1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7 #define pr_fmt(fmt) "numa: " fmt
8
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38
39 static int numa_enabled = 1;
40
41 static char *cmdline __initdata;
42
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62
63 /*
64 * Allocate node_to_cpumask_map based on number of available nodes
65 * Requires node_possible_map to be valid.
66 *
67 * Note: cpumask_of_node() is not valid until after this is done.
68 */
setup_node_to_cpumask_map(void)69 static void __init setup_node_to_cpumask_map(void)
70 {
71 unsigned int node;
72
73 /* setup nr_node_ids if not done yet */
74 if (nr_node_ids == MAX_NUMNODES)
75 setup_nr_node_ids();
76
77 /* allocate the map */
78 for_each_node(node)
79 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80
81 /* cpumask_of_node() will now work */
82 dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 }
84
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 unsigned int *nid)
87 {
88 unsigned long long mem;
89 char *p = cmdline;
90 static unsigned int fake_nid;
91 static unsigned long long curr_boundary;
92
93 /*
94 * Modify node id, iff we started creating NUMA nodes
95 * We want to continue from where we left of the last time
96 */
97 if (fake_nid)
98 *nid = fake_nid;
99 /*
100 * In case there are no more arguments to parse, the
101 * node_id should be the same as the last fake node id
102 * (we've handled this above).
103 */
104 if (!p)
105 return 0;
106
107 mem = memparse(p, &p);
108 if (!mem)
109 return 0;
110
111 if (mem < curr_boundary)
112 return 0;
113
114 curr_boundary = mem;
115
116 if ((end_pfn << PAGE_SHIFT) > mem) {
117 /*
118 * Skip commas and spaces
119 */
120 while (*p == ',' || *p == ' ' || *p == '\t')
121 p++;
122
123 cmdline = p;
124 fake_nid++;
125 *nid = fake_nid;
126 dbg("created new fake_node with id %d\n", fake_nid);
127 return 1;
128 }
129 return 0;
130 }
131
reset_numa_cpu_lookup_table(void)132 static void reset_numa_cpu_lookup_table(void)
133 {
134 unsigned int cpu;
135
136 for_each_possible_cpu(cpu)
137 numa_cpu_lookup_table[cpu] = -1;
138 }
139
map_cpu_to_node(int cpu,int node)140 static void map_cpu_to_node(int cpu, int node)
141 {
142 update_numa_cpu_lookup_table(cpu, node);
143
144 dbg("adding cpu %d to node %d\n", cpu, node);
145
146 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148 }
149
150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)151 static void unmap_cpu_from_node(unsigned long cpu)
152 {
153 int node = numa_cpu_lookup_table[cpu];
154
155 dbg("removing cpu %lu from node %d\n", cpu, node);
156
157 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 } else {
160 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 cpu, node);
162 }
163 }
164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165
cpu_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167 {
168 int dist = 0;
169
170 int i, index;
171
172 for (i = 0; i < distance_ref_points_depth; i++) {
173 index = be32_to_cpu(distance_ref_points[i]);
174 if (cpu1_assoc[index] == cpu2_assoc[index])
175 break;
176 dist++;
177 }
178
179 return dist;
180 }
181
182 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)183 static const __be32 *of_get_associativity(struct device_node *dev)
184 {
185 return of_get_property(dev, "ibm,associativity", NULL);
186 }
187
__node_distance(int a,int b)188 int __node_distance(int a, int b)
189 {
190 int i;
191 int distance = LOCAL_DISTANCE;
192
193 if (!form1_affinity)
194 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195
196 for (i = 0; i < distance_ref_points_depth; i++) {
197 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 break;
199
200 /* Double the distance for each NUMA level */
201 distance *= 2;
202 }
203
204 return distance;
205 }
206 EXPORT_SYMBOL(__node_distance);
207
initialize_distance_lookup_table(int nid,const __be32 * associativity)208 static void initialize_distance_lookup_table(int nid,
209 const __be32 *associativity)
210 {
211 int i;
212
213 if (!form1_affinity)
214 return;
215
216 for (i = 0; i < distance_ref_points_depth; i++) {
217 const __be32 *entry;
218
219 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 }
222 }
223
224 /*
225 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
226 * info is found.
