1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0-only
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun * AMD Memory Encryption Support
4*4882a593Smuzhiyun *
5*4882a593Smuzhiyun * Copyright (C) 2016 Advanced Micro Devices, Inc.
6*4882a593Smuzhiyun *
7*4882a593Smuzhiyun * Author: Tom Lendacky <thomas.lendacky@amd.com>
8*4882a593Smuzhiyun */
9*4882a593Smuzhiyun
10*4882a593Smuzhiyun #define DISABLE_BRANCH_PROFILING
11*4882a593Smuzhiyun
12*4882a593Smuzhiyun #include <linux/linkage.h>
13*4882a593Smuzhiyun #include <linux/init.h>
14*4882a593Smuzhiyun #include <linux/mm.h>
15*4882a593Smuzhiyun #include <linux/dma-direct.h>
16*4882a593Smuzhiyun #include <linux/swiotlb.h>
17*4882a593Smuzhiyun #include <linux/mem_encrypt.h>
18*4882a593Smuzhiyun #include <linux/device.h>
19*4882a593Smuzhiyun #include <linux/kernel.h>
20*4882a593Smuzhiyun #include <linux/bitops.h>
21*4882a593Smuzhiyun #include <linux/dma-mapping.h>
22*4882a593Smuzhiyun #include <linux/cc_platform.h>
23*4882a593Smuzhiyun
24*4882a593Smuzhiyun #include <asm/tlbflush.h>
25*4882a593Smuzhiyun #include <asm/fixmap.h>
26*4882a593Smuzhiyun #include <asm/setup.h>
27*4882a593Smuzhiyun #include <asm/bootparam.h>
28*4882a593Smuzhiyun #include <asm/set_memory.h>
29*4882a593Smuzhiyun #include <asm/cacheflush.h>
30*4882a593Smuzhiyun #include <asm/processor-flags.h>
31*4882a593Smuzhiyun #include <asm/msr.h>
32*4882a593Smuzhiyun #include <asm/cmdline.h>
33*4882a593Smuzhiyun
34*4882a593Smuzhiyun #include "mm_internal.h"
35*4882a593Smuzhiyun
36*4882a593Smuzhiyun /*
37*4882a593Smuzhiyun * Since SME related variables are set early in the boot process they must
38*4882a593Smuzhiyun * reside in the .data section so as not to be zeroed out when the .bss
39*4882a593Smuzhiyun * section is later cleared.
40*4882a593Smuzhiyun */
41*4882a593Smuzhiyun u64 sme_me_mask __section(".data") = 0;
42*4882a593Smuzhiyun u64 sev_status __section(".data") = 0;
43*4882a593Smuzhiyun u64 sev_check_data __section(".data") = 0;
44*4882a593Smuzhiyun EXPORT_SYMBOL(sme_me_mask);
45*4882a593Smuzhiyun DEFINE_STATIC_KEY_FALSE(sev_enable_key);
46*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(sev_enable_key);
47*4882a593Smuzhiyun
48*4882a593Smuzhiyun bool sev_enabled __section(".data");
49*4882a593Smuzhiyun
50*4882a593Smuzhiyun /* Buffer used for early in-place encryption by BSP, no locking needed */
51*4882a593Smuzhiyun static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
52*4882a593Smuzhiyun
53*4882a593Smuzhiyun /*
54*4882a593Smuzhiyun * This routine does not change the underlying encryption setting of the
55*4882a593Smuzhiyun * page(s) that map this memory. It assumes that eventually the memory is
56*4882a593Smuzhiyun * meant to be accessed as either encrypted or decrypted but the contents
57*4882a593Smuzhiyun * are currently not in the desired state.
