xref: /OK3568_Linux_fs/kernel/arch/x86/mm/mem_encrypt.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0-only
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun  * AMD Memory Encryption Support
4*4882a593Smuzhiyun  *
5*4882a593Smuzhiyun  * Copyright (C) 2016 Advanced Micro Devices, Inc.
6*4882a593Smuzhiyun  *
7*4882a593Smuzhiyun  * Author: Tom Lendacky <thomas.lendacky@amd.com>
8*4882a593Smuzhiyun  */
9*4882a593Smuzhiyun 
10*4882a593Smuzhiyun #define DISABLE_BRANCH_PROFILING
11*4882a593Smuzhiyun 
12*4882a593Smuzhiyun #include <linux/linkage.h>
13*4882a593Smuzhiyun #include <linux/init.h>
14*4882a593Smuzhiyun #include <linux/mm.h>
15*4882a593Smuzhiyun #include <linux/dma-direct.h>
16*4882a593Smuzhiyun #include <linux/swiotlb.h>
17*4882a593Smuzhiyun #include <linux/mem_encrypt.h>
18*4882a593Smuzhiyun #include <linux/device.h>
19*4882a593Smuzhiyun #include <linux/kernel.h>
20*4882a593Smuzhiyun #include <linux/bitops.h>
21*4882a593Smuzhiyun #include <linux/dma-mapping.h>
22*4882a593Smuzhiyun #include <linux/cc_platform.h>
23*4882a593Smuzhiyun 
24*4882a593Smuzhiyun #include <asm/tlbflush.h>
25*4882a593Smuzhiyun #include <asm/fixmap.h>
26*4882a593Smuzhiyun #include <asm/setup.h>
27*4882a593Smuzhiyun #include <asm/bootparam.h>
28*4882a593Smuzhiyun #include <asm/set_memory.h>
29*4882a593Smuzhiyun #include <asm/cacheflush.h>
30*4882a593Smuzhiyun #include <asm/processor-flags.h>
31*4882a593Smuzhiyun #include <asm/msr.h>
32*4882a593Smuzhiyun #include <asm/cmdline.h>
33*4882a593Smuzhiyun 
34*4882a593Smuzhiyun #include "mm_internal.h"
35*4882a593Smuzhiyun 
36*4882a593Smuzhiyun /*
37*4882a593Smuzhiyun  * Since SME related variables are set early in the boot process they must
38*4882a593Smuzhiyun  * reside in the .data section so as not to be zeroed out when the .bss
39*4882a593Smuzhiyun  * section is later cleared.
40*4882a593Smuzhiyun  */
41*4882a593Smuzhiyun u64 sme_me_mask __section(".data") = 0;
42*4882a593Smuzhiyun u64 sev_status __section(".data") = 0;
43*4882a593Smuzhiyun u64 sev_check_data __section(".data") = 0;
44*4882a593Smuzhiyun EXPORT_SYMBOL(sme_me_mask);
45*4882a593Smuzhiyun DEFINE_STATIC_KEY_FALSE(sev_enable_key);
46*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(sev_enable_key);
47*4882a593Smuzhiyun 
48*4882a593Smuzhiyun bool sev_enabled __section(".data");
49*4882a593Smuzhiyun 
50*4882a593Smuzhiyun /* Buffer used for early in-place encryption by BSP, no locking needed */
51*4882a593Smuzhiyun static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
52*4882a593Smuzhiyun 
53*4882a593Smuzhiyun /*
54*4882a593Smuzhiyun  * This routine does not change the underlying encryption setting of the
55*4882a593Smuzhiyun  * page(s) that map this memory. It assumes that eventually the memory is
56*4882a593Smuzhiyun  * meant to be accessed as either encrypted or decrypted but the contents
57*4882a593Smuzhiyun  * are currently not in the desired state.
