1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0
2*4882a593Smuzhiyun #include <linux/types.h>
3*4882a593Smuzhiyun #include <linux/i8253.h>
4*4882a593Smuzhiyun #include <linux/interrupt.h>
5*4882a593Smuzhiyun #include <linux/irq.h>
6*4882a593Smuzhiyun #include <linux/smp.h>
7*4882a593Smuzhiyun #include <linux/time.h>
8*4882a593Smuzhiyun #include <linux/clockchips.h>
9*4882a593Smuzhiyun
10*4882a593Smuzhiyun #include <asm/sni.h>
11*4882a593Smuzhiyun #include <asm/time.h>
12*4882a593Smuzhiyun
13*4882a593Smuzhiyun #define SNI_CLOCK_TICK_RATE 3686400
14*4882a593Smuzhiyun #define SNI_COUNTER2_DIV 64
15*4882a593Smuzhiyun #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16*4882a593Smuzhiyun
a20r_set_periodic(struct clock_event_device * evt)17*4882a593Smuzhiyun static int a20r_set_periodic(struct clock_event_device *evt)
18*4882a593Smuzhiyun {
19*4882a593Smuzhiyun *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
20*4882a593Smuzhiyun wmb();
21*4882a593Smuzhiyun *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV & 0xff;
22*4882a593Smuzhiyun wmb();
23*4882a593Smuzhiyun *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
24*4882a593Smuzhiyun wmb();
25*4882a593Smuzhiyun
26*4882a593Smuzhiyun *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
27*4882a593Smuzhiyun wmb();
28*4882a593Smuzhiyun *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV & 0xff;
29*4882a593Smuzhiyun wmb();
30*4882a593Smuzhiyun *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
31*4882a593Smuzhiyun wmb();
32*4882a593Smuzhiyun return 0;
33*4882a593Smuzhiyun }
34*4882a593Smuzhiyun
35*4882a593Smuzhiyun static struct clock_event_device a20r_clockevent_device = {
36*4882a593Smuzhiyun .name = "a20r-timer",
37*4882a593Smuzhiyun .features = CLOCK_EVT_FEAT_PERIODIC,
38*4882a593Smuzhiyun
39*4882a593Smuzhiyun /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
40*4882a593Smuzhiyun
41*4882a593Smuzhiyun .rating = 300,
42*4882a593Smuzhiyun .irq = SNI_A20R_IRQ_TIMER,
43*4882a593Smuzhiyun .set_state_periodic = a20r_set_periodic,
44*4882a593Smuzhiyun };
45*4882a593Smuzhiyun
a20r_interrupt(int irq,void * dev_id)46*4882a593Smuzhiyun static irqreturn_t a20r_interrupt(int irq, void *dev_id)
47*4882a593Smuzhiyun {
48*4882a593Smuzhiyun struct clock_event_device *cd = dev_id;
49*4882a593Smuzhiyun
50*4882a593Smuzhiyun *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
51*4882a593Smuzhiyun wmb();
52*4882a593Smuzhiyun
53*4882a593Smuzhiyun cd->event_handler(cd);
54*4882a593Smuzhiyun
55*4882a593Smuzhiyun return IRQ_HANDLED;
56*4882a593Smuzhiyun }
57*4882a593Smuzhiyun
58*4882a593Smuzhiyun /*
59*4882a593Smuzhiyun * a20r platform uses 2 counters to divide the input frequency.
60*4882a593Smuzhiyun * Counter 2 output is connected to Counter 0 & 1 input.
61*4882a593Smuzhiyun */
sni_a20r_timer_setup(void)62*4882a593Smuzhiyun static void __init sni_a20r_timer_setup(void)
63*4882a593Smuzhiyun {
64*4882a593Smuzhiyun struct clock_event_device *cd = &a20r_clockevent_device;
65*4882a593Smuzhiyun unsigned int cpu = smp_processor_id();
66*4882a593Smuzhiyun
67*4882a593Smuzhiyun cd->cpumask = cpumask_of(cpu);
68*4882a593Smuzhiyun clockevents_register_device(cd);
69*4882a593Smuzhiyun if (request_irq(SNI_A20R_IRQ_TIMER, a20r_interrupt,
70*4882a593Smuzhiyun IRQF_PERCPU | IRQF_TIMER, "a20r-timer", cd))
71*4882a593Smuzhiyun pr_err("Failed to register a20r-timer interrupt\n");
72*4882a593Smuzhiyun }
73*4882a593Smuzhiyun
74*4882a593Smuzhiyun #define SNI_8254_TICK_RATE 1193182UL
75*4882a593Smuzhiyun
76*4882a593Smuzhiyun #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
77*4882a593Smuzhiyun
dosample(void)78*4882a593Smuzhiyun static __init unsigned long dosample(void)
79*4882a593Smuzhiyun {
80*4882a593Smuzhiyun u32 ct0, ct1;
81*4882a593Smuzhiyun volatile u8 msb;
82*4882a593Smuzhiyun
83*4882a593Smuzhiyun /* Start the counter. */
84*4882a593Smuzhiyun outb_p(0x34, 0x43);
85*4882a593Smuzhiyun outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
86*4882a593Smuzhiyun outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
87*4882a593Smuzhiyun
88*4882a593Smuzhiyun /* Get initial counter invariant */
89*4882a593Smuzhiyun ct0 = read_c0_count();
90*4882a593Smuzhiyun
91*4882a593Smuzhiyun /* Latch and spin until top byte of counter0 is zero */
92*4882a593Smuzhiyun do {
93*4882a593Smuzhiyun outb(0x00, 0x43);
94*4882a593Smuzhiyun (void) inb(0x40);
95*4882a593Smuzhiyun msb = inb(0x40);
96*4882a593Smuzhiyun ct1 = read_c0_count();
97*4882a593Smuzhiyun } while (msb);
98*4882a593Smuzhiyun
99*4882a593Smuzhiyun /* Stop the counter. */
100*4882a593Smuzhiyun outb(0x38, 0x43);
101*4882a593Smuzhiyun /*
102*4882a593Smuzhiyun * Return the difference, this is how far the r4k counter increments
103*4882a593Smuzhiyun * for every 1/HZ seconds. We round off the nearest 1 MHz of master
104*4882a593Smuzhiyun * clock (= 1000000 / HZ / 2).
