1*4882a593Smuzhiyun/* 2*4882a593Smuzhiyun * Copyright 2003-2013 Broadcom Corporation. 3*4882a593Smuzhiyun * All Rights Reserved. 4*4882a593Smuzhiyun * 5*4882a593Smuzhiyun * This software is available to you under a choice of one of two 6*4882a593Smuzhiyun * licenses. You may choose to be licensed under the terms of the GNU 7*4882a593Smuzhiyun * General Public License (GPL) Version 2, available from the file 8*4882a593Smuzhiyun * COPYING in the main directory of this source tree, or the Broadcom 9*4882a593Smuzhiyun * license below: 10*4882a593Smuzhiyun * 11*4882a593Smuzhiyun * Redistribution and use in source and binary forms, with or without 12*4882a593Smuzhiyun * modification, are permitted provided that the following conditions 13*4882a593Smuzhiyun * are met: 14*4882a593Smuzhiyun * 15*4882a593Smuzhiyun * 1. Redistributions of source code must retain the above copyright 16*4882a593Smuzhiyun * notice, this list of conditions and the following disclaimer. 17*4882a593Smuzhiyun * 2. Redistributions in binary form must reproduce the above copyright 18*4882a593Smuzhiyun * notice, this list of conditions and the following disclaimer in 19*4882a593Smuzhiyun * the documentation and/or other materials provided with the 20*4882a593Smuzhiyun * distribution. 21*4882a593Smuzhiyun * 22*4882a593Smuzhiyun * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR 23*4882a593Smuzhiyun * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 24*4882a593Smuzhiyun * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25*4882a593Smuzhiyun * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE 26*4882a593Smuzhiyun * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27*4882a593Smuzhiyun * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28*4882a593Smuzhiyun * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 29*4882a593Smuzhiyun * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 30*4882a593Smuzhiyun * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 31*4882a593Smuzhiyun * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN 32*4882a593Smuzhiyun * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33*4882a593Smuzhiyun */ 34*4882a593Smuzhiyun 35*4882a593Smuzhiyun 36*4882a593Smuzhiyun#include <asm/asm.h> 37*4882a593Smuzhiyun#include <asm/asm-offsets.h> 38*4882a593Smuzhiyun#include <asm/cpu.h> 39*4882a593Smuzhiyun#include <asm/cacheops.h> 40*4882a593Smuzhiyun#include <asm/regdef.h> 41*4882a593Smuzhiyun#include <asm/mipsregs.h> 42*4882a593Smuzhiyun#include <asm/stackframe.h> 43*4882a593Smuzhiyun#include <asm/asmmacro.h> 44*4882a593Smuzhiyun#include <asm/addrspace.h> 45*4882a593Smuzhiyun 46*4882a593Smuzhiyun#include <asm/netlogic/common.h> 47*4882a593Smuzhiyun 48*4882a593Smuzhiyun#include <asm/netlogic/xlp-hal/iomap.h> 