xref: /OK3568_Linux_fs/kernel/arch/arm/nwfpe/softfloat.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /*
2*4882a593Smuzhiyun ===============================================================================
3*4882a593Smuzhiyun 
4*4882a593Smuzhiyun This C source file is part of the SoftFloat IEC/IEEE Floating-point
5*4882a593Smuzhiyun Arithmetic Package, Release 2.
6*4882a593Smuzhiyun 
7*4882a593Smuzhiyun Written by John R. Hauser.  This work was made possible in part by the
8*4882a593Smuzhiyun International Computer Science Institute, located at Suite 600, 1947 Center
9*4882a593Smuzhiyun Street, Berkeley, California 94704.  Funding was partially provided by the
10*4882a593Smuzhiyun National Science Foundation under grant MIP-9311980.  The original version
11*4882a593Smuzhiyun of this code was written as part of a project to build a fixed-point vector
12*4882a593Smuzhiyun processor in collaboration with the University of California at Berkeley,
13*4882a593Smuzhiyun overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
14*4882a593Smuzhiyun is available through the web page
15*4882a593Smuzhiyun http://www.jhauser.us/arithmetic/SoftFloat-2b/SoftFloat-source.txt
16*4882a593Smuzhiyun 
17*4882a593Smuzhiyun THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
18*4882a593Smuzhiyun has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
19*4882a593Smuzhiyun TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
20*4882a593Smuzhiyun PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
21*4882a593Smuzhiyun AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
22*4882a593Smuzhiyun 
23*4882a593Smuzhiyun Derivative works are acceptable, even for commercial purposes, so long as
24*4882a593Smuzhiyun (1) they include prominent notice that the work is derivative, and (2) they
25*4882a593Smuzhiyun include prominent notice akin to these three paragraphs for those parts of
26*4882a593Smuzhiyun this code that are retained.
27*4882a593Smuzhiyun 
28*4882a593Smuzhiyun ===============================================================================
29*4882a593Smuzhiyun */
30*4882a593Smuzhiyun 
31*4882a593Smuzhiyun #include <asm/div64.h>
32*4882a593Smuzhiyun 
33*4882a593Smuzhiyun #include "fpa11.h"
34*4882a593Smuzhiyun //#include "milieu.h"
35*4882a593Smuzhiyun //#include "softfloat.h"
36*4882a593Smuzhiyun 
37*4882a593Smuzhiyun /*
38*4882a593Smuzhiyun -------------------------------------------------------------------------------
39*4882a593Smuzhiyun Primitive arithmetic functions, including multi-word arithmetic, and
40*4882a593Smuzhiyun division and square root approximations.  (Can be specialized to target if
41*4882a593Smuzhiyun desired.)
42*4882a593Smuzhiyun -------------------------------------------------------------------------------
43*4882a593Smuzhiyun */
44*4882a593Smuzhiyun #include "softfloat-macros"
45*4882a593Smuzhiyun 
46*4882a593Smuzhiyun /*
47*4882a593Smuzhiyun -------------------------------------------------------------------------------
48*4882a593Smuzhiyun Functions and definitions to determine:  (1) whether tininess for underflow
49*4882a593Smuzhiyun is detected before or after rounding by default, (2) what (if anything)
50*4882a593Smuzhiyun happens when exceptions are raised, (3) how signaling NaNs are distinguished
51*4882a593Smuzhiyun from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
52*4882a593Smuzhiyun are propagated from function inputs to output.  These details are target-
53*4882a593Smuzhiyun specific.
54*4882a593Smuzhiyun -------------------------------------------------------------------------------
55*4882a593Smuzhiyun */
56*4882a593Smuzhiyun #include "softfloat-specialize"
57*4882a593Smuzhiyun 
58*4882a593Smuzhiyun /*
59*4882a593Smuzhiyun -------------------------------------------------------------------------------
60*4882a593Smuzhiyun Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
61*4882a593Smuzhiyun and 7, and returns the properly rounded 32-bit integer corresponding to the
62*4882a593Smuzhiyun input.  If `zSign' is nonzero, the input is negated before being converted
63*4882a593Smuzhiyun to an integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point
64*4882a593Smuzhiyun input is simply rounded to an integer, with the inexact exception raised if
65*4882a593Smuzhiyun the input cannot be represented exactly as an integer.  If the fixed-point
66*4882a593Smuzhiyun input is too large, however, the invalid exception is raised and the largest
67*4882a593Smuzhiyun positive or negative integer is returned.
68*4882a593Smuzhiyun -------------------------------------------------------------------------------
69*4882a593Smuzhiyun */
roundAndPackInt32(struct roundingData * roundData,flag zSign,bits64 absZ)70*4882a593Smuzhiyun static int32 roundAndPackInt32( struct roundingData *roundData, flag zSign, bits64 absZ )
71*4882a593Smuzhiyun {
72*4882a593Smuzhiyun     int8 roundingMode;
73*4882a593Smuzhiyun     flag roundNearestEven;
74*4882a593Smuzhiyun     int8 roundIncrement, roundBits;
75*4882a593Smuzhiyun     int32 z;
76*4882a593Smuzhiyun 
77*4882a593Smuzhiyun     roundingMode = roundData->mode;
78*4882a593Smuzhiyun     roundNearestEven = ( roundingMode == float_round_nearest_even );
79*4882a593Smuzhiyun     roundIncrement = 0x40;
80*4882a593Smuzhiyun     if ( ! roundNearestEven ) {
81*4882a593Smuzhiyun         if ( roundingMode == float_round_to_zero ) {
82*4882a593Smuzhiyun             roundIncrement = 0;
83*4882a593Smuzhiyun         }
84*4882a593Smuzhiyun         else {
85*4882a593Smuzhiyun             roundIncrement = 0x7F;
86*4882a593Smuzhiyun             if ( zSign ) {
87*4882a593Smuzhiyun                 if ( roundingMode == float_round_up ) roundIncrement = 0;
88*4882a593Smuzhiyun             }
89*4882a593Smuzhiyun             else {
90*4882a593Smuzhiyun                 if ( roundingMode == float_round_down ) roundIncrement = 0;
91*4882a593Smuzhiyun             }
92*4882a593Smuzhiyun         }
93*4882a593Smuzhiyun     }
94*4882a593Smuzhiyun     roundBits = absZ & 0x7F;
95*4882a593Smuzhiyun     absZ = ( absZ + roundIncrement )>>7;
96*4882a593Smuzhiyun     absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
97*4882a593Smuzhiyun     z = absZ;
98*4882a593Smuzhiyun     if ( zSign ) z = - z;
99*4882a593Smuzhiyun     if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
100*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
101*4882a593Smuzhiyun         return zSign ? 0x80000000 : 0x7FFFFFFF;
102*4882a593Smuzhiyun     }
103*4882a593Smuzhiyun     if ( roundBits ) roundData->exception |= float_flag_inexact;
104*4882a593Smuzhiyun     return z;
105*4882a593Smuzhiyun 
106*4882a593Smuzhiyun }
107*4882a593Smuzhiyun 
108*4882a593Smuzhiyun /*
109*4882a593Smuzhiyun -------------------------------------------------------------------------------
110*4882a593Smuzhiyun Returns the fraction bits of the single-precision floating-point value `a'.
111*4882a593Smuzhiyun -------------------------------------------------------------------------------
112*4882a593Smuzhiyun */
extractFloat32Frac(float32 a)113*4882a593Smuzhiyun INLINE bits32 extractFloat32Frac( float32 a )
114*4882a593Smuzhiyun {
115*4882a593Smuzhiyun 
116*4882a593Smuzhiyun     return a & 0x007FFFFF;
117*4882a593Smuzhiyun 
118*4882a593Smuzhiyun }
119*4882a593Smuzhiyun 
120*4882a593Smuzhiyun /*
121*4882a593Smuzhiyun -------------------------------------------------------------------------------
122*4882a593Smuzhiyun Returns the exponent bits of the single-precision floating-point value `a'.
123*4882a593Smuzhiyun -------------------------------------------------------------------------------
124*4882a593Smuzhiyun */
extractFloat32Exp(float32 a)125*4882a593Smuzhiyun INLINE int16 extractFloat32Exp( float32 a )
126*4882a593Smuzhiyun {
127*4882a593Smuzhiyun 
128*4882a593Smuzhiyun     return ( a>>23 ) & 0xFF;
129*4882a593Smuzhiyun 
130*4882a593Smuzhiyun }
131*4882a593Smuzhiyun 
132*4882a593Smuzhiyun /*
133*4882a593Smuzhiyun -------------------------------------------------------------------------------
134*4882a593Smuzhiyun Returns the sign bit of the single-precision floating-point value `a'.
135*4882a593Smuzhiyun -------------------------------------------------------------------------------
136*4882a593Smuzhiyun */
137*4882a593Smuzhiyun #if 0	/* in softfloat.h */
138*4882a593Smuzhiyun INLINE flag extractFloat32Sign( float32 a )
139*4882a593Smuzhiyun {
140*4882a593Smuzhiyun 
141*4882a593Smuzhiyun     return a>>31;
142*4882a593Smuzhiyun 
143*4882a593Smuzhiyun }
144*4882a593Smuzhiyun #endif
145*4882a593Smuzhiyun 
146*4882a593Smuzhiyun /*
147*4882a593Smuzhiyun -------------------------------------------------------------------------------
148*4882a593Smuzhiyun Normalizes the subnormal single-precision floating-point value represented
149*4882a593Smuzhiyun by the denormalized significand `aSig'.  The normalized exponent and
150*4882a593Smuzhiyun significand are stored at the locations pointed to by `zExpPtr' and
151*4882a593Smuzhiyun `zSigPtr', respectively.
152*4882a593Smuzhiyun -------------------------------------------------------------------------------
153*4882a593Smuzhiyun */
154*4882a593Smuzhiyun static void
normalizeFloat32Subnormal(bits32 aSig,int16 * zExpPtr,bits32 * zSigPtr)155*4882a593Smuzhiyun  normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
156*4882a593Smuzhiyun {
157*4882a593Smuzhiyun     int8 shiftCount;
158*4882a593Smuzhiyun 
159*4882a593Smuzhiyun     shiftCount = countLeadingZeros32( aSig ) - 8;
160*4882a593Smuzhiyun     *zSigPtr = aSig<<shiftCount;
161*4882a593Smuzhiyun     *zExpPtr = 1 - shiftCount;
162*4882a593Smuzhiyun 
163*4882a593Smuzhiyun }
164*4882a593Smuzhiyun 
165*4882a593Smuzhiyun /*
166*4882a593Smuzhiyun -------------------------------------------------------------------------------
167*4882a593Smuzhiyun Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
168*4882a593Smuzhiyun single-precision floating-point value, returning the result.  After being
169*4882a593Smuzhiyun shifted into the proper positions, the three fields are simply added
170*4882a593Smuzhiyun together to form the result.  This means that any integer portion of `zSig'
171*4882a593Smuzhiyun will be added into the exponent.  Since a properly normalized significand
172*4882a593Smuzhiyun will have an integer portion equal to 1, the `zExp' input should be 1 less
173*4882a593Smuzhiyun than the desired result exponent whenever `zSig' is a complete, normalized
174*4882a593Smuzhiyun significand.
175*4882a593Smuzhiyun -------------------------------------------------------------------------------
176*4882a593Smuzhiyun */
packFloat32(flag zSign,int16 zExp,bits32 zSig)177*4882a593Smuzhiyun INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
178*4882a593Smuzhiyun {
179*4882a593Smuzhiyun #if 0
180*4882a593Smuzhiyun    float32 f;
181*4882a593Smuzhiyun    __asm__("@ packFloat32				\n\
182*4882a593Smuzhiyun    	    mov %0, %1, asl #31				\n\
183*4882a593Smuzhiyun    	    orr %0, %2, asl #23				\n\
184*4882a593Smuzhiyun    	    orr %0, %3"
185*4882a593Smuzhiyun    	    : /* no outputs */
186*4882a593Smuzhiyun    	    : "g" (f), "g" (zSign), "g" (zExp), "g" (zSig)
187*4882a593Smuzhiyun    	    : "cc");
188*4882a593Smuzhiyun    return f;
189*4882a593Smuzhiyun #else
190*4882a593Smuzhiyun     return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
191*4882a593Smuzhiyun #endif
192*4882a593Smuzhiyun }
193*4882a593Smuzhiyun 
194*4882a593Smuzhiyun /*
195*4882a593Smuzhiyun -------------------------------------------------------------------------------
196*4882a593Smuzhiyun Takes an abstract floating-point value having sign `zSign', exponent `zExp',
197*4882a593Smuzhiyun and significand `zSig', and returns the proper single-precision floating-
198*4882a593Smuzhiyun point value corresponding to the abstract input.  Ordinarily, the abstract
199*4882a593Smuzhiyun value is simply rounded and packed into the single-precision format, with
200*4882a593Smuzhiyun the inexact exception raised if the abstract input cannot be represented
201*4882a593Smuzhiyun exactly.  If the abstract value is too large, however, the overflow and
202*4882a593Smuzhiyun inexact exceptions are raised and an infinity or maximal finite value is
203*4882a593Smuzhiyun returned.  If the abstract value is too small, the input value is rounded to
204*4882a593Smuzhiyun a subnormal number, and the underflow and inexact exceptions are raised if
205*4882a593Smuzhiyun the abstract input cannot be represented exactly as a subnormal single-
206*4882a593Smuzhiyun precision floating-point number.
207*4882a593Smuzhiyun     The input significand `zSig' has its binary point between bits 30
208*4882a593Smuzhiyun and 29, which is 7 bits to the left of the usual location.  This shifted
209*4882a593Smuzhiyun significand must be normalized or smaller.  If `zSig' is not normalized,
210*4882a593Smuzhiyun `zExp' must be 0; in that case, the result returned is a subnormal number,
211*4882a593Smuzhiyun and it must not require rounding.  In the usual case that `zSig' is
212*4882a593Smuzhiyun normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
213*4882a593Smuzhiyun The handling of underflow and overflow follows the IEC/IEEE Standard for
214*4882a593Smuzhiyun Binary Floating-point Arithmetic.
215*4882a593Smuzhiyun -------------------------------------------------------------------------------
216*4882a593Smuzhiyun */
roundAndPackFloat32(struct roundingData * roundData,flag zSign,int16 zExp,bits32 zSig)217*4882a593Smuzhiyun static float32 roundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
218*4882a593Smuzhiyun {
219*4882a593Smuzhiyun     int8 roundingMode;
220*4882a593Smuzhiyun     flag roundNearestEven;
221*4882a593Smuzhiyun     int8 roundIncrement, roundBits;
222*4882a593Smuzhiyun     flag isTiny;
223*4882a593Smuzhiyun 
224*4882a593Smuzhiyun     roundingMode = roundData->mode;
225*4882a593Smuzhiyun     roundNearestEven = ( roundingMode == float_round_nearest_even );
226*4882a593Smuzhiyun     roundIncrement = 0x40;
227*4882a593Smuzhiyun     if ( ! roundNearestEven ) {
228*4882a593Smuzhiyun         if ( roundingMode == float_round_to_zero ) {
229*4882a593Smuzhiyun             roundIncrement = 0;
230*4882a593Smuzhiyun         }
231*4882a593Smuzhiyun         else {
232*4882a593Smuzhiyun             roundIncrement = 0x7F;
233*4882a593Smuzhiyun             if ( zSign ) {
234*4882a593Smuzhiyun                 if ( roundingMode == float_round_up ) roundIncrement = 0;
235*4882a593Smuzhiyun             }
236*4882a593Smuzhiyun             else {
237*4882a593Smuzhiyun                 if ( roundingMode == float_round_down ) roundIncrement = 0;
238*4882a593Smuzhiyun             }
239*4882a593Smuzhiyun         }
240*4882a593Smuzhiyun     }
241*4882a593Smuzhiyun     roundBits = zSig & 0x7F;
242*4882a593Smuzhiyun     if ( 0xFD <= (bits16) zExp ) {
243*4882a593Smuzhiyun         if (    ( 0xFD < zExp )
244*4882a593Smuzhiyun              || (    ( zExp == 0xFD )
245*4882a593Smuzhiyun                   && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
246*4882a593Smuzhiyun            ) {
247*4882a593Smuzhiyun             roundData->exception |= float_flag_overflow | float_flag_inexact;
248*4882a593Smuzhiyun             return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
249*4882a593Smuzhiyun         }
250*4882a593Smuzhiyun         if ( zExp < 0 ) {
251*4882a593Smuzhiyun             isTiny =
252*4882a593Smuzhiyun                    ( float_detect_tininess == float_tininess_before_rounding )
253*4882a593Smuzhiyun                 || ( zExp < -1 )
254*4882a593Smuzhiyun                 || ( zSig + roundIncrement < 0x80000000 );
255*4882a593Smuzhiyun             shift32RightJamming( zSig, - zExp, &zSig );
256*4882a593Smuzhiyun             zExp = 0;
257*4882a593Smuzhiyun             roundBits = zSig & 0x7F;
258*4882a593Smuzhiyun             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
259*4882a593Smuzhiyun         }
260*4882a593Smuzhiyun     }
261*4882a593Smuzhiyun     if ( roundBits ) roundData->exception |= float_flag_inexact;
262*4882a593Smuzhiyun     zSig = ( zSig + roundIncrement )>>7;
263*4882a593Smuzhiyun     zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
264*4882a593Smuzhiyun     if ( zSig == 0 ) zExp = 0;
265*4882a593Smuzhiyun     return packFloat32( zSign, zExp, zSig );
266*4882a593Smuzhiyun 
267*4882a593Smuzhiyun }
268*4882a593Smuzhiyun 
269*4882a593Smuzhiyun /*
270*4882a593Smuzhiyun -------------------------------------------------------------------------------
271*4882a593Smuzhiyun Takes an abstract floating-point value having sign `zSign', exponent `zExp',
272*4882a593Smuzhiyun and significand `zSig', and returns the proper single-precision floating-
273*4882a593Smuzhiyun point value corresponding to the abstract input.  This routine is just like
274*4882a593Smuzhiyun `roundAndPackFloat32' except that `zSig' does not have to be normalized in
275*4882a593Smuzhiyun any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
276*4882a593Smuzhiyun point exponent.
277*4882a593Smuzhiyun -------------------------------------------------------------------------------
278*4882a593Smuzhiyun */
279*4882a593Smuzhiyun static float32
normalizeRoundAndPackFloat32(struct roundingData * roundData,flag zSign,int16 zExp,bits32 zSig)280*4882a593Smuzhiyun  normalizeRoundAndPackFloat32( struct roundingData *roundData, flag zSign, int16 zExp, bits32 zSig )
281*4882a593Smuzhiyun {
282*4882a593Smuzhiyun     int8 shiftCount;
283*4882a593Smuzhiyun 
284*4882a593Smuzhiyun     shiftCount = countLeadingZeros32( zSig ) - 1;
285*4882a593Smuzhiyun     return roundAndPackFloat32( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
286*4882a593Smuzhiyun 
287*4882a593Smuzhiyun }
288*4882a593Smuzhiyun 
289*4882a593Smuzhiyun /*
290*4882a593Smuzhiyun -------------------------------------------------------------------------------
291*4882a593Smuzhiyun Returns the fraction bits of the double-precision floating-point value `a'.
292*4882a593Smuzhiyun -------------------------------------------------------------------------------
293*4882a593Smuzhiyun */
extractFloat64Frac(float64 a)294*4882a593Smuzhiyun INLINE bits64 extractFloat64Frac( float64 a )
295*4882a593Smuzhiyun {
296*4882a593Smuzhiyun 
297*4882a593Smuzhiyun     return a & LIT64( 0x000FFFFFFFFFFFFF );
298*4882a593Smuzhiyun 
299*4882a593Smuzhiyun }
300*4882a593Smuzhiyun 
301*4882a593Smuzhiyun /*
302*4882a593Smuzhiyun -------------------------------------------------------------------------------
303*4882a593Smuzhiyun Returns the exponent bits of the double-precision floating-point value `a'.
304*4882a593Smuzhiyun -------------------------------------------------------------------------------
305*4882a593Smuzhiyun */
extractFloat64Exp(float64 a)306*4882a593Smuzhiyun INLINE int16 extractFloat64Exp( float64 a )
307*4882a593Smuzhiyun {
308*4882a593Smuzhiyun 
309*4882a593Smuzhiyun     return ( a>>52 ) & 0x7FF;
310*4882a593Smuzhiyun 
311*4882a593Smuzhiyun }
312*4882a593Smuzhiyun 
313*4882a593Smuzhiyun /*
314*4882a593Smuzhiyun -------------------------------------------------------------------------------
315*4882a593Smuzhiyun Returns the sign bit of the double-precision floating-point value `a'.
316*4882a593Smuzhiyun -------------------------------------------------------------------------------
317*4882a593Smuzhiyun */
318*4882a593Smuzhiyun #if 0	/* in softfloat.h */
319*4882a593Smuzhiyun INLINE flag extractFloat64Sign( float64 a )
320*4882a593Smuzhiyun {
321*4882a593Smuzhiyun 
322*4882a593Smuzhiyun     return a>>63;
323*4882a593Smuzhiyun 
324*4882a593Smuzhiyun }
325*4882a593Smuzhiyun #endif
326*4882a593Smuzhiyun 
327*4882a593Smuzhiyun /*
328*4882a593Smuzhiyun -------------------------------------------------------------------------------
329*4882a593Smuzhiyun Normalizes the subnormal double-precision floating-point value represented
330*4882a593Smuzhiyun by the denormalized significand `aSig'.  The normalized exponent and
331*4882a593Smuzhiyun significand are stored at the locations pointed to by `zExpPtr' and
332*4882a593Smuzhiyun `zSigPtr', respectively.
333*4882a593Smuzhiyun -------------------------------------------------------------------------------
334*4882a593Smuzhiyun */
335*4882a593Smuzhiyun static void
normalizeFloat64Subnormal(bits64 aSig,int16 * zExpPtr,bits64 * zSigPtr)336*4882a593Smuzhiyun  normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
337*4882a593Smuzhiyun {
338*4882a593Smuzhiyun     int8 shiftCount;
339*4882a593Smuzhiyun 
340*4882a593Smuzhiyun     shiftCount = countLeadingZeros64( aSig ) - 11;
341*4882a593Smuzhiyun     *zSigPtr = aSig<<shiftCount;
342*4882a593Smuzhiyun     *zExpPtr = 1 - shiftCount;
343*4882a593Smuzhiyun 
344*4882a593Smuzhiyun }
345*4882a593Smuzhiyun 
346*4882a593Smuzhiyun /*
347*4882a593Smuzhiyun -------------------------------------------------------------------------------
348*4882a593Smuzhiyun Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
349*4882a593Smuzhiyun double-precision floating-point value, returning the result.  After being
350*4882a593Smuzhiyun shifted into the proper positions, the three fields are simply added
351*4882a593Smuzhiyun together to form the result.  This means that any integer portion of `zSig'
352*4882a593Smuzhiyun will be added into the exponent.  Since a properly normalized significand
353*4882a593Smuzhiyun will have an integer portion equal to 1, the `zExp' input should be 1 less
354*4882a593Smuzhiyun than the desired result exponent whenever `zSig' is a complete, normalized
355*4882a593Smuzhiyun significand.
356*4882a593Smuzhiyun -------------------------------------------------------------------------------
357*4882a593Smuzhiyun */
packFloat64(flag zSign,int16 zExp,bits64 zSig)358*4882a593Smuzhiyun INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
359*4882a593Smuzhiyun {
360*4882a593Smuzhiyun 
361*4882a593Smuzhiyun     return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
362*4882a593Smuzhiyun 
363*4882a593Smuzhiyun }
364*4882a593Smuzhiyun 
365*4882a593Smuzhiyun /*
366*4882a593Smuzhiyun -------------------------------------------------------------------------------
367*4882a593Smuzhiyun Takes an abstract floating-point value having sign `zSign', exponent `zExp',
368*4882a593Smuzhiyun and significand `zSig', and returns the proper double-precision floating-
369*4882a593Smuzhiyun point value corresponding to the abstract input.  Ordinarily, the abstract
370*4882a593Smuzhiyun value is simply rounded and packed into the double-precision format, with
371*4882a593Smuzhiyun the inexact exception raised if the abstract input cannot be represented
372*4882a593Smuzhiyun exactly.  If the abstract value is too large, however, the overflow and
373*4882a593Smuzhiyun inexact exceptions are raised and an infinity or maximal finite value is
374*4882a593Smuzhiyun returned.  If the abstract value is too small, the input value is rounded to
375*4882a593Smuzhiyun a subnormal number, and the underflow and inexact exceptions are raised if
376*4882a593Smuzhiyun the abstract input cannot be represented exactly as a subnormal double-
377*4882a593Smuzhiyun precision floating-point number.
378*4882a593Smuzhiyun     The input significand `zSig' has its binary point between bits 62
379*4882a593Smuzhiyun and 61, which is 10 bits to the left of the usual location.  This shifted
380*4882a593Smuzhiyun significand must be normalized or smaller.  If `zSig' is not normalized,
381*4882a593Smuzhiyun `zExp' must be 0; in that case, the result returned is a subnormal number,
382*4882a593Smuzhiyun and it must not require rounding.  In the usual case that `zSig' is
383*4882a593Smuzhiyun normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
384*4882a593Smuzhiyun The handling of underflow and overflow follows the IEC/IEEE Standard for
385*4882a593Smuzhiyun Binary Floating-point Arithmetic.
