1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun #ifndef __KVM_X86_MMU_H
3*4882a593Smuzhiyun #define __KVM_X86_MMU_H
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun #include <linux/kvm_host.h>
6*4882a593Smuzhiyun #include "kvm_cache_regs.h"
7*4882a593Smuzhiyun #include "cpuid.h"
8*4882a593Smuzhiyun
9*4882a593Smuzhiyun #define PT64_PT_BITS 9
10*4882a593Smuzhiyun #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
11*4882a593Smuzhiyun #define PT32_PT_BITS 10
12*4882a593Smuzhiyun #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
13*4882a593Smuzhiyun
14*4882a593Smuzhiyun #define PT_WRITABLE_SHIFT 1
15*4882a593Smuzhiyun #define PT_USER_SHIFT 2
16*4882a593Smuzhiyun
17*4882a593Smuzhiyun #define PT_PRESENT_MASK (1ULL << 0)
18*4882a593Smuzhiyun #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
19*4882a593Smuzhiyun #define PT_USER_MASK (1ULL << PT_USER_SHIFT)
20*4882a593Smuzhiyun #define PT_PWT_MASK (1ULL << 3)
21*4882a593Smuzhiyun #define PT_PCD_MASK (1ULL << 4)
22*4882a593Smuzhiyun #define PT_ACCESSED_SHIFT 5
23*4882a593Smuzhiyun #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
24*4882a593Smuzhiyun #define PT_DIRTY_SHIFT 6
25*4882a593Smuzhiyun #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
26*4882a593Smuzhiyun #define PT_PAGE_SIZE_SHIFT 7
27*4882a593Smuzhiyun #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
28*4882a593Smuzhiyun #define PT_PAT_MASK (1ULL << 7)
29*4882a593Smuzhiyun #define PT_GLOBAL_MASK (1ULL << 8)
30*4882a593Smuzhiyun #define PT64_NX_SHIFT 63
31*4882a593Smuzhiyun #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
32*4882a593Smuzhiyun
33*4882a593Smuzhiyun #define PT_PAT_SHIFT 7
34*4882a593Smuzhiyun #define PT_DIR_PAT_SHIFT 12
35*4882a593Smuzhiyun #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
36*4882a593Smuzhiyun
37*4882a593Smuzhiyun #define PT32_DIR_PSE36_SIZE 4
38*4882a593Smuzhiyun #define PT32_DIR_PSE36_SHIFT 13
39*4882a593Smuzhiyun #define PT32_DIR_PSE36_MASK \
40*4882a593Smuzhiyun (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
41*4882a593Smuzhiyun
42*4882a593Smuzhiyun #define PT64_ROOT_5LEVEL 5
43*4882a593Smuzhiyun #define PT64_ROOT_4LEVEL 4
44*4882a593Smuzhiyun #define PT32_ROOT_LEVEL 2
45*4882a593Smuzhiyun #define PT32E_ROOT_LEVEL 3
46*4882a593Smuzhiyun
rsvd_bits(int s,int e)47*4882a593Smuzhiyun static inline u64 rsvd_bits(int s, int e)
48*4882a593Smuzhiyun {
49*4882a593Smuzhiyun if (e < s)
50*4882a593Smuzhiyun return 0;
51*4882a593Smuzhiyun
52*4882a593Smuzhiyun return ((2ULL << (e - s)) - 1) << s;
53*4882a593Smuzhiyun }
54*4882a593Smuzhiyun
55*4882a593Smuzhiyun void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask);
56*4882a593Smuzhiyun
57*4882a593Smuzhiyun void
58*4882a593Smuzhiyun reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
59*4882a593Smuzhiyun
60*4882a593Smuzhiyun void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
61*4882a593Smuzhiyun void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
62*4882a593Smuzhiyun gpa_t nested_cr3);
63*4882a593Smuzhiyun void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
64*4882a593Smuzhiyun bool accessed_dirty, gpa_t new_eptp);
65*4882a593Smuzhiyun bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
66*4882a593Smuzhiyun int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
67*4882a593Smuzhiyun u64 fault_address, char *insn, int insn_len);
68*4882a593Smuzhiyun
kvm_mmu_reload(struct kvm_vcpu * vcpu)69*4882a593Smuzhiyun static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
70*4882a593Smuzhiyun {
71*4882a593Smuzhiyun if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
72*4882a593Smuzhiyun return 0;
73*4882a593Smuzhiyun
74*4882a593Smuzhiyun return kvm_mmu_load(vcpu);
75*4882a593Smuzhiyun }
76*4882a593Smuzhiyun
kvm_get_pcid(struct kvm_vcpu * vcpu,gpa_t cr3)77*4882a593Smuzhiyun static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
78*4882a593Smuzhiyun {
79*4882a593Smuzhiyun BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
80*4882a593Smuzhiyun
81*4882a593Smuzhiyun return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