58*4882a593Smuzhiyun *
59*4882a593Smuzhiyun * This routine follows the steps outlined in the AMD64 Architecture
60*4882a593Smuzhiyun * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
61*4882a593Smuzhiyun */
__sme_early_enc_dec(resource_size_t paddr,unsigned long size,bool enc)62*4882a593Smuzhiyun static void __init __sme_early_enc_dec(resource_size_t paddr,
63*4882a593Smuzhiyun unsigned long size, bool enc)
64*4882a593Smuzhiyun {
65*4882a593Smuzhiyun void *src, *dst;
66*4882a593Smuzhiyun size_t len;
67*4882a593Smuzhiyun
68*4882a593Smuzhiyun if (!sme_me_mask)
69*4882a593Smuzhiyun return;
70*4882a593Smuzhiyun
71*4882a593Smuzhiyun wbinvd();
72*4882a593Smuzhiyun
73*4882a593Smuzhiyun /*
74*4882a593Smuzhiyun * There are limited number of early mapping slots, so map (at most)
75*4882a593Smuzhiyun * one page at time.
76*4882a593Smuzhiyun */
77*4882a593Smuzhiyun while (size) {
78*4882a593Smuzhiyun len = min_t(size_t, sizeof(sme_early_buffer), size);
79*4882a593Smuzhiyun
80*4882a593Smuzhiyun /*
81*4882a593Smuzhiyun * Create mappings for the current and desired format of
82*4882a593Smuzhiyun * the memory. Use a write-protected mapping for the source.
83*4882a593Smuzhiyun */
84*4882a593Smuzhiyun src = enc ? early_memremap_decrypted_wp(paddr, len) :
85*4882a593Smuzhiyun early_memremap_encrypted_wp(paddr, len);
86*4882a593Smuzhiyun
87*4882a593Smuzhiyun dst = enc ? early_memremap_encrypted(paddr, len) :
88*4882a593Smuzhiyun early_memremap_decrypted(paddr, len);
89*4882a593Smuzhiyun
90*4882a593Smuzhiyun /*
91*4882a593Smuzhiyun * If a mapping can't be obtained to perform the operation,
92*4882a593Smuzhiyun * then eventual access of that area in the desired mode
93*4882a593Smuzhiyun * will cause a crash.
94*4882a593Smuzhiyun */
95*4882a593Smuzhiyun BUG_ON(!src || !dst);
96*4882a593Smuzhiyun
97*4882a593Smuzhiyun /*
98*4882a593Smuzhiyun * Use a temporary buffer, of cache-line multiple size, to
99*4882a593Smuzhiyun * avoid data corruption as documented in the APM.
100*4882a593Smuzhiyun */
101*4882a593Smuzhiyun memcpy(sme_early_buffer, src, len);
102*4882a593Smuzhiyun memcpy(dst, sme_early_buffer, len);
103*4882a593Smuzhiyun
104*4882a593Smuzhiyun early_memunmap(dst, len);
105*4882a593Smuzhiyun early_memunmap(src, len);
106*4882a593Smuzhiyun
107*4882a593Smuzhiyun paddr += len;
108*4882a593Smuzhiyun size -= len;
109*4882a593Smuzhiyun }
110*4882a593Smuzhiyun }
111*4882a593Smuzhiyun
sme_early_encrypt(resource_size_t paddr,unsigned long size)112*4882a593Smuzhiyun void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
113*4882a593Smuzhiyun {
114*4882a593Smuzhiyun __sme_early_enc_dec(paddr, size, true);
115*4882a593Smuzhiyun }
116*4882a593Smuzhiyun
sme_early_decrypt(resource_size_t paddr,unsigned long size)117*4882a593Smuzhiyun void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
118*4882a593Smuzhiyun {
119*4882a593Smuzhiyun __sme_early_enc_dec(paddr, size, false);
120*4882a593Smuzhiyun }
121*4882a593Smuzhiyun