58*4882a593Smuzhiyun  *
59*4882a593Smuzhiyun  * This routine follows the steps outlined in the AMD64 Architecture
60*4882a593Smuzhiyun  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
61*4882a593Smuzhiyun  */
__sme_early_enc_dec(resource_size_t paddr,unsigned long size,bool enc)62*4882a593Smuzhiyun static void __init __sme_early_enc_dec(resource_size_t paddr,
63*4882a593Smuzhiyun 				       unsigned long size, bool enc)
64*4882a593Smuzhiyun {
65*4882a593Smuzhiyun 	void *src, *dst;
66*4882a593Smuzhiyun 	size_t len;
67*4882a593Smuzhiyun 
68*4882a593Smuzhiyun 	if (!sme_me_mask)
69*4882a593Smuzhiyun 		return;
70*4882a593Smuzhiyun 
71*4882a593Smuzhiyun 	wbinvd();
72*4882a593Smuzhiyun 
73*4882a593Smuzhiyun 	/*
74*4882a593Smuzhiyun 	 * There are limited number of early mapping slots, so map (at most)
75*4882a593Smuzhiyun 	 * one page at time.
76*4882a593Smuzhiyun 	 */
77*4882a593Smuzhiyun 	while (size) {
78*4882a593Smuzhiyun 		len = min_t(size_t, sizeof(sme_early_buffer), size);
79*4882a593Smuzhiyun 
80*4882a593Smuzhiyun 		/*
81*4882a593Smuzhiyun 		 * Create mappings for the current and desired format of
82*4882a593Smuzhiyun 		 * the memory. Use a write-protected mapping for the source.
83*4882a593Smuzhiyun 		 */
84*4882a593Smuzhiyun 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
85*4882a593Smuzhiyun 			    early_memremap_encrypted_wp(paddr, len);
86*4882a593Smuzhiyun 
87*4882a593Smuzhiyun 		dst = enc ? early_memremap_encrypted(paddr, len) :
88*4882a593Smuzhiyun 			    early_memremap_decrypted(paddr, len);
89*4882a593Smuzhiyun 
90*4882a593Smuzhiyun 		/*
91*4882a593Smuzhiyun 		 * If a mapping can't be obtained to perform the operation,
92*4882a593Smuzhiyun 		 * then eventual access of that area in the desired mode
93*4882a593Smuzhiyun 		 * will cause a crash.
94*4882a593Smuzhiyun 		 */
95*4882a593Smuzhiyun 		BUG_ON(!src || !dst);
96*4882a593Smuzhiyun 
97*4882a593Smuzhiyun 		/*
98*4882a593Smuzhiyun 		 * Use a temporary buffer, of cache-line multiple size, to
99*4882a593Smuzhiyun 		 * avoid data corruption as documented in the APM.
100*4882a593Smuzhiyun 		 */
101*4882a593Smuzhiyun 		memcpy(sme_early_buffer, src, len);
102*4882a593Smuzhiyun 		memcpy(dst, sme_early_buffer, len);
103*4882a593Smuzhiyun 
104*4882a593Smuzhiyun 		early_memunmap(dst, len);
105*4882a593Smuzhiyun 		early_memunmap(src, len);
106*4882a593Smuzhiyun 
107*4882a593Smuzhiyun 		paddr += len;
108*4882a593Smuzhiyun 		size -= len;
109*4882a593Smuzhiyun 	}
110*4882a593Smuzhiyun }
111*4882a593Smuzhiyun 
sme_early_encrypt(resource_size_t paddr,unsigned long size)112*4882a593Smuzhiyun void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
113*4882a593Smuzhiyun {
114*4882a593Smuzhiyun 	__sme_early_enc_dec(paddr, size, true);
115*4882a593Smuzhiyun }
116*4882a593Smuzhiyun 
sme_early_decrypt(resource_size_t paddr,unsigned long size)117*4882a593Smuzhiyun void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
118*4882a593Smuzhiyun {
119*4882a593Smuzhiyun 	__sme_early_enc_dec(paddr, size, false);
120*4882a593Smuzhiyun }