227 */
associativity_to_nid(const __be32 * associativity)228 static int associativity_to_nid(const __be32 *associativity)
229 {
230 int nid = NUMA_NO_NODE;
231
232 if (!numa_enabled)
233 goto out;
234
235 if (of_read_number(associativity, 1) >= min_common_depth)
236 nid = of_read_number(&associativity[min_common_depth], 1);
237
238 /* POWER4 LPAR uses 0xffff as invalid node */
239 if (nid == 0xffff || nid >= nr_node_ids)
240 nid = NUMA_NO_NODE;
241
242 if (nid > 0 &&
243 of_read_number(associativity, 1) >= distance_ref_points_depth) {
244 /*
245 * Skip the length field and send start of associativity array
246 */
247 initialize_distance_lookup_table(nid, associativity + 1);
248 }
249
250 out:
251 return nid;
252 }
253
254 /* Returns the nid associated with the given device tree node,
255 * or -1 if not found.
256 */
of_node_to_nid_single(struct device_node * device)257 static int of_node_to_nid_single(struct device_node *device)
258 {
259 int nid = NUMA_NO_NODE;
260 const __be32 *tmp;
261
262 tmp = of_get_associativity(device);
263 if (tmp)
264 nid = associativity_to_nid(tmp);
265 return nid;
266 }
267
268 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)269 int of_node_to_nid(struct device_node *device)
270 {
271 int nid = NUMA_NO_NODE;
272
273 of_node_get(device);
274 while (device) {
275 nid = of_node_to_nid_single(device);
276 if (nid != -1)
277 break;
278
279 device = of_get_next_parent(device);
280 }
281 of_node_put(device);
282
283 return nid;
284 }
285 EXPORT_SYMBOL(of_node_to_nid);
286
find_min_common_depth(void)287 static int __init find_min_common_depth(void)
288 {
289 int depth;
290 struct device_node *root;
291
292 if (firmware_has_feature(FW_FEATURE_OPAL))
293 root = of_find_node_by_path("/ibm,opal");
294 else
295 root = of_find_node_by_path("/rtas");
296 if (!root)
297 root = of_find_node_by_path("/");
298
299 /*
300 * This property is a set of 32-bit integers, each representing
301 * an index into the ibm,associativity nodes.
302 *
303 * With form 0 affinity the first integer is for an SMP configuration
304 * (should be all 0's) and the second is for a normal NUMA
305 * configuration. We have only one level of NUMA.
306 *
307 * With form 1 affinity the first integer is the most significant
308 * NUMA boundary and the following are progressively less significant
309 * boundaries. There can be more than one level of NUMA.
310 */
311 distance_ref_points = of_get_property(root,
312 "ibm,associativity-reference-points",
313 &distance_ref_points_depth);
314
315 if (!distance_ref_points) {
316 dbg("NUMA: ibm,associativity-reference-points not found.\n");
317 goto err;
318 }
319
320 distance_ref_points_depth /= sizeof(int);
321
322 if (firmware_has_feature(FW_FEATURE_OPAL) ||
323 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
324 dbg("Using form 1 affinity\n");
325 form1_affinity = 1;
326 }
327
328 if (form1_affinity) {
329 depth = of_read_number(distance_ref_points, 1);
330 } else {
331 if (distance_ref_points_depth < 2) {
332 printk(KERN_WARNING "NUMA: "
333 "short ibm,associativity-reference-points\n");
334 goto err;
335 }
336
337 depth = of_read_number(&distance_ref_points[1], 1);
338 }
339
340 /*
341 * Warn and cap if the hardware supports more than
342 * MAX_DISTANCE_REF_POINTS domains.
343 */
344 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
345 printk(KERN_WARNING "NUMA: distance array capped at "
346 "%d entries\n", MAX_DISTANCE_REF_POINTS);
347 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
348 }
349
350 of_node_put(root);
351 return depth;
352
353 err:
354 of_node_put(root);
355 return -1;
356 }
357
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)358 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
359 {
360 struct device_node *memory = NULL;
361
362 memory = of_find_node_by_type(memory, "memory");
363 if (!memory)
364 panic("numa.c: No memory nodes found!");
365
366 *n_addr_cells = of_n_addr_cells(memory);
367 *n_size_cells = of_n_size_cells(memory);
368 of_node_put(memory);
369 }
370
read_n_cells(int n,const __be32 ** buf)371 static unsigned long read_n_cells(int n, const __be32 **buf)
372 {
373 unsigned long result = 0;
374
375 while (n--) {
376 result = (result << 32) | of_read_number(*buf, 1);
377 (*buf)++;
378 }
379 return result;
380 }
381
382 struct assoc_arrays {
383 u32 n_arrays;
384 u32 array_sz;
385 const __be32 *arrays;
386 };
387
388 /*
389 * Retrieve and validate the list of associativity arrays for drconf
390 * memory from the ibm,associativity-lookup-arrays property of the
391 * device tree..
