1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0 */ 2*4882a593Smuzhiyun #ifndef _SPARC64_TSB_H 3*4882a593Smuzhiyun #define _SPARC64_TSB_H 4*4882a593Smuzhiyun 5*4882a593Smuzhiyun /* The sparc64 TSB is similar to the powerpc hashtables. It's a 6*4882a593Smuzhiyun * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes 7*4882a593Smuzhiyun * pointers into this table for 8K and 64K page sizes, and also a 8*4882a593Smuzhiyun * comparison TAG based upon the virtual address and context which 9*4882a593Smuzhiyun * faults. 10*4882a593Smuzhiyun * 11*4882a593Smuzhiyun * TLB miss trap handler software does the actual lookup via something 12*4882a593Smuzhiyun * of the form: 13*4882a593Smuzhiyun * 14*4882a593Smuzhiyun * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1 15*4882a593Smuzhiyun * ldxa [%g0] ASI_{D,I}MMU, %g6 16*4882a593Smuzhiyun * sllx %g6, 22, %g6 17*4882a593Smuzhiyun * srlx %g6, 22, %g6 18*4882a593Smuzhiyun * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4 19*4882a593Smuzhiyun * cmp %g4, %g6 20*4882a593Smuzhiyun * bne,pn %xcc, tsb_miss_{d,i}tlb 21*4882a593Smuzhiyun * mov FAULT_CODE_{D,I}TLB, %g3 22*4882a593Smuzhiyun * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN 23*4882a593Smuzhiyun * retry 24*4882a593Smuzhiyun * 25*4882a593Smuzhiyun * 26*4882a593Smuzhiyun * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte 27*4882a593Smuzhiyun * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu 28*4882a593Smuzhiyun * register which is: 29*4882a593Smuzhiyun * 30*4882a593Smuzhiyun * ------------------------------------------------- 31*4882a593Smuzhiyun * | - | CONTEXT | - | VADDR bits 63:22 | 32*4882a593Smuzhiyun * ------------------------------------------------- 33*4882a593Smuzhiyun * 63 61 60 48 47 42 41 0 34*4882a593Smuzhiyun * 35*4882a593Smuzhiyun * But actually, since we use per-mm TSB's, we zero out the CONTEXT 36*4882a593Smuzhiyun * field. 37*4882a593Smuzhiyun * 38*4882a593Smuzhiyun * Like the powerpc hashtables we need to use locking in order to 39*4882a593Smuzhiyun * synchronize while we update the entries. PTE updates need locking 40*4882a593Smuzhiyun * as well. 41*4882a593Smuzhiyun * 42*4882a593Smuzhiyun * We need to carefully choose a lock bits for the TSB entry. We 43*4882a593Smuzhiyun * choose to use bit 47 in the tag. Also, since we never map anything 44*4882a593Smuzhiyun * at page zero in context zero, we use zero as an invalid tag entry. 45*4882a593Smuzhiyun * When the lock bit is set, this forces a tag comparison failure. 46*4882a593Smuzhiyun */ 47*4882a593Smuzhiyun 48*4882a593Smuzhiyun #define TSB_TAG_LOCK_BIT 47 49*4882a593Smuzhiyun #define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32)) 50*4882a593Smuzhiyun 51*4882a593Smuzhiyun #define TSB_TAG_INVALID_BIT 46 52*4882a593Smuzhiyun #define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32)) 53*4882a593Smuzhiyun 54*4882a593Smuzhiyun /* Some cpus support physical address quad loads. We want to use 55*4882a593Smuzhiyun * those if possible so we don't need to hard-lock the TSB mapping 56*4882a593Smuzhiyun * into the TLB. We encode some instruction patching in order to 57*4882a593Smuzhiyun * support this. 58*4882a593Smuzhiyun * 59*4882a593Smuzhiyun * The kernel TSB is locked into the TLB by virtue of being in the 60*4882a593Smuzhiyun * kernel image, so we don't play these games for swapper_tsb access. 