105*4882a593Smuzhiyun */
106*4882a593Smuzhiyun /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
107*4882a593Smuzhiyun return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
108*4882a593Smuzhiyun }
109*4882a593Smuzhiyun
110*4882a593Smuzhiyun /*
111*4882a593Smuzhiyun * Here we need to calibrate the cycle counter to at least be close.
112*4882a593Smuzhiyun */
plat_time_init(void)113*4882a593Smuzhiyun void __init plat_time_init(void)
114*4882a593Smuzhiyun {
115*4882a593Smuzhiyun unsigned long r4k_ticks[3];
116*4882a593Smuzhiyun unsigned long r4k_tick;
117*4882a593Smuzhiyun
118*4882a593Smuzhiyun /*
119*4882a593Smuzhiyun * Figure out the r4k offset, the algorithm is very simple and works in
120*4882a593Smuzhiyun * _all_ cases as long as the 8254 counter register itself works ok (as
121*4882a593Smuzhiyun * an interrupt driving timer it does not because of bug, this is why
122*4882a593Smuzhiyun * we are using the onchip r4k counter/compare register to serve this
123*4882a593Smuzhiyun * purpose, but for r4k_offset calculation it will work ok for us).
124*4882a593Smuzhiyun * There are other very complicated ways of performing this calculation
125*4882a593Smuzhiyun * but this one works just fine so I am not going to futz around. ;-)
126*4882a593Smuzhiyun */
127*4882a593Smuzhiyun printk(KERN_INFO "Calibrating system timer... ");
128*4882a593Smuzhiyun dosample(); /* Prime cache. */
129*4882a593Smuzhiyun dosample(); /* Prime cache. */
130*4882a593Smuzhiyun /* Zero is NOT an option. */
131*4882a593Smuzhiyun do {
132*4882a593Smuzhiyun r4k_ticks[0] = dosample();
133*4882a593Smuzhiyun } while (!r4k_ticks[0]);
134*4882a593Smuzhiyun do {
135*4882a593Smuzhiyun r4k_ticks[1] = dosample();
136*4882a593Smuzhiyun } while (!r4k_ticks[1]);
137*4882a593Smuzhiyun
138*4882a593Smuzhiyun if (r4k_ticks[0] != r4k_ticks[1]) {
139*4882a593Smuzhiyun printk("warning: timer counts differ, retrying... ");
140*4882a593Smuzhiyun r4k_ticks[2] = dosample();
141*4882a593Smuzhiyun if (r4k_ticks[2] == r4k_ticks[0]
142*4882a593Smuzhiyun || r4k_ticks[2] == r4k_ticks[1])
143*4882a593Smuzhiyun r4k_tick = r4k_ticks[2];
144*4882a593Smuzhiyun else {
145*4882a593Smuzhiyun printk("disagreement, using average... ");
146*4882a593Smuzhiyun r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
147*4882a593Smuzhiyun + r4k_ticks[2]) / 3;
148*4882a593Smuzhiyun }
149*4882a593Smuzhiyun } else
150*4882a593Smuzhiyun r4k_tick = r4k_ticks[0];
151*4882a593Smuzhiyun
152*4882a593Smuzhiyun printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
153*4882a593Smuzhiyun (int) (r4k_tick / (500000 / HZ)),
154*4882a593Smuzhiyun (int) (r4k_tick % (500000 / HZ)));
155*4882a593Smuzhiyun
156*4882a593Smuzhiyun mips_hpt_frequency = r4k_tick * HZ;
157*4882a593Smuzhiyun
158*4882a593Smuzhiyun switch (sni_brd_type) {
159*4882a593Smuzhiyun case SNI_BRD_10:
160*4882a593Smuzhiyun case SNI_BRD_10NEW:
161*4882a593Smuzhiyun case SNI_BRD_TOWER_OASIC:
162*4882a593Smuzhiyun case SNI_BRD_MINITOWER:
163*4882a593Smuzhiyun sni_a20r_timer_setup();
164*4882a593Smuzhiyun break;
165*4882a593Smuzhiyun }
166*4882a593Smuzhiyun setup_pit_timer();
167*4882a593Smuzhiyun }
168