1*4882a593Smuzhiyun| 2*4882a593Smuzhiyun| decbin.sa 3.3 12/19/90 3*4882a593Smuzhiyun| 4*4882a593Smuzhiyun| Description: Converts normalized packed bcd value pointed to by 5*4882a593Smuzhiyun| register A6 to extended-precision value in FP0. 6*4882a593Smuzhiyun| 7*4882a593Smuzhiyun| Input: Normalized packed bcd value in ETEMP(a6). 8*4882a593Smuzhiyun| 9*4882a593Smuzhiyun| Output: Exact floating-point representation of the packed bcd value. 10*4882a593Smuzhiyun| 11*4882a593Smuzhiyun| Saves and Modifies: D2-D5 12*4882a593Smuzhiyun| 13*4882a593Smuzhiyun| Speed: The program decbin takes ??? cycles to execute. 14*4882a593Smuzhiyun| 15*4882a593Smuzhiyun| Object Size: 16*4882a593Smuzhiyun| 17*4882a593Smuzhiyun| External Reference(s): None. 18*4882a593Smuzhiyun| 19*4882a593Smuzhiyun| Algorithm: 20*4882a593Smuzhiyun| Expected is a normal bcd (i.e. non-exceptional; all inf, zero, 21*4882a593Smuzhiyun| and NaN operands are dispatched without entering this routine) 22*4882a593Smuzhiyun| value in 68881/882 format at location ETEMP(A6). 23*4882a593Smuzhiyun| 24*4882a593Smuzhiyun| A1. Convert the bcd exponent to binary by successive adds and muls. 25*4882a593Smuzhiyun| Set the sign according to SE. Subtract 16 to compensate 26*4882a593Smuzhiyun| for the mantissa which is to be interpreted as 17 integer 27*4882a593Smuzhiyun| digits, rather than 1 integer and 16 fraction digits. 28*4882a593Smuzhiyun| Note: this operation can never overflow. 29*4882a593Smuzhiyun| 30*4882a593Smuzhiyun| A2. Convert the bcd mantissa to binary by successive 31*4882a593Smuzhiyun| adds and muls in FP0. Set the sign according to SM. 32*4882a593Smuzhiyun| The mantissa digits will be converted with the decimal point 33*4882a593Smuzhiyun| assumed following the least-significant digit. 34*4882a593Smuzhiyun| Note: this operation can never overflow. 35*4882a593Smuzhiyun| 36*4882a593Smuzhiyun| A3. Count the number of leading/trailing zeros in the 37*4882a593Smuzhiyun| bcd string. If SE is positive, count the leading zeros; 38*4882a593Smuzhiyun| if negative, count the trailing zeros. Set the adjusted 39*4882a593Smuzhiyun| exponent equal to the exponent from A1 and the zero count 40*4882a593Smuzhiyun| added if SM = 1 and subtracted if SM = 0. Scale the 41*4882a593Smuzhiyun| mantissa the equivalent of forcing in the bcd value: 42*4882a593Smuzhiyun| 43*4882a593Smuzhiyun| SM = 0 a non-zero digit in the integer position 44*4882a593Smuzhiyun| SM = 1 a non-zero digit in Mant0, lsd of the fraction 45*4882a593Smuzhiyun| 46*4882a593Smuzhiyun| this will insure that any value, regardless of its 47*4882a593Smuzhiyun| representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted 48*4882a593Smuzhiyun| consistently. 49*4882a593Smuzhiyun| 50*4882a593Smuzhiyun| A4. Calculate the factor 10^exp in FP1 using a table of 51*4882a593Smuzhiyun| 10^(2^n) values. To reduce the error in forming factors 52*4882a593Smuzhiyun| greater than 10^27, a directed rounding scheme is used with 53*4882a593Smuzhiyun| tables rounded to RN, RM, and RP, according to the table 54*4882a593Smuzhiyun| in the comments of the pwrten section. 