121*4882a593Smuzhiyun 
__sme_early_map_unmap_mem(void * vaddr,unsigned long size,bool map)122*4882a593Smuzhiyun static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
123*4882a593Smuzhiyun 					     bool map)
124*4882a593Smuzhiyun {
125*4882a593Smuzhiyun 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
126*4882a593Smuzhiyun 	pmdval_t pmd_flags, pmd;
127*4882a593Smuzhiyun 
128*4882a593Smuzhiyun 	/* Use early_pmd_flags but remove the encryption mask */
129*4882a593Smuzhiyun 	pmd_flags = __sme_clr(early_pmd_flags);
130*4882a593Smuzhiyun 
131*4882a593Smuzhiyun 	do {
132*4882a593Smuzhiyun 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
133*4882a593Smuzhiyun 		__early_make_pgtable((unsigned long)vaddr, pmd);
134*4882a593Smuzhiyun 
135*4882a593Smuzhiyun 		vaddr += PMD_SIZE;
136*4882a593Smuzhiyun 		paddr += PMD_SIZE;
137*4882a593Smuzhiyun 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
138*4882a593Smuzhiyun 	} while (size);
139*4882a593Smuzhiyun 
140*4882a593Smuzhiyun 	flush_tlb_local();
141*4882a593Smuzhiyun }
142*4882a593Smuzhiyun 
sme_unmap_bootdata(char * real_mode_data)143*4882a593Smuzhiyun void __init sme_unmap_bootdata(char *real_mode_data)
144*4882a593Smuzhiyun {
145*4882a593Smuzhiyun 	struct boot_params *boot_data;
146*4882a593Smuzhiyun 	unsigned long cmdline_paddr;
147*4882a593Smuzhiyun 
148*4882a593Smuzhiyun 	if (!sme_active())
149*4882a593Smuzhiyun 		return;
150*4882a593Smuzhiyun 
151*4882a593Smuzhiyun 	/* Get the command line address before unmapping the real_mode_data */
152*4882a593Smuzhiyun 	boot_data = (struct boot_params *)real_mode_data;
153*4882a593Smuzhiyun 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
154*4882a593Smuzhiyun 
155*4882a593Smuzhiyun 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
156*4882a593Smuzhiyun 
157*4882a593Smuzhiyun 	if (!cmdline_paddr)
158*4882a593Smuzhiyun 		return;
159*4882a593Smuzhiyun 
160*4882a593Smuzhiyun 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
161*4882a593Smuzhiyun }
162*4882a593Smuzhiyun 
sme_map_bootdata(char * real_mode_data)163*4882a593Smuzhiyun void __init sme_map_bootdata(char *real_mode_data)
164*4882a593Smuzhiyun {
165*4882a593Smuzhiyun 	struct boot_params *boot_data;
166*4882a593Smuzhiyun 	unsigned long cmdline_paddr;
167*4882a593Smuzhiyun 
168*4882a593Smuzhiyun 	if (!sme_active())
169*4882a593Smuzhiyun 		return;
170*4882a593Smuzhiyun 
171*4882a593Smuzhiyun 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
172*4882a593Smuzhiyun 
173*4882a593Smuzhiyun 	/* Get the command line address after mapping the real_mode_data */
174*4882a593Smuzhiyun 	boot_data = (struct boot_params *)real_mode_data;
175*4882a593Smuzhiyun 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
176*4882a593Smuzhiyun 
177*4882a593Smuzhiyun 	if (!cmdline_paddr)
178*4882a593Smuzhiyun 		return;
179*4882a593Smuzhiyun 
180*4882a593Smuzhiyun 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
181*4882a593Smuzhiyun }
182*4882a593Smuzhiyun 
sme_early_init(void)183*4882a593Smuzhiyun void __init sme_early_init(void)
184*4882a593Smuzhiyun {