61*4882a593Smuzhiyun */ 62*4882a593Smuzhiyun #ifndef __ASSEMBLY__ 63*4882a593Smuzhiyun struct tsb_ldquad_phys_patch_entry { 64*4882a593Smuzhiyun unsigned int addr; 65*4882a593Smuzhiyun unsigned int sun4u_insn; 66*4882a593Smuzhiyun unsigned int sun4v_insn; 67*4882a593Smuzhiyun }; 68*4882a593Smuzhiyun extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch, 69*4882a593Smuzhiyun __tsb_ldquad_phys_patch_end; 70*4882a593Smuzhiyun 71*4882a593Smuzhiyun struct tsb_phys_patch_entry { 72*4882a593Smuzhiyun unsigned int addr; 73*4882a593Smuzhiyun unsigned int insn; 74*4882a593Smuzhiyun }; 75*4882a593Smuzhiyun extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end; 76*4882a593Smuzhiyun #endif 77*4882a593Smuzhiyun #define TSB_LOAD_QUAD(TSB, REG) \ 78*4882a593Smuzhiyun 661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \ 79*4882a593Smuzhiyun .section .tsb_ldquad_phys_patch, "ax"; \ 80*4882a593Smuzhiyun .word 661b; \ 81*4882a593Smuzhiyun ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \ 82*4882a593Smuzhiyun ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \ 83*4882a593Smuzhiyun .previous 84*4882a593Smuzhiyun 85*4882a593Smuzhiyun #define TSB_LOAD_TAG_HIGH(TSB, REG) \ 86*4882a593Smuzhiyun 661: lduwa [TSB] ASI_N, REG; \ 87*4882a593Smuzhiyun .section .tsb_phys_patch, "ax"; \ 88*4882a593Smuzhiyun .word 661b; \ 89*4882a593Smuzhiyun lduwa [TSB] ASI_PHYS_USE_EC, REG; \ 90*4882a593Smuzhiyun .previous 91*4882a593Smuzhiyun 92*4882a593Smuzhiyun #define TSB_LOAD_TAG(TSB, REG) \ 93*4882a593Smuzhiyun 661: ldxa [TSB] ASI_N, REG; \ 94*4882a593Smuzhiyun .section .tsb_phys_patch, "ax"; \ 95*4882a593Smuzhiyun .word 661b; \ 96*4882a593Smuzhiyun ldxa [TSB] ASI_PHYS_USE_EC, REG; \ 97*4882a593Smuzhiyun .previous 98*4882a593Smuzhiyun 99*4882a593Smuzhiyun #define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \ 100*4882a593Smuzhiyun 661: casa [TSB] ASI_N, REG1, REG2; \ 101*4882a593Smuzhiyun .section .tsb_phys_patch, "ax"; \ 102*4882a593Smuzhiyun .word 661b; \ 103*4882a593Smuzhiyun casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ 104*4882a593Smuzhiyun .previous 105*4882a593Smuzhiyun 106*4882a593Smuzhiyun #define TSB_CAS_TAG(TSB, REG1, REG2) \ 107*4882a593Smuzhiyun 661: casxa [TSB] ASI_N, REG1, REG2; \ 108*4882a593Smuzhiyun .section .tsb_phys_patch, "ax"; \ 109*4882a593Smuzhiyun .word 661b; \ 110*4882a593Smuzhiyun casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ 111*4882a593Smuzhiyun .previous 112*4882a593Smuzhiyun 113*4882a593Smuzhiyun #define TSB_STORE(ADDR, VAL) \ 114*4882a593Smuzhiyun 661: stxa VAL, [ADDR] ASI_N; \ 115*4882a593Smuzhiyun .section .tsb_phys_patch, "ax"; \ 116*4882a593Smuzhiyun .word 661b; \ 117*4882a593Smuzhiyun stxa VAL, [ADDR] ASI_PHYS_USE_EC; \ 118*4882a593Smuzhiyun .previous 119*4882a593Smuzhiyun 120*4882a593Smuzhiyun #define TSB_LOCK_TAG(TSB, REG1, REG2) \ 121*4882a593Smuzhiyun 99: TSB_LOAD_TAG_HIGH(TSB, REG1); \ 122*4882a593Smuzhiyun sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\ 123*4882a593Smuzhiyun andcc REG1, REG2, %g0; \ 124*4882a593Smuzhiyun bne,pn %icc, 99b; \ 125*4882a593Smuzhiyun nop; \ 126*4882a593Smuzhiyun TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \ 127*4882a593Smuzhiyun cmp REG1, REG2; \ 128*4882a593Smuzhiyun bne,pn %icc, 99b; \ 129*4882a593Smuzhiyun nop; \ 130*4882a593Smuzhiyun 131*4882a593Smuzhiyun #define TSB_WRITE(TSB, TTE, TAG) \ 132*4882a593Smuzhiyun