4882a593Smuzhiyun * If the requested alignment is larger than the current alignment, then
746*4882a593Smuzhiyun * the current queue alignment is updated to the new value, otherwise it
747*4882a593Smuzhiyun * is left alone. The design of this is to allow multiple objects
748*4882a593Smuzhiyun * (driver, device, transport etc) to set their respective
749*4882a593Smuzhiyun * alignments without having them interfere.
750*4882a593Smuzhiyun *
751*4882a593Smuzhiyun **/
blk_queue_update_dma_alignment(struct request_queue * q,int mask)752*4882a593Smuzhiyun void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
753*4882a593Smuzhiyun {
754*4882a593Smuzhiyun BUG_ON(mask > PAGE_SIZE);
755*4882a593Smuzhiyun
756*4882a593Smuzhiyun if (mask > q->dma_alignment)
757*4882a593Smuzhiyun q->dma_alignment = mask;
758*4882a593Smuzhiyun }
759*4882a593Smuzhiyun EXPORT_SYMBOL(blk_queue_update_dma_alignment);
760*4882a593Smuzhiyun
761*4882a593Smuzhiyun /**
762*4882a593Smuzhiyun * blk_set_queue_depth - tell the block layer about the device queue depth
763*4882a593Smuzhiyun * @q: the request queue for the device
764*4882a593Smuzhiyun * @depth: queue depth
765*4882a593Smuzhiyun *
766*4882a593Smuzhiyun */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)767*4882a593Smuzhiyun void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
768*4882a593Smuzhiyun {
769*4882a593Smuzhiyun q->queue_depth = depth;
770*4882a593Smuzhiyun rq_qos_queue_depth_changed(q);
771*4882a593Smuzhiyun }
772*4882a593Smuzhiyun EXPORT_SYMBOL(blk_set_queue_depth);
773*4882a593Smuzhiyun
774*4882a593Smuzhiyun /**
775*4882a593Smuzhiyun * blk_queue_write_cache - configure queue's write cache
776*4882a593Smuzhiyun * @q: the request queue for the device
777*4882a593Smuzhiyun * @wc: write back cache on or off
778*4882a593Smuzhiyun * @fua: device supports FUA writes, if true
779*4882a593Smuzhiyun *
780*4882a593Smuzhiyun * Tell the block layer about the write cache of @q.
781*4882a593Smuzhiyun */
blk_queue_write_cache(struct request_queue * q,bool wc,bool fua)782*4882a593Smuzhiyun void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
783*4882a593Smuzhiyun {
784*4882a593Smuzhiyun if (wc)
785*4882a593Smuzhiyun blk_queue_flag_set(QUEUE_FLAG_WC, q);
786*4882a593Smuzhiyun else
787*4882a593Smuzhiyun blk_queue_flag_clear(QUEUE_FLAG_WC, q);
788*4882a593Smuzhiyun if (fua)
789*4882a593Smuzhiyun blk_queue_flag_set(QUEUE_FLAG_FUA, q);
790*4882a593Smuzhiyun else
791*4882a593Smuzhiyun blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
792*4882a593Smuzhiyun
793*4882a593Smuzhiyun wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
794*4882a593Smuzhiyun }
795*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(blk_queue_write_cache);
796*4882a593Smuzhiyun
797*4882a593Smuzhiyun /**
798*4882a593Smuzhiyun * blk_queue_required_elevator_features - Set a queue required elevator features
799*4882a593Smuzhiyun * @q: the request queue for the target device
800*4882a593Smuzhiyun * @features: Required elevator features OR'ed together
801*4882a593Smuzhiyun *
802*4882a593Smuzhiyun * Tell the block layer that for the device controlled through @q, only the
803*4882a593Smuzhiyun * only elevators that can be used are those that implement at least the set of
804*4882a593Smuzhiyun * features specified by @features.
805*4882a593Smuzhiyun */
blk_queue_required_elevator_features(struct request_queue * q,unsigned int features)806*4882a593Smuzhiyun void blk_queue_required_elevator_features(struct request_queue *q,
807*4882a593Smuzhiyun unsigned int features)
808*4882a593Smuzhiyun {
809*4882a593Smuzhiyun q->required_elevator_features = features;
810*4882a593Smuzhiyun }
811*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
812*4882a593Smuzhiyun
813*4882a593Smuzhiyun /**
814*4882a593Smuzhiyun * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
815*4882a593Smuzhiyun * @q: the request queue for the device
816*4882a593Smuzhiyun * @dev: the device pointer for dma
817*4882a593Smuzhiyun *
818*4882a593Smuzhiyun * Tell the block layer about merging the segments by dma map of @q.