49*4882a593Smuzhiyun#include <asm/netlogic/xlp-hal/xlp.h> 50*4882a593Smuzhiyun#include <asm/netlogic/xlp-hal/sys.h> 51*4882a593Smuzhiyun#include <asm/netlogic/xlp-hal/cpucontrol.h> 52*4882a593Smuzhiyun 53*4882a593Smuzhiyun#define SYS_CPU_COHERENT_BASE CKSEG1ADDR(XLP_DEFAULT_IO_BASE) + \ 54*4882a593Smuzhiyun XLP_IO_SYS_OFFSET(0) + XLP_IO_PCI_HDRSZ + \ 55*4882a593Smuzhiyun SYS_CPU_NONCOHERENT_MODE * 4 56*4882a593Smuzhiyun 57*4882a593Smuzhiyun/* Enable XLP features and workarounds in the LSU */ 58*4882a593Smuzhiyun.macro xlp_config_lsu 59*4882a593Smuzhiyun li t0, LSU_DEFEATURE 60*4882a593Smuzhiyun mfcr t1, t0 61*4882a593Smuzhiyun 62*4882a593Smuzhiyun lui t2, 0x4080 /* Enable Unaligned Access, L2HPE */ 63*4882a593Smuzhiyun or t1, t1, t2 64*4882a593Smuzhiyun mtcr t1, t0 65*4882a593Smuzhiyun 66*4882a593Smuzhiyun li t0, ICU_DEFEATURE 67*4882a593Smuzhiyun mfcr t1, t0 68*4882a593Smuzhiyun ori t1, 0x1000 /* Enable Icache partitioning */ 69*4882a593Smuzhiyun mtcr t1, t0 70*4882a593Smuzhiyun 71*4882a593Smuzhiyun li t0, SCHED_DEFEATURE 72*4882a593Smuzhiyun lui t1, 0x0100 /* Disable BRU accepting ALU ops */ 73*4882a593Smuzhiyun mtcr t1, t0 74*4882a593Smuzhiyun.endm 75*4882a593Smuzhiyun 76*4882a593Smuzhiyun/* 77*4882a593Smuzhiyun * Allow access to physical mem >64G by enabling ELPA in PAGEGRAIN 78*4882a593Smuzhiyun * register. This is needed before going to C code since the SP can 79*4882a593Smuzhiyun * in this region. Called from all HW threads. 80*4882a593Smuzhiyun */ 81*4882a593Smuzhiyun.macro xlp_early_mmu_init 82*4882a593Smuzhiyun mfc0 t0, CP0_PAGEMASK, 1 83*4882a593Smuzhiyun li t1, (1 << 29) /* ELPA bit */ 84*4882a593Smuzhiyun or t0, t1 85*4882a593Smuzhiyun mtc0 t0, CP0_PAGEMASK, 1 86*4882a593Smuzhiyun.endm 87*4882a593Smuzhiyun 88*4882a593Smuzhiyun/* 89*4882a593Smuzhiyun * L1D cache has to be flushed before enabling threads in XLP. 90*4882a593Smuzhiyun * On XLP8xx/XLP3xx, we do a low level flush using processor control 91*4882a593Smuzhiyun * registers. On XLPII CPUs, usual cache instructions work. 92*4882a593Smuzhiyun */ 93*4882a593Smuzhiyun.macro xlp_flush_l1_dcache 94*4882a593Smuzhiyun mfc0 t0, CP0_PRID 95*4882a593Smuzhiyun andi t0, t0, PRID_IMP_MASK 96*4882a593Smuzhiyun slt t1, t0, 0x1200 97*4882a593Smuzhiyun beqz t1, 15f 98*4882a593Smuzhiyun nop 99*4882a593Smuzhiyun 100*4882a593Smuzhiyun /* XLP8xx low level cache flush */ 101*4882a593Smuzhiyun li t0, LSU_DEBUG_DATA0 102*4882a593Smuzhiyun li t1, LSU_DEBUG_ADDR 103*4882a593Smuzhiyun li t2, 0 /* index */ 104*4882a593Smuzhiyun li t3, 0x1000 /* loop count */ 105*4882a593Smuzhiyun11: 106*4882a593Smuzhiyun sll v0, t2, 5 107*4882a593Smuzhiyun mtcr zero, t0 108*4882a593Smuzhiyun ori v1, v0, 0x3 /* way0 | write_enable | write_active */ 109*4882a593Smuzhiyun