1*4882a593Smuzhiyun| 2*4882a593Smuzhiyun| bindec.sa 3.4 1/3/91 3*4882a593Smuzhiyun| 4*4882a593Smuzhiyun| bindec 5*4882a593Smuzhiyun| 6*4882a593Smuzhiyun| Description: 7*4882a593Smuzhiyun| Converts an input in extended precision format 8*4882a593Smuzhiyun| to bcd format. 9*4882a593Smuzhiyun| 10*4882a593Smuzhiyun| Input: 11*4882a593Smuzhiyun| a0 points to the input extended precision value 12*4882a593Smuzhiyun| value in memory; d0 contains the k-factor sign-extended 13*4882a593Smuzhiyun| to 32-bits. The input may be either normalized, 14*4882a593Smuzhiyun| unnormalized, or denormalized. 15*4882a593Smuzhiyun| 16*4882a593Smuzhiyun| Output: result in the FP_SCR1 space on the stack. 17*4882a593Smuzhiyun| 18*4882a593Smuzhiyun| Saves and Modifies: D2-D7,A2,FP2 19*4882a593Smuzhiyun| 20*4882a593Smuzhiyun| Algorithm: 21*4882a593Smuzhiyun| 22*4882a593Smuzhiyun| A1. Set RM and size ext; Set SIGMA = sign of input. 23*4882a593Smuzhiyun| The k-factor is saved for use in d7. Clear the 24*4882a593Smuzhiyun| BINDEC_FLG for separating normalized/denormalized 25*4882a593Smuzhiyun| input. If input is unnormalized or denormalized, 26*4882a593Smuzhiyun| normalize it. 27*4882a593Smuzhiyun| 28*4882a593Smuzhiyun| A2. Set X = abs(input). 29*4882a593Smuzhiyun| 30*4882a593Smuzhiyun| A3. Compute ILOG. 31*4882a593Smuzhiyun| ILOG is the log base 10 of the input value. It is 32*4882a593Smuzhiyun| approximated by adding e + 0.f when the original 33*4882a593Smuzhiyun| value is viewed as 2^^e * 1.f in extended precision. 34*4882a593Smuzhiyun| This value is stored in d6. 35*4882a593Smuzhiyun| 36*4882a593Smuzhiyun| A4. Clr INEX bit. 37*4882a593Smuzhiyun| The operation in A3 above may have set INEX2. 38*4882a593Smuzhiyun| 39*4882a593Smuzhiyun| A5. Set ICTR = 0; 40*4882a593Smuzhiyun| ICTR is a flag used in A13. It must be set before the 41*4882a593Smuzhiyun| loop entry A6. 42*4882a593Smuzhiyun| 43*4882a593Smuzhiyun| A6. Calculate LEN. 44*4882a593Smuzhiyun| LEN is the number of digits to be displayed. The 45*4882a593Smuzhiyun| k-factor can dictate either the total number of digits, 46*4882a593Smuzhiyun| if it is a positive number, or the number of digits 47*4882a593Smuzhiyun| after the decimal point which are to be included as 48*4882a593Smuzhiyun| significant. See the 68882 manual for examples. 49*4882a593Smuzhiyun| If LEN is computed to be greater than 17, set OPERR in 50*4882a593Smuzhiyun| USER_FPSR. LEN is stored in d4. 51*4882a593Smuzhiyun| 52*4882a593Smuzhiyun| A7. Calculate SCALE. 53*4882a593Smuzhiyun| SCALE is equal to 10^ISCALE, where ISCALE is the number 54*4882a593Smuzhiyun| of decimal places needed to insure LEN integer digits 55*4882a593Smuzhiyun| in the output before conversion to bcd. LAMBDA is the 56*4882a593Smuzhiyun| sign of ISCALE, used in A9. Fp1 contains 57*4882a593Smuzhiyun| 10^^(abs(ISCALE)) using a rounding mode which is a 58*4882a593Smuzhiyun| function of the original rounding mode and the signs 59*4882a593Smuzhiyun| of ISCALE and X. A table is given in the code. 60*4882a593Smuzhiyun| 61*4882a593Smuzhiyun| A8. Clr INEX; Force RZ. 62*4882a593Smuzhiyun| The operation in A3 above may have set INEX2. 63*4882a593Smuzhiyun| RZ mode is forced for the scaling operation to insure 64*4882a593Smuzhiyun| only one rounding error. The grs bits are collected in 65*4882a593Smuzhiyun| the INEX flag for use in A10. 66*4882a593Smuzhiyun| 67*4882a593Smuzhiyun| A9. Scale X -> Y. 68*4882a593Smuzhiyun| The mantissa is scaled to the desired number of 69*4882a593Smuzhiyun| significant digits. The excess digits are collected 70*4882a593Smuzhiyun| in INEX2. 71*4882a593Smuzhiyun| 72*4882a593Smuzhiyun| A10. Or in INEX. 73*4882a593Smuzhiyun| If INEX is set, round error occurred. This is 74*4882a593Smuzhiyun| compensated for by 'or-ing' in the INEX2 flag to 75*4882a593Smuzhiyun| the lsb of Y. 76*4882a593Smuzhiyun| 77*4882a593Smuzhiyun| A11. Restore original FPCR; set size ext. 78*4882a593Smuzhiyun| Perform FINT operation in the user's rounding mode. 79*4882a593Smuzhiyun| Keep the size to extended. 80*4882a593Smuzhiyun| 81*4882a593Smuzhiyun| A12. Calculate YINT = FINT(Y) according to user's rounding 82*4882a593Smuzhiyun| mode. The FPSP routine sintd0 is used. The output 83*4882a593Smuzhiyun| is in fp0. 84*4882a593Smuzhiyun| 85*4882a593Smuzhiyun| A13. Check for LEN digits. 86*4882a593Smuzhiyun| If the int operation results in more than LEN digits, 87*4882a593Smuzhiyun| or less than LEN -1 digits, adjust ILOG and repeat from 88*4882a593Smuzhiyun| A6. This test occurs only on the first pass. If the 89*4882a593Smuzhiyun| result is exactly 10^LEN, decrement ILOG and divide 90*4882a593Smuzhiyun| the mantissa by 10. 91*4882a593Smuzhiyun| 92*4882a593Smuzhiyun| A14. Convert the mantissa to bcd. 93*4882a593Smuzhiyun| The binstr routine is used to convert the LEN digit 94*4882a593Smuzhiyun| mantissa to bcd in memory. The input to binstr is 95*4882a593Smuzhiyun| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 96*4882a593Smuzhiyun| such that the decimal point is to the left of bit 63. 97*4882a593Smuzhiyun| The bcd digits are stored in the correct position in 98*4882a593Smuzhiyun| the final string area in memory. 99*4882a593Smuzhiyun| 100*4882a593Smuzhiyun| A15. Convert the exponent to bcd. 101*4882a593Smuzhiyun| As in A14 above, the exp is converted to bcd and the 102*4882a593Smuzhiyun| digits are stored in the final string. 103*4882a593Smuzhiyun| Test the length of the final exponent string. If the 104*4882a593Smuzhiyun| length is 4, set operr. 105*4882a593Smuzhiyun| 106*4882a593Smuzhiyun| A16. Write sign bits to final string. 