1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0-only */
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun * Copyright (C) 2012,2013 - ARM Ltd
4*4882a593Smuzhiyun * Author: Marc Zyngier <marc.zyngier@arm.com>
5*4882a593Smuzhiyun */
6*4882a593Smuzhiyun
7*4882a593Smuzhiyun #ifndef __ARM64_KVM_MMU_H__
8*4882a593Smuzhiyun #define __ARM64_KVM_MMU_H__
9*4882a593Smuzhiyun
10*4882a593Smuzhiyun #include <asm/page.h>
11*4882a593Smuzhiyun #include <asm/memory.h>
12*4882a593Smuzhiyun #include <asm/mmu.h>
13*4882a593Smuzhiyun #include <asm/cpufeature.h>
14*4882a593Smuzhiyun
15*4882a593Smuzhiyun /*
16*4882a593Smuzhiyun * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
17*4882a593Smuzhiyun * "negative" addresses. This makes it impossible to directly share
18*4882a593Smuzhiyun * mappings with the kernel.
19*4882a593Smuzhiyun *
20*4882a593Smuzhiyun * Instead, give the HYP mode its own VA region at a fixed offset from
21*4882a593Smuzhiyun * the kernel by just masking the top bits (which are all ones for a
22*4882a593Smuzhiyun * kernel address). We need to find out how many bits to mask.
23*4882a593Smuzhiyun *
24*4882a593Smuzhiyun * We want to build a set of page tables that cover both parts of the
25*4882a593Smuzhiyun * idmap (the trampoline page used to initialize EL2), and our normal
26*4882a593Smuzhiyun * runtime VA space, at the same time.
27*4882a593Smuzhiyun *
28*4882a593Smuzhiyun * Given that the kernel uses VA_BITS for its entire address space,
29*4882a593Smuzhiyun * and that half of that space (VA_BITS - 1) is used for the linear
30*4882a593Smuzhiyun * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31*4882a593Smuzhiyun *
32*4882a593Smuzhiyun * The main question is "Within the VA_BITS space, does EL2 use the
33*4882a593Smuzhiyun * top or the bottom half of that space to shadow the kernel's linear
34*4882a593Smuzhiyun * mapping?". As we need to idmap the trampoline page, this is
35*4882a593Smuzhiyun * determined by the range in which this page lives.
36*4882a593Smuzhiyun *
37*4882a593Smuzhiyun * If the page is in the bottom half, we have to use the top half. If
38*4882a593Smuzhiyun * the page is in the top half, we have to use the bottom half:
39*4882a593Smuzhiyun *
40*4882a593Smuzhiyun * T = __pa_symbol(__hyp_idmap_text_start)
41*4882a593Smuzhiyun * if (T & BIT(VA_BITS - 1))
42*4882a593Smuzhiyun * HYP_VA_MIN = 0 //idmap in upper half
43*4882a593Smuzhiyun * else
44*4882a593Smuzhiyun * HYP_VA_MIN = 1 << (VA_BITS - 1)
45*4882a593Smuzhiyun * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46*4882a593Smuzhiyun *
47*4882a593Smuzhiyun * When using VHE, there are no separate hyp mappings and all KVM
48*4882a593Smuzhiyun * functionality is already mapped as part of the main kernel
49*4882a593Smuzhiyun * mappings, and none of this applies in that case.
50*4882a593Smuzhiyun */
51*4882a593Smuzhiyun
52*4882a593Smuzhiyun #ifdef __ASSEMBLY__
53*4882a593Smuzhiyun
54*4882a593Smuzhiyun #include <asm/alternative.h>
55*4882a593Smuzhiyun
56*4882a593Smuzhiyun /*
57*4882a593Smuzhiyun * Convert a kernel VA into a HYP VA.
58*4882a593Smuzhiyun * reg: VA to be converted.
59*4882a593Smuzhiyun *
60*4882a593Smuzhiyun * The actual code generation takes place in kvm_update_va_mask, and
61*4882a593Smuzhiyun * the instructions below are only there to reserve the space and
62*4882a593Smuzhiyun * perform the register allocation (kvm_update_va_mask uses the
63*4882a593Smuzhiyun * specific registers encoded in the instructions).