392 *
393 * The layout of the ibm,associativity-lookup-arrays property is a number N
394 * indicating the number of associativity arrays, followed by a number M
395 * indicating the size of each associativity array, followed by a list
396 * of N associativity arrays.
397 */
of_get_assoc_arrays(struct assoc_arrays * aa)398 static int of_get_assoc_arrays(struct assoc_arrays *aa)
399 {
400 struct device_node *memory;
401 const __be32 *prop;
402 u32 len;
403
404 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
405 if (!memory)
406 return -1;
407
408 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
409 if (!prop || len < 2 * sizeof(unsigned int)) {
410 of_node_put(memory);
411 return -1;
412 }
413
414 aa->n_arrays = of_read_number(prop++, 1);
415 aa->array_sz = of_read_number(prop++, 1);
416
417 of_node_put(memory);
418
419 /* Now that we know the number of arrays and size of each array,
420 * revalidate the size of the property read in.
421 */
422 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
423 return -1;
424
425 aa->arrays = prop;
426 return 0;
427 }
428
429 /*
430 * This is like of_node_to_nid_single() for memory represented in the
431 * ibm,dynamic-reconfiguration-memory node.
432 */
of_drconf_to_nid_single(struct drmem_lmb * lmb)433 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
434 {
435 struct assoc_arrays aa = { .arrays = NULL };
436 int default_nid = NUMA_NO_NODE;
437 int nid = default_nid;
438 int rc, index;
439
440 if ((min_common_depth < 0) || !numa_enabled)
441 return default_nid;
442
443 rc = of_get_assoc_arrays(&aa);
444 if (rc)
445 return default_nid;
446
447 if (min_common_depth <= aa.array_sz &&
448 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
449 index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
450 nid = of_read_number(&aa.arrays[index], 1);
451
452 if (nid == 0xffff || nid >= nr_node_ids)
453 nid = default_nid;
454
455 if (nid > 0) {
456 index = lmb->aa_index * aa.array_sz;
457 initialize_distance_lookup_table(nid,
458 &aa.arrays[index]);
459 }
460 }
461
462 return nid;
463 }
464
465 #ifdef CONFIG_PPC_SPLPAR
vphn_get_nid(long lcpu)466 static int vphn_get_nid(long lcpu)
467 {
468 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
469 long rc, hwid;
470
471 /*
472 * On a shared lpar, device tree will not have node associativity.
473 * At this time lppaca, or its __old_status field may not be
474 * updated. Hence kernel cannot detect if its on a shared lpar. So
475 * request an explicit associativity irrespective of whether the
476 * lpar is shared or dedicated. Use the device tree property as a
477 * fallback. cpu_to_phys_id is only valid between
478 * smp_setup_cpu_maps() and smp_setup_pacas().
479 */
480 if (firmware_has_feature(FW_FEATURE_VPHN)) {
481 if (cpu_to_phys_id)
482 hwid = cpu_to_phys_id[lcpu];
483 else
484 hwid = get_hard_smp_processor_id(lcpu);
485
486 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
487 if (rc == H_SUCCESS)
488 return associativity_to_nid(associativity);
489 }
490
491 return NUMA_NO_NODE;
492 }
493 #else
vphn_get_nid(long unused)494 static int vphn_get_nid(long unused)
495 {
496 return NUMA_NO_NODE;
497 }
498 #endif /* CONFIG_PPC_SPLPAR */
499
500 /*
501 * Figure out to which domain a cpu belongs and stick it there.
502 * Return the id of the domain used.
503 */
numa_setup_cpu(unsigned long lcpu)504 static int numa_setup_cpu(unsigned long lcpu)
505 {
506 struct device_node *cpu;
507 int fcpu = cpu_first_thread_sibling(lcpu);
508 int nid = NUMA_NO_NODE;
509
510 if (!cpu_present(lcpu)) {
511 set_cpu_numa_node(lcpu, first_online_node);
512 return first_online_node;
513 }
514
515 /*
516 * If a valid cpu-to-node mapping is already available, use it
517 * directly instead of querying the firmware, since it represents
518 * the most recent mapping notified to us by the platform (eg: VPHN).
519 * Since cpu_to_node binding remains the same for all threads in the
520 * core. If a valid cpu-to-node mapping is already available, for
521 * the first thread in the core, use it.