107*4882a593Smuzhiyun| 108*4882a593Smuzhiyun| Implementation Notes: 109*4882a593Smuzhiyun| 110*4882a593Smuzhiyun| The registers are used as follows: 111*4882a593Smuzhiyun| 112*4882a593Smuzhiyun| d0: scratch; LEN input to binstr 113*4882a593Smuzhiyun| d1: scratch 114*4882a593Smuzhiyun| d2: upper 32-bits of mantissa for binstr 115*4882a593Smuzhiyun| d3: scratch;lower 32-bits of mantissa for binstr 116*4882a593Smuzhiyun| d4: LEN 117*4882a593Smuzhiyun| d5: LAMBDA/ICTR 118*4882a593Smuzhiyun| d6: ILOG 119*4882a593Smuzhiyun| d7: k-factor 120*4882a593Smuzhiyun| a0: ptr for original operand/final result 121*4882a593Smuzhiyun| a1: scratch pointer 122*4882a593Smuzhiyun| a2: pointer to FP_X; abs(original value) in ext 123*4882a593Smuzhiyun| fp0: scratch 124*4882a593Smuzhiyun| fp1: scratch 125*4882a593Smuzhiyun| fp2: scratch 126*4882a593Smuzhiyun| F_SCR1: 127*4882a593Smuzhiyun| F_SCR2: 128*4882a593Smuzhiyun| L_SCR1: 129*4882a593Smuzhiyun| L_SCR2: 130*4882a593Smuzhiyun 131*4882a593Smuzhiyun| Copyright (C) Motorola, Inc. 1990 132*4882a593Smuzhiyun| All Rights Reserved 133*4882a593Smuzhiyun| 134*4882a593Smuzhiyun| For details on the license for this file, please see the 135*4882a593Smuzhiyun| file, README, in this same directory. 136*4882a593Smuzhiyun 137*4882a593Smuzhiyun|BINDEC idnt 2,1 | Motorola 040 Floating Point Software Package 138*4882a593Smuzhiyun 139*4882a593Smuzhiyun#include "fpsp.h" 140*4882a593Smuzhiyun 141*4882a593Smuzhiyun |section 8 142*4882a593Smuzhiyun 143*4882a593Smuzhiyun| Constants in extended precision 144*4882a593SmuzhiyunLOG2: .long 0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000 145*4882a593SmuzhiyunLOG2UP1: .long 0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000 146*4882a593Smuzhiyun 147*4882a593Smuzhiyun| Constants in single precision 148*4882a593SmuzhiyunFONE: .long 0x3F800000,0x00000000,0x00000000,0x00000000 149*4882a593SmuzhiyunFTWO: .long 0x40000000,0x00000000,0x00000000,0x00000000 150*4882a593SmuzhiyunFTEN: .long 0x41200000,0x00000000,0x00000000,0x00000000 151*4882a593SmuzhiyunF4933: .long 0x459A2800,0x00000000,0x00000000,0x00000000 152*4882a593Smuzhiyun 153*4882a593SmuzhiyunRBDTBL: .byte 0,0,0,0 154*4882a593Smuzhiyun .byte 3,3,2,2 155*4882a593Smuzhiyun .byte 3,2,2,3 156*4882a593Smuzhiyun .byte 2,3,3,2 157*4882a593Smuzhiyun 158*4882a593Smuzhiyun |xref binstr 159*4882a593Smuzhiyun |xref sintdo 160*4882a593Smuzhiyun |xref ptenrn,ptenrm,ptenrp 161*4882a593Smuzhiyun 162*4882a593Smuzhiyun .global bindec 163*4882a593Smuzhiyun .global sc_mul 164*4882a593Smuzhiyunbindec: 165*4882a593Smuzhiyun moveml %d2-%d7/%a2,-(%a7) 166*4882a593Smuzhiyun fmovemx %fp0-%fp2,-(%a7) 167*4882a593Smuzhiyun 168*4882a593Smuzhiyun| A1. Set RM and size ext. Set SIGMA = sign input; 169*4882a593Smuzhiyun| The k-factor is saved for use in d7. Clear BINDEC_FLG for 170*4882a593Smuzhiyun| separating normalized/denormalized input. If the input 171*4882a593Smuzhiyun| is a denormalized number, set the BINDEC_FLG memory word 172*4882a593Smuzhiyun| to signal denorm. If the input is unnormalized, normalize 173*4882a593Smuzhiyun| the input and test for denormalized result. 174*4882a593Smuzhiyun| 175*4882a593Smuzhiyun fmovel #rm_mode,%FPCR |set RM and ext 176*4882a593Smuzhiyun movel (%a0),L_SCR2(%a6) |save exponent for sign check 177*4882a593Smuzhiyun movel %d0,%d7 |move k-factor to d7 178*4882a593Smuzhiyun clrb BINDEC_FLG(%a6) |clr norm/denorm flag 179*4882a593Smuzhiyun movew STAG(%a6),%d0 |get stag 180*4882a593Smuzhiyun andiw #0xe000,%d0 |isolate stag bits 181*4882a593Smuzhiyun beq A2_str |if zero, input is norm 182*4882a593Smuzhiyun| 183*4882a593Smuzhiyun| Normalize the denorm 184*4882a593Smuzhiyun| 185*4882a593Smuzhiyunun_de_norm: 186*4882a593Smuzhiyun movew (%a0),%d0 187*4882a593Smuzhiyun andiw #0x7fff,%d0 |strip sign of normalized exp 188*4882a593Smuzhiyun movel 4(%a0),%d1 189*4882a593Smuzhiyun movel 8(%a0),%d2 190*4882a593Smuzhiyunnorm_loop: 191*4882a593Smuzhiyun subw #1,%d0 192*4882a593Smuzhiyun lsll #1,%d2 193*4882a593Smuzhiyun roxll #1,%d1 194*4882a593Smuzhiyun tstl %d1 195*4882a593Smuzhiyun bges norm_loop 196*4882a593Smuzhiyun| 197*4882a593Smuzhiyun| Test if the normalized input is denormalized 198*4882a593Smuzhiyun| 199*4882a593Smuzhiyun tstw %d0 200*4882a593Smuzhiyun bgts pos_exp |if greater than zero, it is a norm 201*4882a593Smuzhiyun st BINDEC_FLG(%a6) |set flag for denorm 202*4882a593Smuzhiyunpos_exp: 203*4882a593Smuzhiyun andiw #0x7fff,%d0 |strip sign of normalized exp 204*4882a593Smuzhiyun movew %d0,(%a0) 205*4882a593Smuzhiyun movel %d1,4(%a0) 206*4882a593Smuzhiyun movel %d2,8(%a0) 207*4882a593Smuzhiyun 208*4882a593Smuzhiyun| A2. Set X = abs(input). 209*4882a593Smuzhiyun| 210*4882a593SmuzhiyunA2_str: 211*4882a593Smuzhiyun movel (%a0),FP_SCR2(%a6) | move input to work space 212*4882a593Smuzhiyun movel 4(%a0),FP_SCR2+4(%a6) | move input to work space 213*4882a593Smuzhiyun movel 8(%a0),FP_SCR2+8(%a6) | move input to work space 214*4882a593Smuzhiyun andil #0x7fffffff,FP_SCR2(%a6) |create abs(X) 215*4882a593Smuzhiyun 216*4882a593Smuzhiyun| A3. Compute ILOG. 217*4882a593Smuzhiyun| ILOG is the log base 10 of the input value. It is approx- 218*4882a593Smuzhiyun| imated by adding e + 0.f when the original value is viewed 219*4882a593Smuzhiyun| as 2^^e * 1.f in extended precision. This value is stored 220*4882a593Smuzhiyun| in d6. 