1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun #ifndef __ASM_SH_BITOPS_OP32_H
3*4882a593Smuzhiyun #define __ASM_SH_BITOPS_OP32_H
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun /*
6*4882a593Smuzhiyun * The bit modifying instructions on SH-2A are only capable of working
7*4882a593Smuzhiyun * with a 3-bit immediate, which signifies the shift position for the bit
8*4882a593Smuzhiyun * being worked on.
9*4882a593Smuzhiyun */
10*4882a593Smuzhiyun #if defined(__BIG_ENDIAN)
11*4882a593Smuzhiyun #define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
12*4882a593Smuzhiyun #define BYTE_NUMBER(nr) ((nr ^ BITOP_LE_SWIZZLE) / BITS_PER_BYTE)
13*4882a593Smuzhiyun #define BYTE_OFFSET(nr) ((nr ^ BITOP_LE_SWIZZLE) % BITS_PER_BYTE)
14*4882a593Smuzhiyun #else
15*4882a593Smuzhiyun #define BYTE_NUMBER(nr) ((nr) / BITS_PER_BYTE)
16*4882a593Smuzhiyun #define BYTE_OFFSET(nr) ((nr) % BITS_PER_BYTE)
17*4882a593Smuzhiyun #endif
18*4882a593Smuzhiyun
__set_bit(int nr,volatile unsigned long * addr)19*4882a593Smuzhiyun static inline void __set_bit(int nr, volatile unsigned long *addr)
20*4882a593Smuzhiyun {
21*4882a593Smuzhiyun if (__builtin_constant_p(nr)) {
22*4882a593Smuzhiyun __asm__ __volatile__ (
23*4882a593Smuzhiyun "bset.b %1, @(%O2,%0) ! __set_bit\n\t"
24*4882a593Smuzhiyun : "+r" (addr)
25*4882a593Smuzhiyun : "i" (BYTE_OFFSET(nr)), "i" (BYTE_NUMBER(nr))
26*4882a593Smuzhiyun : "t", "memory"
27*4882a593Smuzhiyun );
28*4882a593Smuzhiyun } else {
29*4882a593Smuzhiyun unsigned long mask = BIT_MASK(nr);
30*4882a593Smuzhiyun unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
31*4882a593Smuzhiyun
32*4882a593Smuzhiyun *p |= mask;
33*4882a593Smuzhiyun }
34*4882a593Smuzhiyun }
35*4882a593Smuzhiyun
__clear_bit(int nr,volatile unsigned long * addr)36*4882a593Smuzhiyun static inline void __clear_bit(int nr, volatile unsigned long *addr)
37*4882a593Smuzhiyun {
38*4882a593Smuzhiyun if (__builtin_constant_p(nr)) {
39*4882a593Smuzhiyun __asm__ __volatile__ (
40*4882a593Smuzhiyun "bclr.b %1, @(%O2,%0) ! __clear_bit\n\t"
41*4882a593Smuzhiyun : "+r" (addr)
42*4882a593Smuzhiyun : "i" (BYTE_OFFSET(nr)),
43*4882a593Smuzhiyun "i" (BYTE_NUMBER(nr))
44*4882a593Smuzhiyun : "t", "memory"
45*4882a593Smuzhiyun );
46*4882a593Smuzhiyun } else {
47*4882a593Smuzhiyun unsigned long mask = BIT_MASK(nr);
48*4882a593Smuzhiyun unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
49*4882a593Smuzhiyun
50*4882a593Smuzhiyun *p &= ~mask;
51*4882a593Smuzhiyun }
52*4882a593Smuzhiyun }
53*4882a593Smuzhiyun
54*4882a593Smuzhiyun /**
55*4882a593Smuzhiyun * __change_bit - Toggle a bit in memory
56*4882a593Smuzhiyun * @nr: the bit to change
57*4882a593Smuzhiyun * @addr: the address to start counting from
58*4882a593Smuzhiyun *
59*4882a593Smuzhiyun * Unlike change_bit(), this function is non-atomic and may be reordered.
60*4882a593Smuzhiyun * If it's called on the same region of memory simultaneously, the effect
61*4882a593Smuzhiyun * may be that only one operation succeeds.