55*4882a593Smuzhiyun| 56*4882a593Smuzhiyun| A5. Form the final binary number by scaling the mantissa by 57*4882a593Smuzhiyun| the exponent factor. This is done by multiplying the 58*4882a593Smuzhiyun| mantissa in FP0 by the factor in FP1 if the adjusted 59*4882a593Smuzhiyun| exponent sign is positive, and dividing FP0 by FP1 if 60*4882a593Smuzhiyun| it is negative. 61*4882a593Smuzhiyun| 62*4882a593Smuzhiyun| Clean up and return. Check if the final mul or div resulted 63*4882a593Smuzhiyun| in an inex2 exception. If so, set inex1 in the fpsr and 64*4882a593Smuzhiyun| check if the inex1 exception is enabled. If so, set d7 upper 65*4882a593Smuzhiyun| word to $0100. This will signal unimp.sa that an enabled inex1 66*4882a593Smuzhiyun| exception occurred. Unimp will fix the stack. 67*4882a593Smuzhiyun| 68*4882a593Smuzhiyun 69*4882a593Smuzhiyun| Copyright (C) Motorola, Inc. 1990 70*4882a593Smuzhiyun| All Rights Reserved 71*4882a593Smuzhiyun| 72*4882a593Smuzhiyun| For details on the license for this file, please see the 73*4882a593Smuzhiyun| file, README, in this same directory. 74*4882a593Smuzhiyun 75*4882a593Smuzhiyun|DECBIN idnt 2,1 | Motorola 040 Floating Point Software Package 76*4882a593Smuzhiyun 77*4882a593Smuzhiyun |section 8 78*4882a593Smuzhiyun 79*4882a593Smuzhiyun#include "fpsp.h" 80*4882a593Smuzhiyun 81*4882a593Smuzhiyun| 82*4882a593Smuzhiyun| PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded 83*4882a593Smuzhiyun| to nearest, minus, and plus, respectively. The tables include 84*4882a593Smuzhiyun| 10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}. No rounding 85*4882a593Smuzhiyun| is required until the power is greater than 27, however, all 86*4882a593Smuzhiyun| tables include the first 5 for ease of indexing. 87*4882a593Smuzhiyun| 88*4882a593Smuzhiyun |xref PTENRN 89*4882a593Smuzhiyun |xref PTENRM 90*4882a593Smuzhiyun |xref PTENRP 91*4882a593Smuzhiyun 92*4882a593SmuzhiyunRTABLE: .byte 0,0,0,0 93*4882a593Smuzhiyun .byte 2,3,2,3 94*4882a593Smuzhiyun .byte 2,3,3,2 95*4882a593Smuzhiyun .byte 3,2,2,3 96*4882a593Smuzhiyun 97*4882a593Smuzhiyun .global decbin 98*4882a593Smuzhiyun .global calc_e 99*4882a593Smuzhiyun .global pwrten 100*4882a593Smuzhiyun .global calc_m 101*4882a593Smuzhiyun .global norm 102*4882a593Smuzhiyun .global ap_st_z 103*4882a593Smuzhiyun .global ap_st_n 104*4882a593Smuzhiyun| 105*4882a593Smuzhiyun .set FNIBS,7 106*4882a593Smuzhiyun .set FSTRT,0 107*4882a593Smuzhiyun| 108*4882a593Smuzhiyun .set ESTRT,4 109*4882a593Smuzhiyun .set EDIGITS,2 | 110*4882a593Smuzhiyun| 111*4882a593Smuzhiyun| Constants in single precision 112*4882a593SmuzhiyunFZERO: .long 0x00000000 113*4882a593SmuzhiyunFONE: .long 0x3F800000 114*4882a593SmuzhiyunFTEN: .long 0x41200000 115*4882a593Smuzhiyun 116*4882a593Smuzhiyun .set TEN,10 117*4882a593Smuzhiyun 118*4882a593Smuzhiyun| 119*4882a593Smuzhiyundecbin: 120*4882a593Smuzhiyun | fmovel #0,FPCR ;clr real fpcr 121*4882a593Smuzhiyun moveml %d2-%d5,-(%a7) 122*4882a593Smuzhiyun| 123*4882a593Smuzhiyun| Calculate exponent: 124*4882a593Smuzhiyun| 1. Copy bcd value in memory for use as a working copy. 125*4882a593Smuzhiyun| 2. Calculate absolute value of exponent in d1 by mul and add. 126*4882a593Smuzhiyun| 3. Correct for exponent sign. 127*4882a593Smuzhiyun| 4. Subtract 16 to compensate for interpreting the mant as all integer digits. 128*4882a593Smuzhiyun| (i.e., all digits assumed left of the decimal point.) 