__sme_early_map_unmap_mem(void * vaddr,unsigned long size,bool map)122*4882a593Smuzhiyun static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
123*4882a593Smuzhiyun bool map)
124*4882a593Smuzhiyun {
125*4882a593Smuzhiyun unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
126*4882a593Smuzhiyun pmdval_t pmd_flags, pmd;
127*4882a593Smuzhiyun
128*4882a593Smuzhiyun /* Use early_pmd_flags but remove the encryption mask */
129*4882a593Smuzhiyun pmd_flags = __sme_clr(early_pmd_flags);
130*4882a593Smuzhiyun
131*4882a593Smuzhiyun do {
132*4882a593Smuzhiyun pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
133*4882a593Smuzhiyun __early_make_pgtable((unsigned long)vaddr, pmd);
134*4882a593Smuzhiyun
135*4882a593Smuzhiyun vaddr += PMD_SIZE;
136*4882a593Smuzhiyun paddr += PMD_SIZE;
137*4882a593Smuzhiyun size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
138*4882a593Smuzhiyun } while (size);
139*4882a593Smuzhiyun
140*4882a593Smuzhiyun flush_tlb_local();
141*4882a593Smuzhiyun }
142*4882a593Smuzhiyun
sme_unmap_bootdata(char * real_mode_data)143*4882a593Smuzhiyun void __init sme_unmap_bootdata(char *real_mode_data)
144*4882a593Smuzhiyun {
145*4882a593Smuzhiyun struct boot_params *boot_data;
146*4882a593Smuzhiyun unsigned long cmdline_paddr;
147*4882a593Smuzhiyun
148*4882a593Smuzhiyun if (!sme_active())
149*4882a593Smuzhiyun return;
150*4882a593Smuzhiyun
151*4882a593Smuzhiyun /* Get the command line address before unmapping the real_mode_data */
152*4882a593Smuzhiyun boot_data = (struct boot_params *)real_mode_data;
153*4882a593Smuzhiyun cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
154*4882a593Smuzhiyun
155*4882a593Smuzhiyun __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
156*4882a593Smuzhiyun
157*4882a593Smuzhiyun if (!cmdline_paddr)
158*4882a593Smuzhiyun return;
159*4882a593Smuzhiyun
160*4882a593Smuzhiyun __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
161*4882a593Smuzhiyun }
162*4882a593Smuzhiyun
sme_map_bootdata(char * real_mode_data)163*4882a593Smuzhiyun void __init sme_map_bootdata(char *real_mode_data)
164*4882a593Smuzhiyun {
165*4882a593Smuzhiyun struct boot_params *boot_data;
166*4882a593Smuzhiyun unsigned long cmdline_paddr;
167*4882a593Smuzhiyun
168*4882a593Smuzhiyun if (!sme_active())
169*4882a593Smuzhiyun return;
170*4882a593Smuzhiyun
171*4882a593Smuzhiyun __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
172*4882a593Smuzhiyun
173*4882a593Smuzhiyun /* Get the command line address after mapping the real_mode_data */
174*4882a593Smuzhiyun boot_data = (struct boot_params *)real_mode_data;
175*4882a593Smuzhiyun cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
176*4882a593Smuzhiyun
177*4882a593Smuzhiyun if (!cmdline_paddr)
178*4882a593Smuzhiyun return;
179*4882a593Smuzhiyun
180*4882a593Smuzhiyun __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
181*4882a593Smuzhiyun }
182*4882a593Smuzhiyun
sme_early_init(void)183*4882a593Smuzhiyun void __init sme_early_init(void)