185*4882a593Smuzhiyun 	unsigned int i;
186*4882a593Smuzhiyun 
187*4882a593Smuzhiyun 	if (!sme_me_mask)
188*4882a593Smuzhiyun 		return;
189*4882a593Smuzhiyun 
190*4882a593Smuzhiyun 	early_pmd_flags = __sme_set(early_pmd_flags);
191*4882a593Smuzhiyun 
192*4882a593Smuzhiyun 	__supported_pte_mask = __sme_set(__supported_pte_mask);
193*4882a593Smuzhiyun 
194*4882a593Smuzhiyun 	/* Update the protection map with memory encryption mask */
195*4882a593Smuzhiyun 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
196*4882a593Smuzhiyun 		protection_map[i] = pgprot_encrypted(protection_map[i]);
197*4882a593Smuzhiyun 
198*4882a593Smuzhiyun 	if (sev_active())
199*4882a593Smuzhiyun 		swiotlb_force = SWIOTLB_FORCE;
200*4882a593Smuzhiyun }
201*4882a593Smuzhiyun 
__set_clr_pte_enc(pte_t * kpte,int level,bool enc)202*4882a593Smuzhiyun static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
203*4882a593Smuzhiyun {
204*4882a593Smuzhiyun 	pgprot_t old_prot, new_prot;
205*4882a593Smuzhiyun 	unsigned long pfn, pa, size;
206*4882a593Smuzhiyun 	pte_t new_pte;
207*4882a593Smuzhiyun 
208*4882a593Smuzhiyun 	switch (level) {
209*4882a593Smuzhiyun 	case PG_LEVEL_4K:
210*4882a593Smuzhiyun 		pfn = pte_pfn(*kpte);
211*4882a593Smuzhiyun 		old_prot = pte_pgprot(*kpte);
212*4882a593Smuzhiyun 		break;
213*4882a593Smuzhiyun 	case PG_LEVEL_2M:
214*4882a593Smuzhiyun 		pfn = pmd_pfn(*(pmd_t *)kpte);
215*4882a593Smuzhiyun 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
216*4882a593Smuzhiyun 		break;
217*4882a593Smuzhiyun 	case PG_LEVEL_1G:
218*4882a593Smuzhiyun 		pfn = pud_pfn(*(pud_t *)kpte);
219*4882a593Smuzhiyun 		old_prot = pud_pgprot(*(pud_t *)kpte);
220*4882a593Smuzhiyun 		break;
221*4882a593Smuzhiyun 	default:
222*4882a593Smuzhiyun 		return;
223*4882a593Smuzhiyun 	}
224*4882a593Smuzhiyun 
225*4882a593Smuzhiyun 	new_prot = old_prot;
226*4882a593Smuzhiyun 	if (enc)
227*4882a593Smuzhiyun 		pgprot_val(new_prot) |= _PAGE_ENC;
228*4882a593Smuzhiyun 	else
229*4882a593Smuzhiyun 		pgprot_val(new_prot) &= ~_PAGE_ENC;
230*4882a593Smuzhiyun 
231*4882a593Smuzhiyun 	/* If prot is same then do nothing. */
232*4882a593Smuzhiyun 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
233*4882a593Smuzhiyun 		return;
234*4882a593Smuzhiyun 
235*4882a593Smuzhiyun 	pa = pfn << PAGE_SHIFT;
236*4882a593Smuzhiyun 	size = page_level_size(level);
237*4882a593Smuzhiyun 
238*4882a593Smuzhiyun 	/*
239*4882a593Smuzhiyun 	 * We are going to perform in-place en-/decryption and change the
240*4882a593Smuzhiyun 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
241*4882a593Smuzhiyun 	 * caches to ensure that data gets accessed with the correct C-bit.
242*4882a593Smuzhiyun 	 */
243*4882a593Smuzhiyun 	clflush_cache_range(__va(pa), size);
244*4882a593Smuzhiyun 
245*4882a593Smuzhiyun 	/* Encrypt/decrypt the contents in-place */
246*4882a593Smuzhiyun 	if (enc)
247*4882a593Smuzhiyun 		sme_early_encrypt(pa, size);
248*4882a593Smuzhiyun 	else
249*4882a593Smuzhiyun 		sme_early_decrypt(pa, size);
250*4882a593Smuzhiyun 