add TSB, 0x8, TSB; \ 133*4882a593Smuzhiyun TSB_STORE(TSB, TTE); \ 134*4882a593Smuzhiyun sub TSB, 0x8, TSB; \ 135*4882a593Smuzhiyun TSB_STORE(TSB, TAG); 136*4882a593Smuzhiyun 137*4882a593Smuzhiyun /* Do a kernel page table walk. Leaves valid PTE value in 138*4882a593Smuzhiyun * REG1. Jumps to FAIL_LABEL on early page table walk 139*4882a593Smuzhiyun * termination. VADDR will not be clobbered, but REG2 will. 140*4882a593Smuzhiyun * 141*4882a593Smuzhiyun * There are two masks we must apply to propagate bits from 142*4882a593Smuzhiyun * the virtual address into the PTE physical address field 143*4882a593Smuzhiyun * when dealing with huge pages. This is because the page 144*4882a593Smuzhiyun * table boundaries do not match the huge page size(s) the 145*4882a593Smuzhiyun * hardware supports. 146*4882a593Smuzhiyun * 147*4882a593Smuzhiyun * In these cases we propagate the bits that are below the 148*4882a593Smuzhiyun * page table level where we saw the huge page mapping, but 149*4882a593Smuzhiyun * are still within the relevant physical bits for the huge 150*4882a593Smuzhiyun * page size in question. So for PMD mappings (which fall on 151*4882a593Smuzhiyun * bit 23, for 8MB per PMD) we must propagate bit 22 for a 152*4882a593Smuzhiyun * 4MB huge page. For huge PUDs (which fall on bit 33, for 153*4882a593Smuzhiyun * 8GB per PUD), we have to accommodate 256MB and 2GB huge 154*4882a593Smuzhiyun * pages. So for those we propagate bits 32 to 28. 155*4882a593Smuzhiyun */ 156*4882a593Smuzhiyun #define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \ 157*4882a593Smuzhiyun sethi %hi(swapper_pg_dir), REG1; \ 158*4882a593Smuzhiyun or REG1, %lo(swapper_pg_dir), REG1; \ 159*4882a593Smuzhiyun sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ 160*4882a593Smuzhiyun srlx REG2, 64 - PAGE_SHIFT, REG2; \ 161*4882a593Smuzhiyun andn REG2, 0x7, REG2; \ 162*4882a593Smuzhiyun ldx [REG1 + REG2], REG1; \ 163*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 164*4882a593Smuzhiyun sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \ 165*4882a593Smuzhiyun srlx REG2, 64 - PAGE_SHIFT, REG2; \ 166*4882a593Smuzhiyun andn REG2, 0x7, REG2; \ 167*4882a593Smuzhiyun ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 168*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 169*4882a593Smuzhiyun sethi %uhi(_PAGE_PUD_HUGE), REG2; \ 170*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 171*4882a593Smuzhiyun sllx REG2, 32, REG2; \ 172*4882a593Smuzhiyun andcc REG1, REG2, %g0; \ 173*4882a593Smuzhiyun sethi %hi(0xf8000000), REG2; \ 174*4882a593Smuzhiyun bne,pt %xcc, 697f; \ 175*4882a593Smuzhiyun sllx REG2, 1, REG2; \ 176*4882a593Smuzhiyun sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ 177*4882a593Smuzhiyun srlx REG2, 64 - PAGE_SHIFT, REG2; \ 178*4882a593Smuzhiyun andn REG2, 0x7, REG2; \ 179*4882a593Smuzhiyun ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 180*4882a593Smuzhiyun sethi %uhi(_PAGE_PMD_HUGE), REG2; \ 181*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 182*4882a593Smuzhiyun sllx REG2, 32, REG2; \ 183*4882a593Smuzhiyun andcc REG1, REG2, %g0; \ 184*4882a593Smuzhiyun be,pn %xcc, 698f; \ 185*4882a593Smuzhiyun sethi %hi(0x400000), REG2; \ 186*4882a593Smuzhiyun 697: brgez,pn REG1, FAIL_LABEL; \ 187*4882a593Smuzhiyun andn REG1, REG2, REG1; \ 188*4882a593Smuzhiyun and VADDR, REG2, REG2; \ 