386*4882a593Smuzhiyun -------------------------------------------------------------------------------
387*4882a593Smuzhiyun */
roundAndPackFloat64(struct roundingData * roundData,flag zSign,int16 zExp,bits64 zSig)388*4882a593Smuzhiyun static float64 roundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
389*4882a593Smuzhiyun {
390*4882a593Smuzhiyun     int8 roundingMode;
391*4882a593Smuzhiyun     flag roundNearestEven;
392*4882a593Smuzhiyun     int16 roundIncrement, roundBits;
393*4882a593Smuzhiyun     flag isTiny;
394*4882a593Smuzhiyun 
395*4882a593Smuzhiyun     roundingMode = roundData->mode;
396*4882a593Smuzhiyun     roundNearestEven = ( roundingMode == float_round_nearest_even );
397*4882a593Smuzhiyun     roundIncrement = 0x200;
398*4882a593Smuzhiyun     if ( ! roundNearestEven ) {
399*4882a593Smuzhiyun         if ( roundingMode == float_round_to_zero ) {
400*4882a593Smuzhiyun             roundIncrement = 0;
401*4882a593Smuzhiyun         }
402*4882a593Smuzhiyun         else {
403*4882a593Smuzhiyun             roundIncrement = 0x3FF;
404*4882a593Smuzhiyun             if ( zSign ) {
405*4882a593Smuzhiyun                 if ( roundingMode == float_round_up ) roundIncrement = 0;
406*4882a593Smuzhiyun             }
407*4882a593Smuzhiyun             else {
408*4882a593Smuzhiyun                 if ( roundingMode == float_round_down ) roundIncrement = 0;
409*4882a593Smuzhiyun             }
410*4882a593Smuzhiyun         }
411*4882a593Smuzhiyun     }
412*4882a593Smuzhiyun     roundBits = zSig & 0x3FF;
413*4882a593Smuzhiyun     if ( 0x7FD <= (bits16) zExp ) {
414*4882a593Smuzhiyun         if (    ( 0x7FD < zExp )
415*4882a593Smuzhiyun              || (    ( zExp == 0x7FD )
416*4882a593Smuzhiyun                   && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
417*4882a593Smuzhiyun            ) {
418*4882a593Smuzhiyun             //register int lr = __builtin_return_address(0);
419*4882a593Smuzhiyun             //printk("roundAndPackFloat64 called from 0x%08x\n",lr);
420*4882a593Smuzhiyun             roundData->exception |= float_flag_overflow | float_flag_inexact;
421*4882a593Smuzhiyun             return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
422*4882a593Smuzhiyun         }
423*4882a593Smuzhiyun         if ( zExp < 0 ) {
424*4882a593Smuzhiyun             isTiny =
425*4882a593Smuzhiyun                    ( float_detect_tininess == float_tininess_before_rounding )
426*4882a593Smuzhiyun                 || ( zExp < -1 )
427*4882a593Smuzhiyun                 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
428*4882a593Smuzhiyun             shift64RightJamming( zSig, - zExp, &zSig );
429*4882a593Smuzhiyun             zExp = 0;
430*4882a593Smuzhiyun             roundBits = zSig & 0x3FF;
431*4882a593Smuzhiyun             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
432*4882a593Smuzhiyun         }
433*4882a593Smuzhiyun     }
434*4882a593Smuzhiyun     if ( roundBits ) roundData->exception |= float_flag_inexact;
435*4882a593Smuzhiyun     zSig = ( zSig + roundIncrement )>>10;
436*4882a593Smuzhiyun     zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
437*4882a593Smuzhiyun     if ( zSig == 0 ) zExp = 0;
438*4882a593Smuzhiyun     return packFloat64( zSign, zExp, zSig );
439*4882a593Smuzhiyun 
440*4882a593Smuzhiyun }
441*4882a593Smuzhiyun 
442*4882a593Smuzhiyun /*
443*4882a593Smuzhiyun -------------------------------------------------------------------------------
444*4882a593Smuzhiyun Takes an abstract floating-point value having sign `zSign', exponent `zExp',
445*4882a593Smuzhiyun and significand `zSig', and returns the proper double-precision floating-
446*4882a593Smuzhiyun point value corresponding to the abstract input.  This routine is just like
447*4882a593Smuzhiyun `roundAndPackFloat64' except that `zSig' does not have to be normalized in
448*4882a593Smuzhiyun any way.  In all cases, `zExp' must be 1 less than the ``true'' floating-
449*4882a593Smuzhiyun point exponent.
450*4882a593Smuzhiyun -------------------------------------------------------------------------------
451*4882a593Smuzhiyun */
452*4882a593Smuzhiyun static float64
normalizeRoundAndPackFloat64(struct roundingData * roundData,flag zSign,int16 zExp,bits64 zSig)453*4882a593Smuzhiyun  normalizeRoundAndPackFloat64( struct roundingData *roundData, flag zSign, int16 zExp, bits64 zSig )
454*4882a593Smuzhiyun {
455*4882a593Smuzhiyun     int8 shiftCount;
456*4882a593Smuzhiyun 
457*4882a593Smuzhiyun     shiftCount = countLeadingZeros64( zSig ) - 1;
458*4882a593Smuzhiyun     return roundAndPackFloat64( roundData, zSign, zExp - shiftCount, zSig<<shiftCount );
459*4882a593Smuzhiyun 
460*4882a593Smuzhiyun }
461*4882a593Smuzhiyun 
462*4882a593Smuzhiyun #ifdef FLOATX80
463*4882a593Smuzhiyun 
464*4882a593Smuzhiyun /*
465*4882a593Smuzhiyun -------------------------------------------------------------------------------
466*4882a593Smuzhiyun Returns the fraction bits of the extended double-precision floating-point
467*4882a593Smuzhiyun value `a'.
468*4882a593Smuzhiyun -------------------------------------------------------------------------------
469*4882a593Smuzhiyun */
extractFloatx80Frac(floatx80 a)470*4882a593Smuzhiyun INLINE bits64 extractFloatx80Frac( floatx80 a )
471*4882a593Smuzhiyun {
472*4882a593Smuzhiyun 
473*4882a593Smuzhiyun     return a.low;
474*4882a593Smuzhiyun 
475*4882a593Smuzhiyun }
476*4882a593Smuzhiyun 
477*4882a593Smuzhiyun /*
478*4882a593Smuzhiyun -------------------------------------------------------------------------------
479*4882a593Smuzhiyun Returns the exponent bits of the extended double-precision floating-point
480*4882a593Smuzhiyun value `a'.
481*4882a593Smuzhiyun -------------------------------------------------------------------------------
482*4882a593Smuzhiyun */
extractFloatx80Exp(floatx80 a)483*4882a593Smuzhiyun INLINE int32 extractFloatx80Exp( floatx80 a )
484*4882a593Smuzhiyun {
485*4882a593Smuzhiyun 
486*4882a593Smuzhiyun     return a.high & 0x7FFF;
487*4882a593Smuzhiyun 
488*4882a593Smuzhiyun }
489*4882a593Smuzhiyun 
490*4882a593Smuzhiyun /*
491*4882a593Smuzhiyun -------------------------------------------------------------------------------
492*4882a593Smuzhiyun Returns the sign bit of the extended double-precision floating-point value
493*4882a593Smuzhiyun `a'.
494*4882a593Smuzhiyun -------------------------------------------------------------------------------
495*4882a593Smuzhiyun */
extractFloatx80Sign(floatx80 a)496*4882a593Smuzhiyun INLINE flag extractFloatx80Sign( floatx80 a )
497*4882a593Smuzhiyun {
498*4882a593Smuzhiyun 
499*4882a593Smuzhiyun     return a.high>>15;
500*4882a593Smuzhiyun 
501*4882a593Smuzhiyun }
502*4882a593Smuzhiyun 
503*4882a593Smuzhiyun /*
504*4882a593Smuzhiyun -------------------------------------------------------------------------------
505*4882a593Smuzhiyun Normalizes the subnormal extended double-precision floating-point value
506*4882a593Smuzhiyun represented by the denormalized significand `aSig'.  The normalized exponent
507*4882a593Smuzhiyun and significand are stored at the locations pointed to by `zExpPtr' and
508*4882a593Smuzhiyun `zSigPtr', respectively.
509*4882a593Smuzhiyun -------------------------------------------------------------------------------
510*4882a593Smuzhiyun */
511*4882a593Smuzhiyun static void
normalizeFloatx80Subnormal(bits64 aSig,int32 * zExpPtr,bits64 * zSigPtr)512*4882a593Smuzhiyun  normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
513*4882a593Smuzhiyun {
514*4882a593Smuzhiyun     int8 shiftCount;
515*4882a593Smuzhiyun 
516*4882a593Smuzhiyun     shiftCount = countLeadingZeros64( aSig );
517*4882a593Smuzhiyun     *zSigPtr = aSig<<shiftCount;
518*4882a593Smuzhiyun     *zExpPtr = 1 - shiftCount;
519*4882a593Smuzhiyun 
520*4882a593Smuzhiyun }
521*4882a593Smuzhiyun 
522*4882a593Smuzhiyun /*
523*4882a593Smuzhiyun -------------------------------------------------------------------------------
524*4882a593Smuzhiyun Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
525*4882a593Smuzhiyun extended double-precision floating-point value, returning the result.
526*4882a593Smuzhiyun -------------------------------------------------------------------------------
527*4882a593Smuzhiyun */
packFloatx80(flag zSign,int32 zExp,bits64 zSig)528*4882a593Smuzhiyun INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
529*4882a593Smuzhiyun {
530*4882a593Smuzhiyun     floatx80 z;
531*4882a593Smuzhiyun 
532*4882a593Smuzhiyun     z.low = zSig;
533*4882a593Smuzhiyun     z.high = ( ( (bits16) zSign )<<15 ) + zExp;
534*4882a593Smuzhiyun     z.__padding = 0;
535*4882a593Smuzhiyun     return z;
536*4882a593Smuzhiyun 
537*4882a593Smuzhiyun }
538*4882a593Smuzhiyun 
539*4882a593Smuzhiyun /*
540*4882a593Smuzhiyun -------------------------------------------------------------------------------
541*4882a593Smuzhiyun Takes an abstract floating-point value having sign `zSign', exponent `zExp',
542*4882a593Smuzhiyun and extended significand formed by the concatenation of `zSig0' and `zSig1',
543*4882a593Smuzhiyun and returns the proper extended double-precision floating-point value
544*4882a593Smuzhiyun corresponding to the abstract input.  Ordinarily, the abstract value is
545*4882a593Smuzhiyun rounded and packed into the extended double-precision format, with the
546*4882a593Smuzhiyun inexact exception raised if the abstract input cannot be represented
547*4882a593Smuzhiyun exactly.  If the abstract value is too large, however, the overflow and
548*4882a593Smuzhiyun inexact exceptions are raised and an infinity or maximal finite value is
549*4882a593Smuzhiyun returned.  If the abstract value is too small, the input value is rounded to
550*4882a593Smuzhiyun a subnormal number, and the underflow and inexact exceptions are raised if
551*4882a593Smuzhiyun the abstract input cannot be represented exactly as a subnormal extended
552*4882a593Smuzhiyun double-precision floating-point number.
553*4882a593Smuzhiyun     If `roundingPrecision' is 32 or 64, the result is rounded to the same
554*4882a593Smuzhiyun number of bits as single or double precision, respectively.  Otherwise, the
555*4882a593Smuzhiyun result is rounded to the full precision of the extended double-precision
556*4882a593Smuzhiyun format.
557*4882a593Smuzhiyun     The input significand must be normalized or smaller.  If the input
558*4882a593Smuzhiyun significand is not normalized, `zExp' must be 0; in that case, the result
559*4882a593Smuzhiyun returned is a subnormal number, and it must not require rounding.  The
560*4882a593Smuzhiyun handling of underflow and overflow follows the IEC/IEEE Standard for Binary
561*4882a593Smuzhiyun Floating-point Arithmetic.
562*4882a593Smuzhiyun -------------------------------------------------------------------------------
563*4882a593Smuzhiyun */
564*4882a593Smuzhiyun static floatx80
roundAndPackFloatx80(struct roundingData * roundData,flag zSign,int32 zExp,bits64 zSig0,bits64 zSig1)565*4882a593Smuzhiyun  roundAndPackFloatx80(
566*4882a593Smuzhiyun      struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
567*4882a593Smuzhiyun  )
568*4882a593Smuzhiyun {
569*4882a593Smuzhiyun     int8 roundingMode, roundingPrecision;
570*4882a593Smuzhiyun     flag roundNearestEven, increment, isTiny;
571*4882a593Smuzhiyun     int64 roundIncrement, roundMask, roundBits;
572*4882a593Smuzhiyun 
573*4882a593Smuzhiyun     roundingMode = roundData->mode;
574*4882a593Smuzhiyun     roundingPrecision = roundData->precision;
575*4882a593Smuzhiyun     roundNearestEven = ( roundingMode == float_round_nearest_even );
576*4882a593Smuzhiyun     if ( roundingPrecision == 80 ) goto precision80;
577*4882a593Smuzhiyun     if ( roundingPrecision == 64 ) {
578*4882a593Smuzhiyun         roundIncrement = LIT64( 0x0000000000000400 );
579*4882a593Smuzhiyun         roundMask = LIT64( 0x00000000000007FF );
580*4882a593Smuzhiyun     }
581*4882a593Smuzhiyun     else if ( roundingPrecision == 32 ) {
582*4882a593Smuzhiyun         roundIncrement = LIT64( 0x0000008000000000 );
583*4882a593Smuzhiyun         roundMask = LIT64( 0x000000FFFFFFFFFF );
584*4882a593Smuzhiyun     }
585*4882a593Smuzhiyun     else {
586*4882a593Smuzhiyun         goto precision80;
587*4882a593Smuzhiyun     }
588*4882a593Smuzhiyun     zSig0 |= ( zSig1 != 0 );
589*4882a593Smuzhiyun     if ( ! roundNearestEven ) {
590*4882a593Smuzhiyun         if ( roundingMode == float_round_to_zero ) {
591*4882a593Smuzhiyun             roundIncrement = 0;
592*4882a593Smuzhiyun         }
593*4882a593Smuzhiyun         else {
594*4882a593Smuzhiyun             roundIncrement = roundMask;
595*4882a593Smuzhiyun             if ( zSign ) {
596*4882a593Smuzhiyun                 if ( roundingMode == float_round_up ) roundIncrement = 0;
597*4882a593Smuzhiyun             }
598*4882a593Smuzhiyun             else {
599*4882a593Smuzhiyun                 if ( roundingMode == float_round_down ) roundIncrement = 0;
600*4882a593Smuzhiyun             }
601*4882a593Smuzhiyun         }
602*4882a593Smuzhiyun     }
603*4882a593Smuzhiyun     roundBits = zSig0 & roundMask;
604*4882a593Smuzhiyun     if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
605*4882a593Smuzhiyun         if (    ( 0x7FFE < zExp )
606*4882a593Smuzhiyun              || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
607*4882a593Smuzhiyun            ) {
608*4882a593Smuzhiyun             goto overflow;
609*4882a593Smuzhiyun         }
610*4882a593Smuzhiyun         if ( zExp <= 0 ) {
611*4882a593Smuzhiyun             isTiny =
612*4882a593Smuzhiyun                    ( float_detect_tininess == float_tininess_before_rounding )
613*4882a593Smuzhiyun                 || ( zExp < 0 )
614*4882a593Smuzhiyun                 || ( zSig0 <= zSig0 + roundIncrement );
615*4882a593Smuzhiyun             shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
616*4882a593Smuzhiyun             zExp = 0;
617*4882a593Smuzhiyun             roundBits = zSig0 & roundMask;
618*4882a593Smuzhiyun             if ( isTiny && roundBits ) roundData->exception |= float_flag_underflow;
619*4882a593Smuzhiyun             if ( roundBits ) roundData->exception |= float_flag_inexact;
620*4882a593Smuzhiyun             zSig0 += roundIncrement;
621*4882a593Smuzhiyun             if ( (sbits64) zSig0 < 0 ) zExp = 1;
622*4882a593Smuzhiyun             roundIncrement = roundMask + 1;
623*4882a593Smuzhiyun             if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
624*4882a593Smuzhiyun                 roundMask |= roundIncrement;
625*4882a593Smuzhiyun             }
626*4882a593Smuzhiyun             zSig0 &= ~ roundMask;
627*4882a593Smuzhiyun             return packFloatx80( zSign, zExp, zSig0 );
628*4882a593Smuzhiyun         }
629*4882a593Smuzhiyun     }
630*4882a593Smuzhiyun     if ( roundBits ) roundData->exception |= float_flag_inexact;
631*4882a593Smuzhiyun     zSig0 += roundIncrement;
632*4882a593Smuzhiyun     if ( zSig0 < roundIncrement ) {
633*4882a593Smuzhiyun         ++zExp;
634*4882a593Smuzhiyun         zSig0 = LIT64( 0x8000000000000000 );
635*4882a593Smuzhiyun     }
636*4882a593Smuzhiyun     roundIncrement = roundMask + 1;
637*4882a593Smuzhiyun     if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
638*4882a593Smuzhiyun         roundMask |= roundIncrement;
639*4882a593Smuzhiyun     }
640*4882a593Smuzhiyun     zSig0 &= ~ roundMask;
641*4882a593Smuzhiyun     if ( zSig0 == 0 ) zExp = 0;
642*4882a593Smuzhiyun     return packFloatx80( zSign, zExp, zSig0 );
643*4882a593Smuzhiyun  precision80:
644*4882a593Smuzhiyun     increment = ( (sbits64) zSig1 < 0 );
645*4882a593Smuzhiyun     if ( ! roundNearestEven ) {
646*4882a593Smuzhiyun         if ( roundingMode == float_round_to_zero ) {
647*4882a593Smuzhiyun             increment = 0;
648*4882a593Smuzhiyun         }
649*4882a593Smuzhiyun         else {
650*4882a593Smuzhiyun             if ( zSign ) {
651*4882a593Smuzhiyun                 increment = ( roundingMode == float_round_down ) && zSig1;
652*4882a593Smuzhiyun             }
653*4882a593Smuzhiyun             else {
654*4882a593Smuzhiyun                 increment = ( roundingMode == float_round_up ) && zSig1;
655*4882a593Smuzhiyun             }
656*4882a593Smuzhiyun         }
657*4882a593Smuzhiyun     }
658*4882a593Smuzhiyun     if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
659*4882a593Smuzhiyun         if (    ( 0x7FFE < zExp )
660*4882a593Smuzhiyun              || (    ( zExp == 0x7FFE )
661*4882a593Smuzhiyun                   && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
662*4882a593Smuzhiyun                   && increment
663*4882a593Smuzhiyun                 )
664*4882a593Smuzhiyun            ) {
665*4882a593Smuzhiyun             roundMask = 0;
666*4882a593Smuzhiyun  overflow:
667*4882a593Smuzhiyun             roundData->exception |= float_flag_overflow | float_flag_inexact;
668*4882a593Smuzhiyun             if (    ( roundingMode == float_round_to_zero )
669*4882a593Smuzhiyun                  || ( zSign && ( roundingMode == float_round_up ) )
670*4882a593Smuzhiyun                  || ( ! zSign && ( roundingMode == float_round_down ) )
671*4882a593Smuzhiyun                ) {
672*4882a593Smuzhiyun                 return packFloatx80( zSign, 0x7FFE, ~ roundMask );
673*4882a593Smuzhiyun             }
674*4882a593Smuzhiyun             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
675*4882a593Smuzhiyun         }
676*4882a593Smuzhiyun         if ( zExp <= 0 ) {
677*4882a593Smuzhiyun             isTiny =
678*4882a593Smuzhiyun                    ( float_detect_tininess == float_tininess_before_rounding )
679*4882a593Smuzhiyun                 || ( zExp < 0 )
680*4882a593Smuzhiyun                 || ! increment
681*4882a593Smuzhiyun                 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
682*4882a593Smuzhiyun             shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
683*4882a593Smuzhiyun             zExp = 0;
684*4882a593Smuzhiyun             if ( isTiny && zSig1 ) roundData->exception |= float_flag_underflow;
685*4882a593Smuzhiyun             if ( zSig1 ) roundData->exception |= float_flag_inexact;
686*4882a593Smuzhiyun             if ( roundNearestEven ) {
687*4882a593Smuzhiyun                 increment = ( (sbits64) zSig1 < 0 );
688*4882a593Smuzhiyun             }
689*4882a593Smuzhiyun             else {
690*4882a593Smuzhiyun                 if ( zSign ) {
691*4882a593Smuzhiyun                     increment = ( roundingMode == float_round_down ) && zSig1;
692*4882a593Smuzhiyun                 }
693*4882a593Smuzhiyun                 else {
694*4882a593Smuzhiyun                     increment = ( roundingMode == float_round_up ) && zSig1;
695*4882a593Smuzhiyun                 }
696*4882a593Smuzhiyun             }
697*4882a593Smuzhiyun             if ( increment ) {
698*4882a593Smuzhiyun                 ++zSig0;
699*4882a593Smuzhiyun                 zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
700*4882a593Smuzhiyun                 if ( (sbits64) zSig0 < 0 ) zExp = 1;
701*4882a593Smuzhiyun             }
702*4882a593Smuzhiyun             return packFloatx80( zSign, zExp, zSig0 );
703*4882a593Smuzhiyun         }
704*4882a593Smuzhiyun     }
705*4882a593Smuzhiyun     if ( zSig1 ) roundData->exception |= float_flag_inexact;
706*4882a593Smuzhiyun     if ( increment ) {
707*4882a593Smuzhiyun         ++zSig0;
708*4882a593Smuzhiyun         if ( zSig0 == 0 ) {
709*4882a593Smuzhiyun             ++zExp;
710*4882a593Smuzhiyun             zSig0 = LIT64( 0x8000000000000000 );
711*4882a593Smuzhiyun         }
712*4882a593Smuzhiyun         else {
713*4882a593Smuzhiyun             zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
714*4882a593Smuzhiyun         }
715*4882a593Smuzhiyun     }
716*4882a593Smuzhiyun     else {
717*4882a593Smuzhiyun         if ( zSig0 == 0 ) zExp = 0;
718*4882a593Smuzhiyun     }
719*4882a593Smuzhiyun 
720*4882a593Smuzhiyun     return packFloatx80( zSign, zExp, zSig0 );
721*4882a593Smuzhiyun }
722*4882a593Smuzhiyun 
723*4882a593Smuzhiyun /*
724*4882a593Smuzhiyun -------------------------------------------------------------------------------
725*4882a593Smuzhiyun Takes an abstract floating-point value having sign `zSign', exponent
726*4882a593Smuzhiyun `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
727*4882a593Smuzhiyun and returns the proper extended double-precision floating-point value
728*4882a593Smuzhiyun corresponding to the abstract input.  This routine is just like
729*4882a593Smuzhiyun `roundAndPackFloatx80' except that the input significand does not have to be
730*4882a593Smuzhiyun normalized.
731*4882a593Smuzhiyun -------------------------------------------------------------------------------
732*4882a593Smuzhiyun */
733*4882a593Smuzhiyun static floatx80
normalizeRoundAndPackFloatx80(struct roundingData * roundData,flag zSign,int32 zExp,bits64 zSig0,bits64 zSig1)734*4882a593Smuzhiyun  normalizeRoundAndPackFloatx80(
735*4882a593Smuzhiyun      struct roundingData *roundData, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
736*4882a593Smuzhiyun  )
737*4882a593Smuzhiyun {
738*4882a593Smuzhiyun     int8 shiftCount;
739*4882a593Smuzhiyun 
740*4882a593Smuzhiyun     if ( zSig0 == 0 ) {
741*4882a593Smuzhiyun         zSig0 = zSig1;
742*4882a593Smuzhiyun         zSig1 = 0;
743*4882a593Smuzhiyun         zExp -= 64;
744*4882a593Smuzhiyun     }
745*4882a593Smuzhiyun     shiftCount = countLeadingZeros64( zSig0 );
746*4882a593Smuzhiyun     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
747*4882a593Smuzhiyun     zExp -= shiftCount;
748*4882a593Smuzhiyun     return
749*4882a593Smuzhiyun         roundAndPackFloatx80( roundData, zSign, zExp, zSig0, zSig1 );
750*4882a593Smuzhiyun 
751*4882a593Smuzhiyun }
752*4882a593Smuzhiyun 
753*4882a593Smuzhiyun #endif
754*4882a593Smuzhiyun 
755*4882a593Smuzhiyun /*
756*4882a593Smuzhiyun -------------------------------------------------------------------------------
757*4882a593Smuzhiyun Returns the result of converting the 32-bit two's complement integer `a' to
758*4882a593Smuzhiyun the single-precision floating-point format.  The conversion is performed
759*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
760*4882a593Smuzhiyun -------------------------------------------------------------------------------
761*4882a593Smuzhiyun */
int32_to_float32(struct roundingData * roundData,int32 a)762*4882a593Smuzhiyun float32 int32_to_float32(struct roundingData *roundData, int32 a)
763*4882a593Smuzhiyun {
764*4882a593Smuzhiyun     flag zSign;
765*4882a593Smuzhiyun 
766*4882a593Smuzhiyun     if ( a == 0 ) return 0;
767*4882a593Smuzhiyun     if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
768*4882a593Smuzhiyun     zSign = ( a < 0 );
769*4882a593Smuzhiyun     return normalizeRoundAndPackFloat32( roundData, zSign, 0x9C, zSign ? - a : a );
770*4882a593Smuzhiyun 
771*4882a593Smuzhiyun }
772*4882a593Smuzhiyun 
773*4882a593Smuzhiyun /*
774*4882a593Smuzhiyun -------------------------------------------------------------------------------
775*4882a593Smuzhiyun Returns the result of converting the 32-bit two's complement integer `a' to
776*4882a593Smuzhiyun the double-precision floating-point format.  The conversion is performed
777*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
778*4882a593Smuzhiyun -------------------------------------------------------------------------------
779*4882a593Smuzhiyun */
int32_to_float64(int32 a)780*4882a593Smuzhiyun float64 int32_to_float64( int32 a )
781*4882a593Smuzhiyun {
782*4882a593Smuzhiyun     flag aSign;
783*4882a593Smuzhiyun     uint32 absA;
784*4882a593Smuzhiyun     int8 shiftCount;
785*4882a593Smuzhiyun     bits64 zSig;
786*4882a593Smuzhiyun 
787*4882a593Smuzhiyun     if ( a == 0 ) return 0;
788*4882a593Smuzhiyun     aSign = ( a < 0 );
789*4882a593Smuzhiyun     absA = aSign ? - a : a;
790*4882a593Smuzhiyun     shiftCount = countLeadingZeros32( absA ) + 21;
791*4882a593Smuzhiyun     zSig = absA;
792*4882a593Smuzhiyun     return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount );
793*4882a593Smuzhiyun 
794*4882a593Smuzhiyun }
795*4882a593Smuzhiyun 
796*4882a593Smuzhiyun #ifdef FLOATX80
797*4882a593Smuzhiyun 
798*4882a593Smuzhiyun /*
799*4882a593Smuzhiyun -------------------------------------------------------------------------------
800*4882a593Smuzhiyun Returns the result of converting the 32-bit two's complement integer `a'
801*4882a593Smuzhiyun to the extended double-precision floating-point format.  The conversion
802*4882a593Smuzhiyun is performed according to the IEC/IEEE Standard for Binary Floating-point
803*4882a593Smuzhiyun Arithmetic.
804*4882a593Smuzhiyun -------------------------------------------------------------------------------
805*4882a593Smuzhiyun */
int32_to_floatx80(int32 a)806*4882a593Smuzhiyun floatx80 int32_to_floatx80( int32 a )
807*4882a593Smuzhiyun {
808*4882a593Smuzhiyun     flag zSign;
809*4882a593Smuzhiyun     uint32 absA;
810*4882a593Smuzhiyun     int8 shiftCount;
811*4882a593Smuzhiyun     bits64 zSig;
812*4882a593Smuzhiyun 
813*4882a593Smuzhiyun     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
814*4882a593Smuzhiyun     zSign = ( a < 0 );
815*4882a593Smuzhiyun     absA = zSign ? - a : a;
816*4882a593Smuzhiyun     shiftCount = countLeadingZeros32( absA ) + 32;
817*4882a593Smuzhiyun     zSig = absA;
818*4882a593Smuzhiyun     return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
819*4882a593Smuzhiyun 
820*4882a593Smuzhiyun }
821*4882a593Smuzhiyun 
822*4882a593Smuzhiyun #endif
823*4882a593Smuzhiyun 
824*4882a593Smuzhiyun /*
825*4882a593Smuzhiyun -------------------------------------------------------------------------------
826*4882a593Smuzhiyun Returns the result of converting the single-precision floating-point value
827*4882a593Smuzhiyun `a' to the 32-bit two's complement integer format.  The conversion is
828*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
829*4882a593Smuzhiyun Arithmetic---which means in particular that the conversion is rounded
830*4882a593Smuzhiyun according to the current rounding mode.  If `a' is a NaN, the largest
831*4882a593Smuzhiyun positive integer is returned.  Otherwise, if the conversion overflows, the
832*4882a593Smuzhiyun largest integer with the same sign as `a' is returned.