221*4882a593Smuzhiyun| 222*4882a593Smuzhiyun| Register usage: 223*4882a593Smuzhiyun| Input/Output 224*4882a593Smuzhiyun| d0: k-factor/exponent 225*4882a593Smuzhiyun| d2: x/x 226*4882a593Smuzhiyun| d3: x/x 227*4882a593Smuzhiyun| d4: x/x 228*4882a593Smuzhiyun| d5: x/x 229*4882a593Smuzhiyun| d6: x/ILOG 230*4882a593Smuzhiyun| d7: k-factor/Unchanged 231*4882a593Smuzhiyun| a0: ptr for original operand/final result 232*4882a593Smuzhiyun| a1: x/x 233*4882a593Smuzhiyun| a2: x/x 234*4882a593Smuzhiyun| fp0: x/float(ILOG) 235*4882a593Smuzhiyun| fp1: x/x 236*4882a593Smuzhiyun| fp2: x/x 237*4882a593Smuzhiyun| F_SCR1:x/x 238*4882a593Smuzhiyun| F_SCR2:Abs(X)/Abs(X) with $3fff exponent 239*4882a593Smuzhiyun| L_SCR1:x/x 240*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 241*4882a593Smuzhiyun 242*4882a593Smuzhiyun tstb BINDEC_FLG(%a6) |check for denorm 243*4882a593Smuzhiyun beqs A3_cont |if clr, continue with norm 244*4882a593Smuzhiyun movel #-4933,%d6 |force ILOG = -4933 245*4882a593Smuzhiyun bras A4_str 246*4882a593SmuzhiyunA3_cont: 247*4882a593Smuzhiyun movew FP_SCR2(%a6),%d0 |move exp to d0 248*4882a593Smuzhiyun movew #0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff 249*4882a593Smuzhiyun fmovex FP_SCR2(%a6),%fp0 |now fp0 has 1.f 250*4882a593Smuzhiyun subw #0x3fff,%d0 |strip off bias 251*4882a593Smuzhiyun faddw %d0,%fp0 |add in exp 252*4882a593Smuzhiyun fsubs FONE,%fp0 |subtract off 1.0 253*4882a593Smuzhiyun fbge pos_res |if pos, branch 254*4882a593Smuzhiyun fmulx LOG2UP1,%fp0 |if neg, mul by LOG2UP1 255*4882a593Smuzhiyun fmovel %fp0,%d6 |put ILOG in d6 as a lword 256*4882a593Smuzhiyun bras A4_str |go move out ILOG 257*4882a593Smuzhiyunpos_res: 258*4882a593Smuzhiyun fmulx LOG2,%fp0 |if pos, mul by LOG2 259*4882a593Smuzhiyun fmovel %fp0,%d6 |put ILOG in d6 as a lword 260*4882a593Smuzhiyun 261*4882a593Smuzhiyun 262*4882a593Smuzhiyun| A4. Clr INEX bit. 263*4882a593Smuzhiyun| The operation in A3 above may have set INEX2. 264*4882a593Smuzhiyun 265*4882a593SmuzhiyunA4_str: 266*4882a593Smuzhiyun fmovel #0,%FPSR |zero all of fpsr - nothing needed 267*4882a593Smuzhiyun 268*4882a593Smuzhiyun 269*4882a593Smuzhiyun| A5. Set ICTR = 0; 270*4882a593Smuzhiyun| ICTR is a flag used in A13. It must be set before the 271*4882a593Smuzhiyun| loop entry A6. The lower word of d5 is used for ICTR. 272*4882a593Smuzhiyun 273*4882a593Smuzhiyun clrw %d5 |clear ICTR 274*4882a593Smuzhiyun 275*4882a593Smuzhiyun 276*4882a593Smuzhiyun| A6. Calculate LEN. 277*4882a593Smuzhiyun| LEN is the number of digits to be displayed. The k-factor 278*4882a593Smuzhiyun| can dictate either the total number of digits, if it is 279*4882a593Smuzhiyun| a positive number, or the number of digits after the 280*4882a593Smuzhiyun| original decimal point which are to be included as 281*4882a593Smuzhiyun| significant. See the 68882 manual for examples. 282*4882a593Smuzhiyun| If LEN is computed to be greater than 17, set OPERR in 283*4882a593Smuzhiyun| USER_FPSR. LEN is stored in d4. 284*4882a593Smuzhiyun| 285*4882a593Smuzhiyun| Register usage: 286*4882a593Smuzhiyun| Input/Output 287*4882a593Smuzhiyun| d0: exponent/Unchanged 288*4882a593Smuzhiyun| d2: x/x/scratch 289*4882a593Smuzhiyun| d3: x/x 290*4882a593Smuzhiyun| d4: exc picture/LEN 291*4882a593Smuzhiyun| d5: ICTR/Unchanged 292*4882a593Smuzhiyun| d6: ILOG/Unchanged 293*4882a593Smuzhiyun| d7: k-factor/Unchanged 294*4882a593Smuzhiyun| a0: ptr for original operand/final result 295*4882a593Smuzhiyun| a1: x/x 296*4882a593Smuzhiyun| a2: x/x 297*4882a593Smuzhiyun| fp0: float(ILOG)/Unchanged 298*4882a593Smuzhiyun| fp1: x/x 299*4882a593Smuzhiyun| fp2: x/x 300*4882a593Smuzhiyun| F_SCR1:x/x 301*4882a593Smuzhiyun| F_SCR2:Abs(X) with $3fff exponent/Unchanged 302*4882a593Smuzhiyun| L_SCR1:x/x 303*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 304*4882a593Smuzhiyun 305*4882a593SmuzhiyunA6_str: 306*4882a593Smuzhiyun tstl %d7 |branch on sign of k 307*4882a593Smuzhiyun bles k_neg |if k <= 0, LEN = ILOG + 1 - k 308*4882a593Smuzhiyun movel %d7,%d4 |if k > 0, LEN = k 309*4882a593Smuzhiyun bras len_ck |skip to LEN check 310*4882a593Smuzhiyunk_neg: 311*4882a593Smuzhiyun movel %d6,%d4 |first load ILOG to d4 312*4882a593Smuzhiyun subl %d7,%d4 |subtract off k 313*4882a593Smuzhiyun addql #1,%d4 |add in the 1 314*4882a593Smuzhiyunlen_ck: 315*4882a593Smuzhiyun tstl %d4 |LEN check: branch on sign of LEN 316*4882a593Smuzhiyun bles LEN_ng |if neg, set LEN = 1 317*4882a593Smuzhiyun cmpl #17,%d4 |test if LEN > 17 318*4882a593Smuzhiyun bles A7_str |if not, forget it 319*4882a593Smuzhiyun movel #17,%d4 |set max LEN = 17 320*4882a593Smuzhiyun tstl %d7 |if negative, never set OPERR 321*4882a593Smuzhiyun bles A7_str |if positive, continue 322*4882a593Smuzhiyun orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 323*4882a593Smuzhiyun bras A7_str |finished here 324*4882a593SmuzhiyunLEN_ng: 325*4882a593Smuzhiyun moveql #1,%d4 |min LEN is 1 326*4882a593Smuzhiyun 327*4882a593Smuzhiyun 328*4882a593Smuzhiyun| A7. Calculate SCALE. 329*4882a593Smuzhiyun| SCALE is equal to 10^ISCALE, where ISCALE is the number 330*4882a593Smuzhiyun| of decimal places needed to insure LEN integer digits 331*4882a593Smuzhiyun| in the output before conversion to bcd. LAMBDA is the sign 332*4882a593Smuzhiyun| of ISCALE, used in A9. Fp1 contains 10^^(abs(ISCALE)) using 333*4882a593Smuzhiyun| the rounding mode as given in the following table (see 334*4882a593Smuzhiyun| Coonen, p. 7.23 as ref.; however, the SCALE variable is 335*4882a593Smuzhiyun| of opposite sign in bindec.sa from Coonen). 336*4882a593Smuzhiyun| 337*4882a593Smuzhiyun| Initial USE 338*4882a593Smuzhiyun| FPCR[6:5] LAMBDA SIGN(X) FPCR[6:5] 339*4882a593Smuzhiyun| ---------------------------------------------- 340*4882a593Smuzhiyun| RN 00 0 0 00/0 RN 341*4882a593Smuzhiyun| RN 00 0 1 00/0 RN 342*4882a593Smuzhiyun| RN 00 1 0 00/0 RN 343*4882a593Smuzhiyun| RN 00 1 1 00/0 RN 344*4882a593Smuzhiyun| RZ 01 0 0 11/3 RP 345*4882a593Smuzhiyun| RZ 01 0 1 11/3 RP 346*4882a593Smuzhiyun| RZ 01 1 0 10/2 RM 347*4882a593Smuzhiyun| RZ 01 1 1 10/2 RM 348*4882a593Smuzhiyun| RM 10 0 0 11/3 RP 349*4882a593Smuzhiyun| RM 10 0 1 10/2 RM 350*4882a593Smuzhiyun| RM 10 1 0 10/2 RM 351*4882a593Smuzhiyun| RM 10 1 1 11/3 RP 352*4882a593Smuzhiyun| RP 11 0 0 10/2 RM 353*4882a593Smuzhiyun| RP 11 0 1 11/3 RP 354*4882a593Smuzhiyun| RP 11 1 0 11/3 RP 355*4882a593Smuzhiyun| RP 11 1 1 10/2 RM 356*4882a593Smuzhiyun| 357*4882a593Smuzhiyun| Register usage: 358*4882a593Smuzhiyun| Input/Output 359*4882a593Smuzhiyun| d0: exponent/scratch - final is 0 360*4882a593Smuzhiyun| d2: x/0 or 24 for A9 