xref: /OK3568_Linux_fs/kernel/arch/s390/crypto/crc32be-vx.S (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun/* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun/*
3*4882a593Smuzhiyun * Hardware-accelerated CRC-32 variants for Linux on z Systems
4*4882a593Smuzhiyun *
5*4882a593Smuzhiyun * Use the z/Architecture Vector Extension Facility to accelerate the
6*4882a593Smuzhiyun * computing of CRC-32 checksums.
7*4882a593Smuzhiyun *
8*4882a593Smuzhiyun * This CRC-32 implementation algorithm processes the most-significant
9*4882a593Smuzhiyun * bit first (BE).
10*4882a593Smuzhiyun *
11*4882a593Smuzhiyun * Copyright IBM Corp. 2015
12*4882a593Smuzhiyun * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13*4882a593Smuzhiyun */
14*4882a593Smuzhiyun
15*4882a593Smuzhiyun#include <linux/linkage.h>
16*4882a593Smuzhiyun#include <asm/nospec-insn.h>
17*4882a593Smuzhiyun#include <asm/vx-insn.h>
18*4882a593Smuzhiyun
19*4882a593Smuzhiyun/* Vector register range containing CRC-32 constants */
20*4882a593Smuzhiyun#define CONST_R1R2		%v9
21*4882a593Smuzhiyun#define CONST_R3R4		%v10
22*4882a593Smuzhiyun#define CONST_R5		%v11
23*4882a593Smuzhiyun#define CONST_R6		%v12
24*4882a593Smuzhiyun#define CONST_RU_POLY		%v13
25*4882a593Smuzhiyun#define CONST_CRC_POLY		%v14
26*4882a593Smuzhiyun
27*4882a593Smuzhiyun.data
28*4882a593Smuzhiyun.align 8
29*4882a593Smuzhiyun
30*4882a593Smuzhiyun/*
31*4882a593Smuzhiyun * The CRC-32 constant block contains reduction constants to fold and
32*4882a593Smuzhiyun * process particular chunks of the input data stream in parallel.
33*4882a593Smuzhiyun *
34*4882a593Smuzhiyun * For the CRC-32 variants, the constants are precomputed according to
35*4882a593Smuzhiyun * these defintions:
36*4882a593Smuzhiyun *
37*4882a593Smuzhiyun *	R1 = x4*128+64 mod P(x)
38*4882a593Smuzhiyun *	R2 = x4*128    mod P(x)
39*4882a593Smuzhiyun *	R3 = x128+64   mod P(x)
40*4882a593Smuzhiyun *	R4 = x128      mod P(x)
41*4882a593Smuzhiyun *	R5 = x96       mod P(x)
42*4882a593Smuzhiyun *	R6 = x64       mod P(x)
43*4882a593Smuzhiyun *
44*4882a593Smuzhiyun *	Barret reduction constant, u, is defined as floor(x**64 / P(x)).
45*4882a593Smuzhiyun *
46*4882a593Smuzhiyun *	where P(x) is the polynomial in the normal domain and the P'(x) is the
47*4882a593Smuzhiyun *	polynomial in the reversed (bitreflected) domain.
48*4882a593Smuzhiyun *
49*4882a593Smuzhiyun * Note that the constant definitions below are extended in order to compute
50*4882a593Smuzhiyun * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
51*4882a593Smuzhiyun * The righmost doubleword can be 0 to prevent contribution to the result or
52*4882a593Smuzhiyun * can be multiplied by 1 to perform an XOR without the need for a separate
53*4882a593Smuzhiyun * VECTOR EXCLUSIVE OR instruction.
54*4882a593Smuzhiyun *
55*4882a593Smuzhiyun * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
56*4882a593Smuzhiyun *
57*4882a593Smuzhiyun *	P(x)  = 0x04C11DB7
58*4882a593Smuzhiyun *	P'(x) = 0xEDB88320
59*4882a593Smuzhiyun */
60*4882a593Smuzhiyun
61*4882a593Smuzhiyun.Lconstants_CRC_32_BE:
62*4882a593Smuzhiyun	.quad		0x08833794c, 0x0e6228b11	# R1, R2
63*4882a593Smuzhiyun	.quad		0x0c5b9cd4c, 0x0e8a45605	# R3, R4
64*4882a593Smuzhiyun	.quad		0x0f200aa66, 1 << 32		# R5, x32
65*4882a593Smuzhiyun	.quad		0x0490d678d, 1			# R6, 1
66*4882a593Smuzhiyun	.quad		0x104d101df, 0			# u
67*4882a593Smuzhiyun	.quad		0x104C11DB7, 0			# P(x)
68*4882a593Smuzhiyun
69*4882a593Smuzhiyun.previous
70*4882a593Smuzhiyun
71*4882a593Smuzhiyun	GEN_BR_THUNK %r14
72*4882a593Smuzhiyun
73*4882a593Smuzhiyun.text
74*4882a593Smuzhiyun/*
75*4882a593Smuzhiyun * The CRC-32 function(s) use these calling conventions:
76*4882a593Smuzhiyun *
77*4882a593Smuzhiyun * Parameters:
78*4882a593Smuzhiyun *
79*4882a593Smuzhiyun *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
80*4882a593Smuzhiyun *	%r3:	Input buffer pointer, performance might be improved if the
81*4882a593Smuzhiyun *		buffer is on a doubleword boundary.
