xref: /OK3568_Linux_fs/kernel/arch/s390/crypto/crc32le-vx.S (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun/* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun/*
3*4882a593Smuzhiyun * Hardware-accelerated CRC-32 variants for Linux on z Systems
4*4882a593Smuzhiyun *
5*4882a593Smuzhiyun * Use the z/Architecture Vector Extension Facility to accelerate the
6*4882a593Smuzhiyun * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
7*4882a593Smuzhiyun * and Castagnoli.
8*4882a593Smuzhiyun *
9*4882a593Smuzhiyun * This CRC-32 implementation algorithm is bitreflected and processes
10*4882a593Smuzhiyun * the least-significant bit first (Little-Endian).
11*4882a593Smuzhiyun *
12*4882a593Smuzhiyun * Copyright IBM Corp. 2015
13*4882a593Smuzhiyun * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
14*4882a593Smuzhiyun */
15*4882a593Smuzhiyun
16*4882a593Smuzhiyun#include <linux/linkage.h>
17*4882a593Smuzhiyun#include <asm/nospec-insn.h>
18*4882a593Smuzhiyun#include <asm/vx-insn.h>
19*4882a593Smuzhiyun
20*4882a593Smuzhiyun/* Vector register range containing CRC-32 constants */
21*4882a593Smuzhiyun#define CONST_PERM_LE2BE	%v9
22*4882a593Smuzhiyun#define CONST_R2R1		%v10
23*4882a593Smuzhiyun#define CONST_R4R3		%v11
24*4882a593Smuzhiyun#define CONST_R5		%v12
25*4882a593Smuzhiyun#define CONST_RU_POLY		%v13
26*4882a593Smuzhiyun#define CONST_CRC_POLY		%v14
27*4882a593Smuzhiyun
28*4882a593Smuzhiyun.data
29*4882a593Smuzhiyun.align 8
30*4882a593Smuzhiyun
31*4882a593Smuzhiyun/*
32*4882a593Smuzhiyun * The CRC-32 constant block contains reduction constants to fold and
33*4882a593Smuzhiyun * process particular chunks of the input data stream in parallel.
34*4882a593Smuzhiyun *
35*4882a593Smuzhiyun * For the CRC-32 variants, the constants are precomputed according to
36*4882a593Smuzhiyun * these definitions:
37*4882a593Smuzhiyun *
38*4882a593Smuzhiyun *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
39*4882a593Smuzhiyun *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
40*4882a593Smuzhiyun *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1
41*4882a593Smuzhiyun *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1
42*4882a593Smuzhiyun *	R5 = [(x64 mod P'(x) << 32)]'	    << 1
43*4882a593Smuzhiyun *	R6 = [(x32 mod P'(x) << 32)]'	    << 1
44*4882a593Smuzhiyun *
45*4882a593Smuzhiyun *	The bitreflected Barret reduction constant, u', is defined as
46*4882a593Smuzhiyun *	the bit reversal of floor(x**64 / P(x)).
47*4882a593Smuzhiyun *
48*4882a593Smuzhiyun *	where P(x) is the polynomial in the normal domain and the P'(x) is the
49*4882a593Smuzhiyun *	polynomial in the reversed (bitreflected) domain.
50*4882a593Smuzhiyun *
51*4882a593Smuzhiyun * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
52*4882a593Smuzhiyun *
53*4882a593Smuzhiyun *	P(x)  = 0x04C11DB7
54*4882a593Smuzhiyun *	P'(x) = 0xEDB88320
55*4882a593Smuzhiyun *
56*4882a593Smuzhiyun * CRC-32C (Castagnoli) polynomials:
57*4882a593Smuzhiyun *
58*4882a593Smuzhiyun *	P(x)  = 0x1EDC6F41
59*4882a593Smuzhiyun *	P'(x) = 0x82F63B78
60*4882a593Smuzhiyun */
61*4882a593Smuzhiyun
62*4882a593Smuzhiyun.Lconstants_CRC_32_LE:
63*4882a593Smuzhiyun	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
64*4882a593Smuzhiyun	.quad		0x1c6e41596, 0x154442bd4		# R2, R1
65*4882a593Smuzhiyun	.quad		0x0ccaa009e, 0x1751997d0		# R4, R3
66*4882a593Smuzhiyun	.octa		0x163cd6124				# R5
67*4882a593Smuzhiyun	.octa		0x1F7011641				# u'
68*4882a593Smuzhiyun	.octa		0x1DB710641				# P'(x) << 1
69*4882a593Smuzhiyun
70*4882a593Smuzhiyun.Lconstants_CRC_32C_LE:
71*4882a593Smuzhiyun	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
72*4882a593Smuzhiyun	.quad		0x09e4addf8, 0x740eef02			# R2, R1
73*4882a593Smuzhiyun	.quad		0x14cd00bd6, 0xf20c0dfe			# R4, R3
74*4882a593Smuzhiyun	.octa		0x0dd45aab8				# R5
75*4882a593Smuzhiyun	.octa		0x0dea713f1				# u'
76*4882a593Smuzhiyun	.octa		0x105ec76f0				# P'(x) << 1
77*4882a593Smuzhiyun
78*4882a593Smuzhiyun.previous
79*4882a593Smuzhiyun
80*4882a593Smuzhiyun	GEN_BR_THUNK %r14
81*4882a593Smuzhiyun
82*4882a593Smuzhiyun.text
83*4882a593Smuzhiyun
84*4882a593Smuzhiyun/*
85*4882a593Smuzhiyun * The CRC-32 functions use these calling conventions:
86*4882a593Smuzhiyun *
87*4882a593Smuzhiyun * Parameters:
88*4882a593Smuzhiyun *
89*4882a593Smuzhiyun *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
90*4882a593Smuzhiyun *	%r3:	Input buffer pointer, performance might be improved if the
91*4882a593Smuzhiyun *		buffer is on a doubleword boundary.