184*4882a593Smuzhiyun {
185*4882a593Smuzhiyun unsigned int i;
186*4882a593Smuzhiyun
187*4882a593Smuzhiyun if (!sme_me_mask)
188*4882a593Smuzhiyun return;
189*4882a593Smuzhiyun
190*4882a593Smuzhiyun early_pmd_flags = __sme_set(early_pmd_flags);
191*4882a593Smuzhiyun
192*4882a593Smuzhiyun __supported_pte_mask = __sme_set(__supported_pte_mask);
193*4882a593Smuzhiyun
194*4882a593Smuzhiyun /* Update the protection map with memory encryption mask */
195*4882a593Smuzhiyun for (i = 0; i < ARRAY_SIZE(protection_map); i++)
196*4882a593Smuzhiyun protection_map[i] = pgprot_encrypted(protection_map[i]);
197*4882a593Smuzhiyun
198*4882a593Smuzhiyun if (sev_active())
199*4882a593Smuzhiyun swiotlb_force = SWIOTLB_FORCE;
200*4882a593Smuzhiyun }
201*4882a593Smuzhiyun
__set_clr_pte_enc(pte_t * kpte,int level,bool enc)202*4882a593Smuzhiyun static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
203*4882a593Smuzhiyun {
204*4882a593Smuzhiyun pgprot_t old_prot, new_prot;
205*4882a593Smuzhiyun unsigned long pfn, pa, size;
206*4882a593Smuzhiyun pte_t new_pte;
207*4882a593Smuzhiyun
208*4882a593Smuzhiyun switch (level) {
209*4882a593Smuzhiyun case PG_LEVEL_4K:
210*4882a593Smuzhiyun pfn = pte_pfn(*kpte);
211*4882a593Smuzhiyun old_prot = pte_pgprot(*kpte);
212*4882a593Smuzhiyun break;
213*4882a593Smuzhiyun case PG_LEVEL_2M:
214*4882a593Smuzhiyun pfn = pmd_pfn(*(pmd_t *)kpte);
215*4882a593Smuzhiyun old_prot = pmd_pgprot(*(pmd_t *)kpte);
216*4882a593Smuzhiyun break;
217*4882a593Smuzhiyun case PG_LEVEL_1G:
218*4882a593Smuzhiyun pfn = pud_pfn(*(pud_t *)kpte);
219*4882a593Smuzhiyun old_prot = pud_pgprot(*(pud_t *)kpte);
220*4882a593Smuzhiyun break;
221*4882a593Smuzhiyun default:
222*4882a593Smuzhiyun return;
223*4882a593Smuzhiyun }
224*4882a593Smuzhiyun
225*4882a593Smuzhiyun new_prot = old_prot;
226*4882a593Smuzhiyun if (enc)
227*4882a593Smuzhiyun pgprot_val(new_prot) |= _PAGE_ENC;
228*4882a593Smuzhiyun else
229*4882a593Smuzhiyun pgprot_val(new_prot) &= ~_PAGE_ENC;
230*4882a593Smuzhiyun
231*4882a593Smuzhiyun /* If prot is same then do nothing. */
232*4882a593Smuzhiyun if (pgprot_val(old_prot) == pgprot_val(new_prot))
233*4882a593Smuzhiyun return;
234*4882a593Smuzhiyun
235*4882a593Smuzhiyun pa = pfn << PAGE_SHIFT;
236*4882a593Smuzhiyun size = page_level_size(level);
237*4882a593Smuzhiyun
238*4882a593Smuzhiyun /*
239*4882a593Smuzhiyun * We are going to perform in-place en-/decryption and change the
240*4882a593Smuzhiyun * physical page attribute from C=1 to C=0 or vice versa. Flush the
241*4882a593Smuzhiyun * caches to ensure that data gets accessed with the correct C-bit.
242*4882a593Smuzhiyun */
243*4882a593Smuzhiyun clflush_cache_range(__va(pa), size);
244*4882a593Smuzhiyun
245*4882a593Smuzhiyun /* Encrypt/decrypt the contents in-place */
246*4882a593Smuzhiyun if (enc)
247*4882a593Smuzhiyun sme_early_encrypt(pa, size);
248*4882a593Smuzhiyun else
249*4882a593Smuzhiyun sme_early_decrypt(pa, size);
250*4882a593Smuzhiyun