82*4882a593Smuzhiyun *	%r4:	Length of the buffer, must be 64 bytes or greater.
83*4882a593Smuzhiyun *
84*4882a593Smuzhiyun * Register usage:
85*4882a593Smuzhiyun *
86*4882a593Smuzhiyun *	%r5:	CRC-32 constant pool base pointer.
87*4882a593Smuzhiyun *	V0:	Initial CRC value and intermediate constants and results.
88*4882a593Smuzhiyun *	V1..V4:	Data for CRC computation.
89*4882a593Smuzhiyun *	V5..V8:	Next data chunks that are fetched from the input buffer.
90*4882a593Smuzhiyun *
91*4882a593Smuzhiyun *	V9..V14: CRC-32 constants.
92*4882a593Smuzhiyun */
93*4882a593SmuzhiyunENTRY(crc32_be_vgfm_16)
94*4882a593Smuzhiyun	/* Load CRC-32 constants */
95*4882a593Smuzhiyun	larl	%r5,.Lconstants_CRC_32_BE
96*4882a593Smuzhiyun	VLM	CONST_R1R2,CONST_CRC_POLY,0,%r5
97*4882a593Smuzhiyun
98*4882a593Smuzhiyun	/* Load the initial CRC value into the leftmost word of V0. */
99*4882a593Smuzhiyun	VZERO	%v0
100*4882a593Smuzhiyun	VLVGF	%v0,%r2,0
101*4882a593Smuzhiyun
102*4882a593Smuzhiyun	/* Load a 64-byte data chunk and XOR with CRC */
103*4882a593Smuzhiyun	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
104*4882a593Smuzhiyun	VX	%v1,%v0,%v1		/* V1 ^= CRC */
105*4882a593Smuzhiyun	aghi	%r3,64			/* BUF = BUF + 64 */
106*4882a593Smuzhiyun	aghi	%r4,-64			/* LEN = LEN - 64 */
107*4882a593Smuzhiyun
108*4882a593Smuzhiyun	/* Check remaining buffer size and jump to proper folding method */
109*4882a593Smuzhiyun	cghi	%r4,64
110*4882a593Smuzhiyun	jl	.Lless_than_64bytes
111*4882a593Smuzhiyun
112*4882a593Smuzhiyun.Lfold_64bytes_loop:
113*4882a593Smuzhiyun	/* Load the next 64-byte data chunk into V5 to V8 */
114*4882a593Smuzhiyun	VLM	%v5,%v8,0,%r3
115*4882a593Smuzhiyun
116*4882a593Smuzhiyun	/*
117*4882a593Smuzhiyun	 * Perform a GF(2) multiplication of the doublewords in V1 with
118*4882a593Smuzhiyun	 * the reduction constants in V0.  The intermediate result is
119*4882a593Smuzhiyun	 * then folded (accumulated) with the next data chunk in V5 and
120*4882a593Smuzhiyun	 * stored in V1.  Repeat this step for the register contents
121*4882a593Smuzhiyun	 * in V2, V3, and V4 respectively.