82*4882a593Smuzhiyun ? cr3 & X86_CR3_PCID_MASK
83*4882a593Smuzhiyun : 0;
84*4882a593Smuzhiyun }
85*4882a593Smuzhiyun
kvm_get_active_pcid(struct kvm_vcpu * vcpu)86*4882a593Smuzhiyun static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
87*4882a593Smuzhiyun {
88*4882a593Smuzhiyun return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
89*4882a593Smuzhiyun }
90*4882a593Smuzhiyun
kvm_mmu_load_pgd(struct kvm_vcpu * vcpu)91*4882a593Smuzhiyun static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
92*4882a593Smuzhiyun {
93*4882a593Smuzhiyun u64 root_hpa = vcpu->arch.mmu->root_hpa;
94*4882a593Smuzhiyun
95*4882a593Smuzhiyun if (!VALID_PAGE(root_hpa))
96*4882a593Smuzhiyun return;
97*4882a593Smuzhiyun
98*4882a593Smuzhiyun kvm_x86_ops.load_mmu_pgd(vcpu, root_hpa | kvm_get_active_pcid(vcpu),
99*4882a593Smuzhiyun vcpu->arch.mmu->shadow_root_level);
100*4882a593Smuzhiyun }
101*4882a593Smuzhiyun
102*4882a593Smuzhiyun int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
103*4882a593Smuzhiyun bool prefault);
104*4882a593Smuzhiyun
kvm_mmu_do_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u32 err,bool prefault)105*4882a593Smuzhiyun static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
106*4882a593Smuzhiyun u32 err, bool prefault)
107*4882a593Smuzhiyun {
108*4882a593Smuzhiyun #ifdef CONFIG_RETPOLINE
109*4882a593Smuzhiyun if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
110*4882a593Smuzhiyun return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
111*4882a593Smuzhiyun #endif
112*4882a593Smuzhiyun return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
113*4882a593Smuzhiyun }
114*4882a593Smuzhiyun
115*4882a593Smuzhiyun /*
116*4882a593Smuzhiyun * Currently, we have two sorts of write-protection, a) the first one
117*4882a593Smuzhiyun * write-protects guest page to sync the guest modification, b) another one is
118*4882a593Smuzhiyun * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
119*4882a593Smuzhiyun * between these two sorts are:
120*4882a593Smuzhiyun * 1) the first case clears SPTE_MMU_WRITEABLE bit.
121*4882a593Smuzhiyun * 2) the first case requires flushing tlb immediately avoiding corrupting
122*4882a593Smuzhiyun * shadow page table between all vcpus so it should be in the protection of
123*4882a593Smuzhiyun * mmu-lock. And the another case does not need to flush tlb until returning
124*4882a593Smuzhiyun * the dirty bitmap to userspace since it only write-protects the page
125*4882a593Smuzhiyun * logged in the bitmap, that means the page in the dirty bitmap is not
126*4882a593Smuzhiyun * missed, so it can flush tlb out of mmu-lock.
127*4882a593Smuzhiyun *
128*4882a593Smuzhiyun * So, there is the problem: the first case can meet the corrupted tlb caused
129*4882a593Smuzhiyun * by another case which write-protects pages but without flush tlb
130*4882a593Smuzhiyun * immediately. In order to making the first case be aware this problem we let
131*4882a593Smuzhiyun * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
132*4882a593Smuzhiyun * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
133*4882a593Smuzhiyun *
134*4882a593Smuzhiyun * Anyway, whenever a spte is updated (only permission and status bits are
135*4882a593Smuzhiyun * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
136*4882a593Smuzhiyun * readonly, if that happens, we need to flush tlb. Fortunately,
137*4882a593Smuzhiyun * mmu_spte_update() has already handled it perfectly.
138*4882a593Smuzhiyun *
139*4882a593Smuzhiyun * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
140*4882a593Smuzhiyun * - if we want to see if it has writable tlb entry or if the spte can be
141*4882a593Smuzhiyun * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
142*4882a593Smuzhiyun * case, otherwise
143*4882a593Smuzhiyun * - if we fix page fault on the spte or do write-protection by dirty logging,
144*4882a593Smuzhiyun * check PT_WRITABLE_MASK.
145*4882a593Smuzhiyun *
146*4882a593Smuzhiyun * TODO: introduce APIs to split these two cases.
