xref: /OK3568_Linux_fs/kernel/arch/s390/include/asm/user.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun  *  S390 version
4*4882a593Smuzhiyun  *
5*4882a593Smuzhiyun  *  Derived from "include/asm-i386/usr.h"
6*4882a593Smuzhiyun  */
7*4882a593Smuzhiyun 
8*4882a593Smuzhiyun #ifndef _S390_USER_H
9*4882a593Smuzhiyun #define _S390_USER_H
10*4882a593Smuzhiyun 
11*4882a593Smuzhiyun #include <asm/page.h>
12*4882a593Smuzhiyun #include <asm/ptrace.h>
13*4882a593Smuzhiyun /* Core file format: The core file is written in such a way that gdb
14*4882a593Smuzhiyun    can understand it and provide useful information to the user (under
15*4882a593Smuzhiyun    linux we use the 'trad-core' bfd).  There are quite a number of
16*4882a593Smuzhiyun    obstacles to being able to view the contents of the floating point
17*4882a593Smuzhiyun    registers, and until these are solved you will not be able to view the
18*4882a593Smuzhiyun    contents of them.  Actually, you can read in the core file and look at
19*4882a593Smuzhiyun    the contents of the user struct to find out what the floating point
20*4882a593Smuzhiyun    registers contain.
21*4882a593Smuzhiyun    The actual file contents are as follows:
22*4882a593Smuzhiyun    UPAGE: 1 page consisting of a user struct that tells gdb what is present
23*4882a593Smuzhiyun    in the file.  Directly after this is a copy of the task_struct, which
24*4882a593Smuzhiyun    is currently not used by gdb, but it may come in useful at some point.
25*4882a593Smuzhiyun    All of the registers are stored as part of the upage.  The upage should
26*4882a593Smuzhiyun    always be only one page.
27*4882a593Smuzhiyun    DATA: The data area is stored.  We use current->end_text to
28*4882a593Smuzhiyun    current->brk to pick up all of the user variables, plus any memory
29*4882a593Smuzhiyun    that may have been malloced.  No attempt is made to determine if a page
30*4882a593Smuzhiyun    is demand-zero or if a page is totally unused, we just cover the entire
31*4882a593Smuzhiyun    range.  All of the addresses are rounded in such a way that an integral
32*4882a593Smuzhiyun    number of pages is written.
33*4882a593Smuzhiyun    STACK: We need the stack information in order to get a meaningful
34*4882a593Smuzhiyun    backtrace.  We need to write the data from (esp) to
35*4882a593Smuzhiyun    current->start_stack, so we round each of these off in order to be able
36*4882a593Smuzhiyun    to write an integer number of pages.
37*4882a593Smuzhiyun    The minimum core file size is 3 pages, or 12288 bytes.
38*4882a593Smuzhiyun */
39*4882a593Smuzhiyun 
40*4882a593Smuzhiyun 
41*4882a593Smuzhiyun /*
42*4882a593Smuzhiyun  * This is the old layout of "struct pt_regs", and
43*4882a593Smuzhiyun  * is still the layout used by user mode (the new
44*4882a593Smuzhiyun  * pt_regs doesn't have all registers as the kernel
45*4882a593Smuzhiyun  * doesn't use the extra segment registers)
46*4882a593Smuzhiyun  */
47*4882a593Smuzhiyun 
48*4882a593Smuzhiyun /* When the kernel dumps core, it starts by dumping the user struct -
49*4882a593Smuzhiyun    this will be used by gdb to figure out where the data and stack segments
50*4882a593Smuzhiyun    are within the file, and what virtual addresses to use. */
51*4882a593Smuzhiyun struct user {
52*4882a593Smuzhiyun /* We start with the registers, to mimic the way that "memory" is returned
53*4882a593Smuzhiyun    from the ptrace(3,...) function.  */
54*4882a593Smuzhiyun   struct user_regs_struct regs;		/* Where the registers are actually stored */
55*4882a593Smuzhiyun /* The rest of this junk is to help gdb figure out what goes where */
56*4882a593Smuzhiyun   unsigned long int u_tsize;	/* Text segment size (pages). */
57*4882a593Smuzhiyun   unsigned long int u_dsize;	/* Data segment size (pages). */
58*4882a593Smuzhiyun   unsigned long int u_ssize;	/* Stack segment size (pages). */
59*4882a593Smuzhiyun   unsigned long start_code;     /* Starting virtual address of text. */
60*4882a593Smuzhiyun   unsigned long start_stack;	/* Starting virtual address of stack area.
61*4882a593Smuzhiyun 				   This is actually the bottom of the stack,
62*4882a593Smuzhiyun 				   the top of the stack is always found in the
63*4882a593Smuzhiyun 				   esp register.  */
64*4882a593Smuzhiyun   long int signal;     		/* Signal that caused the core dump. */
65*4882a593Smuzhiyun   unsigned long u_ar0;		/* Used by gdb to help find the values for */
66*4882a593Smuzhiyun 				/* the registers. */
67*4882a593Smuzhiyun   unsigned long magic;		/* To uniquely identify a core file */
68*4882a593Smuzhiyun   char u_comm[32];		/* User command that was responsible */
69*4882a593Smuzhiyun };
70*4882a593Smuzhiyun #define NBPG PAGE_SIZE
71*4882a593Smuzhiyun #define UPAGES 1
72*4882a593Smuzhiyun #define HOST_TEXT_START_ADDR (u.start_code)
73*4882a593Smuzhiyun #define HOST_STACK_END_ADDR (u.start_stack + u.u_ssize * NBPG)
74*4882a593Smuzhiyun 
75*4882a593Smuzhiyun #endif /* _S390_USER_H */
76