833*4882a593Smuzhiyun -------------------------------------------------------------------------------
834*4882a593Smuzhiyun */
float32_to_int32(struct roundingData * roundData,float32 a)835*4882a593Smuzhiyun int32 float32_to_int32( struct roundingData *roundData, float32 a )
836*4882a593Smuzhiyun {
837*4882a593Smuzhiyun     flag aSign;
838*4882a593Smuzhiyun     int16 aExp, shiftCount;
839*4882a593Smuzhiyun     bits32 aSig;
840*4882a593Smuzhiyun     bits64 zSig;
841*4882a593Smuzhiyun 
842*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
843*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
844*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
845*4882a593Smuzhiyun     if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
846*4882a593Smuzhiyun     if ( aExp ) aSig |= 0x00800000;
847*4882a593Smuzhiyun     shiftCount = 0xAF - aExp;
848*4882a593Smuzhiyun     zSig = aSig;
849*4882a593Smuzhiyun     zSig <<= 32;
850*4882a593Smuzhiyun     if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig );
851*4882a593Smuzhiyun     return roundAndPackInt32( roundData, aSign, zSig );
852*4882a593Smuzhiyun 
853*4882a593Smuzhiyun }
854*4882a593Smuzhiyun 
855*4882a593Smuzhiyun /*
856*4882a593Smuzhiyun -------------------------------------------------------------------------------
857*4882a593Smuzhiyun Returns the result of converting the single-precision floating-point value
858*4882a593Smuzhiyun `a' to the 32-bit two's complement integer format.  The conversion is
859*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
860*4882a593Smuzhiyun Arithmetic, except that the conversion is always rounded toward zero.  If
861*4882a593Smuzhiyun `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
862*4882a593Smuzhiyun conversion overflows, the largest integer with the same sign as `a' is
863*4882a593Smuzhiyun returned.
864*4882a593Smuzhiyun -------------------------------------------------------------------------------
865*4882a593Smuzhiyun */
float32_to_int32_round_to_zero(float32 a)866*4882a593Smuzhiyun int32 float32_to_int32_round_to_zero( float32 a )
867*4882a593Smuzhiyun {
868*4882a593Smuzhiyun     flag aSign;
869*4882a593Smuzhiyun     int16 aExp, shiftCount;
870*4882a593Smuzhiyun     bits32 aSig;
871*4882a593Smuzhiyun     int32 z;
872*4882a593Smuzhiyun 
873*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
874*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
875*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
876*4882a593Smuzhiyun     shiftCount = aExp - 0x9E;
877*4882a593Smuzhiyun     if ( 0 <= shiftCount ) {
878*4882a593Smuzhiyun         if ( a == 0xCF000000 ) return 0x80000000;
879*4882a593Smuzhiyun         float_raise( float_flag_invalid );
880*4882a593Smuzhiyun         if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
881*4882a593Smuzhiyun         return 0x80000000;
882*4882a593Smuzhiyun     }
883*4882a593Smuzhiyun     else if ( aExp <= 0x7E ) {
884*4882a593Smuzhiyun         if ( aExp | aSig ) float_raise( float_flag_inexact );
885*4882a593Smuzhiyun         return 0;
886*4882a593Smuzhiyun     }
887*4882a593Smuzhiyun     aSig = ( aSig | 0x00800000 )<<8;
888*4882a593Smuzhiyun     z = aSig>>( - shiftCount );
889*4882a593Smuzhiyun     if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
890*4882a593Smuzhiyun         float_raise( float_flag_inexact );
891*4882a593Smuzhiyun     }
892*4882a593Smuzhiyun     return aSign ? - z : z;
893*4882a593Smuzhiyun 
894*4882a593Smuzhiyun }
895*4882a593Smuzhiyun 
896*4882a593Smuzhiyun /*
897*4882a593Smuzhiyun -------------------------------------------------------------------------------
898*4882a593Smuzhiyun Returns the result of converting the single-precision floating-point value
899*4882a593Smuzhiyun `a' to the double-precision floating-point format.  The conversion is
900*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
901*4882a593Smuzhiyun Arithmetic.
902*4882a593Smuzhiyun -------------------------------------------------------------------------------
903*4882a593Smuzhiyun */
float32_to_float64(float32 a)904*4882a593Smuzhiyun float64 float32_to_float64( float32 a )
905*4882a593Smuzhiyun {
906*4882a593Smuzhiyun     flag aSign;
907*4882a593Smuzhiyun     int16 aExp;
908*4882a593Smuzhiyun     bits32 aSig;
909*4882a593Smuzhiyun 
910*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
911*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
912*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
913*4882a593Smuzhiyun     if ( aExp == 0xFF ) {
914*4882a593Smuzhiyun         if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
915*4882a593Smuzhiyun         return packFloat64( aSign, 0x7FF, 0 );
916*4882a593Smuzhiyun     }
917*4882a593Smuzhiyun     if ( aExp == 0 ) {
918*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
919*4882a593Smuzhiyun         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
920*4882a593Smuzhiyun         --aExp;
921*4882a593Smuzhiyun     }
922*4882a593Smuzhiyun     return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
923*4882a593Smuzhiyun 
924*4882a593Smuzhiyun }
925*4882a593Smuzhiyun 
926*4882a593Smuzhiyun #ifdef FLOATX80
927*4882a593Smuzhiyun 
928*4882a593Smuzhiyun /*
929*4882a593Smuzhiyun -------------------------------------------------------------------------------
930*4882a593Smuzhiyun Returns the result of converting the single-precision floating-point value
931*4882a593Smuzhiyun `a' to the extended double-precision floating-point format.  The conversion
932*4882a593Smuzhiyun is performed according to the IEC/IEEE Standard for Binary Floating-point
933*4882a593Smuzhiyun Arithmetic.
934*4882a593Smuzhiyun -------------------------------------------------------------------------------
935*4882a593Smuzhiyun */
float32_to_floatx80(float32 a)936*4882a593Smuzhiyun floatx80 float32_to_floatx80( float32 a )
937*4882a593Smuzhiyun {
938*4882a593Smuzhiyun     flag aSign;
939*4882a593Smuzhiyun     int16 aExp;
940*4882a593Smuzhiyun     bits32 aSig;
941*4882a593Smuzhiyun 
942*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
943*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
944*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
945*4882a593Smuzhiyun     if ( aExp == 0xFF ) {
946*4882a593Smuzhiyun         if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
947*4882a593Smuzhiyun         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
948*4882a593Smuzhiyun     }
949*4882a593Smuzhiyun     if ( aExp == 0 ) {
950*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
951*4882a593Smuzhiyun         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
952*4882a593Smuzhiyun     }
953*4882a593Smuzhiyun     aSig |= 0x00800000;
954*4882a593Smuzhiyun     return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
955*4882a593Smuzhiyun 
956*4882a593Smuzhiyun }
957*4882a593Smuzhiyun 
958*4882a593Smuzhiyun #endif
959*4882a593Smuzhiyun 
960*4882a593Smuzhiyun /*
961*4882a593Smuzhiyun -------------------------------------------------------------------------------
962*4882a593Smuzhiyun Rounds the single-precision floating-point value `a' to an integer, and
963*4882a593Smuzhiyun returns the result as a single-precision floating-point value.  The
964*4882a593Smuzhiyun operation is performed according to the IEC/IEEE Standard for Binary
965*4882a593Smuzhiyun Floating-point Arithmetic.
966*4882a593Smuzhiyun -------------------------------------------------------------------------------
967*4882a593Smuzhiyun */
float32_round_to_int(struct roundingData * roundData,float32 a)968*4882a593Smuzhiyun float32 float32_round_to_int( struct roundingData *roundData, float32 a )
969*4882a593Smuzhiyun {
970*4882a593Smuzhiyun     flag aSign;
971*4882a593Smuzhiyun     int16 aExp;
972*4882a593Smuzhiyun     bits32 lastBitMask, roundBitsMask;
973*4882a593Smuzhiyun     int8 roundingMode;
974*4882a593Smuzhiyun     float32 z;
975*4882a593Smuzhiyun 
976*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
977*4882a593Smuzhiyun     if ( 0x96 <= aExp ) {
978*4882a593Smuzhiyun         if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
979*4882a593Smuzhiyun             return propagateFloat32NaN( a, a );
980*4882a593Smuzhiyun         }
981*4882a593Smuzhiyun         return a;
982*4882a593Smuzhiyun     }
983*4882a593Smuzhiyun     roundingMode = roundData->mode;
984*4882a593Smuzhiyun     if ( aExp <= 0x7E ) {
985*4882a593Smuzhiyun         if ( (bits32) ( a<<1 ) == 0 ) return a;
986*4882a593Smuzhiyun         roundData->exception |= float_flag_inexact;
987*4882a593Smuzhiyun         aSign = extractFloat32Sign( a );
988*4882a593Smuzhiyun         switch ( roundingMode ) {
989*4882a593Smuzhiyun          case float_round_nearest_even:
990*4882a593Smuzhiyun             if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
991*4882a593Smuzhiyun                 return packFloat32( aSign, 0x7F, 0 );
992*4882a593Smuzhiyun             }
993*4882a593Smuzhiyun             break;
994*4882a593Smuzhiyun          case float_round_down:
995*4882a593Smuzhiyun             return aSign ? 0xBF800000 : 0;
996*4882a593Smuzhiyun          case float_round_up:
997*4882a593Smuzhiyun             return aSign ? 0x80000000 : 0x3F800000;
998*4882a593Smuzhiyun         }
999*4882a593Smuzhiyun         return packFloat32( aSign, 0, 0 );
1000*4882a593Smuzhiyun     }
1001*4882a593Smuzhiyun     lastBitMask = 1;
1002*4882a593Smuzhiyun     lastBitMask <<= 0x96 - aExp;
1003*4882a593Smuzhiyun     roundBitsMask = lastBitMask - 1;
1004*4882a593Smuzhiyun     z = a;
1005*4882a593Smuzhiyun     if ( roundingMode == float_round_nearest_even ) {
1006*4882a593Smuzhiyun         z += lastBitMask>>1;
1007*4882a593Smuzhiyun         if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
1008*4882a593Smuzhiyun     }
1009*4882a593Smuzhiyun     else if ( roundingMode != float_round_to_zero ) {
1010*4882a593Smuzhiyun         if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
1011*4882a593Smuzhiyun             z += roundBitsMask;
1012*4882a593Smuzhiyun         }
1013*4882a593Smuzhiyun     }
1014*4882a593Smuzhiyun     z &= ~ roundBitsMask;
1015*4882a593Smuzhiyun     if ( z != a ) roundData->exception |= float_flag_inexact;
1016*4882a593Smuzhiyun     return z;
1017*4882a593Smuzhiyun 
1018*4882a593Smuzhiyun }
1019*4882a593Smuzhiyun 
1020*4882a593Smuzhiyun /*
1021*4882a593Smuzhiyun -------------------------------------------------------------------------------
1022*4882a593Smuzhiyun Returns the result of adding the absolute values of the single-precision
1023*4882a593Smuzhiyun floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
1024*4882a593Smuzhiyun before being returned.  `zSign' is ignored if the result is a NaN.  The
1025*4882a593Smuzhiyun addition is performed according to the IEC/IEEE Standard for Binary
1026*4882a593Smuzhiyun Floating-point Arithmetic.
1027*4882a593Smuzhiyun -------------------------------------------------------------------------------
1028*4882a593Smuzhiyun */
addFloat32Sigs(struct roundingData * roundData,float32 a,float32 b,flag zSign)1029*4882a593Smuzhiyun static float32 addFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
1030*4882a593Smuzhiyun {
1031*4882a593Smuzhiyun     int16 aExp, bExp, zExp;
1032*4882a593Smuzhiyun     bits32 aSig, bSig, zSig;
1033*4882a593Smuzhiyun     int16 expDiff;
1034*4882a593Smuzhiyun 
1035*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
1036*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
1037*4882a593Smuzhiyun     bSig = extractFloat32Frac( b );
1038*4882a593Smuzhiyun     bExp = extractFloat32Exp( b );
1039*4882a593Smuzhiyun     expDiff = aExp - bExp;
1040*4882a593Smuzhiyun     aSig <<= 6;
1041*4882a593Smuzhiyun     bSig <<= 6;
1042*4882a593Smuzhiyun     if ( 0 < expDiff ) {
1043*4882a593Smuzhiyun         if ( aExp == 0xFF ) {
1044*4882a593Smuzhiyun             if ( aSig ) return propagateFloat32NaN( a, b );
1045*4882a593Smuzhiyun             return a;
1046*4882a593Smuzhiyun         }
1047*4882a593Smuzhiyun         if ( bExp == 0 ) {
1048*4882a593Smuzhiyun             --expDiff;
1049*4882a593Smuzhiyun         }
1050*4882a593Smuzhiyun         else {
1051*4882a593Smuzhiyun             bSig |= 0x20000000;
1052*4882a593Smuzhiyun         }
1053*4882a593Smuzhiyun         shift32RightJamming( bSig, expDiff, &bSig );
1054*4882a593Smuzhiyun         zExp = aExp;
1055*4882a593Smuzhiyun     }
1056*4882a593Smuzhiyun     else if ( expDiff < 0 ) {
1057*4882a593Smuzhiyun         if ( bExp == 0xFF ) {
1058*4882a593Smuzhiyun             if ( bSig ) return propagateFloat32NaN( a, b );
1059*4882a593Smuzhiyun             return packFloat32( zSign, 0xFF, 0 );
1060*4882a593Smuzhiyun         }
1061*4882a593Smuzhiyun         if ( aExp == 0 ) {
1062*4882a593Smuzhiyun             ++expDiff;
1063*4882a593Smuzhiyun         }
1064*4882a593Smuzhiyun         else {
1065*4882a593Smuzhiyun             aSig |= 0x20000000;
1066*4882a593Smuzhiyun         }
1067*4882a593Smuzhiyun         shift32RightJamming( aSig, - expDiff, &aSig );
1068*4882a593Smuzhiyun         zExp = bExp;
1069*4882a593Smuzhiyun     }
1070*4882a593Smuzhiyun     else {
1071*4882a593Smuzhiyun         if ( aExp == 0xFF ) {
1072*4882a593Smuzhiyun             if ( aSig | bSig ) return propagateFloat32NaN( a, b );
1073*4882a593Smuzhiyun             return a;
1074*4882a593Smuzhiyun         }
1075*4882a593Smuzhiyun         if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
1076*4882a593Smuzhiyun         zSig = 0x40000000 + aSig + bSig;
1077*4882a593Smuzhiyun         zExp = aExp;
1078*4882a593Smuzhiyun         goto roundAndPack;
1079*4882a593Smuzhiyun     }
1080*4882a593Smuzhiyun     aSig |= 0x20000000;
1081*4882a593Smuzhiyun     zSig = ( aSig + bSig )<<1;
1082*4882a593Smuzhiyun     --zExp;
1083*4882a593Smuzhiyun     if ( (sbits32) zSig < 0 ) {
1084*4882a593Smuzhiyun         zSig = aSig + bSig;
1085*4882a593Smuzhiyun         ++zExp;
1086*4882a593Smuzhiyun     }
1087*4882a593Smuzhiyun  roundAndPack:
1088*4882a593Smuzhiyun     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
1089*4882a593Smuzhiyun 
1090*4882a593Smuzhiyun }
1091*4882a593Smuzhiyun 
1092*4882a593Smuzhiyun /*
1093*4882a593Smuzhiyun -------------------------------------------------------------------------------
1094*4882a593Smuzhiyun Returns the result of subtracting the absolute values of the single-
1095*4882a593Smuzhiyun precision floating-point values `a' and `b'.  If `zSign' is true, the
1096*4882a593Smuzhiyun difference is negated before being returned.  `zSign' is ignored if the
1097*4882a593Smuzhiyun result is a NaN.  The subtraction is performed according to the IEC/IEEE
1098*4882a593Smuzhiyun Standard for Binary Floating-point Arithmetic.
1099*4882a593Smuzhiyun -------------------------------------------------------------------------------
1100*4882a593Smuzhiyun */
subFloat32Sigs(struct roundingData * roundData,float32 a,float32 b,flag zSign)1101*4882a593Smuzhiyun static float32 subFloat32Sigs( struct roundingData *roundData, float32 a, float32 b, flag zSign )
1102*4882a593Smuzhiyun {
1103*4882a593Smuzhiyun     int16 aExp, bExp, zExp;
1104*4882a593Smuzhiyun     bits32 aSig, bSig, zSig;
1105*4882a593Smuzhiyun     int16 expDiff;
1106*4882a593Smuzhiyun 
1107*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
1108*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
1109*4882a593Smuzhiyun     bSig = extractFloat32Frac( b );
1110*4882a593Smuzhiyun     bExp = extractFloat32Exp( b );
1111*4882a593Smuzhiyun     expDiff = aExp - bExp;
1112*4882a593Smuzhiyun     aSig <<= 7;
1113*4882a593Smuzhiyun     bSig <<= 7;
1114*4882a593Smuzhiyun     if ( 0 < expDiff ) goto aExpBigger;
1115*4882a593Smuzhiyun     if ( expDiff < 0 ) goto bExpBigger;
1116*4882a593Smuzhiyun     if ( aExp == 0xFF ) {
1117*4882a593Smuzhiyun         if ( aSig | bSig ) return propagateFloat32NaN( a, b );
1118*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
1119*4882a593Smuzhiyun         return float32_default_nan;
1120*4882a593Smuzhiyun     }
1121*4882a593Smuzhiyun     if ( aExp == 0 ) {
1122*4882a593Smuzhiyun         aExp = 1;
1123*4882a593Smuzhiyun         bExp = 1;
1124*4882a593Smuzhiyun     }
1125*4882a593Smuzhiyun     if ( bSig < aSig ) goto aBigger;
1126*4882a593Smuzhiyun     if ( aSig < bSig ) goto bBigger;
1127*4882a593Smuzhiyun     return packFloat32( roundData->mode == float_round_down, 0, 0 );
1128*4882a593Smuzhiyun  bExpBigger:
1129*4882a593Smuzhiyun     if ( bExp == 0xFF ) {
1130*4882a593Smuzhiyun         if ( bSig ) return propagateFloat32NaN( a, b );
1131*4882a593Smuzhiyun         return packFloat32( zSign ^ 1, 0xFF, 0 );
1132*4882a593Smuzhiyun     }
1133*4882a593Smuzhiyun     if ( aExp == 0 ) {
1134*4882a593Smuzhiyun         ++expDiff;
1135*4882a593Smuzhiyun     }
1136*4882a593Smuzhiyun     else {
1137*4882a593Smuzhiyun         aSig |= 0x40000000;
1138*4882a593Smuzhiyun     }
1139*4882a593Smuzhiyun     shift32RightJamming( aSig, - expDiff, &aSig );
1140*4882a593Smuzhiyun     bSig |= 0x40000000;
1141*4882a593Smuzhiyun  bBigger:
1142*4882a593Smuzhiyun     zSig = bSig - aSig;
1143*4882a593Smuzhiyun     zExp = bExp;
1144*4882a593Smuzhiyun     zSign ^= 1;
1145*4882a593Smuzhiyun     goto normalizeRoundAndPack;
1146*4882a593Smuzhiyun  aExpBigger:
1147*4882a593Smuzhiyun     if ( aExp == 0xFF ) {
1148*4882a593Smuzhiyun         if ( aSig ) return propagateFloat32NaN( a, b );
1149*4882a593Smuzhiyun         return a;
1150*4882a593Smuzhiyun     }
1151*4882a593Smuzhiyun     if ( bExp == 0 ) {
1152*4882a593Smuzhiyun         --expDiff;
1153*4882a593Smuzhiyun     }
1154*4882a593Smuzhiyun     else {
1155*4882a593Smuzhiyun         bSig |= 0x40000000;
1156*4882a593Smuzhiyun     }
1157*4882a593Smuzhiyun     shift32RightJamming( bSig, expDiff, &bSig );
1158*4882a593Smuzhiyun     aSig |= 0x40000000;
1159*4882a593Smuzhiyun  aBigger:
1160*4882a593Smuzhiyun     zSig = aSig - bSig;
1161*4882a593Smuzhiyun     zExp = aExp;
1162*4882a593Smuzhiyun  normalizeRoundAndPack:
1163*4882a593Smuzhiyun     --zExp;
1164*4882a593Smuzhiyun     return normalizeRoundAndPackFloat32( roundData, zSign, zExp, zSig );
1165*4882a593Smuzhiyun 
1166*4882a593Smuzhiyun }
1167*4882a593Smuzhiyun 
1168*4882a593Smuzhiyun /*
1169*4882a593Smuzhiyun -------------------------------------------------------------------------------
1170*4882a593Smuzhiyun Returns the result of adding the single-precision floating-point values `a'
1171*4882a593Smuzhiyun and `b'.  The operation is performed according to the IEC/IEEE Standard for
1172*4882a593Smuzhiyun Binary Floating-point Arithmetic.
1173*4882a593Smuzhiyun -------------------------------------------------------------------------------
1174*4882a593Smuzhiyun */
float32_add(struct roundingData * roundData,float32 a,float32 b)1175*4882a593Smuzhiyun float32 float32_add( struct roundingData *roundData, float32 a, float32 b )
1176*4882a593Smuzhiyun {
1177*4882a593Smuzhiyun     flag aSign, bSign;
1178*4882a593Smuzhiyun 
1179*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1180*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1181*4882a593Smuzhiyun     if ( aSign == bSign ) {
1182*4882a593Smuzhiyun         return addFloat32Sigs( roundData, a, b, aSign );
1183*4882a593Smuzhiyun     }
1184*4882a593Smuzhiyun     else {
1185*4882a593Smuzhiyun         return subFloat32Sigs( roundData, a, b, aSign );
1186*4882a593Smuzhiyun     }
1187*4882a593Smuzhiyun 
1188*4882a593Smuzhiyun }
1189*4882a593Smuzhiyun 
1190*4882a593Smuzhiyun /*
1191*4882a593Smuzhiyun -------------------------------------------------------------------------------
1192*4882a593Smuzhiyun Returns the result of subtracting the single-precision floating-point values
1193*4882a593Smuzhiyun `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
1194*4882a593Smuzhiyun for Binary Floating-point Arithmetic.
1195*4882a593Smuzhiyun -------------------------------------------------------------------------------
1196*4882a593Smuzhiyun */
float32_sub(struct roundingData * roundData,float32 a,float32 b)1197*4882a593Smuzhiyun float32 float32_sub( struct roundingData *roundData, float32 a, float32 b )
1198*4882a593Smuzhiyun {
1199*4882a593Smuzhiyun     flag aSign, bSign;
1200*4882a593Smuzhiyun 
1201*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1202*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1203*4882a593Smuzhiyun     if ( aSign == bSign ) {
1204*4882a593Smuzhiyun         return subFloat32Sigs( roundData, a, b, aSign );
1205*4882a593Smuzhiyun     }
1206*4882a593Smuzhiyun     else {
1207*4882a593Smuzhiyun         return addFloat32Sigs( roundData, a, b, aSign );
1208*4882a593Smuzhiyun     }
1209*4882a593Smuzhiyun 
1210*4882a593Smuzhiyun }
1211*4882a593Smuzhiyun 
1212*4882a593Smuzhiyun /*
1213*4882a593Smuzhiyun -------------------------------------------------------------------------------
1214*4882a593Smuzhiyun Returns the result of multiplying the single-precision floating-point values
1215*4882a593Smuzhiyun `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
1216*4882a593Smuzhiyun for Binary Floating-point Arithmetic.
1217*4882a593Smuzhiyun -------------------------------------------------------------------------------
1218*4882a593Smuzhiyun */
float32_mul(struct roundingData * roundData,float32 a,float32 b)1219*4882a593Smuzhiyun float32 float32_mul( struct roundingData *roundData, float32 a, float32 b )
1220*4882a593Smuzhiyun {
1221*4882a593Smuzhiyun     flag aSign, bSign, zSign;
1222*4882a593Smuzhiyun     int16 aExp, bExp, zExp;
1223*4882a593Smuzhiyun     bits32 aSig, bSig;
1224*4882a593Smuzhiyun     bits64 zSig64;
1225*4882a593Smuzhiyun     bits32 zSig;
1226*4882a593Smuzhiyun 
1227*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
1228*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
1229*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1230*4882a593Smuzhiyun     bSig = extractFloat32Frac( b );
1231*4882a593Smuzhiyun     bExp = extractFloat32Exp( b );
1232*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1233*4882a593Smuzhiyun     zSign = aSign ^ bSign;
1234*4882a593Smuzhiyun     if ( aExp == 0xFF ) {
1235*4882a593Smuzhiyun         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
1236*4882a593Smuzhiyun             return propagateFloat32NaN( a, b );
1237*4882a593Smuzhiyun         }
1238*4882a593Smuzhiyun         if ( ( bExp | bSig ) == 0 ) {
1239*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
1240*4882a593Smuzhiyun             return float32_default_nan;
1241*4882a593Smuzhiyun         }
1242*4882a593Smuzhiyun         return packFloat32( zSign, 0xFF, 0 );
1243*4882a593Smuzhiyun     }
1244*4882a593Smuzhiyun     if ( bExp == 0xFF ) {
1245*4882a593Smuzhiyun         if ( bSig ) return propagateFloat32NaN( a, b );
1246*4882a593Smuzhiyun         if ( ( aExp | aSig ) == 0 ) {
1247*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
1248*4882a593Smuzhiyun             return float32_default_nan;
1249*4882a593Smuzhiyun         }
1250*4882a593Smuzhiyun         return packFloat32( zSign, 0xFF, 0 );
1251*4882a593Smuzhiyun     }
1252*4882a593Smuzhiyun     if ( aExp == 0 ) {
1253*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
1254*4882a593Smuzhiyun         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
1255*4882a593Smuzhiyun     }
1256*4882a593Smuzhiyun     if ( bExp == 0 ) {
1257*4882a593Smuzhiyun         if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
1258*4882a593Smuzhiyun         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
1259*4882a593Smuzhiyun     }
1260*4882a593Smuzhiyun     zExp = aExp + bExp - 0x7F;
1261*4882a593Smuzhiyun     aSig = ( aSig | 0x00800000 )<<7;
1262*4882a593Smuzhiyun     bSig = ( bSig | 0x00800000 )<<8;
1263*4882a593Smuzhiyun     shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
1264*4882a593Smuzhiyun     zSig = zSig64;
1265*4882a593Smuzhiyun     if ( 0 <= (sbits32) ( zSig<<1 ) ) {
1266*4882a593Smuzhiyun         zSig <<= 1;
1267*4882a593Smuzhiyun         --zExp;
1268*4882a593Smuzhiyun     }
1269*4882a593Smuzhiyun     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
1270*4882a593Smuzhiyun 
1271*4882a593Smuzhiyun }
1272*4882a593Smuzhiyun 
1273*4882a593Smuzhiyun /*
1274*4882a593Smuzhiyun -------------------------------------------------------------------------------
1275*4882a593Smuzhiyun Returns the result of dividing the single-precision floating-point value `a'
1276*4882a593Smuzhiyun by the corresponding value `b'.  The operation is performed according to the
1277*4882a593Smuzhiyun IEC/IEEE Standard for Binary Floating-point Arithmetic.