189*4882a593Smuzhiyun ba,pt %xcc, 699f; \ 190*4882a593Smuzhiyun or REG1, REG2, REG1; \ 191*4882a593Smuzhiyun 698: sllx VADDR, 64 - PMD_SHIFT, REG2; \ 192*4882a593Smuzhiyun srlx REG2, 64 - PAGE_SHIFT, REG2; \ 193*4882a593Smuzhiyun andn REG2, 0x7, REG2; \ 194*4882a593Smuzhiyun ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 195*4882a593Smuzhiyun brgez,pn REG1, FAIL_LABEL; \ 196*4882a593Smuzhiyun nop; \ 197*4882a593Smuzhiyun 699: 198*4882a593Smuzhiyun 199*4882a593Smuzhiyun /* PUD has been loaded into REG1, interpret the value, seeing 200*4882a593Smuzhiyun * if it is a HUGE PUD or a normal one. If it is not valid 201*4882a593Smuzhiyun * then jump to FAIL_LABEL. If it is a HUGE PUD, and it 202*4882a593Smuzhiyun * translates to a valid PTE, branch to PTE_LABEL. 203*4882a593Smuzhiyun * 204*4882a593Smuzhiyun * We have to propagate bits [32:22] from the virtual address 205*4882a593Smuzhiyun * to resolve at 4M granularity. 206*4882a593Smuzhiyun */ 207*4882a593Smuzhiyun #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 208*4882a593Smuzhiyun #define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 209*4882a593Smuzhiyun 700: ba 700f; \ 210*4882a593Smuzhiyun nop; \ 211*4882a593Smuzhiyun .section .pud_huge_patch, "ax"; \ 212*4882a593Smuzhiyun .word 700b; \ 213*4882a593Smuzhiyun nop; \ 214*4882a593Smuzhiyun .previous; \ 215*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 216*4882a593Smuzhiyun sethi %uhi(_PAGE_PUD_HUGE), REG2; \ 217*4882a593Smuzhiyun sllx REG2, 32, REG2; \ 218*4882a593Smuzhiyun andcc REG1, REG2, %g0; \ 219*4882a593Smuzhiyun be,pt %xcc, 700f; \ 220*4882a593Smuzhiyun sethi %hi(0xffe00000), REG2; \ 221*4882a593Smuzhiyun sllx REG2, 1, REG2; \ 222*4882a593Smuzhiyun brgez,pn REG1, FAIL_LABEL; \ 223*4882a593Smuzhiyun andn REG1, REG2, REG1; \ 224*4882a593Smuzhiyun and VADDR, REG2, REG2; \ 225*4882a593Smuzhiyun brlz,pt REG1, PTE_LABEL; \ 226*4882a593Smuzhiyun or REG1, REG2, REG1; \ 227*4882a593Smuzhiyun 700: 228*4882a593Smuzhiyun #else 229*4882a593Smuzhiyun #define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 230*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 231*4882a593Smuzhiyun nop; 232*4882a593Smuzhiyun #endif 233*4882a593Smuzhiyun 234*4882a593Smuzhiyun /* PMD has been loaded into REG1, interpret the value, seeing 235*4882a593Smuzhiyun * if it is a HUGE PMD or a normal one. If it is not valid 236*4882a593Smuzhiyun * then jump to FAIL_LABEL. If it is a HUGE PMD, and it 237*4882a593Smuzhiyun * translates to a valid PTE, branch to PTE_LABEL. 238*4882a593Smuzhiyun * 239*4882a593Smuzhiyun * We have to propagate the 4MB bit of the virtual address 240*4882a593Smuzhiyun * because we are fabricating 8MB pages using 4MB hw pages. 241*4882a593Smuzhiyun */ 242*4882a593Smuzhiyun #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 243*4882a593Smuzhiyun #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 244*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 245*4882a593Smuzhiyun sethi %uhi(_PAGE_PMD_HUGE), REG2; \ 246*4882a593Smuzhiyun sllx REG2, 32, REG2; \ 247*4882a593Smuzhiyun andcc REG1, REG2, %g0; \ 248*4882a593Smuzhiyun be,pt %xcc, 700f; \ 249*4882a593Smuzhiyun sethi %hi(4 * 1024 * 1024), REG2; \ 250*4882a593Smuzhiyun brgez,pn REG1, FAIL_LABEL; \ 251*4882a593Smuzhiyun andn REG1, REG2, REG1; \ 252*4882a593Smuzhiyun and VADDR, REG2, REG2; \ 253*4882a593Smuzhiyun brlz,pt REG1, PTE_LABEL; \ 