251*4882a593Smuzhiyun 	/* Change the page encryption mask. */
252*4882a593Smuzhiyun 	new_pte = pfn_pte(pfn, new_prot);
253*4882a593Smuzhiyun 	set_pte_atomic(kpte, new_pte);
254*4882a593Smuzhiyun }
255*4882a593Smuzhiyun 
early_set_memory_enc_dec(unsigned long vaddr,unsigned long size,bool enc)256*4882a593Smuzhiyun static int __init early_set_memory_enc_dec(unsigned long vaddr,
257*4882a593Smuzhiyun 					   unsigned long size, bool enc)
258*4882a593Smuzhiyun {
259*4882a593Smuzhiyun 	unsigned long vaddr_end, vaddr_next;
260*4882a593Smuzhiyun 	unsigned long psize, pmask;
261*4882a593Smuzhiyun 	int split_page_size_mask;
262*4882a593Smuzhiyun 	int level, ret;
263*4882a593Smuzhiyun 	pte_t *kpte;
264*4882a593Smuzhiyun 
265*4882a593Smuzhiyun 	vaddr_next = vaddr;
266*4882a593Smuzhiyun 	vaddr_end = vaddr + size;
267*4882a593Smuzhiyun 
268*4882a593Smuzhiyun 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
269*4882a593Smuzhiyun 		kpte = lookup_address(vaddr, &level);
270*4882a593Smuzhiyun 		if (!kpte || pte_none(*kpte)) {
271*4882a593Smuzhiyun 			ret = 1;
272*4882a593Smuzhiyun 			goto out;
273*4882a593Smuzhiyun 		}
274*4882a593Smuzhiyun 
275*4882a593Smuzhiyun 		if (level == PG_LEVEL_4K) {
276*4882a593Smuzhiyun 			__set_clr_pte_enc(kpte, level, enc);
277*4882a593Smuzhiyun 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
278*4882a593Smuzhiyun 			continue;
279*4882a593Smuzhiyun 		}
280*4882a593Smuzhiyun 
281*4882a593Smuzhiyun 		psize = page_level_size(level);
282*4882a593Smuzhiyun 		pmask = page_level_mask(level);
283*4882a593Smuzhiyun 
284*4882a593Smuzhiyun 		/*
285*4882a593Smuzhiyun 		 * Check whether we can change the large page in one go.
286*4882a593Smuzhiyun 		 * We request a split when the address is not aligned and
287*4882a593Smuzhiyun 		 * the number of pages to set/clear encryption bit is smaller
288*4882a593Smuzhiyun 		 * than the number of pages in the large page.
289*4882a593Smuzhiyun 		 */
290*4882a593Smuzhiyun 		if (vaddr == (vaddr & pmask) &&
291*4882a593Smuzhiyun 		    ((vaddr_end - vaddr) >= psize)) {
292*4882a593Smuzhiyun 			__set_clr_pte_enc(kpte, level, enc);
293*4882a593Smuzhiyun 			vaddr_next = (vaddr & pmask) + psize;
294*4882a593Smuzhiyun 			continue;
295*4882a593Smuzhiyun 		}
296*4882a593Smuzhiyun 
297*4882a593Smuzhiyun 		/*
298*4882a593Smuzhiyun 		 * The virtual address is part of a larger page, create the next
299*4882a593Smuzhiyun 		 * level page table mapping (4K or 2M). If it is part of a 2M
300*4882a593Smuzhiyun 		 * page then we request a split of the large page into 4K
301*4882a593Smuzhiyun 		 * chunks. A 1GB large page is split into 2M pages, resp.
302*4882a593Smuzhiyun 		 */
303*4882a593Smuzhiyun 		if (level == PG_LEVEL_2M)
304*4882a593Smuzhiyun 			split_page_size_mask = 0;
305*4882a593Smuzhiyun 		else
306*4882a593Smuzhiyun 			split_page_size_mask = 1 << PG_LEVEL_2M;
307*4882a593Smuzhiyun 
308*4882a593Smuzhiyun 		/*
309*4882a593Smuzhiyun 		 * kernel_physical_mapping_change() does not flush the TLBs, so
310*4882a593Smuzhiyun 		 * a TLB flush is required after we exit from the for loop.