522 */
523 nid = numa_cpu_lookup_table[fcpu];
524 if (nid >= 0) {
525 map_cpu_to_node(lcpu, nid);
526 return nid;
527 }
528
529 nid = vphn_get_nid(lcpu);
530 if (nid != NUMA_NO_NODE)
531 goto out_present;
532
533 cpu = of_get_cpu_node(lcpu, NULL);
534
535 if (!cpu) {
536 WARN_ON(1);
537 if (cpu_present(lcpu))
538 goto out_present;
539 else
540 goto out;
541 }
542
543 nid = of_node_to_nid_single(cpu);
544 of_node_put(cpu);
545
546 out_present:
547 if (nid < 0 || !node_possible(nid))
548 nid = first_online_node;
549
550 /*
551 * Update for the first thread of the core. All threads of a core
552 * have to be part of the same node. This not only avoids querying
553 * for every other thread in the core, but always avoids a case
554 * where virtual node associativity change causes subsequent threads
555 * of a core to be associated with different nid. However if first
556 * thread is already online, expect it to have a valid mapping.
557 */
558 if (fcpu != lcpu) {
559 WARN_ON(cpu_online(fcpu));
560 map_cpu_to_node(fcpu, nid);
561 }
562
563 map_cpu_to_node(lcpu, nid);
564 out:
565 return nid;
566 }
567
verify_cpu_node_mapping(int cpu,int node)568 static void verify_cpu_node_mapping(int cpu, int node)
569 {
570 int base, sibling, i;
571
572 /* Verify that all the threads in the core belong to the same node */
573 base = cpu_first_thread_sibling(cpu);
574
575 for (i = 0; i < threads_per_core; i++) {
576 sibling = base + i;
577
578 if (sibling == cpu || cpu_is_offline(sibling))
579 continue;
580
581 if (cpu_to_node(sibling) != node) {
582 WARN(1, "CPU thread siblings %d and %d don't belong"
583 " to the same node!\n", cpu, sibling);
584 break;
585 }
586 }
587 }
588
589 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)590 static int ppc_numa_cpu_prepare(unsigned int cpu)
591 {
592 int nid;
593
594 nid = numa_setup_cpu(cpu);
595 verify_cpu_node_mapping(cpu, nid);
596 return 0;
597 }
598
ppc_numa_cpu_dead(unsigned int cpu)599 static int ppc_numa_cpu_dead(unsigned int cpu)
600 {
601 #ifdef CONFIG_HOTPLUG_CPU
602 unmap_cpu_from_node(cpu);
603 #endif
604 return 0;
605 }
606
607 /*
608 * Check and possibly modify a memory region to enforce the memory limit.
609 *
610 * Returns the size the region should have to enforce the memory limit.
611 * This will either be the original value of size, a truncated value,
612 * or zero. If the returned value of size is 0 the region should be
613 * discarded as it lies wholly above the memory limit.
614 */
numa_enforce_memory_limit(unsigned long start,unsigned long size)615 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
616 unsigned long size)
617 {
618 /*
619 * We use memblock_end_of_DRAM() in here instead of memory_limit because
620 * we've already adjusted it for the limit and it takes care of
621 * having memory holes below the limit. Also, in the case of
622 * iommu_is_off, memory_limit is not set but is implicitly enforced.
623 */
624
625 if (start + size <= memblock_end_of_DRAM())
626 return size;
627
628 if (start >= memblock_end_of_DRAM())
629 return 0;
630
631 return memblock_end_of_DRAM() - start;
632 }
633
634 /*
635 * Reads the counter for a given entry in
636 * linux,drconf-usable-memory property
637 */
read_usm_ranges(const __be32 ** usm)638 static inline int __init read_usm_ranges(const __be32 **usm)
639 {
640 /*
641 * For each lmb in ibm,dynamic-memory a corresponding
642 * entry in linux,drconf-usable-memory property contains
643 * a counter followed by that many (base, size) duple.
644 * read the counter from linux,drconf-usable-memory
645 */
646 return read_n_cells(n_mem_size_cells, usm);
647 }
648
649 /*
650 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
651 * node. This assumes n_mem_{addr,size}_cells have been set.