1278*4882a593Smuzhiyun -------------------------------------------------------------------------------
1279*4882a593Smuzhiyun */
float32_div(struct roundingData * roundData,float32 a,float32 b)1280*4882a593Smuzhiyun float32 float32_div( struct roundingData *roundData, float32 a, float32 b )
1281*4882a593Smuzhiyun {
1282*4882a593Smuzhiyun     flag aSign, bSign, zSign;
1283*4882a593Smuzhiyun     int16 aExp, bExp, zExp;
1284*4882a593Smuzhiyun     bits32 aSig, bSig, zSig;
1285*4882a593Smuzhiyun 
1286*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
1287*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
1288*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1289*4882a593Smuzhiyun     bSig = extractFloat32Frac( b );
1290*4882a593Smuzhiyun     bExp = extractFloat32Exp( b );
1291*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1292*4882a593Smuzhiyun     zSign = aSign ^ bSign;
1293*4882a593Smuzhiyun     if ( aExp == 0xFF ) {
1294*4882a593Smuzhiyun         if ( aSig ) return propagateFloat32NaN( a, b );
1295*4882a593Smuzhiyun         if ( bExp == 0xFF ) {
1296*4882a593Smuzhiyun             if ( bSig ) return propagateFloat32NaN( a, b );
1297*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
1298*4882a593Smuzhiyun             return float32_default_nan;
1299*4882a593Smuzhiyun         }
1300*4882a593Smuzhiyun         return packFloat32( zSign, 0xFF, 0 );
1301*4882a593Smuzhiyun     }
1302*4882a593Smuzhiyun     if ( bExp == 0xFF ) {
1303*4882a593Smuzhiyun         if ( bSig ) return propagateFloat32NaN( a, b );
1304*4882a593Smuzhiyun         return packFloat32( zSign, 0, 0 );
1305*4882a593Smuzhiyun     }
1306*4882a593Smuzhiyun     if ( bExp == 0 ) {
1307*4882a593Smuzhiyun         if ( bSig == 0 ) {
1308*4882a593Smuzhiyun             if ( ( aExp | aSig ) == 0 ) {
1309*4882a593Smuzhiyun                 roundData->exception |= float_flag_invalid;
1310*4882a593Smuzhiyun                 return float32_default_nan;
1311*4882a593Smuzhiyun             }
1312*4882a593Smuzhiyun             roundData->exception |= float_flag_divbyzero;
1313*4882a593Smuzhiyun             return packFloat32( zSign, 0xFF, 0 );
1314*4882a593Smuzhiyun         }
1315*4882a593Smuzhiyun         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
1316*4882a593Smuzhiyun     }
1317*4882a593Smuzhiyun     if ( aExp == 0 ) {
1318*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
1319*4882a593Smuzhiyun         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
1320*4882a593Smuzhiyun     }
1321*4882a593Smuzhiyun     zExp = aExp - bExp + 0x7D;
1322*4882a593Smuzhiyun     aSig = ( aSig | 0x00800000 )<<7;
1323*4882a593Smuzhiyun     bSig = ( bSig | 0x00800000 )<<8;
1324*4882a593Smuzhiyun     if ( bSig <= ( aSig + aSig ) ) {
1325*4882a593Smuzhiyun         aSig >>= 1;
1326*4882a593Smuzhiyun         ++zExp;
1327*4882a593Smuzhiyun     }
1328*4882a593Smuzhiyun     {
1329*4882a593Smuzhiyun         bits64 tmp = ( (bits64) aSig )<<32;
1330*4882a593Smuzhiyun         do_div( tmp, bSig );
1331*4882a593Smuzhiyun         zSig = tmp;
1332*4882a593Smuzhiyun     }
1333*4882a593Smuzhiyun     if ( ( zSig & 0x3F ) == 0 ) {
1334*4882a593Smuzhiyun         zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 );
1335*4882a593Smuzhiyun     }
1336*4882a593Smuzhiyun     return roundAndPackFloat32( roundData, zSign, zExp, zSig );
1337*4882a593Smuzhiyun 
1338*4882a593Smuzhiyun }
1339*4882a593Smuzhiyun 
1340*4882a593Smuzhiyun /*
1341*4882a593Smuzhiyun -------------------------------------------------------------------------------
1342*4882a593Smuzhiyun Returns the remainder of the single-precision floating-point value `a'
1343*4882a593Smuzhiyun with respect to the corresponding value `b'.  The operation is performed
1344*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
1345*4882a593Smuzhiyun -------------------------------------------------------------------------------
1346*4882a593Smuzhiyun */
float32_rem(struct roundingData * roundData,float32 a,float32 b)1347*4882a593Smuzhiyun float32 float32_rem( struct roundingData *roundData, float32 a, float32 b )
1348*4882a593Smuzhiyun {
1349*4882a593Smuzhiyun     flag aSign, bSign, zSign;
1350*4882a593Smuzhiyun     int16 aExp, bExp, expDiff;
1351*4882a593Smuzhiyun     bits32 aSig, bSig;
1352*4882a593Smuzhiyun     bits32 q;
1353*4882a593Smuzhiyun     bits64 aSig64, bSig64, q64;
1354*4882a593Smuzhiyun     bits32 alternateASig;
1355*4882a593Smuzhiyun     sbits32 sigMean;
1356*4882a593Smuzhiyun 
1357*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
1358*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
1359*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1360*4882a593Smuzhiyun     bSig = extractFloat32Frac( b );
1361*4882a593Smuzhiyun     bExp = extractFloat32Exp( b );
1362*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1363*4882a593Smuzhiyun     if ( aExp == 0xFF ) {
1364*4882a593Smuzhiyun         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
1365*4882a593Smuzhiyun             return propagateFloat32NaN( a, b );
1366*4882a593Smuzhiyun         }
1367*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
1368*4882a593Smuzhiyun         return float32_default_nan;
1369*4882a593Smuzhiyun     }
1370*4882a593Smuzhiyun     if ( bExp == 0xFF ) {
1371*4882a593Smuzhiyun         if ( bSig ) return propagateFloat32NaN( a, b );
1372*4882a593Smuzhiyun         return a;
1373*4882a593Smuzhiyun     }
1374*4882a593Smuzhiyun     if ( bExp == 0 ) {
1375*4882a593Smuzhiyun         if ( bSig == 0 ) {
1376*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
1377*4882a593Smuzhiyun             return float32_default_nan;
1378*4882a593Smuzhiyun         }
1379*4882a593Smuzhiyun         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
1380*4882a593Smuzhiyun     }
1381*4882a593Smuzhiyun     if ( aExp == 0 ) {
1382*4882a593Smuzhiyun         if ( aSig == 0 ) return a;
1383*4882a593Smuzhiyun         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
1384*4882a593Smuzhiyun     }
1385*4882a593Smuzhiyun     expDiff = aExp - bExp;
1386*4882a593Smuzhiyun     aSig |= 0x00800000;
1387*4882a593Smuzhiyun     bSig |= 0x00800000;
1388*4882a593Smuzhiyun     if ( expDiff < 32 ) {
1389*4882a593Smuzhiyun         aSig <<= 8;
1390*4882a593Smuzhiyun         bSig <<= 8;
1391*4882a593Smuzhiyun         if ( expDiff < 0 ) {
1392*4882a593Smuzhiyun             if ( expDiff < -1 ) return a;
1393*4882a593Smuzhiyun             aSig >>= 1;
1394*4882a593Smuzhiyun         }
1395*4882a593Smuzhiyun         q = ( bSig <= aSig );
1396*4882a593Smuzhiyun         if ( q ) aSig -= bSig;
1397*4882a593Smuzhiyun         if ( 0 < expDiff ) {
1398*4882a593Smuzhiyun             bits64 tmp = ( (bits64) aSig )<<32;
1399*4882a593Smuzhiyun             do_div( tmp, bSig );
1400*4882a593Smuzhiyun             q = tmp;
1401*4882a593Smuzhiyun             q >>= 32 - expDiff;
1402*4882a593Smuzhiyun             bSig >>= 2;
1403*4882a593Smuzhiyun             aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
1404*4882a593Smuzhiyun         }
1405*4882a593Smuzhiyun         else {
1406*4882a593Smuzhiyun             aSig >>= 2;
1407*4882a593Smuzhiyun             bSig >>= 2;
1408*4882a593Smuzhiyun         }
1409*4882a593Smuzhiyun     }
1410*4882a593Smuzhiyun     else {
1411*4882a593Smuzhiyun         if ( bSig <= aSig ) aSig -= bSig;
1412*4882a593Smuzhiyun         aSig64 = ( (bits64) aSig )<<40;
1413*4882a593Smuzhiyun         bSig64 = ( (bits64) bSig )<<40;
1414*4882a593Smuzhiyun         expDiff -= 64;
1415*4882a593Smuzhiyun         while ( 0 < expDiff ) {
1416*4882a593Smuzhiyun             q64 = estimateDiv128To64( aSig64, 0, bSig64 );
1417*4882a593Smuzhiyun             q64 = ( 2 < q64 ) ? q64 - 2 : 0;
1418*4882a593Smuzhiyun             aSig64 = - ( ( bSig * q64 )<<38 );
1419*4882a593Smuzhiyun             expDiff -= 62;
1420*4882a593Smuzhiyun         }
1421*4882a593Smuzhiyun         expDiff += 64;
1422*4882a593Smuzhiyun         q64 = estimateDiv128To64( aSig64, 0, bSig64 );
1423*4882a593Smuzhiyun         q64 = ( 2 < q64 ) ? q64 - 2 : 0;
1424*4882a593Smuzhiyun         q = q64>>( 64 - expDiff );
1425*4882a593Smuzhiyun         bSig <<= 6;
1426*4882a593Smuzhiyun         aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
1427*4882a593Smuzhiyun     }
1428*4882a593Smuzhiyun     do {
1429*4882a593Smuzhiyun         alternateASig = aSig;
1430*4882a593Smuzhiyun         ++q;
1431*4882a593Smuzhiyun         aSig -= bSig;
1432*4882a593Smuzhiyun     } while ( 0 <= (sbits32) aSig );
1433*4882a593Smuzhiyun     sigMean = aSig + alternateASig;
1434*4882a593Smuzhiyun     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
1435*4882a593Smuzhiyun         aSig = alternateASig;
1436*4882a593Smuzhiyun     }
1437*4882a593Smuzhiyun     zSign = ( (sbits32) aSig < 0 );
1438*4882a593Smuzhiyun     if ( zSign ) aSig = - aSig;
1439*4882a593Smuzhiyun     return normalizeRoundAndPackFloat32( roundData, aSign ^ zSign, bExp, aSig );
1440*4882a593Smuzhiyun 
1441*4882a593Smuzhiyun }
1442*4882a593Smuzhiyun 
1443*4882a593Smuzhiyun /*
1444*4882a593Smuzhiyun -------------------------------------------------------------------------------
1445*4882a593Smuzhiyun Returns the square root of the single-precision floating-point value `a'.
1446*4882a593Smuzhiyun The operation is performed according to the IEC/IEEE Standard for Binary
1447*4882a593Smuzhiyun Floating-point Arithmetic.
1448*4882a593Smuzhiyun -------------------------------------------------------------------------------
1449*4882a593Smuzhiyun */
float32_sqrt(struct roundingData * roundData,float32 a)1450*4882a593Smuzhiyun float32 float32_sqrt( struct roundingData *roundData, float32 a )
1451*4882a593Smuzhiyun {
1452*4882a593Smuzhiyun     flag aSign;
1453*4882a593Smuzhiyun     int16 aExp, zExp;
1454*4882a593Smuzhiyun     bits32 aSig, zSig;
1455*4882a593Smuzhiyun     bits64 rem, term;
1456*4882a593Smuzhiyun 
1457*4882a593Smuzhiyun     aSig = extractFloat32Frac( a );
1458*4882a593Smuzhiyun     aExp = extractFloat32Exp( a );
1459*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1460*4882a593Smuzhiyun     if ( aExp == 0xFF ) {
1461*4882a593Smuzhiyun         if ( aSig ) return propagateFloat32NaN( a, 0 );
1462*4882a593Smuzhiyun         if ( ! aSign ) return a;
1463*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
1464*4882a593Smuzhiyun         return float32_default_nan;
1465*4882a593Smuzhiyun     }
1466*4882a593Smuzhiyun     if ( aSign ) {
1467*4882a593Smuzhiyun         if ( ( aExp | aSig ) == 0 ) return a;
1468*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
1469*4882a593Smuzhiyun         return float32_default_nan;
1470*4882a593Smuzhiyun     }
1471*4882a593Smuzhiyun     if ( aExp == 0 ) {
1472*4882a593Smuzhiyun         if ( aSig == 0 ) return 0;
1473*4882a593Smuzhiyun         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
1474*4882a593Smuzhiyun     }
1475*4882a593Smuzhiyun     zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
1476*4882a593Smuzhiyun     aSig = ( aSig | 0x00800000 )<<8;
1477*4882a593Smuzhiyun     zSig = estimateSqrt32( aExp, aSig ) + 2;
1478*4882a593Smuzhiyun     if ( ( zSig & 0x7F ) <= 5 ) {
1479*4882a593Smuzhiyun         if ( zSig < 2 ) {
1480*4882a593Smuzhiyun             zSig = 0xFFFFFFFF;
1481*4882a593Smuzhiyun         }
1482*4882a593Smuzhiyun         else {
1483*4882a593Smuzhiyun             aSig >>= aExp & 1;
1484*4882a593Smuzhiyun             term = ( (bits64) zSig ) * zSig;
1485*4882a593Smuzhiyun             rem = ( ( (bits64) aSig )<<32 ) - term;
1486*4882a593Smuzhiyun             while ( (sbits64) rem < 0 ) {
1487*4882a593Smuzhiyun                 --zSig;
1488*4882a593Smuzhiyun                 rem += ( ( (bits64) zSig )<<1 ) | 1;
1489*4882a593Smuzhiyun             }
1490*4882a593Smuzhiyun             zSig |= ( rem != 0 );
1491*4882a593Smuzhiyun         }
1492*4882a593Smuzhiyun     }
1493*4882a593Smuzhiyun     shift32RightJamming( zSig, 1, &zSig );
1494*4882a593Smuzhiyun     return roundAndPackFloat32( roundData, 0, zExp, zSig );
1495*4882a593Smuzhiyun 
1496*4882a593Smuzhiyun }
1497*4882a593Smuzhiyun 
1498*4882a593Smuzhiyun /*
1499*4882a593Smuzhiyun -------------------------------------------------------------------------------
1500*4882a593Smuzhiyun Returns 1 if the single-precision floating-point value `a' is equal to the
1501*4882a593Smuzhiyun corresponding value `b', and 0 otherwise.  The comparison is performed
1502*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
1503*4882a593Smuzhiyun -------------------------------------------------------------------------------
1504*4882a593Smuzhiyun */
float32_eq(float32 a,float32 b)1505*4882a593Smuzhiyun flag float32_eq( float32 a, float32 b )
1506*4882a593Smuzhiyun {
1507*4882a593Smuzhiyun 
1508*4882a593Smuzhiyun     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
1509*4882a593Smuzhiyun          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
1510*4882a593Smuzhiyun        ) {
1511*4882a593Smuzhiyun         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
1512*4882a593Smuzhiyun             float_raise( float_flag_invalid );
1513*4882a593Smuzhiyun         }
1514*4882a593Smuzhiyun         return 0;
1515*4882a593Smuzhiyun     }
1516*4882a593Smuzhiyun     return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
1517*4882a593Smuzhiyun 
1518*4882a593Smuzhiyun }
1519*4882a593Smuzhiyun 
1520*4882a593Smuzhiyun /*
1521*4882a593Smuzhiyun -------------------------------------------------------------------------------
1522*4882a593Smuzhiyun Returns 1 if the single-precision floating-point value `a' is less than or
1523*4882a593Smuzhiyun equal to the corresponding value `b', and 0 otherwise.  The comparison is
1524*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
1525*4882a593Smuzhiyun Arithmetic.
1526*4882a593Smuzhiyun -------------------------------------------------------------------------------
1527*4882a593Smuzhiyun */
float32_le(float32 a,float32 b)1528*4882a593Smuzhiyun flag float32_le( float32 a, float32 b )
1529*4882a593Smuzhiyun {
1530*4882a593Smuzhiyun     flag aSign, bSign;
1531*4882a593Smuzhiyun 
1532*4882a593Smuzhiyun     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
1533*4882a593Smuzhiyun          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
1534*4882a593Smuzhiyun        ) {
1535*4882a593Smuzhiyun         float_raise( float_flag_invalid );
1536*4882a593Smuzhiyun         return 0;
1537*4882a593Smuzhiyun     }
1538*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1539*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1540*4882a593Smuzhiyun     if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
1541*4882a593Smuzhiyun     return ( a == b ) || ( aSign ^ ( a < b ) );
1542*4882a593Smuzhiyun 
1543*4882a593Smuzhiyun }
1544*4882a593Smuzhiyun 
1545*4882a593Smuzhiyun /*
1546*4882a593Smuzhiyun -------------------------------------------------------------------------------
1547*4882a593Smuzhiyun Returns 1 if the single-precision floating-point value `a' is less than
1548*4882a593Smuzhiyun the corresponding value `b', and 0 otherwise.  The comparison is performed
1549*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
1550*4882a593Smuzhiyun -------------------------------------------------------------------------------
1551*4882a593Smuzhiyun */
float32_lt(float32 a,float32 b)1552*4882a593Smuzhiyun flag float32_lt( float32 a, float32 b )
1553*4882a593Smuzhiyun {
1554*4882a593Smuzhiyun     flag aSign, bSign;
1555*4882a593Smuzhiyun 
1556*4882a593Smuzhiyun     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
1557*4882a593Smuzhiyun          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
1558*4882a593Smuzhiyun        ) {
1559*4882a593Smuzhiyun         float_raise( float_flag_invalid );
1560*4882a593Smuzhiyun         return 0;
1561*4882a593Smuzhiyun     }
1562*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1563*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1564*4882a593Smuzhiyun     if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
1565*4882a593Smuzhiyun     return ( a != b ) && ( aSign ^ ( a < b ) );
1566*4882a593Smuzhiyun 
1567*4882a593Smuzhiyun }
1568*4882a593Smuzhiyun 
1569*4882a593Smuzhiyun /*
1570*4882a593Smuzhiyun -------------------------------------------------------------------------------
1571*4882a593Smuzhiyun Returns 1 if the single-precision floating-point value `a' is equal to the
1572*4882a593Smuzhiyun corresponding value `b', and 0 otherwise.  The invalid exception is raised
1573*4882a593Smuzhiyun if either operand is a NaN.  Otherwise, the comparison is performed
1574*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
1575*4882a593Smuzhiyun -------------------------------------------------------------------------------
1576*4882a593Smuzhiyun */
float32_eq_signaling(float32 a,float32 b)1577*4882a593Smuzhiyun flag float32_eq_signaling( float32 a, float32 b )
1578*4882a593Smuzhiyun {
1579*4882a593Smuzhiyun 
1580*4882a593Smuzhiyun     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
1581*4882a593Smuzhiyun          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
1582*4882a593Smuzhiyun        ) {
1583*4882a593Smuzhiyun         float_raise( float_flag_invalid );
1584*4882a593Smuzhiyun         return 0;
1585*4882a593Smuzhiyun     }
1586*4882a593Smuzhiyun     return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
1587*4882a593Smuzhiyun 
1588*4882a593Smuzhiyun }
1589*4882a593Smuzhiyun 
1590*4882a593Smuzhiyun /*
1591*4882a593Smuzhiyun -------------------------------------------------------------------------------
1592*4882a593Smuzhiyun Returns 1 if the single-precision floating-point value `a' is less than or
1593*4882a593Smuzhiyun equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
1594*4882a593Smuzhiyun cause an exception.  Otherwise, the comparison is performed according to the
1595*4882a593Smuzhiyun IEC/IEEE Standard for Binary Floating-point Arithmetic.
1596*4882a593Smuzhiyun -------------------------------------------------------------------------------
1597*4882a593Smuzhiyun */
float32_le_quiet(float32 a,float32 b)1598*4882a593Smuzhiyun flag float32_le_quiet( float32 a, float32 b )
1599*4882a593Smuzhiyun {
1600*4882a593Smuzhiyun     flag aSign, bSign;
1601*4882a593Smuzhiyun     //int16 aExp, bExp;
1602*4882a593Smuzhiyun 
1603*4882a593Smuzhiyun     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
1604*4882a593Smuzhiyun          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
1605*4882a593Smuzhiyun        ) {
1606*4882a593Smuzhiyun         /* Do nothing, even if NaN as we're quiet */
1607*4882a593Smuzhiyun         return 0;
1608*4882a593Smuzhiyun     }
1609*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1610*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1611*4882a593Smuzhiyun     if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
1612*4882a593Smuzhiyun     return ( a == b ) || ( aSign ^ ( a < b ) );
1613*4882a593Smuzhiyun 
1614*4882a593Smuzhiyun }
1615*4882a593Smuzhiyun 
1616*4882a593Smuzhiyun /*
1617*4882a593Smuzhiyun -------------------------------------------------------------------------------
1618*4882a593Smuzhiyun Returns 1 if the single-precision floating-point value `a' is less than
1619*4882a593Smuzhiyun the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
1620*4882a593Smuzhiyun exception.  Otherwise, the comparison is performed according to the IEC/IEEE
1621*4882a593Smuzhiyun Standard for Binary Floating-point Arithmetic.
1622*4882a593Smuzhiyun -------------------------------------------------------------------------------
1623*4882a593Smuzhiyun */
float32_lt_quiet(float32 a,float32 b)1624*4882a593Smuzhiyun flag float32_lt_quiet( float32 a, float32 b )
1625*4882a593Smuzhiyun {
1626*4882a593Smuzhiyun     flag aSign, bSign;
1627*4882a593Smuzhiyun 
1628*4882a593Smuzhiyun     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
1629*4882a593Smuzhiyun          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
1630*4882a593Smuzhiyun        ) {
1631*4882a593Smuzhiyun         /* Do nothing, even if NaN as we're quiet */
1632*4882a593Smuzhiyun         return 0;
1633*4882a593Smuzhiyun     }
1634*4882a593Smuzhiyun     aSign = extractFloat32Sign( a );
1635*4882a593Smuzhiyun     bSign = extractFloat32Sign( b );
1636*4882a593Smuzhiyun     if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
1637*4882a593Smuzhiyun     return ( a != b ) && ( aSign ^ ( a < b ) );
1638*4882a593Smuzhiyun 
1639*4882a593Smuzhiyun }
1640*4882a593Smuzhiyun 
1641*4882a593Smuzhiyun /*
1642*4882a593Smuzhiyun -------------------------------------------------------------------------------
1643*4882a593Smuzhiyun Returns the result of converting the double-precision floating-point value
1644*4882a593Smuzhiyun `a' to the 32-bit two's complement integer format.  The conversion is
1645*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
1646*4882a593Smuzhiyun Arithmetic---which means in particular that the conversion is rounded
1647*4882a593Smuzhiyun according to the current rounding mode.  If `a' is a NaN, the largest
1648*4882a593Smuzhiyun positive integer is returned.  Otherwise, if the conversion overflows, the
1649*4882a593Smuzhiyun largest integer with the same sign as `a' is returned.
1650*4882a593Smuzhiyun -------------------------------------------------------------------------------
1651*4882a593Smuzhiyun */
float64_to_int32(struct roundingData * roundData,float64 a)1652*4882a593Smuzhiyun int32 float64_to_int32( struct roundingData *roundData, float64 a )
1653*4882a593Smuzhiyun {
1654*4882a593Smuzhiyun     flag aSign;
1655*4882a593Smuzhiyun     int16 aExp, shiftCount;
1656*4882a593Smuzhiyun     bits64 aSig;
1657*4882a593Smuzhiyun 
1658*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
1659*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
1660*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
1661*4882a593Smuzhiyun     if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
1662*4882a593Smuzhiyun     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
1663*4882a593Smuzhiyun     shiftCount = 0x42C - aExp;
1664*4882a593Smuzhiyun     if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
1665*4882a593Smuzhiyun     return roundAndPackInt32( roundData, aSign, aSig );
1666*4882a593Smuzhiyun 
1667*4882a593Smuzhiyun }
1668*4882a593Smuzhiyun 
1669*4882a593Smuzhiyun /*
1670*4882a593Smuzhiyun -------------------------------------------------------------------------------
1671*4882a593Smuzhiyun Returns the result of converting the double-precision floating-point value
1672*4882a593Smuzhiyun `a' to the 32-bit two's complement integer format.  The conversion is
1673*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
1674*4882a593Smuzhiyun Arithmetic, except that the conversion is always rounded toward zero.  If
1675*4882a593Smuzhiyun `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
1676*4882a593Smuzhiyun conversion overflows, the largest integer with the same sign as `a' is
1677*4882a593Smuzhiyun returned.
1678*4882a593Smuzhiyun -------------------------------------------------------------------------------
1679*4882a593Smuzhiyun */
float64_to_int32_round_to_zero(float64 a)1680*4882a593Smuzhiyun int32 float64_to_int32_round_to_zero( float64 a )
1681*4882a593Smuzhiyun {
1682*4882a593Smuzhiyun     flag aSign;
1683*4882a593Smuzhiyun     int16 aExp, shiftCount;
1684*4882a593Smuzhiyun     bits64 aSig, savedASig;
1685*4882a593Smuzhiyun     int32 z;
1686*4882a593Smuzhiyun 
1687*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
1688*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
1689*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
1690*4882a593Smuzhiyun     shiftCount = 0x433 - aExp;
1691*4882a593Smuzhiyun     if ( shiftCount < 21 ) {
1692*4882a593Smuzhiyun         if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
1693*4882a593Smuzhiyun         goto invalid;
1694*4882a593Smuzhiyun     }
1695*4882a593Smuzhiyun     else if ( 52 < shiftCount ) {
1696*4882a593Smuzhiyun         if ( aExp || aSig ) float_raise( float_flag_inexact );
1697*4882a593Smuzhiyun         return 0;
1698*4882a593Smuzhiyun     }
1699*4882a593Smuzhiyun     aSig |= LIT64( 0x0010000000000000 );
1700*4882a593Smuzhiyun     savedASig = aSig;
1701*4882a593Smuzhiyun     aSig >>= shiftCount;
1702*4882a593Smuzhiyun     z = aSig;
1703*4882a593Smuzhiyun     if ( aSign ) z = - z;
1704*4882a593Smuzhiyun     if ( ( z < 0 ) ^ aSign ) {
1705*4882a593Smuzhiyun  invalid:
1706*4882a593Smuzhiyun         float_raise( float_flag_invalid );
1707*4882a593Smuzhiyun         return aSign ? 0x80000000 : 0x7FFFFFFF;
1708*4882a593Smuzhiyun     }
1709*4882a593Smuzhiyun     if ( ( aSig<<shiftCount ) != savedASig ) {
1710*4882a593Smuzhiyun         float_raise( float_flag_inexact );
1711*4882a593Smuzhiyun     }
1712*4882a593Smuzhiyun     return z;
1713*4882a593Smuzhiyun 
1714*4882a593Smuzhiyun }
1715*4882a593Smuzhiyun 
1716*4882a593Smuzhiyun /*
1717*4882a593Smuzhiyun -------------------------------------------------------------------------------
1718*4882a593Smuzhiyun Returns the result of converting the double-precision floating-point value
1719*4882a593Smuzhiyun `a' to the 32-bit two's complement unsigned integer format.  The conversion
1720*4882a593Smuzhiyun is performed according to the IEC/IEEE Standard for Binary Floating-point
1721*4882a593Smuzhiyun Arithmetic---which means in particular that the conversion is rounded
1722*4882a593Smuzhiyun according to the current rounding mode.  If `a' is a NaN, the largest
1723*4882a593Smuzhiyun positive integer is returned.  Otherwise, if the conversion overflows, the
1724*4882a593Smuzhiyun largest positive integer is returned.
