xref: /OK3568_Linux_fs/kernel/arch/x86/include/asm/user_64.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun #ifndef _ASM_X86_USER_64_H
3*4882a593Smuzhiyun #define _ASM_X86_USER_64_H
4*4882a593Smuzhiyun 
5*4882a593Smuzhiyun #include <asm/types.h>
6*4882a593Smuzhiyun #include <asm/page.h>
7*4882a593Smuzhiyun /* Core file format: The core file is written in such a way that gdb
8*4882a593Smuzhiyun    can understand it and provide useful information to the user.
9*4882a593Smuzhiyun    There are quite a number of obstacles to being able to view the
10*4882a593Smuzhiyun    contents of the floating point registers, and until these are
11*4882a593Smuzhiyun    solved you will not be able to view the contents of them.
12*4882a593Smuzhiyun    Actually, you can read in the core file and look at the contents of
13*4882a593Smuzhiyun    the user struct to find out what the floating point registers
14*4882a593Smuzhiyun    contain.
15*4882a593Smuzhiyun 
16*4882a593Smuzhiyun    The actual file contents are as follows:
17*4882a593Smuzhiyun    UPAGE: 1 page consisting of a user struct that tells gdb what is present
18*4882a593Smuzhiyun    in the file.  Directly after this is a copy of the task_struct, which
19*4882a593Smuzhiyun    is currently not used by gdb, but it may come in useful at some point.
20*4882a593Smuzhiyun    All of the registers are stored as part of the upage.  The upage should
21*4882a593Smuzhiyun    always be only one page.
22*4882a593Smuzhiyun    DATA: The data area is stored.  We use current->end_text to
23*4882a593Smuzhiyun    current->brk to pick up all of the user variables, plus any memory
24*4882a593Smuzhiyun    that may have been malloced.  No attempt is made to determine if a page
25*4882a593Smuzhiyun    is demand-zero or if a page is totally unused, we just cover the entire
26*4882a593Smuzhiyun    range.  All of the addresses are rounded in such a way that an integral
27*4882a593Smuzhiyun    number of pages is written.
28*4882a593Smuzhiyun    STACK: We need the stack information in order to get a meaningful
29*4882a593Smuzhiyun    backtrace.  We need to write the data from (esp) to
30*4882a593Smuzhiyun    current->start_stack, so we round each of these off in order to be able
31*4882a593Smuzhiyun    to write an integer number of pages.
32*4882a593Smuzhiyun    The minimum core file size is 3 pages, or 12288 bytes.  */
33*4882a593Smuzhiyun 
34*4882a593Smuzhiyun /*
35*4882a593Smuzhiyun  * Pentium III FXSR, SSE support
36*4882a593Smuzhiyun  *	Gareth Hughes <gareth@valinux.com>, May 2000
37*4882a593Smuzhiyun  *
38*4882a593Smuzhiyun  * Provide support for the GDB 5.0+ PTRACE_{GET|SET}FPXREGS requests for
39*4882a593Smuzhiyun  * interacting with the FXSR-format floating point environment.  Floating
40*4882a593Smuzhiyun  * point data can be accessed in the regular format in the usual manner,
41*4882a593Smuzhiyun  * and both the standard and SIMD floating point data can be accessed via
42*4882a593Smuzhiyun  * the new ptrace requests.  In either case, changes to the FPU environment
43*4882a593Smuzhiyun  * will be reflected in the task's state as expected.
44*4882a593Smuzhiyun  *
45*4882a593Smuzhiyun  * x86-64 support by Andi Kleen.
46*4882a593Smuzhiyun  */
47*4882a593Smuzhiyun 
48*4882a593Smuzhiyun /* This matches the 64bit FXSAVE format as defined by AMD. It is the same
49*4882a593Smuzhiyun    as the 32bit format defined by Intel, except that the selector:offset pairs
50*4882a593Smuzhiyun    for data and eip are replaced with flat 64bit pointers. */
51*4882a593Smuzhiyun struct user_i387_struct {
52*4882a593Smuzhiyun 	unsigned short	cwd;
53*4882a593Smuzhiyun 	unsigned short	swd;
54*4882a593Smuzhiyun 	unsigned short	twd;	/* Note this is not the same as
55*4882a593Smuzhiyun 				   the 32bit/x87/FSAVE twd */
56*4882a593Smuzhiyun 	unsigned short	fop;
57*4882a593Smuzhiyun 	__u64	rip;
58*4882a593Smuzhiyun 	__u64	rdp;
59*4882a593Smuzhiyun 	__u32	mxcsr;
60*4882a593Smuzhiyun 	__u32	mxcsr_mask;
61*4882a593Smuzhiyun 	__u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
62*4882a593Smuzhiyun 	__u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
63*4882a593Smuzhiyun 	__u32	padding[24];
64*4882a593Smuzhiyun };
65*4882a593Smuzhiyun 
66*4882a593Smuzhiyun /*
67*4882a593Smuzhiyun  * Segment register layout in coredumps.