251*4882a593Smuzhiyun /* Change the page encryption mask. */
252*4882a593Smuzhiyun new_pte = pfn_pte(pfn, new_prot);
253*4882a593Smuzhiyun set_pte_atomic(kpte, new_pte);
254*4882a593Smuzhiyun }
255*4882a593Smuzhiyun
early_set_memory_enc_dec(unsigned long vaddr,unsigned long size,bool enc)256*4882a593Smuzhiyun static int __init early_set_memory_enc_dec(unsigned long vaddr,
257*4882a593Smuzhiyun unsigned long size, bool enc)
258*4882a593Smuzhiyun {
259*4882a593Smuzhiyun unsigned long vaddr_end, vaddr_next;
260*4882a593Smuzhiyun unsigned long psize, pmask;
261*4882a593Smuzhiyun int split_page_size_mask;
262*4882a593Smuzhiyun int level, ret;
263*4882a593Smuzhiyun pte_t *kpte;
264*4882a593Smuzhiyun
265*4882a593Smuzhiyun vaddr_next = vaddr;
266*4882a593Smuzhiyun vaddr_end = vaddr + size;
267*4882a593Smuzhiyun
268*4882a593Smuzhiyun for (; vaddr < vaddr_end; vaddr = vaddr_next) {
269*4882a593Smuzhiyun kpte = lookup_address(vaddr, &level);
270*4882a593Smuzhiyun if (!kpte || pte_none(*kpte)) {
271*4882a593Smuzhiyun ret = 1;
272*4882a593Smuzhiyun goto out;
273*4882a593Smuzhiyun }
274*4882a593Smuzhiyun
275*4882a593Smuzhiyun if (level == PG_LEVEL_4K) {
276*4882a593Smuzhiyun __set_clr_pte_enc(kpte, level, enc);
277*4882a593Smuzhiyun vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
278*4882a593Smuzhiyun continue;
279*4882a593Smuzhiyun }
280*4882a593Smuzhiyun
281*4882a593Smuzhiyun psize = page_level_size(level);
282*4882a593Smuzhiyun pmask = page_level_mask(level);
283*4882a593Smuzhiyun
284*4882a593Smuzhiyun /*
285*4882a593Smuzhiyun * Check whether we can change the large page in one go.
286*4882a593Smuzhiyun * We request a split when the address is not aligned and
287*4882a593Smuzhiyun * the number of pages to set/clear encryption bit is smaller
288*4882a593Smuzhiyun * than the number of pages in the large page.
289*4882a593Smuzhiyun */
290*4882a593Smuzhiyun if (vaddr == (vaddr & pmask) &&
291*4882a593Smuzhiyun ((vaddr_end - vaddr) >= psize)) {
292*4882a593Smuzhiyun __set_clr_pte_enc(kpte, level, enc);
293*4882a593Smuzhiyun vaddr_next = (vaddr & pmask) + psize;
294*4882a593Smuzhiyun continue;
295*4882a593Smuzhiyun }
296*4882a593Smuzhiyun
297*4882a593Smuzhiyun /*
298*4882a593Smuzhiyun * The virtual address is part of a larger page, create the next
299*4882a593Smuzhiyun * level page table mapping (4K or 2M). If it is part of a 2M
300*4882a593Smuzhiyun * page then we request a split of the large page into 4K
301*4882a593Smuzhiyun * chunks. A 1GB large page is split into 2M pages, resp.
302*4882a593Smuzhiyun */
303*4882a593Smuzhiyun if (level == PG_LEVEL_2M)
304*4882a593Smuzhiyun split_page_size_mask = 0;
305*4882a593Smuzhiyun else
306*4882a593Smuzhiyun split_page_size_mask = 1 << PG_LEVEL_2M;
307*4882a593Smuzhiyun
308*4882a593Smuzhiyun /*
309*4882a593Smuzhiyun * kernel_physical_mapping_change() does not flush the TLBs, so
310*4882a593Smuzhiyun * a TLB flush is required after we exit from the for loop.