1725*4882a593Smuzhiyun -------------------------------------------------------------------------------
1726*4882a593Smuzhiyun */
float64_to_uint32(struct roundingData * roundData,float64 a)1727*4882a593Smuzhiyun int32 float64_to_uint32( struct roundingData *roundData, float64 a )
1728*4882a593Smuzhiyun {
1729*4882a593Smuzhiyun     flag aSign;
1730*4882a593Smuzhiyun     int16 aExp, shiftCount;
1731*4882a593Smuzhiyun     bits64 aSig;
1732*4882a593Smuzhiyun 
1733*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
1734*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
1735*4882a593Smuzhiyun     aSign = 0; //extractFloat64Sign( a );
1736*4882a593Smuzhiyun     //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
1737*4882a593Smuzhiyun     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
1738*4882a593Smuzhiyun     shiftCount = 0x42C - aExp;
1739*4882a593Smuzhiyun     if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
1740*4882a593Smuzhiyun     return roundAndPackInt32( roundData, aSign, aSig );
1741*4882a593Smuzhiyun }
1742*4882a593Smuzhiyun 
1743*4882a593Smuzhiyun /*
1744*4882a593Smuzhiyun -------------------------------------------------------------------------------
1745*4882a593Smuzhiyun Returns the result of converting the double-precision floating-point value
1746*4882a593Smuzhiyun `a' to the 32-bit two's complement integer format.  The conversion is
1747*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
1748*4882a593Smuzhiyun Arithmetic, except that the conversion is always rounded toward zero.  If
1749*4882a593Smuzhiyun `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
1750*4882a593Smuzhiyun conversion overflows, the largest positive integer is returned.
1751*4882a593Smuzhiyun -------------------------------------------------------------------------------
1752*4882a593Smuzhiyun */
float64_to_uint32_round_to_zero(float64 a)1753*4882a593Smuzhiyun int32 float64_to_uint32_round_to_zero( float64 a )
1754*4882a593Smuzhiyun {
1755*4882a593Smuzhiyun     flag aSign;
1756*4882a593Smuzhiyun     int16 aExp, shiftCount;
1757*4882a593Smuzhiyun     bits64 aSig, savedASig;
1758*4882a593Smuzhiyun     int32 z;
1759*4882a593Smuzhiyun 
1760*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
1761*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
1762*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
1763*4882a593Smuzhiyun     shiftCount = 0x433 - aExp;
1764*4882a593Smuzhiyun     if ( shiftCount < 21 ) {
1765*4882a593Smuzhiyun         if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
1766*4882a593Smuzhiyun         goto invalid;
1767*4882a593Smuzhiyun     }
1768*4882a593Smuzhiyun     else if ( 52 < shiftCount ) {
1769*4882a593Smuzhiyun         if ( aExp || aSig ) float_raise( float_flag_inexact );
1770*4882a593Smuzhiyun         return 0;
1771*4882a593Smuzhiyun     }
1772*4882a593Smuzhiyun     aSig |= LIT64( 0x0010000000000000 );
1773*4882a593Smuzhiyun     savedASig = aSig;
1774*4882a593Smuzhiyun     aSig >>= shiftCount;
1775*4882a593Smuzhiyun     z = aSig;
1776*4882a593Smuzhiyun     if ( aSign ) z = - z;
1777*4882a593Smuzhiyun     if ( ( z < 0 ) ^ aSign ) {
1778*4882a593Smuzhiyun  invalid:
1779*4882a593Smuzhiyun         float_raise( float_flag_invalid );
1780*4882a593Smuzhiyun         return aSign ? 0x80000000 : 0x7FFFFFFF;
1781*4882a593Smuzhiyun     }
1782*4882a593Smuzhiyun     if ( ( aSig<<shiftCount ) != savedASig ) {
1783*4882a593Smuzhiyun         float_raise( float_flag_inexact );
1784*4882a593Smuzhiyun     }
1785*4882a593Smuzhiyun     return z;
1786*4882a593Smuzhiyun }
1787*4882a593Smuzhiyun 
1788*4882a593Smuzhiyun /*
1789*4882a593Smuzhiyun -------------------------------------------------------------------------------
1790*4882a593Smuzhiyun Returns the result of converting the double-precision floating-point value
1791*4882a593Smuzhiyun `a' to the single-precision floating-point format.  The conversion is
1792*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
1793*4882a593Smuzhiyun Arithmetic.
1794*4882a593Smuzhiyun -------------------------------------------------------------------------------
1795*4882a593Smuzhiyun */
float64_to_float32(struct roundingData * roundData,float64 a)1796*4882a593Smuzhiyun float32 float64_to_float32( struct roundingData *roundData, float64 a )
1797*4882a593Smuzhiyun {
1798*4882a593Smuzhiyun     flag aSign;
1799*4882a593Smuzhiyun     int16 aExp;
1800*4882a593Smuzhiyun     bits64 aSig;
1801*4882a593Smuzhiyun     bits32 zSig;
1802*4882a593Smuzhiyun 
1803*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
1804*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
1805*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
1806*4882a593Smuzhiyun     if ( aExp == 0x7FF ) {
1807*4882a593Smuzhiyun         if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
1808*4882a593Smuzhiyun         return packFloat32( aSign, 0xFF, 0 );
1809*4882a593Smuzhiyun     }
1810*4882a593Smuzhiyun     shift64RightJamming( aSig, 22, &aSig );
1811*4882a593Smuzhiyun     zSig = aSig;
1812*4882a593Smuzhiyun     if ( aExp || zSig ) {
1813*4882a593Smuzhiyun         zSig |= 0x40000000;
1814*4882a593Smuzhiyun         aExp -= 0x381;
1815*4882a593Smuzhiyun     }
1816*4882a593Smuzhiyun     return roundAndPackFloat32( roundData, aSign, aExp, zSig );
1817*4882a593Smuzhiyun 
1818*4882a593Smuzhiyun }
1819*4882a593Smuzhiyun 
1820*4882a593Smuzhiyun #ifdef FLOATX80
1821*4882a593Smuzhiyun 
1822*4882a593Smuzhiyun /*
1823*4882a593Smuzhiyun -------------------------------------------------------------------------------
1824*4882a593Smuzhiyun Returns the result of converting the double-precision floating-point value
1825*4882a593Smuzhiyun `a' to the extended double-precision floating-point format.  The conversion
1826*4882a593Smuzhiyun is performed according to the IEC/IEEE Standard for Binary Floating-point
1827*4882a593Smuzhiyun Arithmetic.
1828*4882a593Smuzhiyun -------------------------------------------------------------------------------
1829*4882a593Smuzhiyun */
float64_to_floatx80(float64 a)1830*4882a593Smuzhiyun floatx80 float64_to_floatx80( float64 a )
1831*4882a593Smuzhiyun {
1832*4882a593Smuzhiyun     flag aSign;
1833*4882a593Smuzhiyun     int16 aExp;
1834*4882a593Smuzhiyun     bits64 aSig;
1835*4882a593Smuzhiyun 
1836*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
1837*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
1838*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
1839*4882a593Smuzhiyun     if ( aExp == 0x7FF ) {
1840*4882a593Smuzhiyun         if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
1841*4882a593Smuzhiyun         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
1842*4882a593Smuzhiyun     }
1843*4882a593Smuzhiyun     if ( aExp == 0 ) {
1844*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
1845*4882a593Smuzhiyun         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
1846*4882a593Smuzhiyun     }
1847*4882a593Smuzhiyun     return
1848*4882a593Smuzhiyun         packFloatx80(
1849*4882a593Smuzhiyun             aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
1850*4882a593Smuzhiyun 
1851*4882a593Smuzhiyun }
1852*4882a593Smuzhiyun 
1853*4882a593Smuzhiyun #endif
1854*4882a593Smuzhiyun 
1855*4882a593Smuzhiyun /*
1856*4882a593Smuzhiyun -------------------------------------------------------------------------------
1857*4882a593Smuzhiyun Rounds the double-precision floating-point value `a' to an integer, and
1858*4882a593Smuzhiyun returns the result as a double-precision floating-point value.  The
1859*4882a593Smuzhiyun operation is performed according to the IEC/IEEE Standard for Binary
1860*4882a593Smuzhiyun Floating-point Arithmetic.
1861*4882a593Smuzhiyun -------------------------------------------------------------------------------
1862*4882a593Smuzhiyun */
float64_round_to_int(struct roundingData * roundData,float64 a)1863*4882a593Smuzhiyun float64 float64_round_to_int( struct roundingData *roundData, float64 a )
1864*4882a593Smuzhiyun {
1865*4882a593Smuzhiyun     flag aSign;
1866*4882a593Smuzhiyun     int16 aExp;
1867*4882a593Smuzhiyun     bits64 lastBitMask, roundBitsMask;
1868*4882a593Smuzhiyun     int8 roundingMode;
1869*4882a593Smuzhiyun     float64 z;
1870*4882a593Smuzhiyun 
1871*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
1872*4882a593Smuzhiyun     if ( 0x433 <= aExp ) {
1873*4882a593Smuzhiyun         if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
1874*4882a593Smuzhiyun             return propagateFloat64NaN( a, a );
1875*4882a593Smuzhiyun         }
1876*4882a593Smuzhiyun         return a;
1877*4882a593Smuzhiyun     }
1878*4882a593Smuzhiyun     if ( aExp <= 0x3FE ) {
1879*4882a593Smuzhiyun         if ( (bits64) ( a<<1 ) == 0 ) return a;
1880*4882a593Smuzhiyun         roundData->exception |= float_flag_inexact;
1881*4882a593Smuzhiyun         aSign = extractFloat64Sign( a );
1882*4882a593Smuzhiyun         switch ( roundData->mode ) {
1883*4882a593Smuzhiyun          case float_round_nearest_even:
1884*4882a593Smuzhiyun             if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
1885*4882a593Smuzhiyun                 return packFloat64( aSign, 0x3FF, 0 );
1886*4882a593Smuzhiyun             }
1887*4882a593Smuzhiyun             break;
1888*4882a593Smuzhiyun          case float_round_down:
1889*4882a593Smuzhiyun             return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
1890*4882a593Smuzhiyun          case float_round_up:
1891*4882a593Smuzhiyun             return
1892*4882a593Smuzhiyun             aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
1893*4882a593Smuzhiyun         }
1894*4882a593Smuzhiyun         return packFloat64( aSign, 0, 0 );
1895*4882a593Smuzhiyun     }
1896*4882a593Smuzhiyun     lastBitMask = 1;
1897*4882a593Smuzhiyun     lastBitMask <<= 0x433 - aExp;
1898*4882a593Smuzhiyun     roundBitsMask = lastBitMask - 1;
1899*4882a593Smuzhiyun     z = a;
1900*4882a593Smuzhiyun     roundingMode = roundData->mode;
1901*4882a593Smuzhiyun     if ( roundingMode == float_round_nearest_even ) {
1902*4882a593Smuzhiyun         z += lastBitMask>>1;
1903*4882a593Smuzhiyun         if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
1904*4882a593Smuzhiyun     }
1905*4882a593Smuzhiyun     else if ( roundingMode != float_round_to_zero ) {
1906*4882a593Smuzhiyun         if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
1907*4882a593Smuzhiyun             z += roundBitsMask;
1908*4882a593Smuzhiyun         }
1909*4882a593Smuzhiyun     }
1910*4882a593Smuzhiyun     z &= ~ roundBitsMask;
1911*4882a593Smuzhiyun     if ( z != a ) roundData->exception |= float_flag_inexact;
1912*4882a593Smuzhiyun     return z;
1913*4882a593Smuzhiyun 
1914*4882a593Smuzhiyun }
1915*4882a593Smuzhiyun 
1916*4882a593Smuzhiyun /*
1917*4882a593Smuzhiyun -------------------------------------------------------------------------------
1918*4882a593Smuzhiyun Returns the result of adding the absolute values of the double-precision
1919*4882a593Smuzhiyun floating-point values `a' and `b'.  If `zSign' is true, the sum is negated
1920*4882a593Smuzhiyun before being returned.  `zSign' is ignored if the result is a NaN.  The
1921*4882a593Smuzhiyun addition is performed according to the IEC/IEEE Standard for Binary
1922*4882a593Smuzhiyun Floating-point Arithmetic.
1923*4882a593Smuzhiyun -------------------------------------------------------------------------------
1924*4882a593Smuzhiyun */
addFloat64Sigs(struct roundingData * roundData,float64 a,float64 b,flag zSign)1925*4882a593Smuzhiyun static float64 addFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
1926*4882a593Smuzhiyun {
1927*4882a593Smuzhiyun     int16 aExp, bExp, zExp;
1928*4882a593Smuzhiyun     bits64 aSig, bSig, zSig;
1929*4882a593Smuzhiyun     int16 expDiff;
1930*4882a593Smuzhiyun 
1931*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
1932*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
1933*4882a593Smuzhiyun     bSig = extractFloat64Frac( b );
1934*4882a593Smuzhiyun     bExp = extractFloat64Exp( b );
1935*4882a593Smuzhiyun     expDiff = aExp - bExp;
1936*4882a593Smuzhiyun     aSig <<= 9;
1937*4882a593Smuzhiyun     bSig <<= 9;
1938*4882a593Smuzhiyun     if ( 0 < expDiff ) {
1939*4882a593Smuzhiyun         if ( aExp == 0x7FF ) {
1940*4882a593Smuzhiyun             if ( aSig ) return propagateFloat64NaN( a, b );
1941*4882a593Smuzhiyun             return a;
1942*4882a593Smuzhiyun         }
1943*4882a593Smuzhiyun         if ( bExp == 0 ) {
1944*4882a593Smuzhiyun             --expDiff;
1945*4882a593Smuzhiyun         }
1946*4882a593Smuzhiyun         else {
1947*4882a593Smuzhiyun             bSig |= LIT64( 0x2000000000000000 );
1948*4882a593Smuzhiyun         }
1949*4882a593Smuzhiyun         shift64RightJamming( bSig, expDiff, &bSig );
1950*4882a593Smuzhiyun         zExp = aExp;
1951*4882a593Smuzhiyun     }
1952*4882a593Smuzhiyun     else if ( expDiff < 0 ) {
1953*4882a593Smuzhiyun         if ( bExp == 0x7FF ) {
1954*4882a593Smuzhiyun             if ( bSig ) return propagateFloat64NaN( a, b );
1955*4882a593Smuzhiyun             return packFloat64( zSign, 0x7FF, 0 );
1956*4882a593Smuzhiyun         }
1957*4882a593Smuzhiyun         if ( aExp == 0 ) {
1958*4882a593Smuzhiyun             ++expDiff;
1959*4882a593Smuzhiyun         }
1960*4882a593Smuzhiyun         else {
1961*4882a593Smuzhiyun             aSig |= LIT64( 0x2000000000000000 );
1962*4882a593Smuzhiyun         }
1963*4882a593Smuzhiyun         shift64RightJamming( aSig, - expDiff, &aSig );
1964*4882a593Smuzhiyun         zExp = bExp;
1965*4882a593Smuzhiyun     }
1966*4882a593Smuzhiyun     else {
1967*4882a593Smuzhiyun         if ( aExp == 0x7FF ) {
1968*4882a593Smuzhiyun             if ( aSig | bSig ) return propagateFloat64NaN( a, b );
1969*4882a593Smuzhiyun             return a;
1970*4882a593Smuzhiyun         }
1971*4882a593Smuzhiyun         if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
1972*4882a593Smuzhiyun         zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
1973*4882a593Smuzhiyun         zExp = aExp;
1974*4882a593Smuzhiyun         goto roundAndPack;
1975*4882a593Smuzhiyun     }
1976*4882a593Smuzhiyun     aSig |= LIT64( 0x2000000000000000 );
1977*4882a593Smuzhiyun     zSig = ( aSig + bSig )<<1;
1978*4882a593Smuzhiyun     --zExp;
1979*4882a593Smuzhiyun     if ( (sbits64) zSig < 0 ) {
1980*4882a593Smuzhiyun         zSig = aSig + bSig;
1981*4882a593Smuzhiyun         ++zExp;
1982*4882a593Smuzhiyun     }
1983*4882a593Smuzhiyun  roundAndPack:
1984*4882a593Smuzhiyun     return roundAndPackFloat64( roundData, zSign, zExp, zSig );
1985*4882a593Smuzhiyun 
1986*4882a593Smuzhiyun }
1987*4882a593Smuzhiyun 
1988*4882a593Smuzhiyun /*
1989*4882a593Smuzhiyun -------------------------------------------------------------------------------
1990*4882a593Smuzhiyun Returns the result of subtracting the absolute values of the double-
1991*4882a593Smuzhiyun precision floating-point values `a' and `b'.  If `zSign' is true, the
1992*4882a593Smuzhiyun difference is negated before being returned.  `zSign' is ignored if the
1993*4882a593Smuzhiyun result is a NaN.  The subtraction is performed according to the IEC/IEEE
1994*4882a593Smuzhiyun Standard for Binary Floating-point Arithmetic.
1995*4882a593Smuzhiyun -------------------------------------------------------------------------------
1996*4882a593Smuzhiyun */
subFloat64Sigs(struct roundingData * roundData,float64 a,float64 b,flag zSign)1997*4882a593Smuzhiyun static float64 subFloat64Sigs( struct roundingData *roundData, float64 a, float64 b, flag zSign )
1998*4882a593Smuzhiyun {
1999*4882a593Smuzhiyun     int16 aExp, bExp, zExp;
2000*4882a593Smuzhiyun     bits64 aSig, bSig, zSig;
2001*4882a593Smuzhiyun     int16 expDiff;
2002*4882a593Smuzhiyun 
2003*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
2004*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
2005*4882a593Smuzhiyun     bSig = extractFloat64Frac( b );
2006*4882a593Smuzhiyun     bExp = extractFloat64Exp( b );
2007*4882a593Smuzhiyun     expDiff = aExp - bExp;
2008*4882a593Smuzhiyun     aSig <<= 10;
2009*4882a593Smuzhiyun     bSig <<= 10;
2010*4882a593Smuzhiyun     if ( 0 < expDiff ) goto aExpBigger;
2011*4882a593Smuzhiyun     if ( expDiff < 0 ) goto bExpBigger;
2012*4882a593Smuzhiyun     if ( aExp == 0x7FF ) {
2013*4882a593Smuzhiyun         if ( aSig | bSig ) return propagateFloat64NaN( a, b );
2014*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
2015*4882a593Smuzhiyun         return float64_default_nan;
2016*4882a593Smuzhiyun     }
2017*4882a593Smuzhiyun     if ( aExp == 0 ) {
2018*4882a593Smuzhiyun         aExp = 1;
2019*4882a593Smuzhiyun         bExp = 1;
2020*4882a593Smuzhiyun     }
2021*4882a593Smuzhiyun     if ( bSig < aSig ) goto aBigger;
2022*4882a593Smuzhiyun     if ( aSig < bSig ) goto bBigger;
2023*4882a593Smuzhiyun     return packFloat64( roundData->mode == float_round_down, 0, 0 );
2024*4882a593Smuzhiyun  bExpBigger:
2025*4882a593Smuzhiyun     if ( bExp == 0x7FF ) {
2026*4882a593Smuzhiyun         if ( bSig ) return propagateFloat64NaN( a, b );
2027*4882a593Smuzhiyun         return packFloat64( zSign ^ 1, 0x7FF, 0 );
2028*4882a593Smuzhiyun     }
2029*4882a593Smuzhiyun     if ( aExp == 0 ) {
2030*4882a593Smuzhiyun         ++expDiff;
2031*4882a593Smuzhiyun     }
2032*4882a593Smuzhiyun     else {
2033*4882a593Smuzhiyun         aSig |= LIT64( 0x4000000000000000 );
2034*4882a593Smuzhiyun     }
2035*4882a593Smuzhiyun     shift64RightJamming( aSig, - expDiff, &aSig );
2036*4882a593Smuzhiyun     bSig |= LIT64( 0x4000000000000000 );
2037*4882a593Smuzhiyun  bBigger:
2038*4882a593Smuzhiyun     zSig = bSig - aSig;
2039*4882a593Smuzhiyun     zExp = bExp;
2040*4882a593Smuzhiyun     zSign ^= 1;
2041*4882a593Smuzhiyun     goto normalizeRoundAndPack;
2042*4882a593Smuzhiyun  aExpBigger:
2043*4882a593Smuzhiyun     if ( aExp == 0x7FF ) {
2044*4882a593Smuzhiyun         if ( aSig ) return propagateFloat64NaN( a, b );
2045*4882a593Smuzhiyun         return a;
2046*4882a593Smuzhiyun     }
2047*4882a593Smuzhiyun     if ( bExp == 0 ) {
2048*4882a593Smuzhiyun         --expDiff;
2049*4882a593Smuzhiyun     }
2050*4882a593Smuzhiyun     else {
2051*4882a593Smuzhiyun         bSig |= LIT64( 0x4000000000000000 );
2052*4882a593Smuzhiyun     }
2053*4882a593Smuzhiyun     shift64RightJamming( bSig, expDiff, &bSig );
2054*4882a593Smuzhiyun     aSig |= LIT64( 0x4000000000000000 );
2055*4882a593Smuzhiyun  aBigger:
2056*4882a593Smuzhiyun     zSig = aSig - bSig;
2057*4882a593Smuzhiyun     zExp = aExp;
2058*4882a593Smuzhiyun  normalizeRoundAndPack:
2059*4882a593Smuzhiyun     --zExp;
2060*4882a593Smuzhiyun     return normalizeRoundAndPackFloat64( roundData, zSign, zExp, zSig );
2061*4882a593Smuzhiyun 
2062*4882a593Smuzhiyun }
2063*4882a593Smuzhiyun 
2064*4882a593Smuzhiyun /*
2065*4882a593Smuzhiyun -------------------------------------------------------------------------------
2066*4882a593Smuzhiyun Returns the result of adding the double-precision floating-point values `a'
2067*4882a593Smuzhiyun and `b'.  The operation is performed according to the IEC/IEEE Standard for
2068*4882a593Smuzhiyun Binary Floating-point Arithmetic.
2069*4882a593Smuzhiyun -------------------------------------------------------------------------------
2070*4882a593Smuzhiyun */
float64_add(struct roundingData * roundData,float64 a,float64 b)2071*4882a593Smuzhiyun float64 float64_add( struct roundingData *roundData, float64 a, float64 b )
2072*4882a593Smuzhiyun {
2073*4882a593Smuzhiyun     flag aSign, bSign;
2074*4882a593Smuzhiyun 
2075*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2076*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2077*4882a593Smuzhiyun     if ( aSign == bSign ) {
2078*4882a593Smuzhiyun         return addFloat64Sigs( roundData, a, b, aSign );
2079*4882a593Smuzhiyun     }
2080*4882a593Smuzhiyun     else {
2081*4882a593Smuzhiyun         return subFloat64Sigs( roundData, a, b, aSign );
2082*4882a593Smuzhiyun     }
2083*4882a593Smuzhiyun 
2084*4882a593Smuzhiyun }
2085*4882a593Smuzhiyun 
2086*4882a593Smuzhiyun /*
2087*4882a593Smuzhiyun -------------------------------------------------------------------------------
2088*4882a593Smuzhiyun Returns the result of subtracting the double-precision floating-point values
2089*4882a593Smuzhiyun `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
2090*4882a593Smuzhiyun for Binary Floating-point Arithmetic.
2091*4882a593Smuzhiyun -------------------------------------------------------------------------------
2092*4882a593Smuzhiyun */
float64_sub(struct roundingData * roundData,float64 a,float64 b)2093*4882a593Smuzhiyun float64 float64_sub( struct roundingData *roundData, float64 a, float64 b )
2094*4882a593Smuzhiyun {
2095*4882a593Smuzhiyun     flag aSign, bSign;
2096*4882a593Smuzhiyun 
2097*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2098*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2099*4882a593Smuzhiyun     if ( aSign == bSign ) {
2100*4882a593Smuzhiyun         return subFloat64Sigs( roundData, a, b, aSign );
2101*4882a593Smuzhiyun     }
2102*4882a593Smuzhiyun     else {
2103*4882a593Smuzhiyun         return addFloat64Sigs( roundData, a, b, aSign );
2104*4882a593Smuzhiyun     }
2105*4882a593Smuzhiyun 
2106*4882a593Smuzhiyun }
2107*4882a593Smuzhiyun 
2108*4882a593Smuzhiyun /*
2109*4882a593Smuzhiyun -------------------------------------------------------------------------------
2110*4882a593Smuzhiyun Returns the result of multiplying the double-precision floating-point values
2111*4882a593Smuzhiyun `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
2112*4882a593Smuzhiyun for Binary Floating-point Arithmetic.