652 */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)653 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
654 const __be32 **usm,
655 void *data)
656 {
657 unsigned int ranges, is_kexec_kdump = 0;
658 unsigned long base, size, sz;
659 int nid;
660
661 /*
662 * Skip this block if the reserved bit is set in flags (0x80)
663 * or if the block is not assigned to this partition (0x8)
664 */
665 if ((lmb->flags & DRCONF_MEM_RESERVED)
666 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
667 return 0;
668
669 if (*usm)
670 is_kexec_kdump = 1;
671
672 base = lmb->base_addr;
673 size = drmem_lmb_size();
674 ranges = 1;
675
676 if (is_kexec_kdump) {
677 ranges = read_usm_ranges(usm);
678 if (!ranges) /* there are no (base, size) duple */
679 return 0;
680 }
681
682 do {
683 if (is_kexec_kdump) {
684 base = read_n_cells(n_mem_addr_cells, usm);
685 size = read_n_cells(n_mem_size_cells, usm);
686 }
687
688 nid = of_drconf_to_nid_single(lmb);
689 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
690 &nid);
691 node_set_online(nid);
692 sz = numa_enforce_memory_limit(base, size);
693 if (sz)
694 memblock_set_node(base, sz, &memblock.memory, nid);
695 } while (--ranges);
696
697 return 0;
698 }
699
parse_numa_properties(void)700 static int __init parse_numa_properties(void)
701 {
702 struct device_node *memory;
703 int default_nid = 0;
704 unsigned long i;
705
706 if (numa_enabled == 0) {
707 printk(KERN_WARNING "NUMA disabled by user\n");
708 return -1;
709 }
710
711 min_common_depth = find_min_common_depth();
712
713 if (min_common_depth < 0) {
714 /*
715 * if we fail to parse min_common_depth from device tree
716 * mark the numa disabled, boot with numa disabled.
717 */
718 numa_enabled = false;
719 return min_common_depth;
720 }
721
722 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
723
724 /*
725 * Even though we connect cpus to numa domains later in SMP
726 * init, we need to know the node ids now. This is because
727 * each node to be onlined must have NODE_DATA etc backing it.
728 */
729 for_each_present_cpu(i) {
730 struct device_node *cpu;
731 int nid = vphn_get_nid(i);
732
733 /*
734 * Don't fall back to default_nid yet -- we will plug
735 * cpus into nodes once the memory scan has discovered
736 * the topology.
737 */
738 if (nid == NUMA_NO_NODE) {
739 cpu = of_get_cpu_node(i, NULL);
740 BUG_ON(!cpu);
741 nid = of_node_to_nid_single(cpu);
742 of_node_put(cpu);
743 }
744
745 /* node_set_online() is an UB if 'nid' is negative */
746 if (likely(nid >= 0))
747 node_set_online(nid);
748 }
749
750 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
751
752 for_each_node_by_type(memory, "memory") {
753 unsigned long start;
754 unsigned long size;
755 int nid;
756 int ranges;
757 const __be32 *memcell_buf;
758 unsigned int len;
759
760 memcell_buf = of_get_property(memory,
761 "linux,usable-memory", &len);
762 if (!memcell_buf || len <= 0)
763 memcell_buf = of_get_property(memory, "reg", &len);
764 if (!memcell_buf || len <= 0)
765 continue;
766
767 /* ranges in cell */
768 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
769 new_range:
770 /* these are order-sensitive, and modify the buffer pointer */
771 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
772 size = read_n_cells(n_mem_size_cells, &memcell_buf);
773
774 /*
775 * Assumption: either all memory nodes or none will
776 * have associativity properties. If none, then
777 * everything goes to default_nid.
778 */
779 nid = of_node_to_nid_single(memory);
780 if (nid < 0)
781 nid = default_nid;
782
783 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
784 node_set_online(nid);
785
786 size = numa_enforce_memory_limit(start, size);
787 if (size)
788 memblock_set_node(start, size, &memblock.memory, nid);
789
790 if (--ranges)
791 goto new_range;
792 }
793
794 /*
795 * Now do the same thing for each MEMBLOCK listed in the
796 * ibm,dynamic-memory property in the
797 * ibm,dynamic-reconfiguration-memory node.