64*4882a593Smuzhiyun */
65*4882a593Smuzhiyun .macro kern_hyp_va reg
66*4882a593Smuzhiyun alternative_cb kvm_update_va_mask
67*4882a593Smuzhiyun and \reg, \reg, #1 /* mask with va_mask */
68*4882a593Smuzhiyun ror \reg, \reg, #1 /* rotate to the first tag bit */
69*4882a593Smuzhiyun add \reg, \reg, #0 /* insert the low 12 bits of the tag */
70*4882a593Smuzhiyun add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
71*4882a593Smuzhiyun ror \reg, \reg, #63 /* rotate back */
72*4882a593Smuzhiyun alternative_cb_end
73*4882a593Smuzhiyun .endm
74*4882a593Smuzhiyun
75*4882a593Smuzhiyun /*
76*4882a593Smuzhiyun * Convert a hypervisor VA to a PA
77*4882a593Smuzhiyun * reg: hypervisor address to be converted in place
78*4882a593Smuzhiyun * tmp: temporary register
79*4882a593Smuzhiyun */
80*4882a593Smuzhiyun .macro hyp_pa reg, tmp
81*4882a593Smuzhiyun ldr_l \tmp, hyp_physvirt_offset
82*4882a593Smuzhiyun add \reg, \reg, \tmp
83*4882a593Smuzhiyun .endm
84*4882a593Smuzhiyun
85*4882a593Smuzhiyun /*
86*4882a593Smuzhiyun * Convert a hypervisor VA to a kernel image address
87*4882a593Smuzhiyun * reg: hypervisor address to be converted in place
88*4882a593Smuzhiyun * tmp: temporary register
89*4882a593Smuzhiyun *
90*4882a593Smuzhiyun * The actual code generation takes place in kvm_get_kimage_voffset, and
91*4882a593Smuzhiyun * the instructions below are only there to reserve the space and
92*4882a593Smuzhiyun * perform the register allocation (kvm_get_kimage_voffset uses the
93*4882a593Smuzhiyun * specific registers encoded in the instructions).
94*4882a593Smuzhiyun */
95*4882a593Smuzhiyun .macro hyp_kimg_va reg, tmp
96*4882a593Smuzhiyun /* Convert hyp VA -> PA. */
97*4882a593Smuzhiyun hyp_pa \reg, \tmp
98*4882a593Smuzhiyun
99*4882a593Smuzhiyun /* Load kimage_voffset. */
100*4882a593Smuzhiyun alternative_cb kvm_get_kimage_voffset
101*4882a593Smuzhiyun movz \tmp, #0
102*4882a593Smuzhiyun movk \tmp, #0, lsl #16
103*4882a593Smuzhiyun movk \tmp, #0, lsl #32
104*4882a593Smuzhiyun movk \tmp, #0, lsl #48
105*4882a593Smuzhiyun alternative_cb_end
106*4882a593Smuzhiyun
107*4882a593Smuzhiyun /* Convert PA -> kimg VA. */
108*4882a593Smuzhiyun add \reg, \reg, \tmp
109*4882a593Smuzhiyun .endm
110*4882a593Smuzhiyun
111*4882a593Smuzhiyun #else
112*4882a593Smuzhiyun
113*4882a593Smuzhiyun #include <linux/pgtable.h>
114*4882a593Smuzhiyun #include <asm/pgalloc.h>
115*4882a593Smuzhiyun #include <asm/cache.h>
116*4882a593Smuzhiyun #include <asm/cacheflush.h>
117*4882a593Smuzhiyun #include <asm/mmu_context.h>
118*4882a593Smuzhiyun
119*4882a593Smuzhiyun void kvm_update_va_mask(struct alt_instr *alt,
120*4882a593Smuzhiyun __le32 *origptr, __le32 *updptr, int nr_inst);
121*4882a593Smuzhiyun void kvm_compute_layout(void);
122*4882a593Smuzhiyun void kvm_apply_hyp_relocations(void);
123*4882a593Smuzhiyun
__kern_hyp_va(unsigned long v)124*4882a593Smuzhiyun static __always_inline unsigned long __kern_hyp_va(unsigned long v)
125*4882a593Smuzhiyun {
126*4882a593Smuzhiyun asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
127*4882a593Smuzhiyun "ror %0, %0, #1\n"
128*4882a593Smuzhiyun "add %0, %0, #0\n"
129*4882a593Smuzhiyun "add %0, %0, #0, lsl 12\n"
130*4882a593Smuzhiyun "ror %0, %0, #63\n",
131*4882a593Smuzhiyun kvm_update_va_mask)
132*4882a593Smuzhiyun : "+r" (v));
133*4882a593Smuzhiyun return v;
134*4882a593Smuzhiyun }
135*4882a593Smuzhiyun
136*4882a593Smuzhiyun #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
137*4882a593Smuzhiyun
138*4882a593Smuzhiyun /*
139*4882a593Smuzhiyun * We currently support using a VM-specified IPA size. For backward
140*4882a593Smuzhiyun * compatibility, the default IPA size is fixed to 40bits.