2113*4882a593Smuzhiyun -------------------------------------------------------------------------------
2114*4882a593Smuzhiyun */
float64_mul(struct roundingData * roundData,float64 a,float64 b)2115*4882a593Smuzhiyun float64 float64_mul( struct roundingData *roundData, float64 a, float64 b )
2116*4882a593Smuzhiyun {
2117*4882a593Smuzhiyun     flag aSign, bSign, zSign;
2118*4882a593Smuzhiyun     int16 aExp, bExp, zExp;
2119*4882a593Smuzhiyun     bits64 aSig, bSig, zSig0, zSig1;
2120*4882a593Smuzhiyun 
2121*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
2122*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
2123*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2124*4882a593Smuzhiyun     bSig = extractFloat64Frac( b );
2125*4882a593Smuzhiyun     bExp = extractFloat64Exp( b );
2126*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2127*4882a593Smuzhiyun     zSign = aSign ^ bSign;
2128*4882a593Smuzhiyun     if ( aExp == 0x7FF ) {
2129*4882a593Smuzhiyun         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
2130*4882a593Smuzhiyun             return propagateFloat64NaN( a, b );
2131*4882a593Smuzhiyun         }
2132*4882a593Smuzhiyun         if ( ( bExp | bSig ) == 0 ) {
2133*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
2134*4882a593Smuzhiyun             return float64_default_nan;
2135*4882a593Smuzhiyun         }
2136*4882a593Smuzhiyun         return packFloat64( zSign, 0x7FF, 0 );
2137*4882a593Smuzhiyun     }
2138*4882a593Smuzhiyun     if ( bExp == 0x7FF ) {
2139*4882a593Smuzhiyun         if ( bSig ) return propagateFloat64NaN( a, b );
2140*4882a593Smuzhiyun         if ( ( aExp | aSig ) == 0 ) {
2141*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
2142*4882a593Smuzhiyun             return float64_default_nan;
2143*4882a593Smuzhiyun         }
2144*4882a593Smuzhiyun         return packFloat64( zSign, 0x7FF, 0 );
2145*4882a593Smuzhiyun     }
2146*4882a593Smuzhiyun     if ( aExp == 0 ) {
2147*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
2148*4882a593Smuzhiyun         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
2149*4882a593Smuzhiyun     }
2150*4882a593Smuzhiyun     if ( bExp == 0 ) {
2151*4882a593Smuzhiyun         if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
2152*4882a593Smuzhiyun         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
2153*4882a593Smuzhiyun     }
2154*4882a593Smuzhiyun     zExp = aExp + bExp - 0x3FF;
2155*4882a593Smuzhiyun     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
2156*4882a593Smuzhiyun     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
2157*4882a593Smuzhiyun     mul64To128( aSig, bSig, &zSig0, &zSig1 );
2158*4882a593Smuzhiyun     zSig0 |= ( zSig1 != 0 );
2159*4882a593Smuzhiyun     if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
2160*4882a593Smuzhiyun         zSig0 <<= 1;
2161*4882a593Smuzhiyun         --zExp;
2162*4882a593Smuzhiyun     }
2163*4882a593Smuzhiyun     return roundAndPackFloat64( roundData, zSign, zExp, zSig0 );
2164*4882a593Smuzhiyun 
2165*4882a593Smuzhiyun }
2166*4882a593Smuzhiyun 
2167*4882a593Smuzhiyun /*
2168*4882a593Smuzhiyun -------------------------------------------------------------------------------
2169*4882a593Smuzhiyun Returns the result of dividing the double-precision floating-point value `a'
2170*4882a593Smuzhiyun by the corresponding value `b'.  The operation is performed according to
2171*4882a593Smuzhiyun the IEC/IEEE Standard for Binary Floating-point Arithmetic.
2172*4882a593Smuzhiyun -------------------------------------------------------------------------------
2173*4882a593Smuzhiyun */
float64_div(struct roundingData * roundData,float64 a,float64 b)2174*4882a593Smuzhiyun float64 float64_div( struct roundingData *roundData, float64 a, float64 b )
2175*4882a593Smuzhiyun {
2176*4882a593Smuzhiyun     flag aSign, bSign, zSign;
2177*4882a593Smuzhiyun     int16 aExp, bExp, zExp;
2178*4882a593Smuzhiyun     bits64 aSig, bSig, zSig;
2179*4882a593Smuzhiyun     bits64 rem0, rem1;
2180*4882a593Smuzhiyun     bits64 term0, term1;
2181*4882a593Smuzhiyun 
2182*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
2183*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
2184*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2185*4882a593Smuzhiyun     bSig = extractFloat64Frac( b );
2186*4882a593Smuzhiyun     bExp = extractFloat64Exp( b );
2187*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2188*4882a593Smuzhiyun     zSign = aSign ^ bSign;
2189*4882a593Smuzhiyun     if ( aExp == 0x7FF ) {
2190*4882a593Smuzhiyun         if ( aSig ) return propagateFloat64NaN( a, b );
2191*4882a593Smuzhiyun         if ( bExp == 0x7FF ) {
2192*4882a593Smuzhiyun             if ( bSig ) return propagateFloat64NaN( a, b );
2193*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
2194*4882a593Smuzhiyun             return float64_default_nan;
2195*4882a593Smuzhiyun         }
2196*4882a593Smuzhiyun         return packFloat64( zSign, 0x7FF, 0 );
2197*4882a593Smuzhiyun     }
2198*4882a593Smuzhiyun     if ( bExp == 0x7FF ) {
2199*4882a593Smuzhiyun         if ( bSig ) return propagateFloat64NaN( a, b );
2200*4882a593Smuzhiyun         return packFloat64( zSign, 0, 0 );
2201*4882a593Smuzhiyun     }
2202*4882a593Smuzhiyun     if ( bExp == 0 ) {
2203*4882a593Smuzhiyun         if ( bSig == 0 ) {
2204*4882a593Smuzhiyun             if ( ( aExp | aSig ) == 0 ) {
2205*4882a593Smuzhiyun                 roundData->exception |= float_flag_invalid;
2206*4882a593Smuzhiyun                 return float64_default_nan;
2207*4882a593Smuzhiyun             }
2208*4882a593Smuzhiyun             roundData->exception |= float_flag_divbyzero;
2209*4882a593Smuzhiyun             return packFloat64( zSign, 0x7FF, 0 );
2210*4882a593Smuzhiyun         }
2211*4882a593Smuzhiyun         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
2212*4882a593Smuzhiyun     }
2213*4882a593Smuzhiyun     if ( aExp == 0 ) {
2214*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
2215*4882a593Smuzhiyun         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
2216*4882a593Smuzhiyun     }
2217*4882a593Smuzhiyun     zExp = aExp - bExp + 0x3FD;
2218*4882a593Smuzhiyun     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
2219*4882a593Smuzhiyun     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
2220*4882a593Smuzhiyun     if ( bSig <= ( aSig + aSig ) ) {
2221*4882a593Smuzhiyun         aSig >>= 1;
2222*4882a593Smuzhiyun         ++zExp;
2223*4882a593Smuzhiyun     }
2224*4882a593Smuzhiyun     zSig = estimateDiv128To64( aSig, 0, bSig );
2225*4882a593Smuzhiyun     if ( ( zSig & 0x1FF ) <= 2 ) {
2226*4882a593Smuzhiyun         mul64To128( bSig, zSig, &term0, &term1 );
2227*4882a593Smuzhiyun         sub128( aSig, 0, term0, term1, &rem0, &rem1 );
2228*4882a593Smuzhiyun         while ( (sbits64) rem0 < 0 ) {
2229*4882a593Smuzhiyun             --zSig;
2230*4882a593Smuzhiyun             add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
2231*4882a593Smuzhiyun         }
2232*4882a593Smuzhiyun         zSig |= ( rem1 != 0 );
2233*4882a593Smuzhiyun     }
2234*4882a593Smuzhiyun     return roundAndPackFloat64( roundData, zSign, zExp, zSig );
2235*4882a593Smuzhiyun 
2236*4882a593Smuzhiyun }
2237*4882a593Smuzhiyun 
2238*4882a593Smuzhiyun /*
2239*4882a593Smuzhiyun -------------------------------------------------------------------------------
2240*4882a593Smuzhiyun Returns the remainder of the double-precision floating-point value `a'
2241*4882a593Smuzhiyun with respect to the corresponding value `b'.  The operation is performed
2242*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
2243*4882a593Smuzhiyun -------------------------------------------------------------------------------
2244*4882a593Smuzhiyun */
float64_rem(struct roundingData * roundData,float64 a,float64 b)2245*4882a593Smuzhiyun float64 float64_rem( struct roundingData *roundData, float64 a, float64 b )
2246*4882a593Smuzhiyun {
2247*4882a593Smuzhiyun     flag aSign, bSign, zSign;
2248*4882a593Smuzhiyun     int16 aExp, bExp, expDiff;
2249*4882a593Smuzhiyun     bits64 aSig, bSig;
2250*4882a593Smuzhiyun     bits64 q, alternateASig;
2251*4882a593Smuzhiyun     sbits64 sigMean;
2252*4882a593Smuzhiyun 
2253*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
2254*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
2255*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2256*4882a593Smuzhiyun     bSig = extractFloat64Frac( b );
2257*4882a593Smuzhiyun     bExp = extractFloat64Exp( b );
2258*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2259*4882a593Smuzhiyun     if ( aExp == 0x7FF ) {
2260*4882a593Smuzhiyun         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
2261*4882a593Smuzhiyun             return propagateFloat64NaN( a, b );
2262*4882a593Smuzhiyun         }
2263*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
2264*4882a593Smuzhiyun         return float64_default_nan;
2265*4882a593Smuzhiyun     }
2266*4882a593Smuzhiyun     if ( bExp == 0x7FF ) {
2267*4882a593Smuzhiyun         if ( bSig ) return propagateFloat64NaN( a, b );
2268*4882a593Smuzhiyun         return a;
2269*4882a593Smuzhiyun     }
2270*4882a593Smuzhiyun     if ( bExp == 0 ) {
2271*4882a593Smuzhiyun         if ( bSig == 0 ) {
2272*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
2273*4882a593Smuzhiyun             return float64_default_nan;
2274*4882a593Smuzhiyun         }
2275*4882a593Smuzhiyun         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
2276*4882a593Smuzhiyun     }
2277*4882a593Smuzhiyun     if ( aExp == 0 ) {
2278*4882a593Smuzhiyun         if ( aSig == 0 ) return a;
2279*4882a593Smuzhiyun         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
2280*4882a593Smuzhiyun     }
2281*4882a593Smuzhiyun     expDiff = aExp - bExp;
2282*4882a593Smuzhiyun     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
2283*4882a593Smuzhiyun     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
2284*4882a593Smuzhiyun     if ( expDiff < 0 ) {
2285*4882a593Smuzhiyun         if ( expDiff < -1 ) return a;
2286*4882a593Smuzhiyun         aSig >>= 1;
2287*4882a593Smuzhiyun     }
2288*4882a593Smuzhiyun     q = ( bSig <= aSig );
2289*4882a593Smuzhiyun     if ( q ) aSig -= bSig;
2290*4882a593Smuzhiyun     expDiff -= 64;
2291*4882a593Smuzhiyun     while ( 0 < expDiff ) {
2292*4882a593Smuzhiyun         q = estimateDiv128To64( aSig, 0, bSig );
2293*4882a593Smuzhiyun         q = ( 2 < q ) ? q - 2 : 0;
2294*4882a593Smuzhiyun         aSig = - ( ( bSig>>2 ) * q );
2295*4882a593Smuzhiyun         expDiff -= 62;
2296*4882a593Smuzhiyun     }
2297*4882a593Smuzhiyun     expDiff += 64;
2298*4882a593Smuzhiyun     if ( 0 < expDiff ) {
2299*4882a593Smuzhiyun         q = estimateDiv128To64( aSig, 0, bSig );
2300*4882a593Smuzhiyun         q = ( 2 < q ) ? q - 2 : 0;
2301*4882a593Smuzhiyun         q >>= 64 - expDiff;
2302*4882a593Smuzhiyun         bSig >>= 2;
2303*4882a593Smuzhiyun         aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
2304*4882a593Smuzhiyun     }
2305*4882a593Smuzhiyun     else {
2306*4882a593Smuzhiyun         aSig >>= 2;
2307*4882a593Smuzhiyun         bSig >>= 2;
2308*4882a593Smuzhiyun     }
2309*4882a593Smuzhiyun     do {
2310*4882a593Smuzhiyun         alternateASig = aSig;
2311*4882a593Smuzhiyun         ++q;
2312*4882a593Smuzhiyun         aSig -= bSig;
2313*4882a593Smuzhiyun     } while ( 0 <= (sbits64) aSig );
2314*4882a593Smuzhiyun     sigMean = aSig + alternateASig;
2315*4882a593Smuzhiyun     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
2316*4882a593Smuzhiyun         aSig = alternateASig;
2317*4882a593Smuzhiyun     }
2318*4882a593Smuzhiyun     zSign = ( (sbits64) aSig < 0 );
2319*4882a593Smuzhiyun     if ( zSign ) aSig = - aSig;
2320*4882a593Smuzhiyun     return normalizeRoundAndPackFloat64( roundData, aSign ^ zSign, bExp, aSig );
2321*4882a593Smuzhiyun 
2322*4882a593Smuzhiyun }
2323*4882a593Smuzhiyun 
2324*4882a593Smuzhiyun /*
2325*4882a593Smuzhiyun -------------------------------------------------------------------------------
2326*4882a593Smuzhiyun Returns the square root of the double-precision floating-point value `a'.
2327*4882a593Smuzhiyun The operation is performed according to the IEC/IEEE Standard for Binary
2328*4882a593Smuzhiyun Floating-point Arithmetic.
2329*4882a593Smuzhiyun -------------------------------------------------------------------------------
2330*4882a593Smuzhiyun */
float64_sqrt(struct roundingData * roundData,float64 a)2331*4882a593Smuzhiyun float64 float64_sqrt( struct roundingData *roundData, float64 a )
2332*4882a593Smuzhiyun {
2333*4882a593Smuzhiyun     flag aSign;
2334*4882a593Smuzhiyun     int16 aExp, zExp;
2335*4882a593Smuzhiyun     bits64 aSig, zSig;
2336*4882a593Smuzhiyun     bits64 rem0, rem1, term0, term1; //, shiftedRem;
2337*4882a593Smuzhiyun     //float64 z;
2338*4882a593Smuzhiyun 
2339*4882a593Smuzhiyun     aSig = extractFloat64Frac( a );
2340*4882a593Smuzhiyun     aExp = extractFloat64Exp( a );
2341*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2342*4882a593Smuzhiyun     if ( aExp == 0x7FF ) {
2343*4882a593Smuzhiyun         if ( aSig ) return propagateFloat64NaN( a, a );
2344*4882a593Smuzhiyun         if ( ! aSign ) return a;
2345*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
2346*4882a593Smuzhiyun         return float64_default_nan;
2347*4882a593Smuzhiyun     }
2348*4882a593Smuzhiyun     if ( aSign ) {
2349*4882a593Smuzhiyun         if ( ( aExp | aSig ) == 0 ) return a;
2350*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
2351*4882a593Smuzhiyun         return float64_default_nan;
2352*4882a593Smuzhiyun     }
2353*4882a593Smuzhiyun     if ( aExp == 0 ) {
2354*4882a593Smuzhiyun         if ( aSig == 0 ) return 0;
2355*4882a593Smuzhiyun         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
2356*4882a593Smuzhiyun     }
2357*4882a593Smuzhiyun     zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
2358*4882a593Smuzhiyun     aSig |= LIT64( 0x0010000000000000 );
2359*4882a593Smuzhiyun     zSig = estimateSqrt32( aExp, aSig>>21 );
2360*4882a593Smuzhiyun     zSig <<= 31;
2361*4882a593Smuzhiyun     aSig <<= 9 - ( aExp & 1 );
2362*4882a593Smuzhiyun     zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2;
2363*4882a593Smuzhiyun     if ( ( zSig & 0x3FF ) <= 5 ) {
2364*4882a593Smuzhiyun         if ( zSig < 2 ) {
2365*4882a593Smuzhiyun             zSig = LIT64( 0xFFFFFFFFFFFFFFFF );
2366*4882a593Smuzhiyun         }
2367*4882a593Smuzhiyun         else {
2368*4882a593Smuzhiyun             aSig <<= 2;
2369*4882a593Smuzhiyun             mul64To128( zSig, zSig, &term0, &term1 );
2370*4882a593Smuzhiyun             sub128( aSig, 0, term0, term1, &rem0, &rem1 );
2371*4882a593Smuzhiyun             while ( (sbits64) rem0 < 0 ) {
2372*4882a593Smuzhiyun                 --zSig;
2373*4882a593Smuzhiyun                 shortShift128Left( 0, zSig, 1, &term0, &term1 );
2374*4882a593Smuzhiyun                 term1 |= 1;
2375*4882a593Smuzhiyun                 add128( rem0, rem1, term0, term1, &rem0, &rem1 );
2376*4882a593Smuzhiyun             }
2377*4882a593Smuzhiyun             zSig |= ( ( rem0 | rem1 ) != 0 );
2378*4882a593Smuzhiyun         }
2379*4882a593Smuzhiyun     }
2380*4882a593Smuzhiyun     shift64RightJamming( zSig, 1, &zSig );
2381*4882a593Smuzhiyun     return roundAndPackFloat64( roundData, 0, zExp, zSig );
2382*4882a593Smuzhiyun 
2383*4882a593Smuzhiyun }
2384*4882a593Smuzhiyun 
2385*4882a593Smuzhiyun /*
2386*4882a593Smuzhiyun -------------------------------------------------------------------------------
2387*4882a593Smuzhiyun Returns 1 if the double-precision floating-point value `a' is equal to the
2388*4882a593Smuzhiyun corresponding value `b', and 0 otherwise.  The comparison is performed
2389*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
2390*4882a593Smuzhiyun -------------------------------------------------------------------------------
2391*4882a593Smuzhiyun */
float64_eq(float64 a,float64 b)2392*4882a593Smuzhiyun flag float64_eq( float64 a, float64 b )
2393*4882a593Smuzhiyun {
2394*4882a593Smuzhiyun 
2395*4882a593Smuzhiyun     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
2396*4882a593Smuzhiyun          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
2397*4882a593Smuzhiyun        ) {
2398*4882a593Smuzhiyun         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
2399*4882a593Smuzhiyun             float_raise( float_flag_invalid );
2400*4882a593Smuzhiyun         }
2401*4882a593Smuzhiyun         return 0;
2402*4882a593Smuzhiyun     }
2403*4882a593Smuzhiyun     return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
2404*4882a593Smuzhiyun 
2405*4882a593Smuzhiyun }
2406*4882a593Smuzhiyun 
2407*4882a593Smuzhiyun /*
2408*4882a593Smuzhiyun -------------------------------------------------------------------------------
2409*4882a593Smuzhiyun Returns 1 if the double-precision floating-point value `a' is less than or
2410*4882a593Smuzhiyun equal to the corresponding value `b', and 0 otherwise.  The comparison is
2411*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
2412*4882a593Smuzhiyun Arithmetic.
2413*4882a593Smuzhiyun -------------------------------------------------------------------------------
2414*4882a593Smuzhiyun */
float64_le(float64 a,float64 b)2415*4882a593Smuzhiyun flag float64_le( float64 a, float64 b )
2416*4882a593Smuzhiyun {
2417*4882a593Smuzhiyun     flag aSign, bSign;
2418*4882a593Smuzhiyun 
2419*4882a593Smuzhiyun     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
2420*4882a593Smuzhiyun          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
2421*4882a593Smuzhiyun        ) {
2422*4882a593Smuzhiyun         float_raise( float_flag_invalid );
2423*4882a593Smuzhiyun         return 0;
2424*4882a593Smuzhiyun     }
2425*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2426*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2427*4882a593Smuzhiyun     if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
2428*4882a593Smuzhiyun     return ( a == b ) || ( aSign ^ ( a < b ) );
2429*4882a593Smuzhiyun 
2430*4882a593Smuzhiyun }
2431*4882a593Smuzhiyun 
2432*4882a593Smuzhiyun /*
2433*4882a593Smuzhiyun -------------------------------------------------------------------------------
2434*4882a593Smuzhiyun Returns 1 if the double-precision floating-point value `a' is less than
2435*4882a593Smuzhiyun the corresponding value `b', and 0 otherwise.  The comparison is performed
2436*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
2437*4882a593Smuzhiyun -------------------------------------------------------------------------------
2438*4882a593Smuzhiyun */
float64_lt(float64 a,float64 b)2439*4882a593Smuzhiyun flag float64_lt( float64 a, float64 b )
2440*4882a593Smuzhiyun {
2441*4882a593Smuzhiyun     flag aSign, bSign;
2442*4882a593Smuzhiyun 
2443*4882a593Smuzhiyun     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
2444*4882a593Smuzhiyun          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
2445*4882a593Smuzhiyun        ) {
2446*4882a593Smuzhiyun         float_raise( float_flag_invalid );
2447*4882a593Smuzhiyun         return 0;
2448*4882a593Smuzhiyun     }
2449*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2450*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2451*4882a593Smuzhiyun     if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
2452*4882a593Smuzhiyun     return ( a != b ) && ( aSign ^ ( a < b ) );
2453*4882a593Smuzhiyun 
2454*4882a593Smuzhiyun }
2455*4882a593Smuzhiyun 
2456*4882a593Smuzhiyun /*
2457*4882a593Smuzhiyun -------------------------------------------------------------------------------
2458*4882a593Smuzhiyun Returns 1 if the double-precision floating-point value `a' is equal to the
2459*4882a593Smuzhiyun corresponding value `b', and 0 otherwise.  The invalid exception is raised
2460*4882a593Smuzhiyun if either operand is a NaN.  Otherwise, the comparison is performed
2461*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
2462*4882a593Smuzhiyun -------------------------------------------------------------------------------
2463*4882a593Smuzhiyun */
float64_eq_signaling(float64 a,float64 b)2464*4882a593Smuzhiyun flag float64_eq_signaling( float64 a, float64 b )
2465*4882a593Smuzhiyun {
2466*4882a593Smuzhiyun 
2467*4882a593Smuzhiyun     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
2468*4882a593Smuzhiyun          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
2469*4882a593Smuzhiyun        ) {
2470*4882a593Smuzhiyun         float_raise( float_flag_invalid );
2471*4882a593Smuzhiyun         return 0;
2472*4882a593Smuzhiyun     }
2473*4882a593Smuzhiyun     return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
2474*4882a593Smuzhiyun 
2475*4882a593Smuzhiyun }
2476*4882a593Smuzhiyun 
2477*4882a593Smuzhiyun /*
2478*4882a593Smuzhiyun -------------------------------------------------------------------------------
2479*4882a593Smuzhiyun Returns 1 if the double-precision floating-point value `a' is less than or
2480*4882a593Smuzhiyun equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
2481*4882a593Smuzhiyun cause an exception.  Otherwise, the comparison is performed according to the
2482*4882a593Smuzhiyun IEC/IEEE Standard for Binary Floating-point Arithmetic.
2483*4882a593Smuzhiyun -------------------------------------------------------------------------------
2484*4882a593Smuzhiyun */
float64_le_quiet(float64 a,float64 b)2485*4882a593Smuzhiyun flag float64_le_quiet( float64 a, float64 b )
2486*4882a593Smuzhiyun {
2487*4882a593Smuzhiyun     flag aSign, bSign;
2488*4882a593Smuzhiyun     //int16 aExp, bExp;
2489*4882a593Smuzhiyun 
2490*4882a593Smuzhiyun     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
2491*4882a593Smuzhiyun          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
2492*4882a593Smuzhiyun        ) {
2493*4882a593Smuzhiyun         /* Do nothing, even if NaN as we're quiet */
2494*4882a593Smuzhiyun         return 0;
2495*4882a593Smuzhiyun     }
2496*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2497*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2498*4882a593Smuzhiyun     if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
2499*4882a593Smuzhiyun     return ( a == b ) || ( aSign ^ ( a < b ) );
2500*4882a593Smuzhiyun 
2501*4882a593Smuzhiyun }
2502*4882a593Smuzhiyun 
2503*4882a593Smuzhiyun /*
2504*4882a593Smuzhiyun -------------------------------------------------------------------------------
2505*4882a593Smuzhiyun Returns 1 if the double-precision floating-point value `a' is less than
2506*4882a593Smuzhiyun the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
2507*4882a593Smuzhiyun exception.  Otherwise, the comparison is performed according to the IEC/IEEE
2508*4882a593Smuzhiyun Standard for Binary Floating-point Arithmetic.
2509*4882a593Smuzhiyun -------------------------------------------------------------------------------
2510*4882a593Smuzhiyun */
float64_lt_quiet(float64 a,float64 b)2511*4882a593Smuzhiyun flag float64_lt_quiet( float64 a, float64 b )
2512*4882a593Smuzhiyun {
2513*4882a593Smuzhiyun     flag aSign, bSign;
2514*4882a593Smuzhiyun 
2515*4882a593Smuzhiyun     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
2516*4882a593Smuzhiyun          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
2517*4882a593Smuzhiyun        ) {
2518*4882a593Smuzhiyun         /* Do nothing, even if NaN as we're quiet */
2519*4882a593Smuzhiyun         return 0;
2520*4882a593Smuzhiyun     }
2521*4882a593Smuzhiyun     aSign = extractFloat64Sign( a );
2522*4882a593Smuzhiyun     bSign = extractFloat64Sign( b );
2523*4882a593Smuzhiyun     if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
2524*4882a593Smuzhiyun     return ( a != b ) && ( aSign ^ ( a < b ) );
2525*4882a593Smuzhiyun 
2526*4882a593Smuzhiyun }
2527*4882a593Smuzhiyun 
2528*4882a593Smuzhiyun #ifdef FLOATX80
2529*4882a593Smuzhiyun 
2530*4882a593Smuzhiyun /*
2531*4882a593Smuzhiyun -------------------------------------------------------------------------------
2532*4882a593Smuzhiyun Returns the result of converting the extended double-precision floating-
2533*4882a593Smuzhiyun point value `a' to the 32-bit two's complement integer format.  The
2534*4882a593Smuzhiyun conversion is performed according to the IEC/IEEE Standard for Binary
2535*4882a593Smuzhiyun Floating-point Arithmetic---which means in particular that the conversion
2536*4882a593Smuzhiyun is rounded according to the current rounding mode.  If `a' is a NaN, the
2537*4882a593Smuzhiyun largest positive integer is returned.  Otherwise, if the conversion
2538*4882a593Smuzhiyun overflows, the largest integer with the same sign as `a' is returned.
2539*4882a593Smuzhiyun -------------------------------------------------------------------------------
2540*4882a593Smuzhiyun */
floatx80_to_int32(struct roundingData * roundData,floatx80 a)2541*4882a593Smuzhiyun int32 floatx80_to_int32( struct roundingData *roundData, floatx80 a )
2542*4882a593Smuzhiyun {
2543*4882a593Smuzhiyun     flag aSign;
2544*4882a593Smuzhiyun     int32 aExp, shiftCount;
2545*4882a593Smuzhiyun     bits64 aSig;
2546*4882a593Smuzhiyun 
2547*4882a593Smuzhiyun     aSig = extractFloatx80Frac( a );
2548*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2549*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
2550*4882a593Smuzhiyun     if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
2551*4882a593Smuzhiyun     shiftCount = 0x4037 - aExp;
2552*4882a593Smuzhiyun     if ( shiftCount <= 0 ) shiftCount = 1;
2553*4882a593Smuzhiyun     shift64RightJamming( aSig, shiftCount, &aSig );
2554*4882a593Smuzhiyun     return roundAndPackInt32( roundData, aSign, aSig );
2555*4882a593Smuzhiyun 
2556*4882a593Smuzhiyun }
2557*4882a593Smuzhiyun 
2558*4882a593Smuzhiyun /*
2559*4882a593Smuzhiyun -------------------------------------------------------------------------------
2560*4882a593Smuzhiyun Returns the result of converting the extended double-precision floating-
2561*4882a593Smuzhiyun point value `a' to the 32-bit two's complement integer format.  The
2562*4882a593Smuzhiyun conversion is performed according to the IEC/IEEE Standard for Binary
2563*4882a593Smuzhiyun Floating-point Arithmetic, except that the conversion is always rounded
2564*4882a593Smuzhiyun toward zero.  If `a' is a NaN, the largest positive integer is returned.
2565*4882a593Smuzhiyun Otherwise, if the conversion overflows, the largest integer with the same
2566*4882a593Smuzhiyun sign as `a' is returned.