798 */
799 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
800 if (memory) {
801 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
802 of_node_put(memory);
803 }
804
805 return 0;
806 }
807
setup_nonnuma(void)808 static void __init setup_nonnuma(void)
809 {
810 unsigned long top_of_ram = memblock_end_of_DRAM();
811 unsigned long total_ram = memblock_phys_mem_size();
812 unsigned long start_pfn, end_pfn;
813 unsigned int nid = 0;
814 int i;
815
816 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
817 top_of_ram, total_ram);
818 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
819 (top_of_ram - total_ram) >> 20);
820
821 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
822 fake_numa_create_new_node(end_pfn, &nid);
823 memblock_set_node(PFN_PHYS(start_pfn),
824 PFN_PHYS(end_pfn - start_pfn),
825 &memblock.memory, nid);
826 node_set_online(nid);
827 }
828 }
829
dump_numa_cpu_topology(void)830 void __init dump_numa_cpu_topology(void)
831 {
832 unsigned int node;
833 unsigned int cpu, count;
834
835 if (!numa_enabled)
836 return;
837
838 for_each_online_node(node) {
839 pr_info("Node %d CPUs:", node);
840
841 count = 0;
842 /*
843 * If we used a CPU iterator here we would miss printing
844 * the holes in the cpumap.
845 */
846 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
847 if (cpumask_test_cpu(cpu,
848 node_to_cpumask_map[node])) {
849 if (count == 0)
850 pr_cont(" %u", cpu);
851 ++count;
852 } else {
853 if (count > 1)
854 pr_cont("-%u", cpu - 1);
855 count = 0;
856 }
857 }
858
859 if (count > 1)
860 pr_cont("-%u", nr_cpu_ids - 1);
861 pr_cont("\n");
862 }
863 }
864
865 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)866 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
867 {
868 u64 spanned_pages = end_pfn - start_pfn;
869 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
870 u64 nd_pa;
871 void *nd;
872 int tnid;
873
874 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
875 if (!nd_pa)
876 panic("Cannot allocate %zu bytes for node %d data\n",
877 nd_size, nid);
878
879 nd = __va(nd_pa);
880
881 /* report and initialize */
882 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
883 nd_pa, nd_pa + nd_size - 1);
884 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
885 if (tnid != nid)
886 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
887
888 node_data[nid] = nd;
889 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
890 NODE_DATA(nid)->node_id = nid;
891 NODE_DATA(nid)->node_start_pfn = start_pfn;
892 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
893 }
894
find_possible_nodes(void)895 static void __init find_possible_nodes(void)
896 {
897 struct device_node *rtas;
898 const __be32 *domains = NULL;
899 int prop_length, max_nodes;
900 u32 i;
901
902 if (!numa_enabled)
903 return;
904
905 rtas = of_find_node_by_path("/rtas");
906 if (!rtas)
907 return;
908
909 /*
910 * ibm,current-associativity-domains is a fairly recent property. If
911 * it doesn't exist, then fallback on ibm,max-associativity-domains.
912 * Current denotes what the platform can support compared to max
913 * which denotes what the Hypervisor can support.
914 *
915 * If the LPAR is migratable, new nodes might be activated after a LPM,
916 * so we should consider the max number in that case.
917 */
918 if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
919 domains = of_get_property(rtas,
920 "ibm,current-associativity-domains",
921 &prop_length);
922 if (!domains) {
923 domains = of_get_property(rtas, "ibm,max-associativity-domains",
924 &prop_length);
925 if (!domains)
926 goto out;
927 }
928
929 max_nodes = of_read_number(&domains[min_common_depth], 1);
930 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
931
932 for (i = 0; i < max_nodes; i++) {
933 if (!node_possible(i))
934 node_set(i, node_possible_map);
935 }
936
937 prop_length /= sizeof(int);
938 if (prop_length > min_common_depth + 2)
939 coregroup_enabled = 1;
940
941 out:
942 of_node_put(rtas);
943 }
944
mem_topology_setup(void)945 void __init mem_topology_setup(void)
946 {
947 int cpu;
948
949 /*
950 * Linux/mm assumes node 0 to be online at boot. However this is not
951 * true on PowerPC, where node 0 is similar to any other node, it
952 * could be cpuless, memoryless node. So force node 0 to be offline
953 * for now. This will prevent cpuless, memoryless node 0 showing up
954 * unnecessarily as online. If a node has cpus or memory that need
955 * to be online, then node will anyway be marked online.
956 */
957 node_set_offline(0);
958
959 if (parse_numa_properties())
960 setup_nonnuma();
961
962 /*
963 * Modify the set of possible NUMA nodes to reflect information
964 * available about the set of online nodes, and the set of nodes
965 * that we expect to make use of for this platform's affinity
966 * calculations.
967 */
968 nodes_and(node_possible_map, node_possible_map, node_online_map);
969
970 find_possible_nodes();
971
972 setup_node_to_cpumask_map();
973
974 reset_numa_cpu_lookup_table();
975
976 for_each_possible_cpu(cpu) {
977 /*
978 * Powerpc with CONFIG_NUMA always used to have a node 0,
979 * even if it was memoryless or cpuless. For all cpus that
980 * are possible but not present, cpu_to_node() would point
981 * to node 0. To remove a cpuless, memoryless dummy node,
982 * powerpc need to make sure all possible but not present
983 * cpu_to_node are set to a proper node.