129*4882a593Smuzhiyun| 130*4882a593Smuzhiyun| Register usage: 131*4882a593Smuzhiyun| 132*4882a593Smuzhiyun| calc_e: 133*4882a593Smuzhiyun| (*) d0: temp digit storage 134*4882a593Smuzhiyun| (*) d1: accumulator for binary exponent 135*4882a593Smuzhiyun| (*) d2: digit count 136*4882a593Smuzhiyun| (*) d3: offset pointer 137*4882a593Smuzhiyun| ( ) d4: first word of bcd 138*4882a593Smuzhiyun| ( ) a0: pointer to working bcd value 139*4882a593Smuzhiyun| ( ) a6: pointer to original bcd value 140*4882a593Smuzhiyun| (*) FP_SCR1: working copy of original bcd value 141*4882a593Smuzhiyun| (*) L_SCR1: copy of original exponent word 142*4882a593Smuzhiyun| 143*4882a593Smuzhiyuncalc_e: 144*4882a593Smuzhiyun movel #EDIGITS,%d2 |# of nibbles (digits) in fraction part 145*4882a593Smuzhiyun moveql #ESTRT,%d3 |counter to pick up digits 146*4882a593Smuzhiyun leal FP_SCR1(%a6),%a0 |load tmp bcd storage address 147*4882a593Smuzhiyun movel ETEMP(%a6),(%a0) |save input bcd value 148*4882a593Smuzhiyun movel ETEMP_HI(%a6),4(%a0) |save words 2 and 3 149*4882a593Smuzhiyun movel ETEMP_LO(%a6),8(%a0) |and work with these 150*4882a593Smuzhiyun movel (%a0),%d4 |get first word of bcd 151*4882a593Smuzhiyun clrl %d1 |zero d1 for accumulator 152*4882a593Smuzhiyune_gd: 153*4882a593Smuzhiyun mulul #TEN,%d1 |mul partial product by one digit place 154*4882a593Smuzhiyun bfextu %d4{%d3:#4},%d0 |get the digit and zero extend into d0 155*4882a593Smuzhiyun addl %d0,%d1 |d1 = d1 + d0 156*4882a593Smuzhiyun addqb #4,%d3 |advance d3 to the next digit 157*4882a593Smuzhiyun dbf %d2,e_gd |if we have used all 3 digits, exit loop 158*4882a593Smuzhiyun btst #30,%d4 |get SE 159*4882a593Smuzhiyun beqs e_pos |don't negate if pos 160*4882a593Smuzhiyun negl %d1 |negate before subtracting 161*4882a593Smuzhiyune_pos: 162*4882a593Smuzhiyun subl #16,%d1 |sub to compensate for shift of mant 163*4882a593Smuzhiyun bges e_save |if still pos, do not neg 164*4882a593Smuzhiyun negl %d1 |now negative, make pos and set SE 165*4882a593Smuzhiyun orl #0x40000000,%d4 |set SE in d4, 166*4882a593Smuzhiyun orl #0x40000000,(%a0) |and in working bcd 167*4882a593Smuzhiyune_save: 168*4882a593Smuzhiyun movel %d1,L_SCR1(%a6) |save exp in memory 169*4882a593Smuzhiyun| 170*4882a593Smuzhiyun| 171*4882a593Smuzhiyun| Calculate mantissa: 172*4882a593Smuzhiyun| 1. Calculate absolute value of mantissa in fp0 by mul and add. 173*4882a593Smuzhiyun| 2. Correct for mantissa sign. 174*4882a593Smuzhiyun| (i.e., all digits assumed left of the decimal point.) 175*4882a593Smuzhiyun| 176*4882a593Smuzhiyun| Register usage: 177*4882a593Smuzhiyun| 178*4882a593Smuzhiyun| calc_m: 179*4882a593Smuzhiyun| (*) d0: temp digit storage 180*4882a593Smuzhiyun| (*) d1: lword counter 181*4882a593Smuzhiyun| (*) d2: digit count 182*4882a593Smuzhiyun| (*) d3: offset pointer 183*4882a593Smuzhiyun| ( ) d4: words 2 and 3 of bcd 184*4882a593Smuzhiyun| ( ) a0: pointer to working bcd value 185*4882a593Smuzhiyun| ( ) a6: pointer to original bcd value 186*4882a593Smuzhiyun| (*) fp0: mantissa accumulator 187*4882a593Smuzhiyun| ( ) FP_SCR1: working copy of original bcd value 188*4882a593Smuzhiyun| ( ) L_SCR1: copy of original exponent word 189*4882a593Smuzhiyun| 190*4882a593Smuzhiyuncalc_m: 