254*4882a593Smuzhiyun or REG1, REG2, REG1; \ 255*4882a593Smuzhiyun 700: 256*4882a593Smuzhiyun #else 257*4882a593Smuzhiyun #define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 258*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 259*4882a593Smuzhiyun nop; 260*4882a593Smuzhiyun #endif 261*4882a593Smuzhiyun 262*4882a593Smuzhiyun /* Do a user page table walk in MMU globals. Leaves final, 263*4882a593Smuzhiyun * valid, PTE value in REG1. Jumps to FAIL_LABEL on early 264*4882a593Smuzhiyun * page table walk termination or if the PTE is not valid. 265*4882a593Smuzhiyun * 266*4882a593Smuzhiyun * Physical base of page tables is in PHYS_PGD which will not 267*4882a593Smuzhiyun * be modified. 268*4882a593Smuzhiyun * 269*4882a593Smuzhiyun * VADDR will not be clobbered, but REG1 and REG2 will. 270*4882a593Smuzhiyun */ 271*4882a593Smuzhiyun #define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \ 272*4882a593Smuzhiyun sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ 273*4882a593Smuzhiyun srlx REG2, 64 - PAGE_SHIFT, REG2; \ 274*4882a593Smuzhiyun andn REG2, 0x7, REG2; \ 275*4882a593Smuzhiyun ldxa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \ 276*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 277*4882a593Smuzhiyun sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \ 278*4882a593Smuzhiyun srlx REG2, 64 - PAGE_SHIFT, REG2; \ 279*4882a593Smuzhiyun andn REG2, 0x7, REG2; \ 280*4882a593Smuzhiyun ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 281*4882a593Smuzhiyun USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \ 282*4882a593Smuzhiyun brz,pn REG1, FAIL_LABEL; \ 283*4882a593Smuzhiyun sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ 284*4882a593Smuzhiyun srlx REG2, 64 - PAGE_SHIFT, REG2; \ 285*4882a593Smuzhiyun andn REG2, 0x7, REG2; \ 286*4882a593Smuzhiyun ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 287*4882a593Smuzhiyun USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \ 288*4882a593Smuzhiyun sllx VADDR, 64 - PMD_SHIFT, REG2; \ 289*4882a593Smuzhiyun srlx REG2, 64 - PAGE_SHIFT, REG2; \ 290*4882a593Smuzhiyun andn REG2, 0x7, REG2; \ 291*4882a593Smuzhiyun add REG1, REG2, REG1; \ 292*4882a593Smuzhiyun ldxa [REG1] ASI_PHYS_USE_EC, REG1; \ 293*4882a593Smuzhiyun brgez,pn REG1, FAIL_LABEL; \ 294*4882a593Smuzhiyun nop; \ 295*4882a593Smuzhiyun 800: 296*4882a593Smuzhiyun 297*4882a593Smuzhiyun /* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0. 298*4882a593Smuzhiyun * If no entry is found, FAIL_LABEL will be branched to. On success 299*4882a593Smuzhiyun * the resulting PTE value will be left in REG1. VADDR is preserved 300*4882a593Smuzhiyun * by this routine. 301*4882a593Smuzhiyun */ 302*4882a593Smuzhiyun #define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \ 303*4882a593Smuzhiyun sethi %hi(prom_trans), REG1; \ 304*4882a593Smuzhiyun or REG1, %lo(prom_trans), REG1; \ 305*4882a593Smuzhiyun 97: ldx [REG1 + 0x00], REG2; \ 306*4882a593Smuzhiyun brz,pn REG2, FAIL_LABEL; \ 307*4882a593Smuzhiyun nop; \ 308*4882a593Smuzhiyun ldx [REG1 + 0x08], REG3; \ 309*4882a593Smuzhiyun add REG2, REG3, REG3; \ 310*4882a593Smuzhiyun cmp REG2, VADDR; \ 311*4882a593Smuzhiyun bgu,pt %xcc, 98f; \ 312*4882a593Smuzhiyun cmp VADDR, REG3; \ 313*4882a593Smuzhiyun bgeu,pt %xcc, 98f; \ 314*4882a593Smuzhiyun ldx [REG1 + 0x10], REG3; \ 315*4882a593Smuzhiyun sub VADDR, REG2, REG2; \ 316*4882a593Smuzhiyun ba,pt %xcc, 99f; \ 317*4882a593Smuzhiyun add REG3, REG2, REG1; \ 318*4882a593Smuzhiyun 98: ba,pt %xcc, 97b; \ 319*4882a593Smuzhiyun add REG1, (3 * 8), REG1; \ 320*4882a593Smuzhiyun 99: 321*4882a593Smuzhiyun 322*4882a593Smuzhiyun /* We use a 32K TSB for the whole kernel, this allows to 323*4882a593Smuzhiyun * handle about 16MB of modules and vmalloc mappings without 324*4882a593Smuzhiyun * incurring many hash conflicts. 