984 */
985 numa_setup_cpu(cpu);
986 }
987 }
988
initmem_init(void)989 void __init initmem_init(void)
990 {
991 int nid;
992
993 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
994 max_pfn = max_low_pfn;
995
996 memblock_dump_all();
997
998 for_each_online_node(nid) {
999 unsigned long start_pfn, end_pfn;
1000
1001 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1002 setup_node_data(nid, start_pfn, end_pfn);
1003 }
1004
1005 sparse_init();
1006
1007 /*
1008 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1009 * even before we online them, so that we can use cpu_to_{node,mem}
1010 * early in boot, cf. smp_prepare_cpus().
1011 * _nocalls() + manual invocation is used because cpuhp is not yet
1012 * initialized for the boot CPU.
1013 */
1014 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1015 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1016 }
1017
early_numa(char * p)1018 static int __init early_numa(char *p)
1019 {
1020 if (!p)
1021 return 0;
1022
1023 if (strstr(p, "off"))
1024 numa_enabled = 0;
1025
1026 if (strstr(p, "debug"))
1027 numa_debug = 1;
1028
1029 p = strstr(p, "fake=");
1030 if (p)
1031 cmdline = p + strlen("fake=");
1032
1033 return 0;
1034 }
1035 early_param("numa", early_numa);
1036
1037 #ifdef CONFIG_MEMORY_HOTPLUG
1038 /*
1039 * Find the node associated with a hot added memory section for
1040 * memory represented in the device tree by the property
1041 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1042 */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)1043 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1044 {
1045 struct drmem_lmb *lmb;
1046 unsigned long lmb_size;
1047 int nid = NUMA_NO_NODE;
1048
1049 lmb_size = drmem_lmb_size();
1050
1051 for_each_drmem_lmb(lmb) {
1052 /* skip this block if it is reserved or not assigned to
1053 * this partition */
1054 if ((lmb->flags & DRCONF_MEM_RESERVED)
1055 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1056 continue;
1057
1058 if ((scn_addr < lmb->base_addr)
1059 || (scn_addr >= (lmb->base_addr + lmb_size)))
1060 continue;
1061
1062 nid = of_drconf_to_nid_single(lmb);
1063 break;
1064 }
1065
1066 return nid;
1067 }
1068
1069 /*
1070 * Find the node associated with a hot added memory section for memory
1071 * represented in the device tree as a node (i.e. memory@XXXX) for
1072 * each memblock.
1073 */
hot_add_node_scn_to_nid(unsigned long scn_addr)1074 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1075 {
1076 struct device_node *memory;
1077 int nid = NUMA_NO_NODE;
1078
1079 for_each_node_by_type(memory, "memory") {
1080 unsigned long start, size;
1081 int ranges;
1082 const __be32 *memcell_buf;
1083 unsigned int len;
1084
1085 memcell_buf = of_get_property(memory, "reg", &len);
1086 if (!memcell_buf || len <= 0)
1087 continue;
1088
1089 /* ranges in cell */
1090 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1091
1092 while (ranges--) {
1093 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1094 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1095
1096 if ((scn_addr < start) || (scn_addr >= (start + size)))
1097 continue;
1098
1099 nid = of_node_to_nid_single(memory);
1100 break;
1101 }
1102
1103 if (nid >= 0)
1104 break;
1105 }
1106
1107 of_node_put(memory);
1108
1109 return nid;
1110 }
1111
1112 /*
1113 * Find the node associated with a hot added memory section. Section
1114 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1115 * sections are fully contained within a single MEMBLOCK.