122*4882a593Smuzhiyun	 */
123*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R1R2,%v1,%v5
124*4882a593Smuzhiyun	VGFMAG	%v2,CONST_R1R2,%v2,%v6
125*4882a593Smuzhiyun	VGFMAG	%v3,CONST_R1R2,%v3,%v7
126*4882a593Smuzhiyun	VGFMAG	%v4,CONST_R1R2,%v4,%v8
127*4882a593Smuzhiyun
128*4882a593Smuzhiyun	/* Adjust buffer pointer and length for next loop */
129*4882a593Smuzhiyun	aghi	%r3,64			/* BUF = BUF + 64 */
130*4882a593Smuzhiyun	aghi	%r4,-64			/* LEN = LEN - 64 */
131*4882a593Smuzhiyun
132*4882a593Smuzhiyun	cghi	%r4,64
133*4882a593Smuzhiyun	jnl	.Lfold_64bytes_loop
134*4882a593Smuzhiyun
135*4882a593Smuzhiyun.Lless_than_64bytes:
136*4882a593Smuzhiyun	/* Fold V1 to V4 into a single 128-bit value in V1 */
137*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R3R4,%v1,%v2
138*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R3R4,%v1,%v3
139*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R3R4,%v1,%v4
140*4882a593Smuzhiyun
141*4882a593Smuzhiyun	/* Check whether to continue with 64-bit folding */
142*4882a593Smuzhiyun	cghi	%r4,16
143*4882a593Smuzhiyun	jl	.Lfinal_fold
144*4882a593Smuzhiyun
145*4882a593Smuzhiyun.Lfold_16bytes_loop:
146*4882a593Smuzhiyun
147*4882a593Smuzhiyun	VL	%v2,0,,%r3		/* Load next data chunk */
148*4882a593Smuzhiyun	VGFMAG	%v1,CONST_R3R4,%v1,%v2	/* Fold next data chunk */
149*4882a593Smuzhiyun
150*4882a593Smuzhiyun	/* Adjust buffer pointer and size for folding next data chunk */
151*4882a593Smuzhiyun	aghi	%r3,16
152*4882a593Smuzhiyun	aghi	%r4,-16
153*4882a593Smuzhiyun
154*4882a593Smuzhiyun	/* Process remaining data chunks */
155*4882a593Smuzhiyun	cghi	%r4,16
156*4882a593Smuzhiyun	jnl	.Lfold_16bytes_loop
157*4882a593Smuzhiyun
158*4882a593Smuzhiyun.Lfinal_fold:
159*4882a593Smuzhiyun	/*
160*4882a593Smuzhiyun	 * The R5 constant is used to fold a 128-bit value into an 96-bit value
161*4882a593Smuzhiyun	 * that is XORed with the next 96-bit input data chunk.  To use a single
162*4882a593Smuzhiyun	 * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
163*4882a593Smuzhiyun	 * form an intermediate 96-bit value (with appended zeros) which is then
164*4882a593Smuzhiyun	 * XORed with the intermediate reduction result.
165*4882a593Smuzhiyun	 */
166*4882a593Smuzhiyun	VGFMG	%v1,CONST_R5,%v1
167*4882a593Smuzhiyun
168*4882a593Smuzhiyun	/*
169*4882a593Smuzhiyun	 * Further reduce the remaining 96-bit value to a 64-bit value using a
170*4882a593Smuzhiyun	 * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
171*4882a593Smuzhiyun	 * intermediate result is then XORed with the product of the leftmost
172*4882a593Smuzhiyun	 * doubleword with R6.	The result is a 64-bit value and is subject to
173*4882a593Smuzhiyun	 * the Barret reduction.
174*4882a593Smuzhiyun	 */
175*4882a593Smuzhiyun	VGFMG	%v1,CONST_R6,%v1
176*4882a593Smuzhiyun
177*4882a593Smuzhiyun	/*
178*4882a593Smuzhiyun	 * The input values to the Barret reduction are the degree-63 polynomial
179*4882a593Smuzhiyun	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
180*4882a593Smuzhiyun	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
181*4882a593Smuzhiyun	 * P(x).
182*4882a593Smuzhiyun	 *
183*4882a593Smuzhiyun	 * The Barret reduction algorithm is defined as:
184*4882a593Smuzhiyun	 *
185*4882a593Smuzhiyun	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
186*4882a593Smuzhiyun	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
187*4882a593Smuzhiyun	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
188*4882a593Smuzhiyun	 *
189*4882a593Smuzhiyun	 * Note: To compensate the division by x^32, use the vector unpack
190*4882a593Smuzhiyun	 * instruction to move the leftmost word into the leftmost doubleword
191*4882a593Smuzhiyun	 * of the vector register.  The rightmost doubleword is multiplied
192*4882a593Smuzhiyun	 * with zero to not contribute to the intermedate results.
193*4882a593Smuzhiyun	 */
194*4882a593Smuzhiyun
195*4882a593Smuzhiyun	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
196*4882a593Smuzhiyun	VUPLLF	%v2,%v1
197*4882a593Smuzhiyun	VGFMG	%v2,CONST_RU_POLY,%v2
198*4882a593Smuzhiyun
199*4882a593Smuzhiyun	/*
200*4882a593Smuzhiyun	 * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
201*4882a593Smuzhiyun	 * V2 and XOR the intermediate result, T2(x),  with the value in V1.
202*4882a593Smuzhiyun	 * The final result is in the rightmost word of V2.
203*4882a593Smuzhiyun	 */
204*4882a593Smuzhiyun	VUPLLF	%v2,%v2
205*4882a593Smuzhiyun	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
206*4882a593Smuzhiyun
207*4882a593Smuzhiyun.Ldone:
208*4882a593Smuzhiyun	VLGVF	%r2,%v2,3
209*4882a593Smuzhiyun	BR_EX	%r14
210*4882a593SmuzhiyunENDPROC(crc32_be_vgfm_16)
211*4882a593Smuzhiyun
212*4882a593Smuzhiyun.previous
213