311*4882a593Smuzhiyun */
312*4882a593Smuzhiyun kernel_physical_mapping_change(__pa(vaddr & pmask),
313*4882a593Smuzhiyun __pa((vaddr_end & pmask) + psize),
314*4882a593Smuzhiyun split_page_size_mask);
315*4882a593Smuzhiyun }
316*4882a593Smuzhiyun
317*4882a593Smuzhiyun ret = 0;
318*4882a593Smuzhiyun
319*4882a593Smuzhiyun out:
320*4882a593Smuzhiyun __flush_tlb_all();
321*4882a593Smuzhiyun return ret;
322*4882a593Smuzhiyun }
323*4882a593Smuzhiyun
early_set_memory_decrypted(unsigned long vaddr,unsigned long size)324*4882a593Smuzhiyun int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
325*4882a593Smuzhiyun {
326*4882a593Smuzhiyun return early_set_memory_enc_dec(vaddr, size, false);
327*4882a593Smuzhiyun }
328*4882a593Smuzhiyun
early_set_memory_encrypted(unsigned long vaddr,unsigned long size)329*4882a593Smuzhiyun int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
330*4882a593Smuzhiyun {
331*4882a593Smuzhiyun return early_set_memory_enc_dec(vaddr, size, true);
332*4882a593Smuzhiyun }
333*4882a593Smuzhiyun
334*4882a593Smuzhiyun /*
335*4882a593Smuzhiyun * SME and SEV are very similar but they are not the same, so there are
336*4882a593Smuzhiyun * times that the kernel will need to distinguish between SME and SEV. The
337*4882a593Smuzhiyun * sme_active() and sev_active() functions are used for this. When a
338*4882a593Smuzhiyun * distinction isn't needed, the mem_encrypt_active() function can be used.
339*4882a593Smuzhiyun *
340*4882a593Smuzhiyun * The trampoline code is a good example for this requirement. Before
341*4882a593Smuzhiyun * paging is activated, SME will access all memory as decrypted, but SEV
342*4882a593Smuzhiyun * will access all memory as encrypted. So, when APs are being brought
343*4882a593Smuzhiyun * up under SME the trampoline area cannot be encrypted, whereas under SEV
344*4882a593Smuzhiyun * the trampoline area must be encrypted.
345*4882a593Smuzhiyun */
sme_active(void)346*4882a593Smuzhiyun bool sme_active(void)
347*4882a593Smuzhiyun {
348*4882a593Smuzhiyun return sme_me_mask && !sev_enabled;
349*4882a593Smuzhiyun }
350*4882a593Smuzhiyun
sev_active(void)351*4882a593Smuzhiyun bool sev_active(void)
352*4882a593Smuzhiyun {
353*4882a593Smuzhiyun return sev_status & MSR_AMD64_SEV_ENABLED;
354*4882a593Smuzhiyun }
355*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(sev_active);
356*4882a593Smuzhiyun
357*4882a593Smuzhiyun /* Needs to be called from non-instrumentable code */
sev_es_active(void)358*4882a593Smuzhiyun bool noinstr sev_es_active(void)
359*4882a593Smuzhiyun {
360*4882a593Smuzhiyun return sev_status & MSR_AMD64_SEV_ES_ENABLED;
361*4882a593Smuzhiyun }
362*4882a593Smuzhiyun
363*4882a593Smuzhiyun /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
force_dma_unencrypted(struct device * dev)364*4882a593Smuzhiyun bool force_dma_unencrypted(struct device *dev)
365*4882a593Smuzhiyun {
366*4882a593Smuzhiyun /*
367*4882a593Smuzhiyun * For SEV, all DMA must be to unencrypted addresses.
368*4882a593Smuzhiyun */
369*4882a593Smuzhiyun if (sev_active())
370*4882a593Smuzhiyun return true;
371*4882a593Smuzhiyun
372*4882a593Smuzhiyun /*
373*4882a593Smuzhiyun * For SME, all DMA must be to unencrypted addresses if the
374*4882a593Smuzhiyun * device does not support DMA to addresses that include the
375*4882a593Smuzhiyun * encryption mask.