68*4882a593Smuzhiyun  */
69*4882a593Smuzhiyun struct user_regs_struct {
70*4882a593Smuzhiyun 	unsigned long	r15;
71*4882a593Smuzhiyun 	unsigned long	r14;
72*4882a593Smuzhiyun 	unsigned long	r13;
73*4882a593Smuzhiyun 	unsigned long	r12;
74*4882a593Smuzhiyun 	unsigned long	bp;
75*4882a593Smuzhiyun 	unsigned long	bx;
76*4882a593Smuzhiyun 	unsigned long	r11;
77*4882a593Smuzhiyun 	unsigned long	r10;
78*4882a593Smuzhiyun 	unsigned long	r9;
79*4882a593Smuzhiyun 	unsigned long	r8;
80*4882a593Smuzhiyun 	unsigned long	ax;
81*4882a593Smuzhiyun 	unsigned long	cx;
82*4882a593Smuzhiyun 	unsigned long	dx;
83*4882a593Smuzhiyun 	unsigned long	si;
84*4882a593Smuzhiyun 	unsigned long	di;
85*4882a593Smuzhiyun 	unsigned long	orig_ax;
86*4882a593Smuzhiyun 	unsigned long	ip;
87*4882a593Smuzhiyun 	unsigned long	cs;
88*4882a593Smuzhiyun 	unsigned long	flags;
89*4882a593Smuzhiyun 	unsigned long	sp;
90*4882a593Smuzhiyun 	unsigned long	ss;
91*4882a593Smuzhiyun 	unsigned long	fs_base;
92*4882a593Smuzhiyun 	unsigned long	gs_base;
93*4882a593Smuzhiyun 	unsigned long	ds;
94*4882a593Smuzhiyun 	unsigned long	es;
95*4882a593Smuzhiyun 	unsigned long	fs;
96*4882a593Smuzhiyun 	unsigned long	gs;
97*4882a593Smuzhiyun };
98*4882a593Smuzhiyun 
99*4882a593Smuzhiyun /* When the kernel dumps core, it starts by dumping the user struct -
100*4882a593Smuzhiyun    this will be used by gdb to figure out where the data and stack segments
101*4882a593Smuzhiyun    are within the file, and what virtual addresses to use. */
102*4882a593Smuzhiyun 
103*4882a593Smuzhiyun struct user {
104*4882a593Smuzhiyun /* We start with the registers, to mimic the way that "memory" is returned
105*4882a593Smuzhiyun    from the ptrace(3,...) function.  */
106*4882a593Smuzhiyun   struct user_regs_struct regs;	/* Where the registers are actually stored */
107*4882a593Smuzhiyun /* ptrace does not yet supply these.  Someday.... */
108*4882a593Smuzhiyun   int u_fpvalid;		/* True if math co-processor being used. */
109*4882a593Smuzhiyun 				/* for this mess. Not yet used. */
110*4882a593Smuzhiyun   int pad0;
111*4882a593Smuzhiyun   struct user_i387_struct i387;	/* Math Co-processor registers. */
112*4882a593Smuzhiyun /* The rest of this junk is to help gdb figure out what goes where */
113*4882a593Smuzhiyun   unsigned long int u_tsize;	/* Text segment size (pages). */
114*4882a593Smuzhiyun   unsigned long int u_dsize;	/* Data segment size (pages). */
115*4882a593Smuzhiyun   unsigned long int u_ssize;	/* Stack segment size (pages). */
116*4882a593Smuzhiyun   unsigned long start_code;     /* Starting virtual address of text. */
117*4882a593Smuzhiyun   unsigned long start_stack;	/* Starting virtual address of stack area.
118*4882a593Smuzhiyun 				   This is actually the bottom of the stack,
119*4882a593Smuzhiyun 				   the top of the stack is always found in the
120*4882a593Smuzhiyun 				   esp register.  */
121*4882a593Smuzhiyun   long int signal;		/* Signal that caused the core dump. */
122*4882a593Smuzhiyun   int reserved;			/* No longer used */
123*4882a593Smuzhiyun   int pad1;
124*4882a593Smuzhiyun   unsigned long u_ar0;		/* Used by gdb to help find the values for */
125*4882a593Smuzhiyun 				/* the registers. */
126*4882a593Smuzhiyun   struct user_i387_struct *u_fpstate;	/* Math Co-processor pointer. */
127*4882a593Smuzhiyun   unsigned long magic;		/* To uniquely identify a core file */
128*4882a593Smuzhiyun   char u_comm[32];		/* User command that was responsible */
129*4882a593Smuzhiyun   unsigned long u_debugreg[8];
130*4882a593Smuzhiyun   unsigned long error_code; /* CPU error code or 0 */
131*4882a593Smuzhiyun   unsigned long fault_address; /* CR3 or 0 */
132*4882a593Smuzhiyun };
133*4882a593Smuzhiyun #define NBPG PAGE_SIZE
134*4882a593Smuzhiyun #define UPAGES 1
135*4882a593Smuzhiyun #define HOST_TEXT_START_ADDR (u.start_code)
136*4882a593Smuzhiyun #define HOST_STACK_END_ADDR (u.start_stack + u.u_ssize * NBPG)
137*4882a593Smuzhiyun 
138*4882a593Smuzhiyun #endif /* _ASM_X86_USER_64_H */
139