141*4882a593Smuzhiyun */
142*4882a593Smuzhiyun #define KVM_PHYS_SHIFT (40)
143*4882a593Smuzhiyun
144*4882a593Smuzhiyun #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
145*4882a593Smuzhiyun #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
146*4882a593Smuzhiyun #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
147*4882a593Smuzhiyun
148*4882a593Smuzhiyun #include <asm/kvm_pgtable.h>
149*4882a593Smuzhiyun #include <asm/stage2_pgtable.h>
150*4882a593Smuzhiyun
151*4882a593Smuzhiyun int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
152*4882a593Smuzhiyun int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
153*4882a593Smuzhiyun void __iomem **kaddr,
154*4882a593Smuzhiyun void __iomem **haddr);
155*4882a593Smuzhiyun int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
156*4882a593Smuzhiyun void **haddr);
157*4882a593Smuzhiyun void free_hyp_pgds(void);
158*4882a593Smuzhiyun
159*4882a593Smuzhiyun void stage2_unmap_vm(struct kvm *kvm);
160*4882a593Smuzhiyun int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
161*4882a593Smuzhiyun void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
162*4882a593Smuzhiyun int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
163*4882a593Smuzhiyun phys_addr_t pa, unsigned long size, bool writable);
164*4882a593Smuzhiyun
165*4882a593Smuzhiyun int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
166*4882a593Smuzhiyun
167*4882a593Smuzhiyun phys_addr_t kvm_mmu_get_httbr(void);
168*4882a593Smuzhiyun phys_addr_t kvm_get_idmap_vector(void);
169*4882a593Smuzhiyun int kvm_mmu_init(u32 *hyp_va_bits);
170*4882a593Smuzhiyun
__kvm_vector_slot2addr(void * base,enum arm64_hyp_spectre_vector slot)171*4882a593Smuzhiyun static inline void *__kvm_vector_slot2addr(void *base,
172*4882a593Smuzhiyun enum arm64_hyp_spectre_vector slot)
173*4882a593Smuzhiyun {
174*4882a593Smuzhiyun int idx = slot - (slot != HYP_VECTOR_DIRECT);
175*4882a593Smuzhiyun
176*4882a593Smuzhiyun return base + (idx * SZ_2K);
177*4882a593Smuzhiyun }
178*4882a593Smuzhiyun
179*4882a593Smuzhiyun struct kvm;
180*4882a593Smuzhiyun
181*4882a593Smuzhiyun #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
182*4882a593Smuzhiyun
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)183*4882a593Smuzhiyun static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
184*4882a593Smuzhiyun {
185*4882a593Smuzhiyun return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
186*4882a593Smuzhiyun }
187*4882a593Smuzhiyun
__clean_dcache_guest_page(kvm_pfn_t pfn,unsigned long size)188*4882a593Smuzhiyun static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
189*4882a593Smuzhiyun {
190*4882a593Smuzhiyun void *va = page_address(pfn_to_page(pfn));
191*4882a593Smuzhiyun
192*4882a593Smuzhiyun /*
193*4882a593Smuzhiyun * With FWB, we ensure that the guest always accesses memory using
194*4882a593Smuzhiyun * cacheable attributes, and we don't have to clean to PoC when
195*4882a593Smuzhiyun * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
196*4882a593Smuzhiyun * PoU is not required either in this case.
197*4882a593Smuzhiyun */
198*4882a593Smuzhiyun if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
199*4882a593Smuzhiyun return;
200*4882a593Smuzhiyun
201*4882a593Smuzhiyun kvm_flush_dcache_to_poc(va, size);
202*4882a593Smuzhiyun }
203*4882a593Smuzhiyun
__invalidate_icache_guest_page(kvm_pfn_t pfn,unsigned long size)204*4882a593Smuzhiyun static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
205*4882a593Smuzhiyun unsigned long size)
206*4882a593Smuzhiyun {
207*4882a593Smuzhiyun if (icache_is_aliasing()) {
208*4882a593Smuzhiyun /* any kind of VIPT cache */
209*4882a593Smuzhiyun __flush_icache_all();
210*4882a593Smuzhiyun } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
211*4882a593Smuzhiyun /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
212*4882a593Smuzhiyun void *va = page_address(pfn_to_page(pfn));
213*4882a593Smuzhiyun
214*4882a593Smuzhiyun invalidate_icache_range((unsigned long)va,
215*4882a593Smuzhiyun (unsigned long)va + size);
216*4882a593Smuzhiyun }
217*4882a593Smuzhiyun }
218*4882a593Smuzhiyun
219*4882a593Smuzhiyun void kvm_set_way_flush(struct kvm_vcpu *vcpu);
220*4882a593Smuzhiyun void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
221*4882a593Smuzhiyun
kvm_get_vmid_bits(void)222*4882a593Smuzhiyun static inline unsigned int kvm_get_vmid_bits(void)
223*4882a593Smuzhiyun {
224*4882a593Smuzhiyun int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
225*4882a593Smuzhiyun
226*4882a593Smuzhiyun return get_vmid_bits(reg);
227*4882a593Smuzhiyun }
228*4882a593Smuzhiyun
229*4882a593Smuzhiyun /*
230*4882a593Smuzhiyun * We are not in the kvm->srcu critical section most of the time, so we take
231*4882a593Smuzhiyun * the SRCU read lock here. Since we copy the data from the user page, we
232*4882a593Smuzhiyun * can immediately drop the lock again.