819*4882a593Smuzhiyun */
blk_queue_can_use_dma_map_merging(struct request_queue * q,struct device * dev)820*4882a593Smuzhiyun bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
821*4882a593Smuzhiyun struct device *dev)
822*4882a593Smuzhiyun {
823*4882a593Smuzhiyun unsigned long boundary = dma_get_merge_boundary(dev);
824*4882a593Smuzhiyun
825*4882a593Smuzhiyun if (!boundary)
826*4882a593Smuzhiyun return false;
827*4882a593Smuzhiyun
828*4882a593Smuzhiyun /* No need to update max_segment_size. see blk_queue_virt_boundary() */
829*4882a593Smuzhiyun blk_queue_virt_boundary(q, boundary);
830*4882a593Smuzhiyun
831*4882a593Smuzhiyun return true;
832*4882a593Smuzhiyun }
833*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
834*4882a593Smuzhiyun
835*4882a593Smuzhiyun /**
836*4882a593Smuzhiyun * blk_queue_set_zoned - configure a disk queue zoned model.
837*4882a593Smuzhiyun * @disk: the gendisk of the queue to configure
838*4882a593Smuzhiyun * @model: the zoned model to set
839*4882a593Smuzhiyun *
840*4882a593Smuzhiyun * Set the zoned model of the request queue of @disk according to @model.
841*4882a593Smuzhiyun * When @model is BLK_ZONED_HM (host managed), this should be called only
842*4882a593Smuzhiyun * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
843*4882a593Smuzhiyun * If @model specifies BLK_ZONED_HA (host aware), the effective model used
844*4882a593Smuzhiyun * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
845*4882a593Smuzhiyun * on the disk.
846*4882a593Smuzhiyun */
blk_queue_set_zoned(struct gendisk * disk,enum blk_zoned_model model)847*4882a593Smuzhiyun void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
848*4882a593Smuzhiyun {
849*4882a593Smuzhiyun switch (model) {
850*4882a593Smuzhiyun case BLK_ZONED_HM:
851*4882a593Smuzhiyun /*
852*4882a593Smuzhiyun * Host managed devices are supported only if
853*4882a593Smuzhiyun * CONFIG_BLK_DEV_ZONED is enabled.
854*4882a593Smuzhiyun */
855*4882a593Smuzhiyun WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
856*4882a593Smuzhiyun break;
857*4882a593Smuzhiyun case BLK_ZONED_HA:
858*4882a593Smuzhiyun /*
859*4882a593Smuzhiyun * Host aware devices can be treated either as regular block
860*4882a593Smuzhiyun * devices (similar to drive managed devices) or as zoned block
861*4882a593Smuzhiyun * devices to take advantage of the zone command set, similarly
862*4882a593Smuzhiyun * to host managed devices. We try the latter if there are no
863*4882a593Smuzhiyun * partitions and zoned block device support is enabled, else
864*4882a593Smuzhiyun * we do nothing special as far as the block layer is concerned.
865*4882a593Smuzhiyun */
866*4882a593Smuzhiyun if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
867*4882a593Smuzhiyun disk_has_partitions(disk))
868*4882a593Smuzhiyun model = BLK_ZONED_NONE;
869*4882a593Smuzhiyun break;
870*4882a593Smuzhiyun case BLK_ZONED_NONE:
871*4882a593Smuzhiyun default:
872*4882a593Smuzhiyun if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
873*4882a593Smuzhiyun model = BLK_ZONED_NONE;
874*4882a593Smuzhiyun break;
875*4882a593Smuzhiyun }
876*4882a593Smuzhiyun
877*4882a593Smuzhiyun disk->queue->limits.zoned = model;
878*4882a593Smuzhiyun }
879*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
880*4882a593Smuzhiyun
blk_settings_init(void)881*4882a593Smuzhiyun static int __init blk_settings_init(void)
882*4882a593Smuzhiyun {
883*4882a593Smuzhiyun blk_max_low_pfn = max_low_pfn - 1;
884*4882a593Smuzhiyun blk_max_pfn = max_pfn - 1;
885*4882a593Smuzhiyun return 0;
886*4882a593Smuzhiyun }
887*4882a593Smuzhiyun subsys_initcall(blk_settings_init);
888