191*4882a593Smuzhiyun moveql #1,%d1 |word counter, init to 1 192*4882a593Smuzhiyun fmoves FZERO,%fp0 |accumulator 193*4882a593Smuzhiyun| 194*4882a593Smuzhiyun| 195*4882a593Smuzhiyun| Since the packed number has a long word between the first & second parts, 196*4882a593Smuzhiyun| get the integer digit then skip down & get the rest of the 197*4882a593Smuzhiyun| mantissa. We will unroll the loop once. 198*4882a593Smuzhiyun| 199*4882a593Smuzhiyun bfextu (%a0){#28:#4},%d0 |integer part is ls digit in long word 200*4882a593Smuzhiyun faddb %d0,%fp0 |add digit to sum in fp0 201*4882a593Smuzhiyun| 202*4882a593Smuzhiyun| 203*4882a593Smuzhiyun| Get the rest of the mantissa. 204*4882a593Smuzhiyun| 205*4882a593Smuzhiyunloadlw: 206*4882a593Smuzhiyun movel (%a0,%d1.L*4),%d4 |load mantissa longword into d4 207*4882a593Smuzhiyun moveql #FSTRT,%d3 |counter to pick up digits 208*4882a593Smuzhiyun moveql #FNIBS,%d2 |reset number of digits per a0 ptr 209*4882a593Smuzhiyunmd2b: 210*4882a593Smuzhiyun fmuls FTEN,%fp0 |fp0 = fp0 * 10 211*4882a593Smuzhiyun bfextu %d4{%d3:#4},%d0 |get the digit and zero extend 212*4882a593Smuzhiyun faddb %d0,%fp0 |fp0 = fp0 + digit 213*4882a593Smuzhiyun| 214*4882a593Smuzhiyun| 215*4882a593Smuzhiyun| If all the digits (8) in that long word have been converted (d2=0), 216*4882a593Smuzhiyun| then inc d1 (=2) to point to the next long word and reset d3 to 0 217*4882a593Smuzhiyun| to initialize the digit offset, and set d2 to 7 for the digit count; 218*4882a593Smuzhiyun| else continue with this long word. 219*4882a593Smuzhiyun| 220*4882a593Smuzhiyun addqb #4,%d3 |advance d3 to the next digit 221*4882a593Smuzhiyun dbf %d2,md2b |check for last digit in this lw 222*4882a593Smuzhiyunnextlw: 223*4882a593Smuzhiyun addql #1,%d1 |inc lw pointer in mantissa 224*4882a593Smuzhiyun cmpl #2,%d1 |test for last lw 225*4882a593Smuzhiyun ble loadlw |if not, get last one 226*4882a593Smuzhiyun 227*4882a593Smuzhiyun| 228*4882a593Smuzhiyun| Check the sign of the mant and make the value in fp0 the same sign. 229*4882a593Smuzhiyun| 230*4882a593Smuzhiyunm_sign: 231*4882a593Smuzhiyun btst #31,(%a0) |test sign of the mantissa 232*4882a593Smuzhiyun beq ap_st_z |if clear, go to append/strip zeros 233*4882a593Smuzhiyun fnegx %fp0 |if set, negate fp0 234*4882a593Smuzhiyun 235*4882a593Smuzhiyun| 236*4882a593Smuzhiyun| Append/strip zeros: 237*4882a593Smuzhiyun| 238*4882a593Smuzhiyun| For adjusted exponents which have an absolute value greater than 27*, 239*4882a593Smuzhiyun| this routine calculates the amount needed to normalize the mantissa 240*4882a593Smuzhiyun| for the adjusted exponent. That number is subtracted from the exp 241*4882a593Smuzhiyun| if the exp was positive, and added if it was negative. The purpose 242*4882a593Smuzhiyun| of this is to reduce the value of the exponent and the possibility 243*4882a593Smuzhiyun| of error in calculation of pwrten. 244*4882a593Smuzhiyun| 245*4882a593Smuzhiyun| 1. Branch on the sign of the adjusted exponent. 246*4882a593Smuzhiyun| 2p.(positive exp) 247*4882a593Smuzhiyun| 2. Check M16 and the digits in lwords 2 and 3 in descending order. 248*4882a593Smuzhiyun| 3. Add one for each zero encountered until a non-zero digit. 