361*4882a593Smuzhiyun| d3: x/scratch - offset ptr into PTENRM array 362*4882a593Smuzhiyun| d4: LEN/Unchanged 363*4882a593Smuzhiyun| d5: 0/ICTR:LAMBDA 364*4882a593Smuzhiyun| d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k)) 365*4882a593Smuzhiyun| d7: k-factor/Unchanged 366*4882a593Smuzhiyun| a0: ptr for original operand/final result 367*4882a593Smuzhiyun| a1: x/ptr to PTENRM array 368*4882a593Smuzhiyun| a2: x/x 369*4882a593Smuzhiyun| fp0: float(ILOG)/Unchanged 370*4882a593Smuzhiyun| fp1: x/10^ISCALE 371*4882a593Smuzhiyun| fp2: x/x 372*4882a593Smuzhiyun| F_SCR1:x/x 373*4882a593Smuzhiyun| F_SCR2:Abs(X) with $3fff exponent/Unchanged 374*4882a593Smuzhiyun| L_SCR1:x/x 375*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 376*4882a593Smuzhiyun 377*4882a593SmuzhiyunA7_str: 378*4882a593Smuzhiyun tstl %d7 |test sign of k 379*4882a593Smuzhiyun bgts k_pos |if pos and > 0, skip this 380*4882a593Smuzhiyun cmpl %d6,%d7 |test k - ILOG 381*4882a593Smuzhiyun blts k_pos |if ILOG >= k, skip this 382*4882a593Smuzhiyun movel %d7,%d6 |if ((k<0) & (ILOG < k)) ILOG = k 383*4882a593Smuzhiyunk_pos: 384*4882a593Smuzhiyun movel %d6,%d0 |calc ILOG + 1 - LEN in d0 385*4882a593Smuzhiyun addql #1,%d0 |add the 1 386*4882a593Smuzhiyun subl %d4,%d0 |sub off LEN 387*4882a593Smuzhiyun swap %d5 |use upper word of d5 for LAMBDA 388*4882a593Smuzhiyun clrw %d5 |set it zero initially 389*4882a593Smuzhiyun clrw %d2 |set up d2 for very small case 390*4882a593Smuzhiyun tstl %d0 |test sign of ISCALE 391*4882a593Smuzhiyun bges iscale |if pos, skip next inst 392*4882a593Smuzhiyun addqw #1,%d5 |if neg, set LAMBDA true 393*4882a593Smuzhiyun cmpl #0xffffecd4,%d0 |test iscale <= -4908 394*4882a593Smuzhiyun bgts no_inf |if false, skip rest 395*4882a593Smuzhiyun addil #24,%d0 |add in 24 to iscale 396*4882a593Smuzhiyun movel #24,%d2 |put 24 in d2 for A9 397*4882a593Smuzhiyunno_inf: 398*4882a593Smuzhiyun negl %d0 |and take abs of ISCALE 399*4882a593Smuzhiyuniscale: 400*4882a593Smuzhiyun fmoves FONE,%fp1 |init fp1 to 1 401*4882a593Smuzhiyun bfextu USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits 402*4882a593Smuzhiyun lslw #1,%d1 |put them in bits 2:1 403*4882a593Smuzhiyun addw %d5,%d1 |add in LAMBDA 404*4882a593Smuzhiyun lslw #1,%d1 |put them in bits 3:1 405*4882a593Smuzhiyun tstl L_SCR2(%a6) |test sign of original x 406*4882a593Smuzhiyun bges x_pos |if pos, don't set bit 0 407*4882a593Smuzhiyun addql #1,%d1 |if neg, set bit 0 408*4882a593Smuzhiyunx_pos: 409*4882a593Smuzhiyun leal RBDTBL,%a2 |load rbdtbl base 410*4882a593Smuzhiyun moveb (%a2,%d1),%d3 |load d3 with new rmode 411*4882a593Smuzhiyun lsll #4,%d3 |put bits in proper position 412*4882a593Smuzhiyun fmovel %d3,%fpcr |load bits into fpu 413*4882a593Smuzhiyun lsrl #4,%d3 |put bits in proper position 414*4882a593Smuzhiyun tstb %d3 |decode new rmode for pten table 415*4882a593Smuzhiyun bnes not_rn |if zero, it is RN 416*4882a593Smuzhiyun leal PTENRN,%a1 |load a1 with RN table base 417*4882a593Smuzhiyun bras rmode |exit decode 418*4882a593Smuzhiyunnot_rn: 419*4882a593Smuzhiyun lsrb #1,%d3 |get lsb in carry 420*4882a593Smuzhiyun bccs not_rp |if carry clear, it is RM 421*4882a593Smuzhiyun leal PTENRP,%a1 |load a1 with RP table base 422*4882a593Smuzhiyun bras rmode |exit decode 423*4882a593Smuzhiyunnot_rp: 424*4882a593Smuzhiyun leal PTENRM,%a1 |load a1 with RM table base 425*4882a593Smuzhiyunrmode: 426*4882a593Smuzhiyun clrl %d3 |clr table index 427*4882a593Smuzhiyune_loop: 428*4882a593Smuzhiyun lsrl #1,%d0 |shift next bit into carry 429*4882a593Smuzhiyun bccs e_next |if zero, skip the mul 430*4882a593Smuzhiyun fmulx (%a1,%d3),%fp1 |mul by 10**(d3_bit_no) 431*4882a593Smuzhiyune_next: 432*4882a593Smuzhiyun addl #12,%d3 |inc d3 to next pwrten table entry 433*4882a593Smuzhiyun tstl %d0 |test if ISCALE is zero 434*4882a593Smuzhiyun bnes e_loop |if not, loop 435*4882a593Smuzhiyun 436*4882a593Smuzhiyun 437*4882a593Smuzhiyun| A8. Clr INEX; Force RZ. 438*4882a593Smuzhiyun| The operation in A3 above may have set INEX2. 439*4882a593Smuzhiyun| RZ mode is forced for the scaling operation to insure 440*4882a593Smuzhiyun| only one rounding error. The grs bits are collected in 441*4882a593Smuzhiyun| the INEX flag for use in A10. 442*4882a593Smuzhiyun| 443*4882a593Smuzhiyun| Register usage: 444*4882a593Smuzhiyun| Input/Output 445*4882a593Smuzhiyun 446*4882a593Smuzhiyun fmovel #0,%FPSR |clr INEX 447*4882a593Smuzhiyun fmovel #rz_mode,%FPCR |set RZ rounding mode 448*4882a593Smuzhiyun 449*4882a593Smuzhiyun 450*4882a593Smuzhiyun| A9. Scale X -> Y. 451*4882a593Smuzhiyun| The mantissa is scaled to the desired number of significant 452*4882a593Smuzhiyun| digits. The excess digits are collected in INEX2. If mul, 453*4882a593Smuzhiyun| Check d2 for excess 10 exponential value. If not zero, 454*4882a593Smuzhiyun| the iscale value would have caused the pwrten calculation 455*4882a593Smuzhiyun| to overflow. Only a negative iscale can cause this, so 456*4882a593Smuzhiyun| multiply by 10^(d2), which is now only allowed to be 24, 457*4882a593Smuzhiyun| with a multiply by 10^8 and 10^16, which is exact since 458*4882a593Smuzhiyun| 10^24 is exact. If the input was denormalized, we must 459*4882a593Smuzhiyun| create a busy stack frame with the mul command and the 460*4882a593Smuzhiyun| two operands, and allow the fpu to complete the multiply. 