mtcr v1, t1 110*4882a593Smuzhiyun12: 111*4882a593Smuzhiyun mfcr v1, t1 112*4882a593Smuzhiyun andi v1, 0x1 /* wait for write_active == 0 */ 113*4882a593Smuzhiyun bnez v1, 12b 114*4882a593Smuzhiyun nop 115*4882a593Smuzhiyun mtcr zero, t0 116*4882a593Smuzhiyun ori v1, v0, 0x7 /* way1 | write_enable | write_active */ 117*4882a593Smuzhiyun mtcr v1, t1 118*4882a593Smuzhiyun13: 119*4882a593Smuzhiyun mfcr v1, t1 120*4882a593Smuzhiyun andi v1, 0x1 /* wait for write_active == 0 */ 121*4882a593Smuzhiyun bnez v1, 13b 122*4882a593Smuzhiyun nop 123*4882a593Smuzhiyun addi t2, 1 124*4882a593Smuzhiyun bne t3, t2, 11b 125*4882a593Smuzhiyun nop 126*4882a593Smuzhiyun b 17f 127*4882a593Smuzhiyun nop 128*4882a593Smuzhiyun 129*4882a593Smuzhiyun /* XLPII CPUs, Invalidate all 64k of L1 D-cache */ 130*4882a593Smuzhiyun15: 131*4882a593Smuzhiyun li t0, 0x80000000 132*4882a593Smuzhiyun li t1, 0x80010000 133*4882a593Smuzhiyun16: cache Index_Writeback_Inv_D, 0(t0) 134*4882a593Smuzhiyun addiu t0, t0, 32 135*4882a593Smuzhiyun bne t0, t1, 16b 136*4882a593Smuzhiyun nop 137*4882a593Smuzhiyun17: 138*4882a593Smuzhiyun.endm 139*4882a593Smuzhiyun 140*4882a593Smuzhiyun/* 141*4882a593Smuzhiyun * nlm_reset_entry will be copied to the reset entry point for 142*4882a593Smuzhiyun * XLR and XLP. The XLP cores start here when they are woken up. This 143*4882a593Smuzhiyun * is also the NMI entry point. 144*4882a593Smuzhiyun * 145*4882a593Smuzhiyun * We use scratch reg 6/7 to save k0/k1 and check for NMI first. 146*4882a593Smuzhiyun * 147*4882a593Smuzhiyun * The data corresponding to reset/NMI is stored at RESET_DATA_PHYS 148*4882a593Smuzhiyun * location, this will have the thread mask (used when core is woken up) 149*4882a593Smuzhiyun * and the current NMI handler in case we reached here for an NMI. 150*4882a593Smuzhiyun * 151*4882a593Smuzhiyun * When a core or thread is newly woken up, it marks itself ready and 152*4882a593Smuzhiyun * loops in a 'wait'. When the CPU really needs waking up, we send an NMI 153*4882a593Smuzhiyun * IPI to it, with the NMI handler set to prom_boot_secondary_cpus 154*4882a593Smuzhiyun */ 155*4882a593Smuzhiyun .set noreorder 156*4882a593Smuzhiyun .set noat 157*4882a593Smuzhiyun .set arch=xlr /* for mfcr/mtcr, XLR is sufficient */ 158*4882a593Smuzhiyun 159*4882a593SmuzhiyunFEXPORT(nlm_reset_entry) 160*4882a593Smuzhiyun dmtc0 k0, $22, 6 161*4882a593Smuzhiyun dmtc0 k1, $22, 7 162*4882a593Smuzhiyun mfc0 k0, CP0_STATUS 163*4882a593Smuzhiyun li k1, 0x80000 164*4882a593Smuzhiyun and k1, k0, k1 165*4882a593Smuzhiyun beqz k1, 1f /* go to real reset entry */ 166*4882a593Smuzhiyun nop 167*4882a593Smuzhiyun li k1, CKSEG1ADDR(RESET_DATA_PHYS) /* NMI */ 168*4882a593Smuzhiyun ld k0, BOOT_NMI_HANDLER(k1) 169*4882a593Smuzhiyun