92*4882a593Smuzhiyun *	%r4:	Length of the buffer, must be 64 bytes or greater.
93*4882a593Smuzhiyun *
94*4882a593Smuzhiyun * Register usage:
95*4882a593Smuzhiyun *
96*4882a593Smuzhiyun *	%r5:	CRC-32 constant pool base pointer.
97*4882a593Smuzhiyun *	V0:	Initial CRC value and intermediate constants and results.
98*4882a593Smuzhiyun *	V1..V4:	Data for CRC computation.
99*4882a593Smuzhiyun *	V5..V8:	Next data chunks that are fetched from the input buffer.
100*4882a593Smuzhiyun *	V9:	Constant for BE->LE conversion and shift operations
101*4882a593Smuzhiyun *
102*4882a593Smuzhiyun *	V10..V14: CRC-32 constants.
103*4882a593Smuzhiyun */
104*4882a593Smuzhiyun
105*4882a593SmuzhiyunENTRY(crc32_le_vgfm_16)
106*4882a593Smuzhiyun	larl	%r5,.Lconstants_CRC_32_LE
107*4882a593Smuzhiyun	j	crc32_le_vgfm_generic
108*4882a593SmuzhiyunENDPROC(crc32_le_vgfm_16)
109*4882a593Smuzhiyun
110*4882a593SmuzhiyunENTRY(crc32c_le_vgfm_16)
111*4882a593Smuzhiyun	larl	%r5,.Lconstants_CRC_32C_LE
112*4882a593Smuzhiyun	j	crc32_le_vgfm_generic
113*4882a593SmuzhiyunENDPROC(crc32c_le_vgfm_16)
114*4882a593Smuzhiyun
115*4882a593SmuzhiyunENTRY(crc32_le_vgfm_generic)
116*4882a593Smuzhiyun	/* Load CRC-32 constants */
117*4882a593Smuzhiyun	VLM	CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
118*4882a593Smuzhiyun
119*4882a593Smuzhiyun	/*
120*4882a593Smuzhiyun	 * Load the initial CRC value.
121*4882a593Smuzhiyun	 *
122*4882a593Smuzhiyun	 * The CRC value is loaded into the rightmost word of the
123*4882a593Smuzhiyun	 * vector register and is later XORed with the LSB portion
124*4882a593Smuzhiyun	 * of the loaded input data.