461*4882a593Smuzhiyun| 462*4882a593Smuzhiyun| Register usage: 463*4882a593Smuzhiyun| Input/Output 464*4882a593Smuzhiyun| d0: FPCR with RZ mode/Unchanged 465*4882a593Smuzhiyun| d2: 0 or 24/unchanged 466*4882a593Smuzhiyun| d3: x/x 467*4882a593Smuzhiyun| d4: LEN/Unchanged 468*4882a593Smuzhiyun| d5: ICTR:LAMBDA 469*4882a593Smuzhiyun| d6: ILOG/Unchanged 470*4882a593Smuzhiyun| d7: k-factor/Unchanged 471*4882a593Smuzhiyun| a0: ptr for original operand/final result 472*4882a593Smuzhiyun| a1: ptr to PTENRM array/Unchanged 473*4882a593Smuzhiyun| a2: x/x 474*4882a593Smuzhiyun| fp0: float(ILOG)/X adjusted for SCALE (Y) 475*4882a593Smuzhiyun| fp1: 10^ISCALE/Unchanged 476*4882a593Smuzhiyun| fp2: x/x 477*4882a593Smuzhiyun| F_SCR1:x/x 478*4882a593Smuzhiyun| F_SCR2:Abs(X) with $3fff exponent/Unchanged 479*4882a593Smuzhiyun| L_SCR1:x/x 480*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 481*4882a593Smuzhiyun 482*4882a593SmuzhiyunA9_str: 483*4882a593Smuzhiyun fmovex (%a0),%fp0 |load X from memory 484*4882a593Smuzhiyun fabsx %fp0 |use abs(X) 485*4882a593Smuzhiyun tstw %d5 |LAMBDA is in lower word of d5 486*4882a593Smuzhiyun bne sc_mul |if neg (LAMBDA = 1), scale by mul 487*4882a593Smuzhiyun fdivx %fp1,%fp0 |calculate X / SCALE -> Y to fp0 488*4882a593Smuzhiyun bras A10_st |branch to A10 489*4882a593Smuzhiyun 490*4882a593Smuzhiyunsc_mul: 491*4882a593Smuzhiyun tstb BINDEC_FLG(%a6) |check for denorm 492*4882a593Smuzhiyun beqs A9_norm |if norm, continue with mul 493*4882a593Smuzhiyun fmovemx %fp1-%fp1,-(%a7) |load ETEMP with 10^ISCALE 494*4882a593Smuzhiyun movel 8(%a0),-(%a7) |load FPTEMP with input arg 495*4882a593Smuzhiyun movel 4(%a0),-(%a7) 496*4882a593Smuzhiyun movel (%a0),-(%a7) 497*4882a593Smuzhiyun movel #18,%d3 |load count for busy stack 498*4882a593SmuzhiyunA9_loop: 499*4882a593Smuzhiyun clrl -(%a7) |clear lword on stack 500*4882a593Smuzhiyun dbf %d3,A9_loop 501*4882a593Smuzhiyun moveb VER_TMP(%a6),(%a7) |write current version number 502*4882a593Smuzhiyun moveb #BUSY_SIZE-4,1(%a7) |write current busy size 503*4882a593Smuzhiyun moveb #0x10,0x44(%a7) |set fcefpte[15] bit 504*4882a593Smuzhiyun movew #0x0023,0x40(%a7) |load cmdreg1b with mul command 505*4882a593Smuzhiyun moveb #0xfe,0x8(%a7) |load all 1s to cu savepc 506*4882a593Smuzhiyun frestore (%a7)+ |restore frame to fpu for completion 507*4882a593Smuzhiyun fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 508*4882a593Smuzhiyun fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 509*4882a593Smuzhiyun bras A10_st 510*4882a593SmuzhiyunA9_norm: 511*4882a593Smuzhiyun tstw %d2 |test for small exp case 512*4882a593Smuzhiyun beqs A9_con |if zero, continue as normal 513*4882a593Smuzhiyun fmulx 36(%a1),%fp0 |multiply fp0 by 10^8 514*4882a593Smuzhiyun fmulx 48(%a1),%fp0 |multiply fp0 by 10^16 515*4882a593SmuzhiyunA9_con: 516*4882a593Smuzhiyun fmulx %fp1,%fp0 |calculate X * SCALE -> Y to fp0 517*4882a593Smuzhiyun 518*4882a593Smuzhiyun 519*4882a593Smuzhiyun| A10. Or in INEX. 520*4882a593Smuzhiyun| If INEX is set, round error occurred. This is compensated 521*4882a593Smuzhiyun| for by 'or-ing' in the INEX2 flag to the lsb of Y. 522*4882a593Smuzhiyun| 523*4882a593Smuzhiyun| Register usage: 524*4882a593Smuzhiyun| Input/Output 525*4882a593Smuzhiyun| d0: FPCR with RZ mode/FPSR with INEX2 isolated 526*4882a593Smuzhiyun| d2: x/x 527*4882a593Smuzhiyun| d3: x/x 528*4882a593Smuzhiyun| d4: LEN/Unchanged 529*4882a593Smuzhiyun| d5: ICTR:LAMBDA 530*4882a593Smuzhiyun| d6: ILOG/Unchanged 531*4882a593Smuzhiyun| d7: k-factor/Unchanged 532*4882a593Smuzhiyun| a0: ptr for original operand/final result 533*4882a593Smuzhiyun| a1: ptr to PTENxx array/Unchanged 534*4882a593Smuzhiyun| a2: x/ptr to FP_SCR2(a6) 535*4882a593Smuzhiyun| fp0: Y/Y with lsb adjusted 536*4882a593Smuzhiyun| fp1: 10^ISCALE/Unchanged 537*4882a593Smuzhiyun| fp2: x/x 538*4882a593Smuzhiyun 539*4882a593SmuzhiyunA10_st: 540*4882a593Smuzhiyun fmovel %FPSR,%d0 |get FPSR 541*4882a593Smuzhiyun fmovex %fp0,FP_SCR2(%a6) |move Y to memory 542*4882a593Smuzhiyun leal FP_SCR2(%a6),%a2 |load a2 with ptr to FP_SCR2 543*4882a593Smuzhiyun btstl #9,%d0 |check if INEX2 set 544*4882a593Smuzhiyun beqs A11_st |if clear, skip rest 545*4882a593Smuzhiyun oril #1,8(%a2) |or in 1 to lsb of mantissa 546*4882a593Smuzhiyun fmovex FP_SCR2(%a6),%fp0 |write adjusted Y back to fpu 547*4882a593Smuzhiyun 548*4882a593Smuzhiyun 549*4882a593Smuzhiyun| A11. Restore original FPCR; set size ext. 550*4882a593Smuzhiyun| Perform FINT operation in the user's rounding mode. Keep 551*4882a593Smuzhiyun| the size to extended. The sintdo entry point in the sint 552*4882a593Smuzhiyun| routine expects the FPCR value to be in USER_FPCR for 553*4882a593Smuzhiyun| mode and precision. The original FPCR is saved in L_SCR1. 554*4882a593Smuzhiyun 555*4882a593SmuzhiyunA11_st: 556*4882a593Smuzhiyun movel USER_FPCR(%a6),L_SCR1(%a6) |save it for later 557*4882a593Smuzhiyun andil #0x00000030,USER_FPCR(%a6) |set size to ext, 558*4882a593Smuzhiyun| ;block exceptions 559*4882a593Smuzhiyun 560*4882a593Smuzhiyun 561*4882a593Smuzhiyun| A12. Calculate YINT = FINT(Y) according to user's rounding mode. 562*4882a593Smuzhiyun| The FPSP routine sintd0 is used. The output is in fp0. 563*4882a593Smuzhiyun| 564*4882a593Smuzhiyun| Register usage: 565*4882a593Smuzhiyun| Input/Output 566*4882a593Smuzhiyun| d0: FPSR with AINEX cleared/FPCR with size set to ext 567*4882a593Smuzhiyun| d2: x/x/scratch 568*4882a593Smuzhiyun| d3: x/x 569*4882a593Smuzhiyun| d4: LEN/Unchanged 570*4882a593Smuzhiyun| d5: ICTR:LAMBDA/Unchanged 571*4882a593Smuzhiyun| d6: ILOG/Unchanged 572*4882a593Smuzhiyun| d7: k-factor/Unchanged 573*4882a593Smuzhiyun| a0: ptr for original operand/src ptr for sintdo 574*4882a593Smuzhiyun| a1: ptr to PTENxx array/Unchanged 575*4882a593Smuzhiyun| a2: ptr to FP_SCR2(a6)/Unchanged 576*4882a593Smuzhiyun| a6: temp pointer to FP_SCR2(a6) - orig value saved and restored 577*4882a593Smuzhiyun| fp0: Y/YINT 578*4882a593Smuzhiyun| fp1: 10^ISCALE/Unchanged 579*4882a593Smuzhiyun| fp2: x/x 580*4882a593Smuzhiyun| F_SCR1:x/x 581*4882a593Smuzhiyun| F_SCR2:Y adjusted for inex/Y with original exponent 582*4882a593Smuzhiyun| L_SCR1:x/original USER_FPCR 583*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 584*4882a593Smuzhiyun 585*4882a593SmuzhiyunA12_st: 586*4882a593Smuzhiyun moveml %d0-%d1/%a0-%a1,-(%a7) |save regs used