249*4882a593Smuzhiyun| 4. Subtract the count from the exp. 250*4882a593Smuzhiyun| 5. Check if the exp has crossed zero in #3 above; make the exp abs 251*4882a593Smuzhiyun| and set SE. 252*4882a593Smuzhiyun| 6. Multiply the mantissa by 10**count. 253*4882a593Smuzhiyun| 2n.(negative exp) 254*4882a593Smuzhiyun| 2. Check the digits in lwords 3 and 2 in descending order. 255*4882a593Smuzhiyun| 3. Add one for each zero encountered until a non-zero digit. 256*4882a593Smuzhiyun| 4. Add the count to the exp. 257*4882a593Smuzhiyun| 5. Check if the exp has crossed zero in #3 above; clear SE. 258*4882a593Smuzhiyun| 6. Divide the mantissa by 10**count. 259*4882a593Smuzhiyun| 260*4882a593Smuzhiyun| *Why 27? If the adjusted exponent is within -28 < expA < 28, than 261*4882a593Smuzhiyun| any adjustment due to append/strip zeros will drive the resultant 262*4882a593Smuzhiyun| exponent towards zero. Since all pwrten constants with a power 263*4882a593Smuzhiyun| of 27 or less are exact, there is no need to use this routine to 264*4882a593Smuzhiyun| attempt to lessen the resultant exponent. 265*4882a593Smuzhiyun| 266*4882a593Smuzhiyun| Register usage: 267*4882a593Smuzhiyun| 268*4882a593Smuzhiyun| ap_st_z: 269*4882a593Smuzhiyun| (*) d0: temp digit storage 270*4882a593Smuzhiyun| (*) d1: zero count 271*4882a593Smuzhiyun| (*) d2: digit count 272*4882a593Smuzhiyun| (*) d3: offset pointer 273*4882a593Smuzhiyun| ( ) d4: first word of bcd 274*4882a593Smuzhiyun| (*) d5: lword counter 275*4882a593Smuzhiyun| ( ) a0: pointer to working bcd value 276*4882a593Smuzhiyun| ( ) FP_SCR1: working copy of original bcd value 277*4882a593Smuzhiyun| ( ) L_SCR1: copy of original exponent word 278*4882a593Smuzhiyun| 279*4882a593Smuzhiyun| 280*4882a593Smuzhiyun| First check the absolute value of the exponent to see if this 281*4882a593Smuzhiyun| routine is necessary. If so, then check the sign of the exponent 282*4882a593Smuzhiyun| and do append (+) or strip (-) zeros accordingly. 283*4882a593Smuzhiyun| This section handles a positive adjusted exponent. 284*4882a593Smuzhiyun| 285*4882a593Smuzhiyunap_st_z: 286*4882a593Smuzhiyun movel L_SCR1(%a6),%d1 |load expA for range test 287*4882a593Smuzhiyun cmpl #27,%d1 |test is with 27 288*4882a593Smuzhiyun ble pwrten |if abs(expA) <28, skip ap/st zeros 289*4882a593Smuzhiyun btst #30,(%a0) |check sign of exp 290*4882a593Smuzhiyun bne ap_st_n |if neg, go to neg side 291*4882a593Smuzhiyun clrl %d1 |zero count reg 292*4882a593Smuzhiyun movel (%a0),%d4 |load lword 1 to d4 293*4882a593Smuzhiyun bfextu %d4{#28:#4},%d0 |get M16 in d0 294*4882a593Smuzhiyun bnes ap_p_fx |if M16 is non-zero, go fix exp 295*4882a593Smuzhiyun addql #1,%d1 |inc zero count 296*4882a593Smuzhiyun moveql #1,%d5 |init lword counter 297*4882a593Smuzhiyun movel (%a0,%d5.L*4),%d4 |get lword 2 to d4 298*4882a593Smuzhiyun bnes ap_p_cl |if lw 2 is zero, skip it 299*4882a593Smuzhiyun addql #8,%d1 |and inc count by 8 300*4882a593Smuzhiyun addql #1,%d5 |inc lword counter 301*4882a593Smuzhiyun movel (%a0,%d5.L*4),%d4 |get lword 3 to d4 302*4882a593Smuzhiyunap_p_cl: 303*4882a593Smuzhiyun clrl %d3 |init offset reg 304*4882a593Smuzhiyun moveql #7,%d2 |init digit counter 305*4882a593Smuzhiyunap_p_gd: 306*4882a593Smuzhiyun bfextu %d4{%d3:#4},%d0 |get digit 307*4882a593Smuzhiyun bnes ap_p_fx |if non-zero, go