2567*4882a593Smuzhiyun -------------------------------------------------------------------------------
2568*4882a593Smuzhiyun */
floatx80_to_int32_round_to_zero(floatx80 a)2569*4882a593Smuzhiyun int32 floatx80_to_int32_round_to_zero( floatx80 a )
2570*4882a593Smuzhiyun {
2571*4882a593Smuzhiyun     flag aSign;
2572*4882a593Smuzhiyun     int32 aExp, shiftCount;
2573*4882a593Smuzhiyun     bits64 aSig, savedASig;
2574*4882a593Smuzhiyun     int32 z;
2575*4882a593Smuzhiyun 
2576*4882a593Smuzhiyun     aSig = extractFloatx80Frac( a );
2577*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2578*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
2579*4882a593Smuzhiyun     shiftCount = 0x403E - aExp;
2580*4882a593Smuzhiyun     if ( shiftCount < 32 ) {
2581*4882a593Smuzhiyun         if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
2582*4882a593Smuzhiyun         goto invalid;
2583*4882a593Smuzhiyun     }
2584*4882a593Smuzhiyun     else if ( 63 < shiftCount ) {
2585*4882a593Smuzhiyun         if ( aExp || aSig ) float_raise( float_flag_inexact );
2586*4882a593Smuzhiyun         return 0;
2587*4882a593Smuzhiyun     }
2588*4882a593Smuzhiyun     savedASig = aSig;
2589*4882a593Smuzhiyun     aSig >>= shiftCount;
2590*4882a593Smuzhiyun     z = aSig;
2591*4882a593Smuzhiyun     if ( aSign ) z = - z;
2592*4882a593Smuzhiyun     if ( ( z < 0 ) ^ aSign ) {
2593*4882a593Smuzhiyun  invalid:
2594*4882a593Smuzhiyun         float_raise( float_flag_invalid );
2595*4882a593Smuzhiyun         return aSign ? 0x80000000 : 0x7FFFFFFF;
2596*4882a593Smuzhiyun     }
2597*4882a593Smuzhiyun     if ( ( aSig<<shiftCount ) != savedASig ) {
2598*4882a593Smuzhiyun         float_raise( float_flag_inexact );
2599*4882a593Smuzhiyun     }
2600*4882a593Smuzhiyun     return z;
2601*4882a593Smuzhiyun 
2602*4882a593Smuzhiyun }
2603*4882a593Smuzhiyun 
2604*4882a593Smuzhiyun /*
2605*4882a593Smuzhiyun -------------------------------------------------------------------------------
2606*4882a593Smuzhiyun Returns the result of converting the extended double-precision floating-
2607*4882a593Smuzhiyun point value `a' to the single-precision floating-point format.  The
2608*4882a593Smuzhiyun conversion is performed according to the IEC/IEEE Standard for Binary
2609*4882a593Smuzhiyun Floating-point Arithmetic.
2610*4882a593Smuzhiyun -------------------------------------------------------------------------------
2611*4882a593Smuzhiyun */
floatx80_to_float32(struct roundingData * roundData,floatx80 a)2612*4882a593Smuzhiyun float32 floatx80_to_float32( struct roundingData *roundData, floatx80 a )
2613*4882a593Smuzhiyun {
2614*4882a593Smuzhiyun     flag aSign;
2615*4882a593Smuzhiyun     int32 aExp;
2616*4882a593Smuzhiyun     bits64 aSig;
2617*4882a593Smuzhiyun 
2618*4882a593Smuzhiyun     aSig = extractFloatx80Frac( a );
2619*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2620*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
2621*4882a593Smuzhiyun     if ( aExp == 0x7FFF ) {
2622*4882a593Smuzhiyun         if ( (bits64) ( aSig<<1 ) ) {
2623*4882a593Smuzhiyun             return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
2624*4882a593Smuzhiyun         }
2625*4882a593Smuzhiyun         return packFloat32( aSign, 0xFF, 0 );
2626*4882a593Smuzhiyun     }
2627*4882a593Smuzhiyun     shift64RightJamming( aSig, 33, &aSig );
2628*4882a593Smuzhiyun     if ( aExp || aSig ) aExp -= 0x3F81;
2629*4882a593Smuzhiyun     return roundAndPackFloat32( roundData, aSign, aExp, aSig );
2630*4882a593Smuzhiyun 
2631*4882a593Smuzhiyun }
2632*4882a593Smuzhiyun 
2633*4882a593Smuzhiyun /*
2634*4882a593Smuzhiyun -------------------------------------------------------------------------------
2635*4882a593Smuzhiyun Returns the result of converting the extended double-precision floating-
2636*4882a593Smuzhiyun point value `a' to the double-precision floating-point format.  The
2637*4882a593Smuzhiyun conversion is performed according to the IEC/IEEE Standard for Binary
2638*4882a593Smuzhiyun Floating-point Arithmetic.
2639*4882a593Smuzhiyun -------------------------------------------------------------------------------
2640*4882a593Smuzhiyun */
floatx80_to_float64(struct roundingData * roundData,floatx80 a)2641*4882a593Smuzhiyun float64 floatx80_to_float64( struct roundingData *roundData, floatx80 a )
2642*4882a593Smuzhiyun {
2643*4882a593Smuzhiyun     flag aSign;
2644*4882a593Smuzhiyun     int32 aExp;
2645*4882a593Smuzhiyun     bits64 aSig, zSig;
2646*4882a593Smuzhiyun 
2647*4882a593Smuzhiyun     aSig = extractFloatx80Frac( a );
2648*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2649*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
2650*4882a593Smuzhiyun     if ( aExp == 0x7FFF ) {
2651*4882a593Smuzhiyun         if ( (bits64) ( aSig<<1 ) ) {
2652*4882a593Smuzhiyun             return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
2653*4882a593Smuzhiyun         }
2654*4882a593Smuzhiyun         return packFloat64( aSign, 0x7FF, 0 );
2655*4882a593Smuzhiyun     }
2656*4882a593Smuzhiyun     shift64RightJamming( aSig, 1, &zSig );
2657*4882a593Smuzhiyun     if ( aExp || aSig ) aExp -= 0x3C01;
2658*4882a593Smuzhiyun     return roundAndPackFloat64( roundData, aSign, aExp, zSig );
2659*4882a593Smuzhiyun 
2660*4882a593Smuzhiyun }
2661*4882a593Smuzhiyun 
2662*4882a593Smuzhiyun /*
2663*4882a593Smuzhiyun -------------------------------------------------------------------------------
2664*4882a593Smuzhiyun Rounds the extended double-precision floating-point value `a' to an integer,
2665*4882a593Smuzhiyun and returns the result as an extended quadruple-precision floating-point
2666*4882a593Smuzhiyun value.  The operation is performed according to the IEC/IEEE Standard for
2667*4882a593Smuzhiyun Binary Floating-point Arithmetic.
2668*4882a593Smuzhiyun -------------------------------------------------------------------------------
2669*4882a593Smuzhiyun */
floatx80_round_to_int(struct roundingData * roundData,floatx80 a)2670*4882a593Smuzhiyun floatx80 floatx80_round_to_int( struct roundingData *roundData, floatx80 a )
2671*4882a593Smuzhiyun {
2672*4882a593Smuzhiyun     flag aSign;
2673*4882a593Smuzhiyun     int32 aExp;
2674*4882a593Smuzhiyun     bits64 lastBitMask, roundBitsMask;
2675*4882a593Smuzhiyun     int8 roundingMode;
2676*4882a593Smuzhiyun     floatx80 z;
2677*4882a593Smuzhiyun 
2678*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2679*4882a593Smuzhiyun     if ( 0x403E <= aExp ) {
2680*4882a593Smuzhiyun         if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
2681*4882a593Smuzhiyun             return propagateFloatx80NaN( a, a );
2682*4882a593Smuzhiyun         }
2683*4882a593Smuzhiyun         return a;
2684*4882a593Smuzhiyun     }
2685*4882a593Smuzhiyun     if ( aExp <= 0x3FFE ) {
2686*4882a593Smuzhiyun         if (    ( aExp == 0 )
2687*4882a593Smuzhiyun              && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
2688*4882a593Smuzhiyun             return a;
2689*4882a593Smuzhiyun         }
2690*4882a593Smuzhiyun         roundData->exception |= float_flag_inexact;
2691*4882a593Smuzhiyun         aSign = extractFloatx80Sign( a );
2692*4882a593Smuzhiyun         switch ( roundData->mode ) {
2693*4882a593Smuzhiyun          case float_round_nearest_even:
2694*4882a593Smuzhiyun             if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
2695*4882a593Smuzhiyun                ) {
2696*4882a593Smuzhiyun                 return
2697*4882a593Smuzhiyun                     packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
2698*4882a593Smuzhiyun             }
2699*4882a593Smuzhiyun             break;
2700*4882a593Smuzhiyun          case float_round_down:
2701*4882a593Smuzhiyun             return
2702*4882a593Smuzhiyun                   aSign ?
2703*4882a593Smuzhiyun                       packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
2704*4882a593Smuzhiyun                 : packFloatx80( 0, 0, 0 );
2705*4882a593Smuzhiyun          case float_round_up:
2706*4882a593Smuzhiyun             return
2707*4882a593Smuzhiyun                   aSign ? packFloatx80( 1, 0, 0 )
2708*4882a593Smuzhiyun                 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
2709*4882a593Smuzhiyun         }
2710*4882a593Smuzhiyun         return packFloatx80( aSign, 0, 0 );
2711*4882a593Smuzhiyun     }
2712*4882a593Smuzhiyun     lastBitMask = 1;
2713*4882a593Smuzhiyun     lastBitMask <<= 0x403E - aExp;
2714*4882a593Smuzhiyun     roundBitsMask = lastBitMask - 1;
2715*4882a593Smuzhiyun     z = a;
2716*4882a593Smuzhiyun     roundingMode = roundData->mode;
2717*4882a593Smuzhiyun     if ( roundingMode == float_round_nearest_even ) {
2718*4882a593Smuzhiyun         z.low += lastBitMask>>1;
2719*4882a593Smuzhiyun         if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
2720*4882a593Smuzhiyun     }
2721*4882a593Smuzhiyun     else if ( roundingMode != float_round_to_zero ) {
2722*4882a593Smuzhiyun         if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
2723*4882a593Smuzhiyun             z.low += roundBitsMask;
2724*4882a593Smuzhiyun         }
2725*4882a593Smuzhiyun     }
2726*4882a593Smuzhiyun     z.low &= ~ roundBitsMask;
2727*4882a593Smuzhiyun     if ( z.low == 0 ) {
2728*4882a593Smuzhiyun         ++z.high;
2729*4882a593Smuzhiyun         z.low = LIT64( 0x8000000000000000 );
2730*4882a593Smuzhiyun     }
2731*4882a593Smuzhiyun     if ( z.low != a.low ) roundData->exception |= float_flag_inexact;
2732*4882a593Smuzhiyun     return z;
2733*4882a593Smuzhiyun 
2734*4882a593Smuzhiyun }
2735*4882a593Smuzhiyun 
2736*4882a593Smuzhiyun /*
2737*4882a593Smuzhiyun -------------------------------------------------------------------------------
2738*4882a593Smuzhiyun Returns the result of adding the absolute values of the extended double-
2739*4882a593Smuzhiyun precision floating-point values `a' and `b'.  If `zSign' is true, the sum is
2740*4882a593Smuzhiyun negated before being returned.  `zSign' is ignored if the result is a NaN.
2741*4882a593Smuzhiyun The addition is performed according to the IEC/IEEE Standard for Binary
2742*4882a593Smuzhiyun Floating-point Arithmetic.
2743*4882a593Smuzhiyun -------------------------------------------------------------------------------
2744*4882a593Smuzhiyun */
addFloatx80Sigs(struct roundingData * roundData,floatx80 a,floatx80 b,flag zSign)2745*4882a593Smuzhiyun static floatx80 addFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
2746*4882a593Smuzhiyun {
2747*4882a593Smuzhiyun     int32 aExp, bExp, zExp;
2748*4882a593Smuzhiyun     bits64 aSig, bSig, zSig0, zSig1;
2749*4882a593Smuzhiyun     int32 expDiff;
2750*4882a593Smuzhiyun 
2751*4882a593Smuzhiyun     aSig = extractFloatx80Frac( a );
2752*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2753*4882a593Smuzhiyun     bSig = extractFloatx80Frac( b );
2754*4882a593Smuzhiyun     bExp = extractFloatx80Exp( b );
2755*4882a593Smuzhiyun     expDiff = aExp - bExp;
2756*4882a593Smuzhiyun     if ( 0 < expDiff ) {
2757*4882a593Smuzhiyun         if ( aExp == 0x7FFF ) {
2758*4882a593Smuzhiyun             if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
2759*4882a593Smuzhiyun             return a;
2760*4882a593Smuzhiyun         }
2761*4882a593Smuzhiyun         if ( bExp == 0 ) --expDiff;
2762*4882a593Smuzhiyun         shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
2763*4882a593Smuzhiyun         zExp = aExp;
2764*4882a593Smuzhiyun     }
2765*4882a593Smuzhiyun     else if ( expDiff < 0 ) {
2766*4882a593Smuzhiyun         if ( bExp == 0x7FFF ) {
2767*4882a593Smuzhiyun             if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
2768*4882a593Smuzhiyun             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
2769*4882a593Smuzhiyun         }
2770*4882a593Smuzhiyun         if ( aExp == 0 ) ++expDiff;
2771*4882a593Smuzhiyun         shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
2772*4882a593Smuzhiyun         zExp = bExp;
2773*4882a593Smuzhiyun     }
2774*4882a593Smuzhiyun     else {
2775*4882a593Smuzhiyun         if ( aExp == 0x7FFF ) {
2776*4882a593Smuzhiyun             if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
2777*4882a593Smuzhiyun                 return propagateFloatx80NaN( a, b );
2778*4882a593Smuzhiyun             }
2779*4882a593Smuzhiyun             return a;
2780*4882a593Smuzhiyun         }
2781*4882a593Smuzhiyun         zSig1 = 0;
2782*4882a593Smuzhiyun         zSig0 = aSig + bSig;
2783*4882a593Smuzhiyun         if ( aExp == 0 ) {
2784*4882a593Smuzhiyun             normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
2785*4882a593Smuzhiyun             goto roundAndPack;
2786*4882a593Smuzhiyun         }
2787*4882a593Smuzhiyun         zExp = aExp;
2788*4882a593Smuzhiyun         goto shiftRight1;
2789*4882a593Smuzhiyun     }
2790*4882a593Smuzhiyun 
2791*4882a593Smuzhiyun     zSig0 = aSig + bSig;
2792*4882a593Smuzhiyun 
2793*4882a593Smuzhiyun     if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
2794*4882a593Smuzhiyun  shiftRight1:
2795*4882a593Smuzhiyun     shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
2796*4882a593Smuzhiyun     zSig0 |= LIT64( 0x8000000000000000 );
2797*4882a593Smuzhiyun     ++zExp;
2798*4882a593Smuzhiyun  roundAndPack:
2799*4882a593Smuzhiyun     return
2800*4882a593Smuzhiyun         roundAndPackFloatx80(
2801*4882a593Smuzhiyun             roundData, zSign, zExp, zSig0, zSig1 );
2802*4882a593Smuzhiyun 
2803*4882a593Smuzhiyun }
2804*4882a593Smuzhiyun 
2805*4882a593Smuzhiyun /*
2806*4882a593Smuzhiyun -------------------------------------------------------------------------------
2807*4882a593Smuzhiyun Returns the result of subtracting the absolute values of the extended
2808*4882a593Smuzhiyun double-precision floating-point values `a' and `b'.  If `zSign' is true,
2809*4882a593Smuzhiyun the difference is negated before being returned.  `zSign' is ignored if the
2810*4882a593Smuzhiyun result is a NaN.  The subtraction is performed according to the IEC/IEEE
2811*4882a593Smuzhiyun Standard for Binary Floating-point Arithmetic.
2812*4882a593Smuzhiyun -------------------------------------------------------------------------------
2813*4882a593Smuzhiyun */
subFloatx80Sigs(struct roundingData * roundData,floatx80 a,floatx80 b,flag zSign)2814*4882a593Smuzhiyun static floatx80 subFloatx80Sigs( struct roundingData *roundData, floatx80 a, floatx80 b, flag zSign )
2815*4882a593Smuzhiyun {
2816*4882a593Smuzhiyun     int32 aExp, bExp, zExp;
2817*4882a593Smuzhiyun     bits64 aSig, bSig, zSig0, zSig1;
2818*4882a593Smuzhiyun     int32 expDiff;
2819*4882a593Smuzhiyun     floatx80 z;
2820*4882a593Smuzhiyun 
2821*4882a593Smuzhiyun     aSig = extractFloatx80Frac( a );
2822*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2823*4882a593Smuzhiyun     bSig = extractFloatx80Frac( b );
2824*4882a593Smuzhiyun     bExp = extractFloatx80Exp( b );
2825*4882a593Smuzhiyun     expDiff = aExp - bExp;
2826*4882a593Smuzhiyun     if ( 0 < expDiff ) goto aExpBigger;
2827*4882a593Smuzhiyun     if ( expDiff < 0 ) goto bExpBigger;
2828*4882a593Smuzhiyun     if ( aExp == 0x7FFF ) {
2829*4882a593Smuzhiyun         if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
2830*4882a593Smuzhiyun             return propagateFloatx80NaN( a, b );
2831*4882a593Smuzhiyun         }
2832*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
2833*4882a593Smuzhiyun         z.low = floatx80_default_nan_low;
2834*4882a593Smuzhiyun         z.high = floatx80_default_nan_high;
2835*4882a593Smuzhiyun         z.__padding = 0;
2836*4882a593Smuzhiyun         return z;
2837*4882a593Smuzhiyun     }
2838*4882a593Smuzhiyun     if ( aExp == 0 ) {
2839*4882a593Smuzhiyun         aExp = 1;
2840*4882a593Smuzhiyun         bExp = 1;
2841*4882a593Smuzhiyun     }
2842*4882a593Smuzhiyun     zSig1 = 0;
2843*4882a593Smuzhiyun     if ( bSig < aSig ) goto aBigger;
2844*4882a593Smuzhiyun     if ( aSig < bSig ) goto bBigger;
2845*4882a593Smuzhiyun     return packFloatx80( roundData->mode == float_round_down, 0, 0 );
2846*4882a593Smuzhiyun  bExpBigger:
2847*4882a593Smuzhiyun     if ( bExp == 0x7FFF ) {
2848*4882a593Smuzhiyun         if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
2849*4882a593Smuzhiyun         return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
2850*4882a593Smuzhiyun     }
2851*4882a593Smuzhiyun     if ( aExp == 0 ) ++expDiff;
2852*4882a593Smuzhiyun     shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
2853*4882a593Smuzhiyun  bBigger:
2854*4882a593Smuzhiyun     sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
2855*4882a593Smuzhiyun     zExp = bExp;
2856*4882a593Smuzhiyun     zSign ^= 1;
2857*4882a593Smuzhiyun     goto normalizeRoundAndPack;
2858*4882a593Smuzhiyun  aExpBigger:
2859*4882a593Smuzhiyun     if ( aExp == 0x7FFF ) {
2860*4882a593Smuzhiyun         if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
2861*4882a593Smuzhiyun         return a;
2862*4882a593Smuzhiyun     }
2863*4882a593Smuzhiyun     if ( bExp == 0 ) --expDiff;
2864*4882a593Smuzhiyun     shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
2865*4882a593Smuzhiyun  aBigger:
2866*4882a593Smuzhiyun     sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
2867*4882a593Smuzhiyun     zExp = aExp;
2868*4882a593Smuzhiyun  normalizeRoundAndPack:
2869*4882a593Smuzhiyun     return
2870*4882a593Smuzhiyun         normalizeRoundAndPackFloatx80(
2871*4882a593Smuzhiyun             roundData, zSign, zExp, zSig0, zSig1 );
2872*4882a593Smuzhiyun 
2873*4882a593Smuzhiyun }
2874*4882a593Smuzhiyun 
2875*4882a593Smuzhiyun /*
2876*4882a593Smuzhiyun -------------------------------------------------------------------------------
2877*4882a593Smuzhiyun Returns the result of adding the extended double-precision floating-point
2878*4882a593Smuzhiyun values `a' and `b'.  The operation is performed according to the IEC/IEEE
2879*4882a593Smuzhiyun Standard for Binary Floating-point Arithmetic.
2880*4882a593Smuzhiyun -------------------------------------------------------------------------------
2881*4882a593Smuzhiyun */
floatx80_add(struct roundingData * roundData,floatx80 a,floatx80 b)2882*4882a593Smuzhiyun floatx80 floatx80_add( struct roundingData *roundData, floatx80 a, floatx80 b )
2883*4882a593Smuzhiyun {
2884*4882a593Smuzhiyun     flag aSign, bSign;
2885*4882a593Smuzhiyun 
2886*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
2887*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
2888*4882a593Smuzhiyun     if ( aSign == bSign ) {
2889*4882a593Smuzhiyun         return addFloatx80Sigs( roundData, a, b, aSign );
2890*4882a593Smuzhiyun     }
2891*4882a593Smuzhiyun     else {
2892*4882a593Smuzhiyun         return subFloatx80Sigs( roundData, a, b, aSign );
2893*4882a593Smuzhiyun     }
2894*4882a593Smuzhiyun 
2895*4882a593Smuzhiyun }
2896*4882a593Smuzhiyun 
2897*4882a593Smuzhiyun /*
2898*4882a593Smuzhiyun -------------------------------------------------------------------------------
2899*4882a593Smuzhiyun Returns the result of subtracting the extended double-precision floating-
2900*4882a593Smuzhiyun point values `a' and `b'.  The operation is performed according to the
2901*4882a593Smuzhiyun IEC/IEEE Standard for Binary Floating-point Arithmetic.
2902*4882a593Smuzhiyun -------------------------------------------------------------------------------
2903*4882a593Smuzhiyun */
floatx80_sub(struct roundingData * roundData,floatx80 a,floatx80 b)2904*4882a593Smuzhiyun floatx80 floatx80_sub( struct roundingData *roundData, floatx80 a, floatx80 b )
2905*4882a593Smuzhiyun {
2906*4882a593Smuzhiyun     flag aSign, bSign;
2907*4882a593Smuzhiyun 
2908*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
2909*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
2910*4882a593Smuzhiyun     if ( aSign == bSign ) {
2911*4882a593Smuzhiyun         return subFloatx80Sigs( roundData, a, b, aSign );
2912*4882a593Smuzhiyun     }
2913*4882a593Smuzhiyun     else {
2914*4882a593Smuzhiyun         return addFloatx80Sigs( roundData, a, b, aSign );
2915*4882a593Smuzhiyun     }
2916*4882a593Smuzhiyun 
2917*4882a593Smuzhiyun }
2918*4882a593Smuzhiyun 
2919*4882a593Smuzhiyun /*
2920*4882a593Smuzhiyun -------------------------------------------------------------------------------
2921*4882a593Smuzhiyun Returns the result of multiplying the extended double-precision floating-
2922*4882a593Smuzhiyun point values `a' and `b'.  The operation is performed according to the
2923*4882a593Smuzhiyun IEC/IEEE Standard for Binary Floating-point Arithmetic.