by sintd0 587*4882a593Smuzhiyun movel L_SCR1(%a6),-(%a7) 588*4882a593Smuzhiyun movel L_SCR2(%a6),-(%a7) 589*4882a593Smuzhiyun leal FP_SCR2(%a6),%a0 |a0 is ptr to F_SCR2(a6) 590*4882a593Smuzhiyun fmovex %fp0,(%a0) |move Y to memory at FP_SCR2(a6) 591*4882a593Smuzhiyun tstl L_SCR2(%a6) |test sign of original operand 592*4882a593Smuzhiyun bges do_fint |if pos, use Y 593*4882a593Smuzhiyun orl #0x80000000,(%a0) |if neg, use -Y 594*4882a593Smuzhiyundo_fint: 595*4882a593Smuzhiyun movel USER_FPSR(%a6),-(%a7) 596*4882a593Smuzhiyun bsr sintdo |sint routine returns int in fp0 597*4882a593Smuzhiyun moveb (%a7),USER_FPSR(%a6) 598*4882a593Smuzhiyun addl #4,%a7 599*4882a593Smuzhiyun movel (%a7)+,L_SCR2(%a6) 600*4882a593Smuzhiyun movel (%a7)+,L_SCR1(%a6) 601*4882a593Smuzhiyun moveml (%a7)+,%d0-%d1/%a0-%a1 |restore regs used by sint 602*4882a593Smuzhiyun movel L_SCR2(%a6),FP_SCR2(%a6) |restore original exponent 603*4882a593Smuzhiyun movel L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR 604*4882a593Smuzhiyun 605*4882a593Smuzhiyun 606*4882a593Smuzhiyun| A13. Check for LEN digits. 607*4882a593Smuzhiyun| If the int operation results in more than LEN digits, 608*4882a593Smuzhiyun| or less than LEN -1 digits, adjust ILOG and repeat from 609*4882a593Smuzhiyun| A6. This test occurs only on the first pass. If the 610*4882a593Smuzhiyun| result is exactly 10^LEN, decrement ILOG and divide 611*4882a593Smuzhiyun| the mantissa by 10. The calculation of 10^LEN cannot 612*4882a593Smuzhiyun| be inexact, since all powers of ten up to 10^27 are exact 613*4882a593Smuzhiyun| in extended precision, so the use of a previous power-of-ten 614*4882a593Smuzhiyun| table will introduce no error. 615*4882a593Smuzhiyun| 616*4882a593Smuzhiyun| 617*4882a593Smuzhiyun| Register usage: 618*4882a593Smuzhiyun| Input/Output 619*4882a593Smuzhiyun| d0: FPCR with size set to ext/scratch final = 0 620*4882a593Smuzhiyun| d2: x/x 621*4882a593Smuzhiyun| d3: x/scratch final = x 622*4882a593Smuzhiyun| d4: LEN/LEN adjusted 623*4882a593Smuzhiyun| d5: ICTR:LAMBDA/LAMBDA:ICTR 624*4882a593Smuzhiyun| d6: ILOG/ILOG adjusted 625*4882a593Smuzhiyun| d7: k-factor/Unchanged 626*4882a593Smuzhiyun| a0: pointer into memory for packed bcd string formation 627*4882a593Smuzhiyun| a1: ptr to PTENxx array/Unchanged 628*4882a593Smuzhiyun| a2: ptr to FP_SCR2(a6)/Unchanged 629*4882a593Smuzhiyun| fp0: int portion of Y/abs(YINT) adjusted 630*4882a593Smuzhiyun| fp1: 10^ISCALE/Unchanged 631*4882a593Smuzhiyun| fp2: x/10^LEN 632*4882a593Smuzhiyun| F_SCR1:x/x 633*4882a593Smuzhiyun| F_SCR2:Y with original exponent/Unchanged 634*4882a593Smuzhiyun| L_SCR1:original USER_FPCR/Unchanged 635*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 636*4882a593Smuzhiyun 637*4882a593SmuzhiyunA13_st: 638*4882a593Smuzhiyun swap %d5 |put ICTR in lower word of d5 639*4882a593Smuzhiyun tstw %d5 |check if ICTR = 0 640*4882a593Smuzhiyun bne not_zr |if non-zero, go to second test 641*4882a593Smuzhiyun| 642*4882a593Smuzhiyun| Compute 10^(LEN-1) 643*4882a593Smuzhiyun| 644*4882a593Smuzhiyun fmoves FONE,%fp2 |init fp2 to 1.0 645*4882a593Smuzhiyun movel %d4,%d0 |put LEN in d0 646*4882a593Smuzhiyun subql #1,%d0 |d0 = LEN -1 647*4882a593Smuzhiyun clrl %d3 |clr table index 648*4882a593Smuzhiyunl_loop: 649*4882a593Smuzhiyun lsrl #1,%d0 |shift next bit into carry 650*4882a593Smuzhiyun bccs l_next |if zero, skip the mul 651*4882a593Smuzhiyun fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 652*4882a593Smuzhiyunl_next: 653*4882a593Smuzhiyun addl #12,%d3 |inc d3 to next pwrten table entry 654*4882a593Smuzhiyun tstl %d0 |test if LEN is zero 655*4882a593Smuzhiyun bnes l_loop |if not, loop 656*4882a593Smuzhiyun| 657*4882a593Smuzhiyun| 10^LEN-1 is computed for this test and A14. If the input was 658*4882a593Smuzhiyun| denormalized, check only the case in which YINT > 10^LEN. 659*4882a593Smuzhiyun| 660*4882a593Smuzhiyun tstb BINDEC_FLG(%a6) |check if input was norm 661*4882a593Smuzhiyun beqs A13_con |if norm, continue with checking 662*4882a593Smuzhiyun fabsx %fp0 |take abs of YINT 663*4882a593Smuzhiyun bra test_2 664*4882a593Smuzhiyun| 665*4882a593Smuzhiyun| Compare abs(YINT) to 10^(LEN-1) and 10^LEN 666*4882a593Smuzhiyun| 667*4882a593SmuzhiyunA13_con: 668*4882a593Smuzhiyun fabsx %fp0 |take abs of YINT 669*4882a593Smuzhiyun fcmpx %fp2,%fp0 |compare abs(YINT) with 10^(LEN-1) 670*4882a593Smuzhiyun fbge test_2 |if greater, do next test 671*4882a593Smuzhiyun subql #1,%d6 |subtract 1 from ILOG 672*4882a593Smuzhiyun movew #1,%d5 |set ICTR 673*4882a593Smuzhiyun fmovel #rm_mode,%FPCR |set rmode to RM 674*4882a593Smuzhiyun fmuls FTEN,%fp2 |compute 10^LEN 675*4882a593Smuzhiyun bra A6_str |return to A6 and recompute YINT 676*4882a593Smuzhiyuntest_2: 677*4882a593Smuzhiyun fmuls FTEN,%fp2 |compute 10^LEN 678*4882a593Smuzhiyun fcmpx %fp2,%fp0 |compare abs(YINT) with 10^LEN 679*4882a593Smuzhiyun fblt A14_st |if less, all is ok, go to A14 680*4882a593Smuzhiyun fbgt fix_ex |if greater, fix and redo 681*4882a593Smuzhiyun fdivs FTEN,%fp0 |if equal, divide by 10 682*4882a593Smuzhiyun addql #1,%d6 | and inc ILOG 683*4882a593Smuzhiyun bras A14_st | and continue elsewhere 684*4882a593Smuzhiyunfix_ex: 685*4882a593Smuzhiyun addql #1,%d6 |increment ILOG by 1 686*4882a593Smuzhiyun movew #1,%d5 |set ICTR 687*4882a593Smuzhiyun fmovel #rm_mode,%FPCR |set rmode to RM 688*4882a593Smuzhiyun bra A6_str |return to A6 and recompute YINT 689*4882a593Smuzhiyun| 690*4882a593Smuzhiyun| Since ICTR <> 0, we have already been through one adjustment, 691*4882a593Smuzhiyun| and shouldn't have another; this is to check if abs(YINT) = 10^LEN 692*4882a593Smuzhiyun| 10^LEN is again computed using whatever table is in a1 since the 693*4882a593Smuzhiyun| value calculated cannot be inexact. 