233*4882a593Smuzhiyun */
kvm_read_guest_lock(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)234*4882a593Smuzhiyun static inline int kvm_read_guest_lock(struct kvm *kvm,
235*4882a593Smuzhiyun gpa_t gpa, void *data, unsigned long len)
236*4882a593Smuzhiyun {
237*4882a593Smuzhiyun int srcu_idx = srcu_read_lock(&kvm->srcu);
238*4882a593Smuzhiyun int ret = kvm_read_guest(kvm, gpa, data, len);
239*4882a593Smuzhiyun
240*4882a593Smuzhiyun srcu_read_unlock(&kvm->srcu, srcu_idx);
241*4882a593Smuzhiyun
242*4882a593Smuzhiyun return ret;
243*4882a593Smuzhiyun }
244*4882a593Smuzhiyun
kvm_write_guest_lock(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)245*4882a593Smuzhiyun static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
246*4882a593Smuzhiyun const void *data, unsigned long len)
247*4882a593Smuzhiyun {
248*4882a593Smuzhiyun int srcu_idx = srcu_read_lock(&kvm->srcu);
249*4882a593Smuzhiyun int ret = kvm_write_guest(kvm, gpa, data, len);
250*4882a593Smuzhiyun
251*4882a593Smuzhiyun srcu_read_unlock(&kvm->srcu, srcu_idx);
252*4882a593Smuzhiyun
253*4882a593Smuzhiyun return ret;
254*4882a593Smuzhiyun }
255*4882a593Smuzhiyun
256*4882a593Smuzhiyun #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
257*4882a593Smuzhiyun
kvm_get_vttbr(struct kvm_s2_mmu * mmu)258*4882a593Smuzhiyun static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
259*4882a593Smuzhiyun {
260*4882a593Smuzhiyun struct kvm_vmid *vmid = &mmu->vmid;
261*4882a593Smuzhiyun u64 vmid_field, baddr;
262*4882a593Smuzhiyun u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
263*4882a593Smuzhiyun
264*4882a593Smuzhiyun baddr = mmu->pgd_phys;
265*4882a593Smuzhiyun vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
266*4882a593Smuzhiyun return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
267*4882a593Smuzhiyun }
268*4882a593Smuzhiyun
269*4882a593Smuzhiyun /*
270*4882a593Smuzhiyun * Must be called from hyp code running at EL2 with an updated VTTBR
271*4882a593Smuzhiyun * and interrupts disabled.
272*4882a593Smuzhiyun */
__load_stage2(struct kvm_s2_mmu * mmu,unsigned long vtcr)273*4882a593Smuzhiyun static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu, unsigned long vtcr)
274*4882a593Smuzhiyun {
275*4882a593Smuzhiyun write_sysreg(vtcr, vtcr_el2);
276*4882a593Smuzhiyun write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
277*4882a593Smuzhiyun
278*4882a593Smuzhiyun /*
279*4882a593Smuzhiyun * ARM errata 1165522 and 1530923 require the actual execution of the
280*4882a593Smuzhiyun * above before we can switch to the EL1/EL0 translation regime used by
281*4882a593Smuzhiyun * the guest.
282*4882a593Smuzhiyun */
283*4882a593Smuzhiyun asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
284*4882a593Smuzhiyun }
285*4882a593Smuzhiyun
__load_guest_stage2(struct kvm_s2_mmu * mmu)286*4882a593Smuzhiyun static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
287*4882a593Smuzhiyun {
288*4882a593Smuzhiyun __load_stage2(mmu, kern_hyp_va(mmu->arch)->vtcr);
289*4882a593Smuzhiyun }
290*4882a593Smuzhiyun
kvm_s2_mmu_to_kvm(struct kvm_s2_mmu * mmu)291*4882a593Smuzhiyun static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
292*4882a593Smuzhiyun {
293*4882a593Smuzhiyun return container_of(mmu->arch, struct kvm, arch);
294*4882a593Smuzhiyun }
295*4882a593Smuzhiyun #endif /* __ASSEMBLY__ */
296*4882a593Smuzhiyun #endif /* __ARM64_KVM_MMU_H__ */
297