125*4882a593Smuzhiyun	 */
126*4882a593Smuzhiyun	VZERO	%v0			/* Clear V0 */
127*4882a593Smuzhiyun	VLVGF	%v0,%r2,3		/* Load CRC into rightmost word */
128*4882a593Smuzhiyun
129*4882a593Smuzhiyun	/* Load a 64-byte data chunk and XOR with CRC */
130*4882a593Smuzhiyun	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
131*4882a593Smuzhiyun	VPERM	%v1,%v1,%v1,CONST_PERM_LE2BE
132*4882a593Smuzhiyun	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
133*4882a593Smuzhiyun	VPERM	%v3,%v3,%v3,CONST_PERM_LE2BE
134*4882a593Smuzhiyun	VPERM	%v4,%v4,%v4,CONST_PERM_LE2BE
135*4882a593Smuzhiyun
136*4882a593Smuzhiyun	VX	%v1,%v0,%v1		/* V1 ^= CRC */
137*4882a593Smuzhiyun	aghi	%r3,64			/* BUF = BUF + 64 */
138*4882a593Smuzhiyun	aghi	%r4,-64			/* LEN = LEN - 64 */
139*4882a593Smuzhiyun
140*4882a593Smuzhiyun	cghi	%r4,64
141*4882a593Smuzhiyun	jl	.Lless_than_64bytes
142*4882a593Smuzhiyun
143*4882a593Smuzhiyun.Lfold_64bytes_loop:
144*4882a593Smuzhiyun	/* Load the next 64-byte data chunk into V5 to V8 */
145*4882a593Smuzhiyun	VLM	%v5,%v8,0,%r3
146*4882a593Smuzhiyun	VPERM	%v5,%v5,%v5,CONST_PERM_LE2BE
147*4882a593Smuzhiyun	VPERM	%v6,%v6,%v6,CONST_PERM_LE2BE
148*4882a593Smuzhiyun	VPERM	%v7,%v7,%v7,CONST_PERM_LE2BE
149*4882a593Smuzhiyun	VPERM	%v8,%v8,%v8,CONST_PERM_LE2BE
150*4882a593Smuzhiyun
151*4882a593Smuzhiyun	/*
152*4882a593Smuzhiyun	 * Perform a GF(2) multiplication of the doublewords in V1 with
153*4882a593Smuzhiyun	 * the R1 and R2 reduction constants in V0.  The intermediate result
154*4882a593Smuzhiyun	 * is then folded (accumulated) with the next data chunk in V5 and
155*4882a593Smuzhiyun	 * stored in V1. Repeat this step for the register contents
156*4882a593Smuzhiyun	 * in V2, V3, and V4 respectively.
157*4882a593Smuzhiyun	 */
158*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R2R1,%v1,%v5
159*4882a593Smuzhiyun	VGFMAG	%v2,CONST_R2R1,%v2,%v6
160*4882a593Smuzhiyun	VGFMAG	%v3,CONST_R2R1,%v3,%v7
161*4882a593Smuzhiyun	VGFMAG	%v4,CONST_R2R1,%v4,%v8
162*4882a593Smuzhiyun
163*4882a593Smuzhiyun	aghi	%r3,64			/* BUF = BUF + 64 */
164*4882a593Smuzhiyun	aghi	%r4,-64			/* LEN = LEN - 64 */
165*4882a593Smuzhiyun
166*4882a593Smuzhiyun	cghi	%r4,64
167*4882a593Smuzhiyun	jnl	.Lfold_64bytes_loop
168*4882a593Smuzhiyun
169*4882a593Smuzhiyun.Lless_than_64bytes:
170*4882a593Smuzhiyun	/*
171*4882a593Smuzhiyun	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
172*4882a593Smuzhiyun	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
173*4882a593Smuzhiyun	 * value remains.
174*4882a593Smuzhiyun	 */
175*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R4R3,%v1,%v2
176*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R4R3,%v1,%v3
177*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R4R3,%v1,%v4
178*4882a593Smuzhiyun
179*4882a593Smuzhiyun	cghi	%r4,16
180*4882a593Smuzhiyun	jl	.Lfinal_fold
181*4882a593Smuzhiyun
182*4882a593Smuzhiyun.Lfold_16bytes_loop:
183*4882a593Smuzhiyun
184*4882a593Smuzhiyun	VL	%v2,0,,%r3		/* Load next data chunk */
185*4882a593Smuzhiyun	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
186*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R4R3,%v1,%v2	/* Fold next data chunk */
187*4882a593Smuzhiyun
188*4882a593Smuzhiyun	aghi	%r3,16
189*4882a593Smuzhiyun	aghi	%r4,-16
190*4882a593Smuzhiyun
191*4882a593Smuzhiyun	cghi	%r4,16
192*4882a593Smuzhiyun	jnl	.Lfold_16bytes_loop
193*4882a593Smuzhiyun
194*4882a593Smuzhiyun.Lfinal_fold:
195*4882a593Smuzhiyun	/*
196*4882a593Smuzhiyun	 * Set up a vector register for byte shifts.  The shift value must
197*4882a593Smuzhiyun	 * be loaded in bits 1-4 in byte element 7 of a vector register.
198*4882a593Smuzhiyun	 * Shift by 8 bytes: 0x40
199*4882a593Smuzhiyun	 * Shift by 4 bytes: 0x20
200*4882a593Smuzhiyun	 */
201*4882a593Smuzhiyun	VLEIB	%v9,0x40,7
202*4882a593Smuzhiyun
203*4882a593Smuzhiyun	/*
204*4882a593Smuzhiyun	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
205*4882a593Smuzhiyun	 * to move R4 into the rightmost doubleword and set the leftmost
206*4882a593Smuzhiyun	 * doubleword to 0x1.