325*4882a593Smuzhiyun */ 326*4882a593Smuzhiyun #define KERNEL_TSB_SIZE_BYTES (32 * 1024) 327*4882a593Smuzhiyun #define KERNEL_TSB_NENTRIES \ 328*4882a593Smuzhiyun (KERNEL_TSB_SIZE_BYTES / 16) 329*4882a593Smuzhiyun #define KERNEL_TSB4M_NENTRIES 4096 330*4882a593Smuzhiyun 331*4882a593Smuzhiyun /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL 332*4882a593Smuzhiyun * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries 333*4882a593Smuzhiyun * and the found TTE will be left in REG1. REG3 and REG4 must 334*4882a593Smuzhiyun * be an even/odd pair of registers. 335*4882a593Smuzhiyun * 336*4882a593Smuzhiyun * VADDR and TAG will be preserved and not clobbered by this macro. 337*4882a593Smuzhiyun */ 338*4882a593Smuzhiyun #define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 339*4882a593Smuzhiyun 661: sethi %uhi(swapper_tsb), REG1; \ 340*4882a593Smuzhiyun sethi %hi(swapper_tsb), REG2; \ 341*4882a593Smuzhiyun or REG1, %ulo(swapper_tsb), REG1; \ 342*4882a593Smuzhiyun or REG2, %lo(swapper_tsb), REG2; \ 343*4882a593Smuzhiyun .section .swapper_tsb_phys_patch, "ax"; \ 344*4882a593Smuzhiyun .word 661b; \ 345*4882a593Smuzhiyun .previous; \ 346*4882a593Smuzhiyun sllx REG1, 32, REG1; \ 347*4882a593Smuzhiyun or REG1, REG2, REG1; \ 348*4882a593Smuzhiyun srlx VADDR, PAGE_SHIFT, REG2; \ 349*4882a593Smuzhiyun and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \ 350*4882a593Smuzhiyun sllx REG2, 4, REG2; \ 351*4882a593Smuzhiyun add REG1, REG2, REG2; \ 352*4882a593Smuzhiyun TSB_LOAD_QUAD(REG2, REG3); \ 353*4882a593Smuzhiyun cmp REG3, TAG; \ 354*4882a593Smuzhiyun be,a,pt %xcc, OK_LABEL; \ 355*4882a593Smuzhiyun mov REG4, REG1; 356*4882a593Smuzhiyun 357*4882a593Smuzhiyun #ifndef CONFIG_DEBUG_PAGEALLOC 358*4882a593Smuzhiyun /* This version uses a trick, the TAG is already (VADDR >> 22) so 359*4882a593Smuzhiyun * we can make use of that for the index computation. 360*4882a593Smuzhiyun */ 361*4882a593Smuzhiyun #define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 362*4882a593Smuzhiyun 661: sethi %uhi(swapper_4m_tsb), REG1; \ 363*4882a593Smuzhiyun sethi %hi(swapper_4m_tsb), REG2; \ 364*4882a593Smuzhiyun or REG1, %ulo(swapper_4m_tsb), REG1; \ 365*4882a593Smuzhiyun or REG2, %lo(swapper_4m_tsb), REG2; \ 366*4882a593Smuzhiyun .section .swapper_4m_tsb_phys_patch, "ax"; \ 367*4882a593Smuzhiyun .word 661b; \ 368*4882a593Smuzhiyun .previous; \ 369*4882a593Smuzhiyun sllx REG1, 32, REG1; \ 370*4882a593Smuzhiyun or REG1, REG2, REG1; \ 371*4882a593Smuzhiyun and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \ 372*4882a593Smuzhiyun sllx REG2, 4, REG2; \ 373*4882a593Smuzhiyun add REG1, REG2, REG2; \ 374*4882a593Smuzhiyun TSB_LOAD_QUAD(REG2, REG3); \ 375*4882a593Smuzhiyun cmp REG3, TAG; \ 376*4882a593Smuzhiyun be,a,pt %xcc, OK_LABEL; \ 377*4882a593Smuzhiyun mov REG4, REG1; 378*4882a593Smuzhiyun #endif 379*4882a593Smuzhiyun 380*4882a593Smuzhiyun #endif /* !(_SPARC64_TSB_H) */ 381