jr k0 170*4882a593Smuzhiyun nop 171*4882a593Smuzhiyun 172*4882a593Smuzhiyun1: /* Entry point on core wakeup */ 173*4882a593Smuzhiyun mfc0 t0, CP0_PRID /* processor ID */ 174*4882a593Smuzhiyun andi t0, PRID_IMP_MASK 175*4882a593Smuzhiyun li t1, 0x1500 /* XLP 9xx */ 176*4882a593Smuzhiyun beq t0, t1, 2f /* does not need to set coherent */ 177*4882a593Smuzhiyun nop 178*4882a593Smuzhiyun 179*4882a593Smuzhiyun li t1, 0x1300 /* XLP 5xx */ 180*4882a593Smuzhiyun beq t0, t1, 2f /* does not need to set coherent */ 181*4882a593Smuzhiyun nop 182*4882a593Smuzhiyun 183*4882a593Smuzhiyun /* set bit in SYS coherent register for the core */ 184*4882a593Smuzhiyun mfc0 t0, CP0_EBASE 185*4882a593Smuzhiyun mfc0 t1, CP0_EBASE 186*4882a593Smuzhiyun srl t1, 5 187*4882a593Smuzhiyun andi t1, 0x3 /* t1 <- node */ 188*4882a593Smuzhiyun li t2, 0x40000 189*4882a593Smuzhiyun mul t3, t2, t1 /* t3 = node * 0x40000 */ 190*4882a593Smuzhiyun srl t0, t0, 2 191*4882a593Smuzhiyun and t0, t0, 0x7 /* t0 <- core */ 192*4882a593Smuzhiyun li t1, 0x1 193*4882a593Smuzhiyun sll t0, t1, t0 194*4882a593Smuzhiyun nor t0, t0, zero /* t0 <- ~(1 << core) */ 195*4882a593Smuzhiyun li t2, SYS_CPU_COHERENT_BASE 196*4882a593Smuzhiyun add t2, t2, t3 /* t2 <- SYS offset for node */ 197*4882a593Smuzhiyun lw t1, 0(t2) 198*4882a593Smuzhiyun and t1, t1, t0 199*4882a593Smuzhiyun sw t1, 0(t2) 200*4882a593Smuzhiyun 201*4882a593Smuzhiyun /* read back to ensure complete */ 202*4882a593Smuzhiyun lw t1, 0(t2) 203*4882a593Smuzhiyun sync 204*4882a593Smuzhiyun 205*4882a593Smuzhiyun2: 206*4882a593Smuzhiyun /* Configure LSU on Non-0 Cores. */ 207*4882a593Smuzhiyun xlp_config_lsu 208*4882a593Smuzhiyun /* FALL THROUGH */ 209*4882a593Smuzhiyun 210*4882a593Smuzhiyun/* 211*4882a593Smuzhiyun * Wake up sibling threads from the initial thread in a core. 212*4882a593Smuzhiyun */ 213*4882a593SmuzhiyunEXPORT(nlm_boot_siblings) 214*4882a593Smuzhiyun /* core L1D flush before enable threads */ 215*4882a593Smuzhiyun xlp_flush_l1_dcache 216*4882a593Smuzhiyun /* save ra and sp, will be used later (only for boot cpu) */ 217*4882a593Smuzhiyun dmtc0 ra, $22, 6 218*4882a593Smuzhiyun dmtc0 sp, $22, 7 219*4882a593Smuzhiyun /* Enable hw threads by writing to MAP_THREADMODE of the core */ 220*4882a593Smuzhiyun li t0, CKSEG1ADDR(RESET_DATA_PHYS) 221*4882a593Smuzhiyun lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */ 222*4882a593Smuzhiyun li t0, ((CPU_BLOCKID_MAP << 8) | MAP_THREADMODE) 223*4882a593Smuzhiyun mfcr t2, t0 224*4882a593Smuzhiyun or t2, t2, t1 225*4882a593Smuzhiyun mtcr t2, t0 226*4882a593Smuzhiyun 227*4882a593Smuzhiyun /* 228*4882a593Smuzhiyun * The new hardware thread starts at the next instruction 229*4882a593Smuzhiyun * For all the cases other than core 0 thread 0, we will 230*4882a593Smuzhiyun * jump to the secondary wait function. 