694*4882a593Smuzhiyun| 695*4882a593Smuzhiyunnot_zr: 696*4882a593Smuzhiyun fmoves FONE,%fp2 |init fp2 to 1.0 697*4882a593Smuzhiyun movel %d4,%d0 |put LEN in d0 698*4882a593Smuzhiyun clrl %d3 |clr table index 699*4882a593Smuzhiyunz_loop: 700*4882a593Smuzhiyun lsrl #1,%d0 |shift next bit into carry 701*4882a593Smuzhiyun bccs z_next |if zero, skip the mul 702*4882a593Smuzhiyun fmulx (%a1,%d3),%fp2 |mul by 10**(d3_bit_no) 703*4882a593Smuzhiyunz_next: 704*4882a593Smuzhiyun addl #12,%d3 |inc d3 to next pwrten table entry 705*4882a593Smuzhiyun tstl %d0 |test if LEN is zero 706*4882a593Smuzhiyun bnes z_loop |if not, loop 707*4882a593Smuzhiyun fabsx %fp0 |get abs(YINT) 708*4882a593Smuzhiyun fcmpx %fp2,%fp0 |check if abs(YINT) = 10^LEN 709*4882a593Smuzhiyun fbne A14_st |if not, skip this 710*4882a593Smuzhiyun fdivs FTEN,%fp0 |divide abs(YINT) by 10 711*4882a593Smuzhiyun addql #1,%d6 |and inc ILOG by 1 712*4882a593Smuzhiyun addql #1,%d4 | and inc LEN 713*4882a593Smuzhiyun fmuls FTEN,%fp2 | if LEN++, the get 10^^LEN 714*4882a593Smuzhiyun 715*4882a593Smuzhiyun 716*4882a593Smuzhiyun| A14. Convert the mantissa to bcd. 717*4882a593Smuzhiyun| The binstr routine is used to convert the LEN digit 718*4882a593Smuzhiyun| mantissa to bcd in memory. The input to binstr is 719*4882a593Smuzhiyun| to be a fraction; i.e. (mantissa)/10^LEN and adjusted 720*4882a593Smuzhiyun| such that the decimal point is to the left of bit 63. 721*4882a593Smuzhiyun| The bcd digits are stored in the correct position in 722*4882a593Smuzhiyun| the final string area in memory. 723*4882a593Smuzhiyun| 724*4882a593Smuzhiyun| 725*4882a593Smuzhiyun| Register usage: 726*4882a593Smuzhiyun| Input/Output 727*4882a593Smuzhiyun| d0: x/LEN call to binstr - final is 0 728*4882a593Smuzhiyun| d1: x/0 729*4882a593Smuzhiyun| d2: x/ms 32-bits of mant of abs(YINT) 730*4882a593Smuzhiyun| d3: x/ls 32-bits of mant of abs(YINT) 731*4882a593Smuzhiyun| d4: LEN/Unchanged 732*4882a593Smuzhiyun| d5: ICTR:LAMBDA/LAMBDA:ICTR 733*4882a593Smuzhiyun| d6: ILOG 734*4882a593Smuzhiyun| d7: k-factor/Unchanged 735*4882a593Smuzhiyun| a0: pointer into memory for packed bcd string formation 736*4882a593Smuzhiyun| /ptr to first mantissa byte in result string 737*4882a593Smuzhiyun| a1: ptr to PTENxx array/Unchanged 738*4882a593Smuzhiyun| a2: ptr to FP_SCR2(a6)/Unchanged 739*4882a593Smuzhiyun| fp0: int portion of Y/abs(YINT) adjusted 740*4882a593Smuzhiyun| fp1: 10^ISCALE/Unchanged 741*4882a593Smuzhiyun| fp2: 10^LEN/Unchanged 742*4882a593Smuzhiyun| F_SCR1:x/Work area for final result 743*4882a593Smuzhiyun| F_SCR2:Y with original exponent/Unchanged 744*4882a593Smuzhiyun| L_SCR1:original USER_FPCR/Unchanged 745*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 746*4882a593Smuzhiyun 747*4882a593SmuzhiyunA14_st: 748*4882a593Smuzhiyun fmovel #rz_mode,%FPCR |force rz for conversion 749*4882a593Smuzhiyun fdivx %fp2,%fp0 |divide abs(YINT) by 10^LEN 750*4882a593Smuzhiyun leal FP_SCR1(%a6),%a0 751*4882a593Smuzhiyun fmovex %fp0,(%a0) |move abs(YINT)/10^LEN to memory 752*4882a593Smuzhiyun movel 4(%a0),%d2 |move 2nd word of FP_RES to d2 753*4882a593Smuzhiyun movel 8(%a0),%d3 |move 3rd word of FP_RES to d3 754*4882a593Smuzhiyun clrl 4(%a0) |zero word 2 of FP_RES 755*4882a593Smuzhiyun clrl 8(%a0) |zero word 3 of FP_RES 756*4882a593Smuzhiyun movel (%a0),%d0 |move exponent to d0 757*4882a593Smuzhiyun swap %d0 |put exponent in lower word 758*4882a593Smuzhiyun beqs no_sft |if zero, don't shift 759*4882a593Smuzhiyun subil #0x3ffd,%d0 |sub bias less 2 to make fract 760*4882a593Smuzhiyun tstl %d0 |check if > 1 761*4882a593Smuzhiyun bgts no_sft |if so, don't shift 762*4882a593Smuzhiyun negl %d0 |make exp positive 763*4882a593Smuzhiyunm_loop: 764*4882a593Smuzhiyun lsrl #1,%d2 |shift d2:d3 right, add 0s 765*4882a593Smuzhiyun roxrl #1,%d3 |the number of places 766*4882a593Smuzhiyun dbf %d0,m_loop |given in d0 767*4882a593Smuzhiyunno_sft: 768*4882a593Smuzhiyun tstl %d2 |check for mantissa of zero 769*4882a593Smuzhiyun bnes no_zr |if not, go on 770*4882a593Smuzhiyun tstl %d3 |continue zero check 771*4882a593Smuzhiyun beqs zer_m |if zero, go directly to binstr 772*4882a593Smuzhiyunno_zr: 773*4882a593Smuzhiyun clrl %d1 |put zero in d1 for addx 774*4882a593Smuzhiyun addil #0x00000080,%d3 |inc at bit 7 775*4882a593Smuzhiyun addxl %d1,%d2 |continue inc 776*4882a593Smuzhiyun andil #0xffffff80,%d3 |strip off lsb not used by 882 777*4882a593Smuzhiyunzer_m: 778*4882a593Smuzhiyun movel %d4,%d0 |put LEN in d0 for binstr call 779*4882a593Smuzhiyun addql #3,%a0 |a0 points to M16 byte in result 780*4882a593Smuzhiyun bsr binstr |call binstr to convert mant 781*4882a593Smuzhiyun 782*4882a593Smuzhiyun 783*4882a593Smuzhiyun| A15. Convert the exponent to bcd. 784*4882a593Smuzhiyun| As in A14 above, the exp is converted to bcd and the 785*4882a593Smuzhiyun| digits are stored in the final string. 786*4882a593Smuzhiyun| 787*4882a593Smuzhiyun| Digits are stored in L_SCR1(a6) on return from BINDEC as: 788*4882a593Smuzhiyun| 789*4882a593Smuzhiyun| 32 16 15 0 790*4882a593Smuzhiyun| ----------------------------------------- 791*4882a593Smuzhiyun| | 0 | e3 | e2 | e1 | e4 | X | X | X | 792*4882a593Smuzhiyun| ----------------------------------------- 793*4882a593Smuzhiyun| 794*4882a593Smuzhiyun| And are moved into their proper places in FP_SCR1. If digit e4 795*4882a593Smuzhiyun| is non-zero, OPERR is signaled. In all cases, all 4 digits are 796*4882a593Smuzhiyun| written as specified in the 881/882 manual for packed decimal. 