311*4882a593Smuzhiyun 		 */
312*4882a593Smuzhiyun 		kernel_physical_mapping_change(__pa(vaddr & pmask),
313*4882a593Smuzhiyun 					       __pa((vaddr_end & pmask) + psize),
314*4882a593Smuzhiyun 					       split_page_size_mask);
315*4882a593Smuzhiyun 	}
316*4882a593Smuzhiyun 
317*4882a593Smuzhiyun 	ret = 0;
318*4882a593Smuzhiyun 
319*4882a593Smuzhiyun out:
320*4882a593Smuzhiyun 	__flush_tlb_all();
321*4882a593Smuzhiyun 	return ret;
322*4882a593Smuzhiyun }
323*4882a593Smuzhiyun 
early_set_memory_decrypted(unsigned long vaddr,unsigned long size)324*4882a593Smuzhiyun int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
325*4882a593Smuzhiyun {
326*4882a593Smuzhiyun 	return early_set_memory_enc_dec(vaddr, size, false);
327*4882a593Smuzhiyun }
328*4882a593Smuzhiyun 
early_set_memory_encrypted(unsigned long vaddr,unsigned long size)329*4882a593Smuzhiyun int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
330*4882a593Smuzhiyun {
331*4882a593Smuzhiyun 	return early_set_memory_enc_dec(vaddr, size, true);
332*4882a593Smuzhiyun }
333*4882a593Smuzhiyun 
334*4882a593Smuzhiyun /*
335*4882a593Smuzhiyun  * SME and SEV are very similar but they are not the same, so there are
336*4882a593Smuzhiyun  * times that the kernel will need to distinguish between SME and SEV. The
337*4882a593Smuzhiyun  * sme_active() and sev_active() functions are used for this.  When a
338*4882a593Smuzhiyun  * distinction isn't needed, the mem_encrypt_active() function can be used.
339*4882a593Smuzhiyun  *
340*4882a593Smuzhiyun  * The trampoline code is a good example for this requirement.  Before
341*4882a593Smuzhiyun  * paging is activated, SME will access all memory as decrypted, but SEV
342*4882a593Smuzhiyun  * will access all memory as encrypted.  So, when APs are being brought
343*4882a593Smuzhiyun  * up under SME the trampoline area cannot be encrypted, whereas under SEV
344*4882a593Smuzhiyun  * the trampoline area must be encrypted.
345*4882a593Smuzhiyun  */
sme_active(void)346*4882a593Smuzhiyun bool sme_active(void)
347*4882a593Smuzhiyun {
348*4882a593Smuzhiyun 	return sme_me_mask && !sev_enabled;
349*4882a593Smuzhiyun }
350*4882a593Smuzhiyun 
sev_active(void)351*4882a593Smuzhiyun bool sev_active(void)
352*4882a593Smuzhiyun {
353*4882a593Smuzhiyun 	return sev_status & MSR_AMD64_SEV_ENABLED;
354*4882a593Smuzhiyun }
355*4882a593Smuzhiyun EXPORT_SYMBOL_GPL(sev_active);
356*4882a593Smuzhiyun 
357*4882a593Smuzhiyun /* Needs to be called from non-instrumentable code */
sev_es_active(void)358*4882a593Smuzhiyun bool noinstr sev_es_active(void)
359*4882a593Smuzhiyun {
360*4882a593Smuzhiyun 	return sev_status & MSR_AMD64_SEV_ES_ENABLED;
361*4882a593Smuzhiyun }
362*4882a593Smuzhiyun 
363*4882a593Smuzhiyun /* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
force_dma_unencrypted(struct device * dev)364*4882a593Smuzhiyun bool force_dma_unencrypted(struct device *dev)
365*4882a593Smuzhiyun {
366*4882a593Smuzhiyun 	/*
367*4882a593Smuzhiyun 	 * For SEV, all DMA must be to unencrypted addresses.
368*4882a593Smuzhiyun 	 */
369*4882a593Smuzhiyun 	if (sev_active())
370*4882a593Smuzhiyun 		return true;
371*4882a593Smuzhiyun 
372*4882a593Smuzhiyun 	/*
373*4882a593Smuzhiyun 	 * For SME, all DMA must be to unencrypted addresses if the
374*4882a593Smuzhiyun 	 * device does not support DMA to addresses that include the
375*4882a593Smuzhiyun 	 * encryption mask.