207*4882a593Smuzhiyun	 */
208*4882a593Smuzhiyun	VSRLB	%v0,CONST_R4R3,%v9
209*4882a593Smuzhiyun	VLEIG	%v0,1,0
210*4882a593Smuzhiyun
211*4882a593Smuzhiyun	/*
212*4882a593Smuzhiyun	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword
213*4882a593Smuzhiyun	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
214*4882a593Smuzhiyun	 * multiplied by 0x1 and is then XORed with rightmost product.
215*4882a593Smuzhiyun	 * Implicitly, the intermediate leftmost product becomes padded
216*4882a593Smuzhiyun	 */
217*4882a593Smuzhiyun	VGFMG	%v1,%v0,%v1
218*4882a593Smuzhiyun
219*4882a593Smuzhiyun	/*
220*4882a593Smuzhiyun	 * Now do the final 32-bit fold by multiplying the rightmost word
221*4882a593Smuzhiyun	 * in V1 with R5 and XOR the result with the remaining bits in V1.
222*4882a593Smuzhiyun	 *
223*4882a593Smuzhiyun	 * To achieve this by a single VGFMAG, right shift V1 by a word
224*4882a593Smuzhiyun	 * and store the result in V2 which is then accumulated.  Use the
225*4882a593Smuzhiyun	 * vector unpack instruction to load the rightmost half of the
226*4882a593Smuzhiyun	 * doubleword into the rightmost doubleword element of V1; the other
227*4882a593Smuzhiyun	 * half is loaded in the leftmost doubleword.
228*4882a593Smuzhiyun	 * The vector register with CONST_R5 contains the R5 constant in the
229*4882a593Smuzhiyun	 * rightmost doubleword and the leftmost doubleword is zero to ignore
230*4882a593Smuzhiyun	 * the leftmost product of V1.
231*4882a593Smuzhiyun	 */
232*4882a593Smuzhiyun	VLEIB	%v9,0x20,7		  /* Shift by words */
233*4882a593Smuzhiyun	VSRLB	%v2,%v1,%v9		  /* Store remaining bits in V2 */
234*4882a593Smuzhiyun	VUPLLF	%v1,%v1			  /* Split rightmost doubleword */
235*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R5,%v1,%v2	  /* V1 = (V1 * R5) XOR V2 */
236*4882a593Smuzhiyun
237*4882a593Smuzhiyun	/*
238*4882a593Smuzhiyun	 * Apply a Barret reduction to compute the final 32-bit CRC value.
239*4882a593Smuzhiyun	 *
240*4882a593Smuzhiyun	 * The input values to the Barret reduction are the degree-63 polynomial
241*4882a593Smuzhiyun	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
242*4882a593Smuzhiyun	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
243*4882a593Smuzhiyun	 * P(x).
244*4882a593Smuzhiyun	 *
245*4882a593Smuzhiyun	 * The Barret reduction algorithm is defined as:
246*4882a593Smuzhiyun	 *
247*4882a593Smuzhiyun	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
248*4882a593Smuzhiyun	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
249*4882a593Smuzhiyun	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
250*4882a593Smuzhiyun	 *
251*4882a593Smuzhiyun	 *  Note: The leftmost doubleword of vector register containing
252*4882a593Smuzhiyun	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
253*4882a593Smuzhiyun	 *  is zero and does not contribute to the final result.
254*4882a593Smuzhiyun	 */
255*4882a593Smuzhiyun
256*4882a593Smuzhiyun	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
257*4882a593Smuzhiyun	VUPLLF	%v2,%v1
258*4882a593Smuzhiyun	VGFMG	%v2,CONST_RU_POLY,%v2
259*4882a593Smuzhiyun
260*4882a593Smuzhiyun	/*
261*4882a593Smuzhiyun	 * Compute the GF(2) product of the CRC polynomial with T1(x) in
262*4882a593Smuzhiyun	 * V2 and XOR the intermediate result, T2(x), with the value in V1.
263*4882a593Smuzhiyun	 * The final result is stored in word element 2 of V2.
264*4882a593Smuzhiyun	 */
265*4882a593Smuzhiyun	VUPLLF	%v2,%v2
266*4882a593Smuzhiyun	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
267*4882a593Smuzhiyun
268*4882a593Smuzhiyun.Ldone:
269*4882a593Smuzhiyun	VLGVF	%r2,%v2,2
270*4882a593Smuzhiyun	BR_EX	%r14
271*4882a593SmuzhiyunENDPROC(crc32_le_vgfm_generic)
272*4882a593Smuzhiyun
273*4882a593Smuzhiyun.previous
274