2924*4882a593Smuzhiyun -------------------------------------------------------------------------------
2925*4882a593Smuzhiyun */
floatx80_mul(struct roundingData * roundData,floatx80 a,floatx80 b)2926*4882a593Smuzhiyun floatx80 floatx80_mul( struct roundingData *roundData, floatx80 a, floatx80 b )
2927*4882a593Smuzhiyun {
2928*4882a593Smuzhiyun     flag aSign, bSign, zSign;
2929*4882a593Smuzhiyun     int32 aExp, bExp, zExp;
2930*4882a593Smuzhiyun     bits64 aSig, bSig, zSig0, zSig1;
2931*4882a593Smuzhiyun     floatx80 z;
2932*4882a593Smuzhiyun 
2933*4882a593Smuzhiyun     aSig = extractFloatx80Frac( a );
2934*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2935*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
2936*4882a593Smuzhiyun     bSig = extractFloatx80Frac( b );
2937*4882a593Smuzhiyun     bExp = extractFloatx80Exp( b );
2938*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
2939*4882a593Smuzhiyun     zSign = aSign ^ bSign;
2940*4882a593Smuzhiyun     if ( aExp == 0x7FFF ) {
2941*4882a593Smuzhiyun         if (    (bits64) ( aSig<<1 )
2942*4882a593Smuzhiyun              || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
2943*4882a593Smuzhiyun             return propagateFloatx80NaN( a, b );
2944*4882a593Smuzhiyun         }
2945*4882a593Smuzhiyun         if ( ( bExp | bSig ) == 0 ) goto invalid;
2946*4882a593Smuzhiyun         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
2947*4882a593Smuzhiyun     }
2948*4882a593Smuzhiyun     if ( bExp == 0x7FFF ) {
2949*4882a593Smuzhiyun         if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
2950*4882a593Smuzhiyun         if ( ( aExp | aSig ) == 0 ) {
2951*4882a593Smuzhiyun  invalid:
2952*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
2953*4882a593Smuzhiyun             z.low = floatx80_default_nan_low;
2954*4882a593Smuzhiyun             z.high = floatx80_default_nan_high;
2955*4882a593Smuzhiyun             z.__padding = 0;
2956*4882a593Smuzhiyun             return z;
2957*4882a593Smuzhiyun         }
2958*4882a593Smuzhiyun         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
2959*4882a593Smuzhiyun     }
2960*4882a593Smuzhiyun     if ( aExp == 0 ) {
2961*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
2962*4882a593Smuzhiyun         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
2963*4882a593Smuzhiyun     }
2964*4882a593Smuzhiyun     if ( bExp == 0 ) {
2965*4882a593Smuzhiyun         if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
2966*4882a593Smuzhiyun         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
2967*4882a593Smuzhiyun     }
2968*4882a593Smuzhiyun     zExp = aExp + bExp - 0x3FFE;
2969*4882a593Smuzhiyun     mul64To128( aSig, bSig, &zSig0, &zSig1 );
2970*4882a593Smuzhiyun     if ( 0 < (sbits64) zSig0 ) {
2971*4882a593Smuzhiyun         shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
2972*4882a593Smuzhiyun         --zExp;
2973*4882a593Smuzhiyun     }
2974*4882a593Smuzhiyun     return
2975*4882a593Smuzhiyun         roundAndPackFloatx80(
2976*4882a593Smuzhiyun             roundData, zSign, zExp, zSig0, zSig1 );
2977*4882a593Smuzhiyun 
2978*4882a593Smuzhiyun }
2979*4882a593Smuzhiyun 
2980*4882a593Smuzhiyun /*
2981*4882a593Smuzhiyun -------------------------------------------------------------------------------
2982*4882a593Smuzhiyun Returns the result of dividing the extended double-precision floating-point
2983*4882a593Smuzhiyun value `a' by the corresponding value `b'.  The operation is performed
2984*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
2985*4882a593Smuzhiyun -------------------------------------------------------------------------------
2986*4882a593Smuzhiyun */
floatx80_div(struct roundingData * roundData,floatx80 a,floatx80 b)2987*4882a593Smuzhiyun floatx80 floatx80_div( struct roundingData *roundData, floatx80 a, floatx80 b )
2988*4882a593Smuzhiyun {
2989*4882a593Smuzhiyun     flag aSign, bSign, zSign;
2990*4882a593Smuzhiyun     int32 aExp, bExp, zExp;
2991*4882a593Smuzhiyun     bits64 aSig, bSig, zSig0, zSig1;
2992*4882a593Smuzhiyun     bits64 rem0, rem1, rem2, term0, term1, term2;
2993*4882a593Smuzhiyun     floatx80 z;
2994*4882a593Smuzhiyun 
2995*4882a593Smuzhiyun     aSig = extractFloatx80Frac( a );
2996*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
2997*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
2998*4882a593Smuzhiyun     bSig = extractFloatx80Frac( b );
2999*4882a593Smuzhiyun     bExp = extractFloatx80Exp( b );
3000*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
3001*4882a593Smuzhiyun     zSign = aSign ^ bSign;
3002*4882a593Smuzhiyun     if ( aExp == 0x7FFF ) {
3003*4882a593Smuzhiyun         if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
3004*4882a593Smuzhiyun         if ( bExp == 0x7FFF ) {
3005*4882a593Smuzhiyun             if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
3006*4882a593Smuzhiyun             goto invalid;
3007*4882a593Smuzhiyun         }
3008*4882a593Smuzhiyun         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
3009*4882a593Smuzhiyun     }
3010*4882a593Smuzhiyun     if ( bExp == 0x7FFF ) {
3011*4882a593Smuzhiyun         if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
3012*4882a593Smuzhiyun         return packFloatx80( zSign, 0, 0 );
3013*4882a593Smuzhiyun     }
3014*4882a593Smuzhiyun     if ( bExp == 0 ) {
3015*4882a593Smuzhiyun         if ( bSig == 0 ) {
3016*4882a593Smuzhiyun             if ( ( aExp | aSig ) == 0 ) {
3017*4882a593Smuzhiyun  invalid:
3018*4882a593Smuzhiyun                 roundData->exception |= float_flag_invalid;
3019*4882a593Smuzhiyun                 z.low = floatx80_default_nan_low;
3020*4882a593Smuzhiyun                 z.high = floatx80_default_nan_high;
3021*4882a593Smuzhiyun                 z.__padding = 0;
3022*4882a593Smuzhiyun                 return z;
3023*4882a593Smuzhiyun             }
3024*4882a593Smuzhiyun             roundData->exception |= float_flag_divbyzero;
3025*4882a593Smuzhiyun             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
3026*4882a593Smuzhiyun         }
3027*4882a593Smuzhiyun         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
3028*4882a593Smuzhiyun     }
3029*4882a593Smuzhiyun     if ( aExp == 0 ) {
3030*4882a593Smuzhiyun         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
3031*4882a593Smuzhiyun         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
3032*4882a593Smuzhiyun     }
3033*4882a593Smuzhiyun     zExp = aExp - bExp + 0x3FFE;
3034*4882a593Smuzhiyun     rem1 = 0;
3035*4882a593Smuzhiyun     if ( bSig <= aSig ) {
3036*4882a593Smuzhiyun         shift128Right( aSig, 0, 1, &aSig, &rem1 );
3037*4882a593Smuzhiyun         ++zExp;
3038*4882a593Smuzhiyun     }
3039*4882a593Smuzhiyun     zSig0 = estimateDiv128To64( aSig, rem1, bSig );
3040*4882a593Smuzhiyun     mul64To128( bSig, zSig0, &term0, &term1 );
3041*4882a593Smuzhiyun     sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
3042*4882a593Smuzhiyun     while ( (sbits64) rem0 < 0 ) {
3043*4882a593Smuzhiyun         --zSig0;
3044*4882a593Smuzhiyun         add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
3045*4882a593Smuzhiyun     }
3046*4882a593Smuzhiyun     zSig1 = estimateDiv128To64( rem1, 0, bSig );
3047*4882a593Smuzhiyun     if ( (bits64) ( zSig1<<1 ) <= 8 ) {
3048*4882a593Smuzhiyun         mul64To128( bSig, zSig1, &term1, &term2 );
3049*4882a593Smuzhiyun         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
3050*4882a593Smuzhiyun         while ( (sbits64) rem1 < 0 ) {
3051*4882a593Smuzhiyun             --zSig1;
3052*4882a593Smuzhiyun             add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
3053*4882a593Smuzhiyun         }
3054*4882a593Smuzhiyun         zSig1 |= ( ( rem1 | rem2 ) != 0 );
3055*4882a593Smuzhiyun     }
3056*4882a593Smuzhiyun     return
3057*4882a593Smuzhiyun         roundAndPackFloatx80(
3058*4882a593Smuzhiyun             roundData, zSign, zExp, zSig0, zSig1 );
3059*4882a593Smuzhiyun 
3060*4882a593Smuzhiyun }
3061*4882a593Smuzhiyun 
3062*4882a593Smuzhiyun /*
3063*4882a593Smuzhiyun -------------------------------------------------------------------------------
3064*4882a593Smuzhiyun Returns the remainder of the extended double-precision floating-point value
3065*4882a593Smuzhiyun `a' with respect to the corresponding value `b'.  The operation is performed
3066*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
3067*4882a593Smuzhiyun -------------------------------------------------------------------------------
3068*4882a593Smuzhiyun */
floatx80_rem(struct roundingData * roundData,floatx80 a,floatx80 b)3069*4882a593Smuzhiyun floatx80 floatx80_rem( struct roundingData *roundData, floatx80 a, floatx80 b )
3070*4882a593Smuzhiyun {
3071*4882a593Smuzhiyun     flag aSign, bSign, zSign;
3072*4882a593Smuzhiyun     int32 aExp, bExp, expDiff;
3073*4882a593Smuzhiyun     bits64 aSig0, aSig1, bSig;
3074*4882a593Smuzhiyun     bits64 q, term0, term1, alternateASig0, alternateASig1;
3075*4882a593Smuzhiyun     floatx80 z;
3076*4882a593Smuzhiyun 
3077*4882a593Smuzhiyun     aSig0 = extractFloatx80Frac( a );
3078*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
3079*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
3080*4882a593Smuzhiyun     bSig = extractFloatx80Frac( b );
3081*4882a593Smuzhiyun     bExp = extractFloatx80Exp( b );
3082*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
3083*4882a593Smuzhiyun     if ( aExp == 0x7FFF ) {
3084*4882a593Smuzhiyun         if (    (bits64) ( aSig0<<1 )
3085*4882a593Smuzhiyun              || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
3086*4882a593Smuzhiyun             return propagateFloatx80NaN( a, b );
3087*4882a593Smuzhiyun         }
3088*4882a593Smuzhiyun         goto invalid;
3089*4882a593Smuzhiyun     }
3090*4882a593Smuzhiyun     if ( bExp == 0x7FFF ) {
3091*4882a593Smuzhiyun         if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
3092*4882a593Smuzhiyun         return a;
3093*4882a593Smuzhiyun     }
3094*4882a593Smuzhiyun     if ( bExp == 0 ) {
3095*4882a593Smuzhiyun         if ( bSig == 0 ) {
3096*4882a593Smuzhiyun  invalid:
3097*4882a593Smuzhiyun             roundData->exception |= float_flag_invalid;
3098*4882a593Smuzhiyun             z.low = floatx80_default_nan_low;
3099*4882a593Smuzhiyun             z.high = floatx80_default_nan_high;
3100*4882a593Smuzhiyun             z.__padding = 0;
3101*4882a593Smuzhiyun             return z;
3102*4882a593Smuzhiyun         }
3103*4882a593Smuzhiyun         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
3104*4882a593Smuzhiyun     }
3105*4882a593Smuzhiyun     if ( aExp == 0 ) {
3106*4882a593Smuzhiyun         if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
3107*4882a593Smuzhiyun         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
3108*4882a593Smuzhiyun     }
3109*4882a593Smuzhiyun     bSig |= LIT64( 0x8000000000000000 );
3110*4882a593Smuzhiyun     zSign = aSign;
3111*4882a593Smuzhiyun     expDiff = aExp - bExp;
3112*4882a593Smuzhiyun     aSig1 = 0;
3113*4882a593Smuzhiyun     if ( expDiff < 0 ) {
3114*4882a593Smuzhiyun         if ( expDiff < -1 ) return a;
3115*4882a593Smuzhiyun         shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
3116*4882a593Smuzhiyun         expDiff = 0;
3117*4882a593Smuzhiyun     }
3118*4882a593Smuzhiyun     q = ( bSig <= aSig0 );
3119*4882a593Smuzhiyun     if ( q ) aSig0 -= bSig;
3120*4882a593Smuzhiyun     expDiff -= 64;
3121*4882a593Smuzhiyun     while ( 0 < expDiff ) {
3122*4882a593Smuzhiyun         q = estimateDiv128To64( aSig0, aSig1, bSig );
3123*4882a593Smuzhiyun         q = ( 2 < q ) ? q - 2 : 0;
3124*4882a593Smuzhiyun         mul64To128( bSig, q, &term0, &term1 );
3125*4882a593Smuzhiyun         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
3126*4882a593Smuzhiyun         shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
3127*4882a593Smuzhiyun         expDiff -= 62;
3128*4882a593Smuzhiyun     }
3129*4882a593Smuzhiyun     expDiff += 64;
3130*4882a593Smuzhiyun     if ( 0 < expDiff ) {
3131*4882a593Smuzhiyun         q = estimateDiv128To64( aSig0, aSig1, bSig );
3132*4882a593Smuzhiyun         q = ( 2 < q ) ? q - 2 : 0;
3133*4882a593Smuzhiyun         q >>= 64 - expDiff;
3134*4882a593Smuzhiyun         mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
3135*4882a593Smuzhiyun         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
3136*4882a593Smuzhiyun         shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
3137*4882a593Smuzhiyun         while ( le128( term0, term1, aSig0, aSig1 ) ) {
3138*4882a593Smuzhiyun             ++q;
3139*4882a593Smuzhiyun             sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
3140*4882a593Smuzhiyun         }
3141*4882a593Smuzhiyun     }
3142*4882a593Smuzhiyun     else {
3143*4882a593Smuzhiyun         term1 = 0;
3144*4882a593Smuzhiyun         term0 = bSig;
3145*4882a593Smuzhiyun     }
3146*4882a593Smuzhiyun     sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
3147*4882a593Smuzhiyun     if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
3148*4882a593Smuzhiyun          || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
3149*4882a593Smuzhiyun               && ( q & 1 ) )
3150*4882a593Smuzhiyun        ) {
3151*4882a593Smuzhiyun         aSig0 = alternateASig0;
3152*4882a593Smuzhiyun         aSig1 = alternateASig1;
3153*4882a593Smuzhiyun         zSign = ! zSign;
3154*4882a593Smuzhiyun     }
3155*4882a593Smuzhiyun 
3156*4882a593Smuzhiyun     return
3157*4882a593Smuzhiyun         normalizeRoundAndPackFloatx80(
3158*4882a593Smuzhiyun             roundData, zSign, bExp + expDiff, aSig0, aSig1 );
3159*4882a593Smuzhiyun 
3160*4882a593Smuzhiyun }
3161*4882a593Smuzhiyun 
3162*4882a593Smuzhiyun /*
3163*4882a593Smuzhiyun -------------------------------------------------------------------------------
3164*4882a593Smuzhiyun Returns the square root of the extended double-precision floating-point
3165*4882a593Smuzhiyun value `a'.  The operation is performed according to the IEC/IEEE Standard
3166*4882a593Smuzhiyun for Binary Floating-point Arithmetic.
3167*4882a593Smuzhiyun -------------------------------------------------------------------------------
3168*4882a593Smuzhiyun */
floatx80_sqrt(struct roundingData * roundData,floatx80 a)3169*4882a593Smuzhiyun floatx80 floatx80_sqrt( struct roundingData *roundData, floatx80 a )
3170*4882a593Smuzhiyun {
3171*4882a593Smuzhiyun     flag aSign;
3172*4882a593Smuzhiyun     int32 aExp, zExp;
3173*4882a593Smuzhiyun     bits64 aSig0, aSig1, zSig0, zSig1;
3174*4882a593Smuzhiyun     bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
3175*4882a593Smuzhiyun     bits64 shiftedRem0, shiftedRem1;
3176*4882a593Smuzhiyun     floatx80 z;
3177*4882a593Smuzhiyun 
3178*4882a593Smuzhiyun     aSig0 = extractFloatx80Frac( a );
3179*4882a593Smuzhiyun     aExp = extractFloatx80Exp( a );
3180*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
3181*4882a593Smuzhiyun     if ( aExp == 0x7FFF ) {
3182*4882a593Smuzhiyun         if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
3183*4882a593Smuzhiyun         if ( ! aSign ) return a;
3184*4882a593Smuzhiyun         goto invalid;
3185*4882a593Smuzhiyun     }
3186*4882a593Smuzhiyun     if ( aSign ) {
3187*4882a593Smuzhiyun         if ( ( aExp | aSig0 ) == 0 ) return a;
3188*4882a593Smuzhiyun  invalid:
3189*4882a593Smuzhiyun         roundData->exception |= float_flag_invalid;
3190*4882a593Smuzhiyun         z.low = floatx80_default_nan_low;
3191*4882a593Smuzhiyun         z.high = floatx80_default_nan_high;
3192*4882a593Smuzhiyun         z.__padding = 0;
3193*4882a593Smuzhiyun         return z;
3194*4882a593Smuzhiyun     }
3195*4882a593Smuzhiyun     if ( aExp == 0 ) {
3196*4882a593Smuzhiyun         if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
3197*4882a593Smuzhiyun         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
3198*4882a593Smuzhiyun     }
3199*4882a593Smuzhiyun     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
3200*4882a593Smuzhiyun     zSig0 = estimateSqrt32( aExp, aSig0>>32 );
3201*4882a593Smuzhiyun     zSig0 <<= 31;
3202*4882a593Smuzhiyun     aSig1 = 0;
3203*4882a593Smuzhiyun     shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 );
3204*4882a593Smuzhiyun     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4;
3205*4882a593Smuzhiyun     if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF );
3206*4882a593Smuzhiyun     shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 );
3207*4882a593Smuzhiyun     mul64To128( zSig0, zSig0, &term0, &term1 );
3208*4882a593Smuzhiyun     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
3209*4882a593Smuzhiyun     while ( (sbits64) rem0 < 0 ) {
3210*4882a593Smuzhiyun         --zSig0;
3211*4882a593Smuzhiyun         shortShift128Left( 0, zSig0, 1, &term0, &term1 );
3212*4882a593Smuzhiyun         term1 |= 1;
3213*4882a593Smuzhiyun         add128( rem0, rem1, term0, term1, &rem0, &rem1 );
3214*4882a593Smuzhiyun     }
3215*4882a593Smuzhiyun     shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 );
3216*4882a593Smuzhiyun     zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 );
3217*4882a593Smuzhiyun     if ( (bits64) ( zSig1<<1 ) <= 10 ) {
3218*4882a593Smuzhiyun         if ( zSig1 == 0 ) zSig1 = 1;
3219*4882a593Smuzhiyun         mul64To128( zSig0, zSig1, &term1, &term2 );
3220*4882a593Smuzhiyun         shortShift128Left( term1, term2, 1, &term1, &term2 );
3221*4882a593Smuzhiyun         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
3222*4882a593Smuzhiyun         mul64To128( zSig1, zSig1, &term2, &term3 );
3223*4882a593Smuzhiyun         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
3224*4882a593Smuzhiyun         while ( (sbits64) rem1 < 0 ) {
3225*4882a593Smuzhiyun             --zSig1;
3226*4882a593Smuzhiyun             shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 );
3227*4882a593Smuzhiyun             term3 |= 1;
3228*4882a593Smuzhiyun             add192(
3229*4882a593Smuzhiyun                 rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 );
3230*4882a593Smuzhiyun         }
3231*4882a593Smuzhiyun         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
3232*4882a593Smuzhiyun     }
3233*4882a593Smuzhiyun     return
3234*4882a593Smuzhiyun         roundAndPackFloatx80(
3235*4882a593Smuzhiyun             roundData, 0, zExp, zSig0, zSig1 );
3236*4882a593Smuzhiyun 
3237*4882a593Smuzhiyun }
3238*4882a593Smuzhiyun 
3239*4882a593Smuzhiyun /*
3240*4882a593Smuzhiyun -------------------------------------------------------------------------------
3241*4882a593Smuzhiyun Returns 1 if the extended double-precision floating-point value `a' is
3242*4882a593Smuzhiyun equal to the corresponding value `b', and 0 otherwise.  The comparison is
3243*4882a593Smuzhiyun performed according to the IEC/IEEE Standard for Binary Floating-point
3244*4882a593Smuzhiyun Arithmetic.
3245*4882a593Smuzhiyun -------------------------------------------------------------------------------
3246*4882a593Smuzhiyun */
floatx80_eq(floatx80 a,floatx80 b)3247*4882a593Smuzhiyun flag floatx80_eq( floatx80 a, floatx80 b )
3248*4882a593Smuzhiyun {
3249*4882a593Smuzhiyun 
3250*4882a593Smuzhiyun     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
3251*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
3252*4882a593Smuzhiyun          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
3253*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
3254*4882a593Smuzhiyun        ) {
3255*4882a593Smuzhiyun         if (    floatx80_is_signaling_nan( a )
3256*4882a593Smuzhiyun              || floatx80_is_signaling_nan( b ) ) {
3257*4882a593Smuzhiyun             float_raise( float_flag_invalid );
3258*4882a593Smuzhiyun         }
3259*4882a593Smuzhiyun         return 0;
3260*4882a593Smuzhiyun     }
3261*4882a593Smuzhiyun     return
3262*4882a593Smuzhiyun            ( a.low == b.low )
3263*4882a593Smuzhiyun         && (    ( a.high == b.high )
3264*4882a593Smuzhiyun              || (    ( a.low == 0 )
3265*4882a593Smuzhiyun                   && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
3266*4882a593Smuzhiyun            );
3267*4882a593Smuzhiyun 
3268*4882a593Smuzhiyun }
3269*4882a593Smuzhiyun 
3270*4882a593Smuzhiyun /*
3271*4882a593Smuzhiyun -------------------------------------------------------------------------------
3272*4882a593Smuzhiyun Returns 1 if the extended double-precision floating-point value `a' is
3273*4882a593Smuzhiyun less than or equal to the corresponding value `b', and 0 otherwise.  The
3274*4882a593Smuzhiyun comparison is performed according to the IEC/IEEE Standard for Binary
3275*4882a593Smuzhiyun Floating-point Arithmetic.
3276*4882a593Smuzhiyun -------------------------------------------------------------------------------
3277*4882a593Smuzhiyun */
floatx80_le(floatx80 a,floatx80 b)3278*4882a593Smuzhiyun flag floatx80_le( floatx80 a, floatx80 b )
3279*4882a593Smuzhiyun {
3280*4882a593Smuzhiyun     flag aSign, bSign;
3281*4882a593Smuzhiyun 
3282*4882a593Smuzhiyun     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
3283*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
3284*4882a593Smuzhiyun          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
3285*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
3286*4882a593Smuzhiyun        ) {
3287*4882a593Smuzhiyun         float_raise( float_flag_invalid );
3288*4882a593Smuzhiyun         return 0;
3289*4882a593Smuzhiyun     }
3290*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
3291*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
3292*4882a593Smuzhiyun     if ( aSign != bSign ) {
3293*4882a593Smuzhiyun         return
3294*4882a593Smuzhiyun                aSign
3295*4882a593Smuzhiyun             || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
3296*4882a593Smuzhiyun                  == 0 );
3297*4882a593Smuzhiyun     }
3298*4882a593Smuzhiyun     return
3299*4882a593Smuzhiyun           aSign ? le128( b.high, b.low, a.high, a.low )
3300*4882a593Smuzhiyun         : le128( a.high, a.low, b.high, b.low );
3301*4882a593Smuzhiyun 
3302*4882a593Smuzhiyun }
3303*4882a593Smuzhiyun 
3304*4882a593Smuzhiyun /*
3305*4882a593Smuzhiyun -------------------------------------------------------------------------------
3306*4882a593Smuzhiyun Returns 1 if the extended double-precision floating-point value `a' is
3307*4882a593Smuzhiyun less than the corresponding value `b', and 0 otherwise.  The comparison
3308*4882a593Smuzhiyun is performed according to the IEC/IEEE Standard for Binary Floating-point
3309*4882a593Smuzhiyun Arithmetic.
3310*4882a593Smuzhiyun -------------------------------------------------------------------------------
3311*4882a593Smuzhiyun */
floatx80_lt(floatx80 a,floatx80 b)3312*4882a593Smuzhiyun flag floatx80_lt( floatx80 a, floatx80 b )
3313*4882a593Smuzhiyun {
3314*4882a593Smuzhiyun     flag aSign, bSign;
3315*4882a593Smuzhiyun 
3316*4882a593Smuzhiyun     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
3317*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
3318*4882a593Smuzhiyun          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
3319*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
3320*4882a593Smuzhiyun        ) {
3321*4882a593Smuzhiyun         float_raise( float_flag_invalid );
3322*4882a593Smuzhiyun         return 0;
3323*4882a593Smuzhiyun     }
3324*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
3325*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
3326*4882a593Smuzhiyun     if ( aSign != bSign ) {
3327*4882a593Smuzhiyun         return
3328*4882a593Smuzhiyun                aSign
3329*4882a593Smuzhiyun             && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
3330*4882a593Smuzhiyun                  != 0 );
3331*4882a593Smuzhiyun     }
3332*4882a593Smuzhiyun     return
3333*4882a593Smuzhiyun           aSign ? lt128( b.high, b.low, a.high, a.low )
3334*4882a593Smuzhiyun         : lt128( a.high, a.low, b.high, b.low );
3335*4882a593Smuzhiyun 
3336*4882a593Smuzhiyun }
3337*4882a593Smuzhiyun 
3338*4882a593Smuzhiyun /*
3339*4882a593Smuzhiyun -------------------------------------------------------------------------------
3340*4882a593Smuzhiyun Returns 1 if the extended double-precision floating-point value `a' is equal
3341*4882a593Smuzhiyun to the corresponding value `b', and 0 otherwise.  The invalid exception is
3342*4882a593Smuzhiyun raised if either operand is a NaN.  Otherwise, the comparison is performed
3343*4882a593Smuzhiyun according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
3344*4882a593Smuzhiyun -------------------------------------------------------------------------------
3345*4882a593Smuzhiyun */
floatx80_eq_signaling(floatx80 a,floatx80 b)3346*4882a593Smuzhiyun flag floatx80_eq_signaling( floatx80 a, floatx80 b )
3347*4882a593Smuzhiyun {
3348*4882a593Smuzhiyun 
3349*4882a593Smuzhiyun     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
3350*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
3351*4882a593Smuzhiyun          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
3352*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
3353*4882a593Smuzhiyun        ) {
3354*4882a593Smuzhiyun         float_raise( float_flag_invalid );
3355*4882a593Smuzhiyun         return 0;
3356*4882a593Smuzhiyun     }
3357*4882a593Smuzhiyun     return
3358*4882a593Smuzhiyun            ( a.low == b.low )
3359*4882a593Smuzhiyun         && (    ( a.high == b.high )
3360*4882a593Smuzhiyun              || (    ( a.low == 0 )
3361*4882a593Smuzhiyun                   && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
3362*4882a593Smuzhiyun            );
3363*4882a593Smuzhiyun 
3364*4882a593Smuzhiyun }
3365*4882a593Smuzhiyun 
3366*4882a593Smuzhiyun /*
3367*4882a593Smuzhiyun -------------------------------------------------------------------------------
3368*4882a593Smuzhiyun Returns 1 if the extended double-precision floating-point value `a' is less
3369*4882a593Smuzhiyun than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
3370*4882a593Smuzhiyun do not cause an exception.  Otherwise, the comparison is performed according
3371*4882a593Smuzhiyun to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
3372*4882a593Smuzhiyun -------------------------------------------------------------------------------
3373*4882a593Smuzhiyun */
floatx80_le_quiet(floatx80 a,floatx80 b)3374*4882a593Smuzhiyun flag floatx80_le_quiet( floatx80 a, floatx80 b )
3375*4882a593Smuzhiyun {
3376*4882a593Smuzhiyun     flag aSign, bSign;
3377*4882a593Smuzhiyun 
3378*4882a593Smuzhiyun     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
3379*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
3380*4882a593Smuzhiyun          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
3381*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
3382*4882a593Smuzhiyun        ) {
3383*4882a593Smuzhiyun         /* Do nothing, even if NaN as we're quiet */
3384*4882a593Smuzhiyun         return 0;
3385*4882a593Smuzhiyun     }
3386*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
3387*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
3388*4882a593Smuzhiyun     if ( aSign != bSign ) {
3389*4882a593Smuzhiyun         return
3390*4882a593Smuzhiyun                aSign
3391*4882a593Smuzhiyun             || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
3392*4882a593Smuzhiyun                  == 0 );
3393*4882a593Smuzhiyun     }
3394*4882a593Smuzhiyun     return
3395*4882a593Smuzhiyun           aSign ? le128( b.high, b.low, a.high, a.low )
3396*4882a593Smuzhiyun         : le128( a.high, a.low, b.high, b.low );
3397*4882a593Smuzhiyun 
3398*4882a593Smuzhiyun }
3399*4882a593Smuzhiyun 
3400*4882a593Smuzhiyun /*
3401*4882a593Smuzhiyun -------------------------------------------------------------------------------
3402*4882a593Smuzhiyun Returns 1 if the extended double-precision floating-point value `a' is less
3403*4882a593Smuzhiyun than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
3404*4882a593Smuzhiyun an exception.  Otherwise, the comparison is performed according to the
3405*4882a593Smuzhiyun IEC/IEEE Standard for Binary Floating-point Arithmetic.
3406*4882a593Smuzhiyun -------------------------------------------------------------------------------
3407*4882a593Smuzhiyun */
floatx80_lt_quiet(floatx80 a,floatx80 b)3408*4882a593Smuzhiyun flag floatx80_lt_quiet( floatx80 a, floatx80 b )
3409*4882a593Smuzhiyun {
3410*4882a593Smuzhiyun     flag aSign, bSign;
3411*4882a593Smuzhiyun 
3412*4882a593Smuzhiyun     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
3413*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
3414*4882a593Smuzhiyun          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
3415*4882a593Smuzhiyun               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
3416*4882a593Smuzhiyun        ) {
3417*4882a593Smuzhiyun         /* Do nothing, even if NaN as we're quiet */
3418*4882a593Smuzhiyun         return 0;
3419*4882a593Smuzhiyun     }
3420*4882a593Smuzhiyun     aSign = extractFloatx80Sign( a );
3421*4882a593Smuzhiyun     bSign = extractFloatx80Sign( b );
3422*4882a593Smuzhiyun     if ( aSign != bSign ) {
3423*4882a593Smuzhiyun         return
3424*4882a593Smuzhiyun                aSign
3425*4882a593Smuzhiyun             && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
3426*4882a593Smuzhiyun                  != 0 );
3427*4882a593Smuzhiyun     }
3428*4882a593Smuzhiyun     return
3429*4882a593Smuzhiyun           aSign ? lt128( b.high, b.low, a.high, a.low )
3430*4882a593Smuzhiyun         : lt128( a.high, a.low, b.high, b.low );
3431*4882a593Smuzhiyun 
3432*4882a593Smuzhiyun }
3433*4882a593Smuzhiyun 
3434*4882a593Smuzhiyun #endif
3435*4882a593Smuzhiyun 
3436