62*4882a593Smuzhiyun */
__change_bit(int nr,volatile unsigned long * addr)63*4882a593Smuzhiyun static inline void __change_bit(int nr, volatile unsigned long *addr)
64*4882a593Smuzhiyun {
65*4882a593Smuzhiyun if (__builtin_constant_p(nr)) {
66*4882a593Smuzhiyun __asm__ __volatile__ (
67*4882a593Smuzhiyun "bxor.b %1, @(%O2,%0) ! __change_bit\n\t"
68*4882a593Smuzhiyun : "+r" (addr)
69*4882a593Smuzhiyun : "i" (BYTE_OFFSET(nr)),
70*4882a593Smuzhiyun "i" (BYTE_NUMBER(nr))
71*4882a593Smuzhiyun : "t", "memory"
72*4882a593Smuzhiyun );
73*4882a593Smuzhiyun } else {
74*4882a593Smuzhiyun unsigned long mask = BIT_MASK(nr);
75*4882a593Smuzhiyun unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
76*4882a593Smuzhiyun
77*4882a593Smuzhiyun *p ^= mask;
78*4882a593Smuzhiyun }
79*4882a593Smuzhiyun }
80*4882a593Smuzhiyun
81*4882a593Smuzhiyun /**
82*4882a593Smuzhiyun * __test_and_set_bit - Set a bit and return its old value
83*4882a593Smuzhiyun * @nr: Bit to set
84*4882a593Smuzhiyun * @addr: Address to count from
85*4882a593Smuzhiyun *
86*4882a593Smuzhiyun * This operation is non-atomic and can be reordered.
87*4882a593Smuzhiyun * If two examples of this operation race, one can appear to succeed
88*4882a593Smuzhiyun * but actually fail. You must protect multiple accesses with a lock.
89*4882a593Smuzhiyun */
__test_and_set_bit(int nr,volatile unsigned long * addr)90*4882a593Smuzhiyun static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
91*4882a593Smuzhiyun {
92*4882a593Smuzhiyun unsigned long mask = BIT_MASK(nr);
93*4882a593Smuzhiyun unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
94*4882a593Smuzhiyun unsigned long old = *p;
95*4882a593Smuzhiyun
96*4882a593Smuzhiyun *p = old | mask;
97*4882a593Smuzhiyun return (old & mask) != 0;
98*4882a593Smuzhiyun }
99*4882a593Smuzhiyun
100*4882a593Smuzhiyun /**
101*4882a593Smuzhiyun * __test_and_clear_bit - Clear a bit and return its old value
102*4882a593Smuzhiyun * @nr: Bit to clear
103*4882a593Smuzhiyun * @addr: Address to count from
104*4882a593Smuzhiyun *
105*4882a593Smuzhiyun * This operation is non-atomic and can be reordered.
106*4882a593Smuzhiyun * If two examples of this operation race, one can appear to succeed
107*4882a593Smuzhiyun * but actually fail. You must protect multiple accesses with a lock.
108*4882a593Smuzhiyun */
__test_and_clear_bit(int nr,volatile unsigned long * addr)109*4882a593Smuzhiyun static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
110*4882a593Smuzhiyun {
111*4882a593Smuzhiyun unsigned long mask = BIT_MASK(nr);
112*4882a593Smuzhiyun unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
113*4882a593Smuzhiyun unsigned long old = *p;
114*4882a593Smuzhiyun
115*4882a593Smuzhiyun *p = old & ~mask;
116*4882a593Smuzhiyun return (old & mask) != 0;
117*4882a593Smuzhiyun }
118*4882a593Smuzhiyun
119*4882a593Smuzhiyun /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(int nr,volatile unsigned long * addr)120*4882a593Smuzhiyun static inline int __test_and_change_bit(int nr,
121*4882a593Smuzhiyun volatile unsigned long *addr)
122*4882a593Smuzhiyun {
123*4882a593Smuzhiyun unsigned long mask = BIT_MASK(nr);
124*4882a593Smuzhiyun unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
125*4882a593Smuzhiyun unsigned long old = *p;
126*4882a593Smuzhiyun
127*4882a593Smuzhiyun *p = old ^ mask;
128*4882a593Smuzhiyun return (old & mask) != 0;
129*4882a593Smuzhiyun }
130*4882a593Smuzhiyun
131*4882a593Smuzhiyun /**
132*4882a593Smuzhiyun * test_bit - Determine whether a bit is set
133*4882a593Smuzhiyun * @nr: bit number to test
134*4882a593Smuzhiyun * @addr: Address to start counting from
135*4882a593Smuzhiyun */
test_bit(int nr,const volatile unsigned long * addr)136*4882a593Smuzhiyun static inline int test_bit(int nr, const volatile unsigned long *addr)
137*4882a593Smuzhiyun {
138*4882a593Smuzhiyun return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
139*4882a593Smuzhiyun }
140*4882a593Smuzhiyun
141*4882a593Smuzhiyun #endif /* __ASM_SH_BITOPS_OP32_H */
142