to fix exp 308*4882a593Smuzhiyun addql #4,%d3 |point to next digit 309*4882a593Smuzhiyun addql #1,%d1 |inc digit counter 310*4882a593Smuzhiyun dbf %d2,ap_p_gd |get next digit 311*4882a593Smuzhiyunap_p_fx: 312*4882a593Smuzhiyun movel %d1,%d0 |copy counter to d2 313*4882a593Smuzhiyun movel L_SCR1(%a6),%d1 |get adjusted exp from memory 314*4882a593Smuzhiyun subl %d0,%d1 |subtract count from exp 315*4882a593Smuzhiyun bges ap_p_fm |if still pos, go to pwrten 316*4882a593Smuzhiyun negl %d1 |now its neg; get abs 317*4882a593Smuzhiyun movel (%a0),%d4 |load lword 1 to d4 318*4882a593Smuzhiyun orl #0x40000000,%d4 | and set SE in d4 319*4882a593Smuzhiyun orl #0x40000000,(%a0) | and in memory 320*4882a593Smuzhiyun| 321*4882a593Smuzhiyun| Calculate the mantissa multiplier to compensate for the striping of 322*4882a593Smuzhiyun| zeros from the mantissa. 323*4882a593Smuzhiyun| 324*4882a593Smuzhiyunap_p_fm: 325*4882a593Smuzhiyun movel #PTENRN,%a1 |get address of power-of-ten table 326*4882a593Smuzhiyun clrl %d3 |init table index 327*4882a593Smuzhiyun fmoves FONE,%fp1 |init fp1 to 1 328*4882a593Smuzhiyun moveql #3,%d2 |init d2 to count bits in counter 329*4882a593Smuzhiyunap_p_el: 330*4882a593Smuzhiyun asrl #1,%d0 |shift lsb into carry 331*4882a593Smuzhiyun bccs ap_p_en |if 1, mul fp1 by pwrten factor 332*4882a593Smuzhiyun fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 333*4882a593Smuzhiyunap_p_en: 334*4882a593Smuzhiyun addl #12,%d3 |inc d3 to next rtable entry 335*4882a593Smuzhiyun tstl %d0 |check if d0 is zero 336*4882a593Smuzhiyun bnes ap_p_el |if not, get next bit 337*4882a593Smuzhiyun fmulx %fp1,%fp0 |mul mantissa by 10**(no_bits_shifted) 338*4882a593Smuzhiyun bra pwrten |go calc pwrten 339*4882a593Smuzhiyun| 340*4882a593Smuzhiyun| This section handles a negative adjusted exponent. 341*4882a593Smuzhiyun| 342*4882a593Smuzhiyunap_st_n: 343*4882a593Smuzhiyun clrl %d1 |clr counter 344*4882a593Smuzhiyun moveql #2,%d5 |set up d5 to point to lword 3 345*4882a593Smuzhiyun movel (%a0,%d5.L*4),%d4 |get lword 3 346*4882a593Smuzhiyun bnes ap_n_cl |if not zero, check digits 347*4882a593Smuzhiyun subl #1,%d5 |dec d5 to point to lword 2 348*4882a593Smuzhiyun addql #8,%d1 |inc counter by 8 349*4882a593Smuzhiyun movel (%a0,%d5.L*4),%d4 |get lword 2 350*4882a593Smuzhiyunap_n_cl: 351*4882a593Smuzhiyun movel #28,%d3 |point to last digit 352*4882a593Smuzhiyun moveql #7,%d2 |init digit counter 353*4882a593Smuzhiyunap_n_gd: 354*4882a593Smuzhiyun bfextu %d4{%d3:#4},%d0 |get digit 355*4882a593Smuzhiyun bnes ap_n_fx |if non-zero, go to exp fix 356*4882a593Smuzhiyun subql #4,%d3 |point to previous digit 357*4882a593Smuzhiyun addql #1,%d1 |inc digit counter 358*4882a593Smuzhiyun dbf %d2,ap_n_gd |get next digit 359*4882a593Smuzhiyunap_n_fx: 360*4882a593Smuzhiyun movel %d1,%d0 |copy counter to d0 361*4882a593Smuzhiyun movel L_SCR1(%a6),%d1 |get adjusted exp from memory 362*4882a593Smuzhiyun subl %d0,%d1 |subtract count from exp 363*4882a593Smuzhiyun bgts ap_n_fm |if still pos, go fix mantissa 364*4882a593Smuzhiyun negl %d1 |take abs of exp and clr SE 365*4882a593Smuzhiyun movel (%a0),%d4 |load lword 1 to d4 366*4882a593Smuzhiyun andl #0xbfffffff,%d4 | and clr SE in d4 367*4882a593Smuzhiyun andl #0xbfffffff,(%a0) | and in memory 368*4882a593Smuzhiyun| 369*4882a593Smuzhiyun| Calculate the mantissa multiplier to compensate for the appending of 370*4882a593Smuzhiyun| zeros to the mantissa. 