1116 */
hot_add_scn_to_nid(unsigned long scn_addr)1117 int hot_add_scn_to_nid(unsigned long scn_addr)
1118 {
1119 struct device_node *memory = NULL;
1120 int nid;
1121
1122 if (!numa_enabled)
1123 return first_online_node;
1124
1125 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1126 if (memory) {
1127 nid = hot_add_drconf_scn_to_nid(scn_addr);
1128 of_node_put(memory);
1129 } else {
1130 nid = hot_add_node_scn_to_nid(scn_addr);
1131 }
1132
1133 if (nid < 0 || !node_possible(nid))
1134 nid = first_online_node;
1135
1136 return nid;
1137 }
1138
hot_add_drconf_memory_max(void)1139 static u64 hot_add_drconf_memory_max(void)
1140 {
1141 struct device_node *memory = NULL;
1142 struct device_node *dn = NULL;
1143 const __be64 *lrdr = NULL;
1144
1145 dn = of_find_node_by_path("/rtas");
1146 if (dn) {
1147 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1148 of_node_put(dn);
1149 if (lrdr)
1150 return be64_to_cpup(lrdr);
1151 }
1152
1153 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1154 if (memory) {
1155 of_node_put(memory);
1156 return drmem_lmb_memory_max();
1157 }
1158 return 0;
1159 }
1160
1161 /*
1162 * memory_hotplug_max - return max address of memory that may be added
1163 *
1164 * This is currently only used on systems that support drconfig memory
1165 * hotplug.
1166 */
memory_hotplug_max(void)1167 u64 memory_hotplug_max(void)
1168 {
1169 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1170 }
1171 #endif /* CONFIG_MEMORY_HOTPLUG */
1172
1173 /* Virtual Processor Home Node (VPHN) support */
1174 #ifdef CONFIG_PPC_SPLPAR
1175 static int topology_inited;
1176
1177 /*
1178 * Retrieve the new associativity information for a virtual processor's
1179 * home node.
1180 */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1181 static long vphn_get_associativity(unsigned long cpu,
1182 __be32 *associativity)
1183 {
1184 long rc;
1185
1186 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1187 VPHN_FLAG_VCPU, associativity);
1188
1189 switch (rc) {
1190 case H_SUCCESS:
1191 dbg("VPHN hcall succeeded. Reset polling...\n");
1192 goto out;
1193
1194 case H_FUNCTION:
1195 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1196 break;
1197 case H_HARDWARE:
1198 pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1199 "preventing VPHN. Disabling polling...\n");
1200 break;
1201 case H_PARAMETER:
1202 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1203 "Disabling polling...\n");
1204 break;
1205 default:
1206 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1207 , rc);
1208 break;
1209 }
1210 out:
1211 return rc;
1212 }
1213
find_and_online_cpu_nid(int cpu)1214 int find_and_online_cpu_nid(int cpu)
1215 {
1216 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1217 int new_nid;
1218
1219 /* Use associativity from first thread for all siblings */
1220 if (vphn_get_associativity(cpu, associativity))
1221 return cpu_to_node(cpu);
1222
1223 new_nid = associativity_to_nid(associativity);
1224 if (new_nid < 0 || !node_possible(new_nid))
1225 new_nid = first_online_node;
1226
1227 if (NODE_DATA(new_nid) == NULL) {
1228 #ifdef CONFIG_MEMORY_HOTPLUG
1229 /*
1230 * Need to ensure that NODE_DATA is initialized for a node from
1231 * available memory (see memblock_alloc_try_nid). If unable to
1232 * init the node, then default to nearest node that has memory
1233 * installed. Skip onlining a node if the subsystems are not
1234 * yet initialized.
1235 */
1236 if (!topology_inited || try_online_node(new_nid))
1237 new_nid = first_online_node;
1238 #else
1239 /*
1240 * Default to using the nearest node that has memory installed.
1241 * Otherwise, it would be necessary to patch the kernel MM code
1242 * to deal with more memoryless-node error conditions.
1243 */
1244 new_nid = first_online_node;
1245 #endif
1246 }
1247
1248 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1249 cpu, new_nid);
1250 return new_nid;
1251 }
1252
cpu_to_coregroup_id(int cpu)1253 int cpu_to_coregroup_id(int cpu)
1254 {
1255 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1256 int index;
1257
1258 if (cpu < 0 || cpu > nr_cpu_ids)
1259 return -1;
1260
1261 if (!coregroup_enabled)
1262 goto out;
1263
1264 if (!firmware_has_feature(FW_FEATURE_VPHN))
1265 goto out;
1266
1267 if (vphn_get_associativity(cpu, associativity))
1268 goto out;
1269
1270 index = of_read_number(associativity, 1);
1271 if (index > min_common_depth + 1)
1272 return of_read_number(&associativity[index - 1], 1);
1273
1274 out:
1275 return cpu_to_core_id(cpu);
1276 }
1277
topology_update_init(void)1278 static int topology_update_init(void)
1279 {
1280 topology_inited = 1;
1281 return 0;
1282 }
1283 device_initcall(topology_update_init);
1284 #endif /* CONFIG_PPC_SPLPAR */
1285