231*4882a593Smuzhiyun 232*4882a593Smuzhiyun * NOTE: All GPR contents are lost after the mtcr above! 233*4882a593Smuzhiyun */ 234*4882a593Smuzhiyun mfc0 v0, CP0_EBASE 235*4882a593Smuzhiyun andi v0, 0x3ff /* v0 <- node/core */ 236*4882a593Smuzhiyun 237*4882a593Smuzhiyun /* 238*4882a593Smuzhiyun * Errata: to avoid potential live lock, setup IFU_BRUB_RESERVE 239*4882a593Smuzhiyun * when running 4 threads per core 240*4882a593Smuzhiyun */ 241*4882a593Smuzhiyun andi v1, v0, 0x3 /* v1 <- thread id */ 242*4882a593Smuzhiyun bnez v1, 2f 243*4882a593Smuzhiyun nop 244*4882a593Smuzhiyun 245*4882a593Smuzhiyun /* thread 0 of each core. */ 246*4882a593Smuzhiyun li t0, CKSEG1ADDR(RESET_DATA_PHYS) 247*4882a593Smuzhiyun lw t1, BOOT_THREAD_MODE(t0) /* t1 <- thread mode */ 248*4882a593Smuzhiyun subu t1, 0x3 /* 4-thread per core mode? */ 249*4882a593Smuzhiyun bnez t1, 2f 250*4882a593Smuzhiyun nop 251*4882a593Smuzhiyun 252*4882a593Smuzhiyun li t0, IFU_BRUB_RESERVE 253*4882a593Smuzhiyun li t1, 0x55 254*4882a593Smuzhiyun mtcr t1, t0 255*4882a593Smuzhiyun _ehb 256*4882a593Smuzhiyun2: 257*4882a593Smuzhiyun beqz v0, 4f /* boot cpu (cpuid == 0)? */ 258*4882a593Smuzhiyun nop 259*4882a593Smuzhiyun 260*4882a593Smuzhiyun /* setup status reg */ 261*4882a593Smuzhiyun move t1, zero 262*4882a593Smuzhiyun#ifdef CONFIG_64BIT 263*4882a593Smuzhiyun ori t1, ST0_KX 264*4882a593Smuzhiyun#endif 265*4882a593Smuzhiyun mtc0 t1, CP0_STATUS 266*4882a593Smuzhiyun 267*4882a593Smuzhiyun xlp_early_mmu_init 268*4882a593Smuzhiyun 269*4882a593Smuzhiyun /* mark CPU ready */ 270*4882a593Smuzhiyun li t3, CKSEG1ADDR(RESET_DATA_PHYS) 271*4882a593Smuzhiyun ADDIU t1, t3, BOOT_CPU_READY 272*4882a593Smuzhiyun sll v1, v0, 2 273*4882a593Smuzhiyun PTR_ADDU t1, v1 274*4882a593Smuzhiyun li t2, 1 275*4882a593Smuzhiyun sw t2, 0(t1) 276*4882a593Smuzhiyun /* Wait until NMI hits */ 277*4882a593Smuzhiyun3: wait 278*4882a593Smuzhiyun b 3b 279*4882a593Smuzhiyun nop 280*4882a593Smuzhiyun 281*4882a593Smuzhiyun /* 282*4882a593Smuzhiyun * For the boot CPU, we have to restore ra and sp and return, rest 283*4882a593Smuzhiyun * of the registers will be restored by the caller 284*4882a593Smuzhiyun */ 285*4882a593Smuzhiyun4: 286*4882a593Smuzhiyun dmfc0 ra, $22, 6 287*4882a593Smuzhiyun dmfc0 sp, $22, 7 288*4882a593Smuzhiyun jr ra 289*4882a593Smuzhiyun nop 290*4882a593SmuzhiyunEXPORT(nlm_reset_entry_end) 291*4882a593Smuzhiyun 292*4882a593SmuzhiyunLEAF(nlm_init_boot_cpu) 293*4882a593Smuzhiyun#ifdef CONFIG_CPU_XLP 294*4882a593Smuzhiyun xlp_config_lsu 295*4882a593Smuzhiyun xlp_early_mmu_init 296*4882a593Smuzhiyun#endif 297*4882a593Smuzhiyun jr ra 298*4882a593Smuzhiyun nop 299*4882a593SmuzhiyunEND(nlm_init_boot_cpu) 300