376*4882a593Smuzhiyun 	 */
377*4882a593Smuzhiyun 	if (sme_active()) {
378*4882a593Smuzhiyun 		u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
379*4882a593Smuzhiyun 		u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
380*4882a593Smuzhiyun 						dev->bus_dma_limit);
381*4882a593Smuzhiyun 
382*4882a593Smuzhiyun 		if (dma_dev_mask <= dma_enc_mask)
383*4882a593Smuzhiyun 			return true;
384*4882a593Smuzhiyun 	}
385*4882a593Smuzhiyun 
386*4882a593Smuzhiyun 	return false;
387*4882a593Smuzhiyun }
388*4882a593Smuzhiyun 
mem_encrypt_free_decrypted_mem(void)389*4882a593Smuzhiyun void __init mem_encrypt_free_decrypted_mem(void)
390*4882a593Smuzhiyun {
391*4882a593Smuzhiyun 	unsigned long vaddr, vaddr_end, npages;
392*4882a593Smuzhiyun 	int r;
393*4882a593Smuzhiyun 
394*4882a593Smuzhiyun 	vaddr = (unsigned long)__start_bss_decrypted_unused;
395*4882a593Smuzhiyun 	vaddr_end = (unsigned long)__end_bss_decrypted;
396*4882a593Smuzhiyun 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
397*4882a593Smuzhiyun 
398*4882a593Smuzhiyun 	/*
399*4882a593Smuzhiyun 	 * The unused memory range was mapped decrypted, change the encryption
400*4882a593Smuzhiyun 	 * attribute from decrypted to encrypted before freeing it.
401*4882a593Smuzhiyun 	 */
402*4882a593Smuzhiyun 	if (mem_encrypt_active()) {
403*4882a593Smuzhiyun 		r = set_memory_encrypted(vaddr, npages);
404*4882a593Smuzhiyun 		if (r) {
405*4882a593Smuzhiyun 			pr_warn("failed to free unused decrypted pages\n");
406*4882a593Smuzhiyun 			return;
407*4882a593Smuzhiyun 		}
408*4882a593Smuzhiyun 	}
409*4882a593Smuzhiyun 
410*4882a593Smuzhiyun 	free_init_pages("unused decrypted", vaddr, vaddr_end);
411*4882a593Smuzhiyun }
412*4882a593Smuzhiyun 
print_mem_encrypt_feature_info(void)413*4882a593Smuzhiyun static void print_mem_encrypt_feature_info(void)
414*4882a593Smuzhiyun {
415*4882a593Smuzhiyun 	pr_info("AMD Memory Encryption Features active:");
416*4882a593Smuzhiyun 
417*4882a593Smuzhiyun 	/* Secure Memory Encryption */
418*4882a593Smuzhiyun 	if (sme_active()) {
419*4882a593Smuzhiyun 		/*
420*4882a593Smuzhiyun 		 * SME is mutually exclusive with any of the SEV
421*4882a593Smuzhiyun 		 * features below.
422*4882a593Smuzhiyun 		 */
423*4882a593Smuzhiyun 		pr_cont(" SME\n");
424*4882a593Smuzhiyun 		return;
425*4882a593Smuzhiyun 	}
426*4882a593Smuzhiyun 
427*4882a593Smuzhiyun 	/* Secure Encrypted Virtualization */
428*4882a593Smuzhiyun 	if (sev_active())
429*4882a593Smuzhiyun 		pr_cont(" SEV");
430*4882a593Smuzhiyun 
431*4882a593Smuzhiyun 	/* Encrypted Register State */
432*4882a593Smuzhiyun 	if (sev_es_active())
433*4882a593Smuzhiyun 		pr_cont(" SEV-ES");
434*4882a593Smuzhiyun 
435*4882a593Smuzhiyun 	pr_cont("\n");
436*4882a593Smuzhiyun }
437*4882a593Smuzhiyun 
438*4882a593Smuzhiyun /* Architecture __weak replacement functions */
mem_encrypt_init(void)439*4882a593Smuzhiyun void __init mem_encrypt_init(void)
440*4882a593Smuzhiyun {
441*4882a593Smuzhiyun 	if (!sme_me_mask)
442*4882a593Smuzhiyun 		return;
443*4882a593Smuzhiyun 
444*4882a593Smuzhiyun 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
445*4882a593Smuzhiyun 	swiotlb_update_mem_attributes();
446*4882a593Smuzhiyun 
447*4882a593Smuzhiyun 	/*
448*4882a593Smuzhiyun 	 * With SEV, we need to unroll the rep string I/O instructions.
449*4882a593Smuzhiyun 	 */
450*4882a593Smuzhiyun 	if (sev_active())
451*4882a593Smuzhiyun 		static_branch_enable(&sev_enable_key);
452*4882a593Smuzhiyun 
453*4882a593Smuzhiyun 	print_mem_encrypt_feature_info();
454*4882a593Smuzhiyun }
455*4882a593Smuzhiyun 
456