371*4882a593Smuzhiyun| 372*4882a593Smuzhiyunap_n_fm: 373*4882a593Smuzhiyun movel #PTENRN,%a1 |get address of power-of-ten table 374*4882a593Smuzhiyun clrl %d3 |init table index 375*4882a593Smuzhiyun fmoves FONE,%fp1 |init fp1 to 1 376*4882a593Smuzhiyun moveql #3,%d2 |init d2 to count bits in counter 377*4882a593Smuzhiyunap_n_el: 378*4882a593Smuzhiyun asrl #1,%d0 |shift lsb into carry 379*4882a593Smuzhiyun bccs ap_n_en |if 1, mul fp1 by pwrten factor 380*4882a593Smuzhiyun fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 381*4882a593Smuzhiyunap_n_en: 382*4882a593Smuzhiyun addl #12,%d3 |inc d3 to next rtable entry 383*4882a593Smuzhiyun tstl %d0 |check if d0 is zero 384*4882a593Smuzhiyun bnes ap_n_el |if not, get next bit 385*4882a593Smuzhiyun fdivx %fp1,%fp0 |div mantissa by 10**(no_bits_shifted) 386*4882a593Smuzhiyun| 387*4882a593Smuzhiyun| 388*4882a593Smuzhiyun| Calculate power-of-ten factor from adjusted and shifted exponent. 389*4882a593Smuzhiyun| 390*4882a593Smuzhiyun| Register usage: 391*4882a593Smuzhiyun| 392*4882a593Smuzhiyun| pwrten: 393*4882a593Smuzhiyun| (*) d0: temp 394*4882a593Smuzhiyun| ( ) d1: exponent 395*4882a593Smuzhiyun| (*) d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp 396*4882a593Smuzhiyun| (*) d3: FPCR work copy 397*4882a593Smuzhiyun| ( ) d4: first word of bcd 398*4882a593Smuzhiyun| (*) a1: RTABLE pointer 399*4882a593Smuzhiyun| calc_p: 400*4882a593Smuzhiyun| (*) d0: temp 401*4882a593Smuzhiyun| ( ) d1: exponent 402*4882a593Smuzhiyun| (*) d3: PWRTxx table index 403*4882a593Smuzhiyun| ( ) a0: pointer to working copy of bcd 404*4882a593Smuzhiyun| (*) a1: PWRTxx pointer 405*4882a593Smuzhiyun| (*) fp1: power-of-ten accumulator 406*4882a593Smuzhiyun| 407*4882a593Smuzhiyun| Pwrten calculates the exponent factor in the selected rounding mode 408*4882a593Smuzhiyun| according to the following table: 409*4882a593Smuzhiyun| 410*4882a593Smuzhiyun| Sign of Mant Sign of Exp Rounding Mode PWRTEN Rounding Mode 411*4882a593Smuzhiyun| 412*4882a593Smuzhiyun| ANY ANY RN RN 413*4882a593Smuzhiyun| 414*4882a593Smuzhiyun| + + RP RP 415*4882a593Smuzhiyun| - + RP RM 416*4882a593Smuzhiyun| + - RP RM 417*4882a593Smuzhiyun| - - RP RP 418*4882a593Smuzhiyun| 419*4882a593Smuzhiyun| + + RM RM 420*4882a593Smuzhiyun| - + RM RP 421*4882a593Smuzhiyun| + - RM RP 422*4882a593Smuzhiyun| - - RM RM 423*4882a593Smuzhiyun| 424*4882a593Smuzhiyun| + + RZ RM 425*4882a593Smuzhiyun| - + RZ RM 426*4882a593Smuzhiyun| + - RZ RP 427*4882a593Smuzhiyun| - - RZ RP 428*4882a593Smuzhiyun| 429*4882a593Smuzhiyun| 430*4882a593Smuzhiyunpwrten: 431*4882a593Smuzhiyun movel USER_FPCR(%a6),%d3 |get user's FPCR 432*4882a593Smuzhiyun bfextu %d3{#26:#2},%d2 |isolate rounding mode bits 433*4882a593Smuzhiyun movel (%a0),%d4 |reload 1st bcd word to d4 434*4882a593Smuzhiyun asll #2,%d2 |format d2 to be 435*4882a593Smuzhiyun bfextu %d4{#0:#2},%d0 | {FPCR[6],FPCR[5],SM,SE} 436*4882a593Smuzhiyun addl %d0,%d2 |in d2 as index into RTABLE 437*4882a593Smuzhiyun leal RTABLE,%a1 |load rtable base 438*4882a593Smuzhiyun moveb (%a1,%d2),%d0 |load new rounding bits from