147*4882a593Smuzhiyun */
is_writable_pte(unsigned long pte)148*4882a593Smuzhiyun static inline int is_writable_pte(unsigned long pte)
149*4882a593Smuzhiyun {
150*4882a593Smuzhiyun return pte & PT_WRITABLE_MASK;
151*4882a593Smuzhiyun }
152*4882a593Smuzhiyun
is_write_protection(struct kvm_vcpu * vcpu)153*4882a593Smuzhiyun static inline bool is_write_protection(struct kvm_vcpu *vcpu)
154*4882a593Smuzhiyun {
155*4882a593Smuzhiyun return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
156*4882a593Smuzhiyun }
157*4882a593Smuzhiyun
158*4882a593Smuzhiyun /*
159*4882a593Smuzhiyun * Check if a given access (described through the I/D, W/R and U/S bits of a
160*4882a593Smuzhiyun * page fault error code pfec) causes a permission fault with the given PTE
161*4882a593Smuzhiyun * access rights (in ACC_* format).
162*4882a593Smuzhiyun *
163*4882a593Smuzhiyun * Return zero if the access does not fault; return the page fault error code
164*4882a593Smuzhiyun * if the access faults.
165*4882a593Smuzhiyun */
permission_fault(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned pte_access,unsigned pte_pkey,unsigned pfec)166*4882a593Smuzhiyun static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
167*4882a593Smuzhiyun unsigned pte_access, unsigned pte_pkey,
168*4882a593Smuzhiyun unsigned pfec)
169*4882a593Smuzhiyun {
170*4882a593Smuzhiyun int cpl = kvm_x86_ops.get_cpl(vcpu);
171*4882a593Smuzhiyun unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
172*4882a593Smuzhiyun
173*4882a593Smuzhiyun /*
174*4882a593Smuzhiyun * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
175*4882a593Smuzhiyun *
176*4882a593Smuzhiyun * If CPL = 3, SMAP applies to all supervisor-mode data accesses
177*4882a593Smuzhiyun * (these are implicit supervisor accesses) regardless of the value
178*4882a593Smuzhiyun * of EFLAGS.AC.
179*4882a593Smuzhiyun *
180*4882a593Smuzhiyun * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
181*4882a593Smuzhiyun * the result in X86_EFLAGS_AC. We then insert it in place of
182*4882a593Smuzhiyun * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
183*4882a593Smuzhiyun * but it will be one in index if SMAP checks are being overridden.
184*4882a593Smuzhiyun * It is important to keep this branchless.
185*4882a593Smuzhiyun */
186*4882a593Smuzhiyun unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
187*4882a593Smuzhiyun int index = (pfec >> 1) +
188*4882a593Smuzhiyun (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
189*4882a593Smuzhiyun bool fault = (mmu->permissions[index] >> pte_access) & 1;
190*4882a593Smuzhiyun u32 errcode = PFERR_PRESENT_MASK;
191*4882a593Smuzhiyun
192*4882a593Smuzhiyun WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
193*4882a593Smuzhiyun if (unlikely(mmu->pkru_mask)) {
194*4882a593Smuzhiyun u32 pkru_bits, offset;
195*4882a593Smuzhiyun
196*4882a593Smuzhiyun /*
197*4882a593Smuzhiyun * PKRU defines 32 bits, there are 16 domains and 2
198*4882a593Smuzhiyun * attribute bits per domain in pkru. pte_pkey is the
199*4882a593Smuzhiyun * index of the protection domain, so pte_pkey * 2 is
200*4882a593Smuzhiyun * is the index of the first bit for the domain.
201*4882a593Smuzhiyun */
202*4882a593Smuzhiyun pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
203*4882a593Smuzhiyun
204*4882a593Smuzhiyun /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
205*4882a593Smuzhiyun offset = (pfec & ~1) +
206*4882a593Smuzhiyun ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
207*4882a593Smuzhiyun
208*4882a593Smuzhiyun pkru_bits &= mmu->pkru_mask >> offset;
209*4882a593Smuzhiyun errcode |= -pkru_bits & PFERR_PK_MASK;
210*4882a593Smuzhiyun fault |= (pkru_bits != 0);
211*4882a593Smuzhiyun }
212*4882a593Smuzhiyun
213*4882a593Smuzhiyun return -(u32)fault & errcode;
214*4882a593Smuzhiyun }
215*4882a593Smuzhiyun
216*4882a593Smuzhiyun void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
217*4882a593Smuzhiyun
218*4882a593Smuzhiyun int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
219*4882a593Smuzhiyun
220*4882a593Smuzhiyun int kvm_mmu_post_init_vm(struct kvm *kvm);
221*4882a593Smuzhiyun void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
222*4882a593Smuzhiyun
223*4882a593Smuzhiyun #endif
224