376*4882a593Smuzhiyun */
377*4882a593Smuzhiyun if (sme_active()) {
378*4882a593Smuzhiyun u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
379*4882a593Smuzhiyun u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
380*4882a593Smuzhiyun dev->bus_dma_limit);
381*4882a593Smuzhiyun
382*4882a593Smuzhiyun if (dma_dev_mask <= dma_enc_mask)
383*4882a593Smuzhiyun return true;
384*4882a593Smuzhiyun }
385*4882a593Smuzhiyun
386*4882a593Smuzhiyun return false;
387*4882a593Smuzhiyun }
388*4882a593Smuzhiyun
mem_encrypt_free_decrypted_mem(void)389*4882a593Smuzhiyun void __init mem_encrypt_free_decrypted_mem(void)
390*4882a593Smuzhiyun {
391*4882a593Smuzhiyun unsigned long vaddr, vaddr_end, npages;
392*4882a593Smuzhiyun int r;
393*4882a593Smuzhiyun
394*4882a593Smuzhiyun vaddr = (unsigned long)__start_bss_decrypted_unused;
395*4882a593Smuzhiyun vaddr_end = (unsigned long)__end_bss_decrypted;
396*4882a593Smuzhiyun npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
397*4882a593Smuzhiyun
398*4882a593Smuzhiyun /*
399*4882a593Smuzhiyun * The unused memory range was mapped decrypted, change the encryption
400*4882a593Smuzhiyun * attribute from decrypted to encrypted before freeing it.
401*4882a593Smuzhiyun */
402*4882a593Smuzhiyun if (mem_encrypt_active()) {
403*4882a593Smuzhiyun r = set_memory_encrypted(vaddr, npages);
404*4882a593Smuzhiyun if (r) {
405*4882a593Smuzhiyun pr_warn("failed to free unused decrypted pages\n");
406*4882a593Smuzhiyun return;
407*4882a593Smuzhiyun }
408*4882a593Smuzhiyun }
409*4882a593Smuzhiyun
410*4882a593Smuzhiyun free_init_pages("unused decrypted", vaddr, vaddr_end);
411*4882a593Smuzhiyun }
412*4882a593Smuzhiyun
print_mem_encrypt_feature_info(void)413*4882a593Smuzhiyun static void print_mem_encrypt_feature_info(void)
414*4882a593Smuzhiyun {
415*4882a593Smuzhiyun pr_info("AMD Memory Encryption Features active:");
416*4882a593Smuzhiyun
417*4882a593Smuzhiyun /* Secure Memory Encryption */
418*4882a593Smuzhiyun if (sme_active()) {
419*4882a593Smuzhiyun /*
420*4882a593Smuzhiyun * SME is mutually exclusive with any of the SEV
421*4882a593Smuzhiyun * features below.
422*4882a593Smuzhiyun */
423*4882a593Smuzhiyun pr_cont(" SME\n");
424*4882a593Smuzhiyun return;
425*4882a593Smuzhiyun }
426*4882a593Smuzhiyun
427*4882a593Smuzhiyun /* Secure Encrypted Virtualization */
428*4882a593Smuzhiyun if (sev_active())
429*4882a593Smuzhiyun pr_cont(" SEV");
430*4882a593Smuzhiyun
431*4882a593Smuzhiyun /* Encrypted Register State */
432*4882a593Smuzhiyun if (sev_es_active())
433*4882a593Smuzhiyun pr_cont(" SEV-ES");
434*4882a593Smuzhiyun
435*4882a593Smuzhiyun pr_cont("\n");
436*4882a593Smuzhiyun }
437*4882a593Smuzhiyun
438*4882a593Smuzhiyun /* Architecture __weak replacement functions */
mem_encrypt_init(void)439*4882a593Smuzhiyun void __init mem_encrypt_init(void)
440*4882a593Smuzhiyun {
441*4882a593Smuzhiyun if (!sme_me_mask)
442*4882a593Smuzhiyun return;
443*4882a593Smuzhiyun
444*4882a593Smuzhiyun /* Call into SWIOTLB to update the SWIOTLB DMA buffers */
445*4882a593Smuzhiyun swiotlb_update_mem_attributes();
446*4882a593Smuzhiyun
447*4882a593Smuzhiyun /*
448*4882a593Smuzhiyun * With SEV, we need to unroll the rep string I/O instructions.
449*4882a593Smuzhiyun */
450*4882a593Smuzhiyun if (sev_active())
451*4882a593Smuzhiyun static_branch_enable(&sev_enable_key);
452*4882a593Smuzhiyun
453*4882a593Smuzhiyun print_mem_encrypt_feature_info();
454*4882a593Smuzhiyun }
455*4882a593Smuzhiyun
456