table 439*4882a593Smuzhiyun clrl %d3 |clear d3 to force no exc and extended 440*4882a593Smuzhiyun bfins %d0,%d3{#26:#2} |stuff new rounding bits in FPCR 441*4882a593Smuzhiyun fmovel %d3,%FPCR |write new FPCR 442*4882a593Smuzhiyun asrl #1,%d0 |write correct PTENxx table 443*4882a593Smuzhiyun bccs not_rp |to a1 444*4882a593Smuzhiyun leal PTENRP,%a1 |it is RP 445*4882a593Smuzhiyun bras calc_p |go to init section 446*4882a593Smuzhiyunnot_rp: 447*4882a593Smuzhiyun asrl #1,%d0 |keep checking 448*4882a593Smuzhiyun bccs not_rm 449*4882a593Smuzhiyun leal PTENRM,%a1 |it is RM 450*4882a593Smuzhiyun bras calc_p |go to init section 451*4882a593Smuzhiyunnot_rm: 452*4882a593Smuzhiyun leal PTENRN,%a1 |it is RN 453*4882a593Smuzhiyuncalc_p: 454*4882a593Smuzhiyun movel %d1,%d0 |copy exp to d0;use d0 455*4882a593Smuzhiyun bpls no_neg |if exp is negative, 456*4882a593Smuzhiyun negl %d0 |invert it 457*4882a593Smuzhiyun orl #0x40000000,(%a0) |and set SE bit 458*4882a593Smuzhiyunno_neg: 459*4882a593Smuzhiyun clrl %d3 |table index 460*4882a593Smuzhiyun fmoves FONE,%fp1 |init fp1 to 1 461*4882a593Smuzhiyune_loop: 462*4882a593Smuzhiyun asrl #1,%d0 |shift next bit into carry 463*4882a593Smuzhiyun bccs e_next |if zero, skip the mul 464*4882a593Smuzhiyun fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 465*4882a593Smuzhiyune_next: 466*4882a593Smuzhiyun addl #12,%d3 |inc d3 to next rtable entry 467*4882a593Smuzhiyun tstl %d0 |check if d0 is zero 468*4882a593Smuzhiyun bnes e_loop |not zero, continue shifting 469*4882a593Smuzhiyun| 470*4882a593Smuzhiyun| 471*4882a593Smuzhiyun| Check the sign of the adjusted exp and make the value in fp0 the 472*4882a593Smuzhiyun| same sign. If the exp was pos then multiply fp1*fp0; 473*4882a593Smuzhiyun| else divide fp0/fp1. 474*4882a593Smuzhiyun| 475*4882a593Smuzhiyun| Register Usage: 476*4882a593Smuzhiyun| norm: 477*4882a593Smuzhiyun| ( ) a0: pointer to working bcd value 478*4882a593Smuzhiyun| (*) fp0: mantissa accumulator 479*4882a593Smuzhiyun| ( ) fp1: scaling factor - 10**(abs(exp)) 480*4882a593Smuzhiyun| 481*4882a593Smuzhiyunnorm: 482*4882a593Smuzhiyun btst #30,(%a0) |test the sign of the exponent 483*4882a593Smuzhiyun beqs mul |if clear, go to multiply 484*4882a593Smuzhiyundiv: 485*4882a593Smuzhiyun fdivx %fp1,%fp0 |exp is negative, so divide mant by exp 486*4882a593Smuzhiyun bras end_dec 487*4882a593Smuzhiyunmul: 488*4882a593Smuzhiyun fmulx %fp1,%fp0 |exp is positive, so multiply by exp 489*4882a593Smuzhiyun| 490*4882a593Smuzhiyun| 491*4882a593Smuzhiyun| Clean up and return with result in fp0. 492*4882a593Smuzhiyun| 493*4882a593Smuzhiyun| If the final mul/div in decbin incurred an inex exception, 494*4882a593Smuzhiyun| it will be inex2, but will be reported as inex1 by get_op. 495*4882a593Smuzhiyun| 496*4882a593Smuzhiyunend_dec: 497*4882a593Smuzhiyun fmovel %FPSR,%d0 |get status register 498*4882a593Smuzhiyun bclrl #inex2_bit+8,%d0 |test for inex2 and clear it 499*4882a593Smuzhiyun fmovel %d0,%FPSR |return status reg w/o inex2 500*4882a593Smuzhiyun beqs no_exc |skip this if no exc 501*4882a593Smuzhiyun orl #inx1a_mask,USER_FPSR(%a6) |set inex1/ainex 502*4882a593Smuzhiyunno_exc: 503*4882a593Smuzhiyun moveml (%a7)+,%d2-%d5 504*4882a593Smuzhiyun rts 505*4882a593Smuzhiyun |end 506