797*4882a593Smuzhiyun| 798*4882a593Smuzhiyun| Register usage: 799*4882a593Smuzhiyun| Input/Output 800*4882a593Smuzhiyun| d0: x/LEN call to binstr - final is 0 801*4882a593Smuzhiyun| d1: x/scratch (0);shift count for final exponent packing 802*4882a593Smuzhiyun| d2: x/ms 32-bits of exp fraction/scratch 803*4882a593Smuzhiyun| d3: x/ls 32-bits of exp fraction 804*4882a593Smuzhiyun| d4: LEN/Unchanged 805*4882a593Smuzhiyun| d5: ICTR:LAMBDA/LAMBDA:ICTR 806*4882a593Smuzhiyun| d6: ILOG 807*4882a593Smuzhiyun| d7: k-factor/Unchanged 808*4882a593Smuzhiyun| a0: ptr to result string/ptr to L_SCR1(a6) 809*4882a593Smuzhiyun| a1: ptr to PTENxx array/Unchanged 810*4882a593Smuzhiyun| a2: ptr to FP_SCR2(a6)/Unchanged 811*4882a593Smuzhiyun| fp0: abs(YINT) adjusted/float(ILOG) 812*4882a593Smuzhiyun| fp1: 10^ISCALE/Unchanged 813*4882a593Smuzhiyun| fp2: 10^LEN/Unchanged 814*4882a593Smuzhiyun| F_SCR1:Work area for final result/BCD result 815*4882a593Smuzhiyun| F_SCR2:Y with original exponent/ILOG/10^4 816*4882a593Smuzhiyun| L_SCR1:original USER_FPCR/Exponent digits on return from binstr 817*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 818*4882a593Smuzhiyun 819*4882a593SmuzhiyunA15_st: 820*4882a593Smuzhiyun tstb BINDEC_FLG(%a6) |check for denorm 821*4882a593Smuzhiyun beqs not_denorm 822*4882a593Smuzhiyun ftstx %fp0 |test for zero 823*4882a593Smuzhiyun fbeq den_zero |if zero, use k-factor or 4933 824*4882a593Smuzhiyun fmovel %d6,%fp0 |float ILOG 825*4882a593Smuzhiyun fabsx %fp0 |get abs of ILOG 826*4882a593Smuzhiyun bras convrt 827*4882a593Smuzhiyunden_zero: 828*4882a593Smuzhiyun tstl %d7 |check sign of the k-factor 829*4882a593Smuzhiyun blts use_ilog |if negative, use ILOG 830*4882a593Smuzhiyun fmoves F4933,%fp0 |force exponent to 4933 831*4882a593Smuzhiyun bras convrt |do it 832*4882a593Smuzhiyunuse_ilog: 833*4882a593Smuzhiyun fmovel %d6,%fp0 |float ILOG 834*4882a593Smuzhiyun fabsx %fp0 |get abs of ILOG 835*4882a593Smuzhiyun bras convrt 836*4882a593Smuzhiyunnot_denorm: 837*4882a593Smuzhiyun ftstx %fp0 |test for zero 838*4882a593Smuzhiyun fbne not_zero |if zero, force exponent 839*4882a593Smuzhiyun fmoves FONE,%fp0 |force exponent to 1 840*4882a593Smuzhiyun bras convrt |do it 841*4882a593Smuzhiyunnot_zero: 842*4882a593Smuzhiyun fmovel %d6,%fp0 |float ILOG 843*4882a593Smuzhiyun fabsx %fp0 |get abs of ILOG 844*4882a593Smuzhiyunconvrt: 845*4882a593Smuzhiyun fdivx 24(%a1),%fp0 |compute ILOG/10^4 846*4882a593Smuzhiyun fmovex %fp0,FP_SCR2(%a6) |store fp0 in memory 847*4882a593Smuzhiyun movel 4(%a2),%d2 |move word 2 to d2 848*4882a593Smuzhiyun movel 8(%a2),%d3 |move word 3 to d3 849*4882a593Smuzhiyun movew (%a2),%d0 |move exp to d0 850*4882a593Smuzhiyun beqs x_loop_fin |if zero, skip the shift 851*4882a593Smuzhiyun subiw #0x3ffd,%d0 |subtract off bias 852*4882a593Smuzhiyun negw %d0 |make exp positive 853*4882a593Smuzhiyunx_loop: 854*4882a593Smuzhiyun lsrl #1,%d2 |shift d2:d3 right 855*4882a593Smuzhiyun roxrl #1,%d3 |the number of places 856*4882a593Smuzhiyun dbf %d0,x_loop |given in d0 857*4882a593Smuzhiyunx_loop_fin: 858*4882a593Smuzhiyun clrl %d1 |put zero in d1 for addx 859*4882a593Smuzhiyun addil #0x00000080,%d3 |inc at bit 6 860*4882a593Smuzhiyun addxl %d1,%d2 |continue inc 861*4882a593Smuzhiyun andil #0xffffff80,%d3 |strip off lsb not used by 882 862*4882a593Smuzhiyun movel #4,%d0 |put 4 in d0 for binstr call 863*4882a593Smuzhiyun leal L_SCR1(%a6),%a0 |a0 is ptr to L_SCR1 for exp digits 864*4882a593Smuzhiyun bsr binstr |call binstr to convert exp 865*4882a593Smuzhiyun movel L_SCR1(%a6),%d0 |load L_SCR1 lword to d0 866*4882a593Smuzhiyun movel #12,%d1 |use d1 for shift count 867*4882a593Smuzhiyun lsrl %d1,%d0 |shift d0 right by 12 868*4882a593Smuzhiyun bfins %d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1 869*4882a593Smuzhiyun lsrl %d1,%d0 |shift d0 right by 12 870*4882a593Smuzhiyun bfins %d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1 871*4882a593Smuzhiyun tstb %d0 |check if e4 is zero 872*4882a593Smuzhiyun beqs A16_st |if zero, skip rest 873*4882a593Smuzhiyun orl #opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR 874*4882a593Smuzhiyun 875*4882a593Smuzhiyun 876*4882a593Smuzhiyun| A16. Write sign bits to final string. 877*4882a593Smuzhiyun| Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG). 878*4882a593Smuzhiyun| 879*4882a593Smuzhiyun| Register usage: 880*4882a593Smuzhiyun| Input/Output 881*4882a593Smuzhiyun| d0: x/scratch - final is x 882*4882a593Smuzhiyun| d2: x/x 883*4882a593Smuzhiyun| d3: x/x 884*4882a593Smuzhiyun| d4: LEN/Unchanged 885*4882a593Smuzhiyun| d5: ICTR:LAMBDA/LAMBDA:ICTR 886*4882a593Smuzhiyun| d6: ILOG/ILOG adjusted 887*4882a593Smuzhiyun| d7: k-factor/Unchanged 888*4882a593Smuzhiyun| a0: ptr to L_SCR1(a6)/Unchanged 889*4882a593Smuzhiyun| a1: ptr to PTENxx array/Unchanged 890*4882a593Smuzhiyun| a2: ptr to FP_SCR2(a6)/Unchanged 891*4882a593Smuzhiyun| fp0: float(ILOG)/Unchanged 892*4882a593Smuzhiyun| fp1: 10^ISCALE/Unchanged 893*4882a593Smuzhiyun| fp2: 10^LEN/Unchanged 894*4882a593Smuzhiyun| F_SCR1:BCD result with correct signs 895*4882a593Smuzhiyun| F_SCR2:ILOG/10^4 896*4882a593Smuzhiyun| L_SCR1:Exponent digits on return from binstr 897*4882a593Smuzhiyun| L_SCR2:first word of X packed/Unchanged 898*4882a593Smuzhiyun 899*4882a593SmuzhiyunA16_st: 900*4882a593Smuzhiyun clrl %d0 |clr d0 for collection of signs 901*4882a593Smuzhiyun andib #0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1 902*4882a593Smuzhiyun tstl L_SCR2(%a6) |check sign of original mantissa 903*4882a593Smuzhiyun bges mant_p |if pos, don't set SM 904*4882a593Smuzhiyun moveql #2,%d0 |move 2 in to d0 for SM 905*4882a593Smuzhiyunmant_p: 906*4882a593Smuzhiyun tstl %d6 |check sign of ILOG 907*4882a593Smuzhiyun bges wr_sgn |if pos, don't set SE 908*4882a593Smuzhiyun addql #1,%d0 |set bit 0 in d0 for SE 909*4882a593Smuzhiyunwr_sgn: 910*4882a593Smuzhiyun bfins %d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1 911*4882a593Smuzhiyun 912*4882a593Smuzhiyun| Clean up and restore all registers used. 913*4882a593Smuzhiyun 914*4882a593Smuzhiyun fmovel #0,%FPSR |clear possible inex2/ainex bits 915*4882a593Smuzhiyun fmovemx (%a7)+,%fp0-%fp2 916*4882a593Smuzhiyun moveml (%a7)+,%d2-%d7/%a2 917*4882a593Smuzhiyun rts 918*4882a593Smuzhiyun 919*4882a593Smuzhiyun |end 920