xref: /OK3568_Linux_fs/kernel/arch/arm/include/asm/pgtable-2level.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun /* SPDX-License-Identifier: GPL-2.0-only */
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun  *  arch/arm/include/asm/pgtable-2level.h
4*4882a593Smuzhiyun  *
5*4882a593Smuzhiyun  *  Copyright (C) 1995-2002 Russell King
6*4882a593Smuzhiyun  */
7*4882a593Smuzhiyun #ifndef _ASM_PGTABLE_2LEVEL_H
8*4882a593Smuzhiyun #define _ASM_PGTABLE_2LEVEL_H
9*4882a593Smuzhiyun 
10*4882a593Smuzhiyun #define __PAGETABLE_PMD_FOLDED 1
11*4882a593Smuzhiyun 
12*4882a593Smuzhiyun /*
13*4882a593Smuzhiyun  * Hardware-wise, we have a two level page table structure, where the first
14*4882a593Smuzhiyun  * level has 4096 entries, and the second level has 256 entries.  Each entry
15*4882a593Smuzhiyun  * is one 32-bit word.  Most of the bits in the second level entry are used
16*4882a593Smuzhiyun  * by hardware, and there aren't any "accessed" and "dirty" bits.
17*4882a593Smuzhiyun  *
18*4882a593Smuzhiyun  * Linux on the other hand has a three level page table structure, which can
19*4882a593Smuzhiyun  * be wrapped to fit a two level page table structure easily - using the PGD
20*4882a593Smuzhiyun  * and PTE only.  However, Linux also expects one "PTE" table per page, and
21*4882a593Smuzhiyun  * at least a "dirty" bit.
22*4882a593Smuzhiyun  *
23*4882a593Smuzhiyun  * Therefore, we tweak the implementation slightly - we tell Linux that we
24*4882a593Smuzhiyun  * have 2048 entries in the first level, each of which is 8 bytes (iow, two
25*4882a593Smuzhiyun  * hardware pointers to the second level.)  The second level contains two
26*4882a593Smuzhiyun  * hardware PTE tables arranged contiguously, preceded by Linux versions
27*4882a593Smuzhiyun  * which contain the state information Linux needs.  We, therefore, end up
28*4882a593Smuzhiyun  * with 512 entries in the "PTE" level.
29*4882a593Smuzhiyun  *
30*4882a593Smuzhiyun  * This leads to the page tables having the following layout:
31*4882a593Smuzhiyun  *
32*4882a593Smuzhiyun  *    pgd             pte
33*4882a593Smuzhiyun  * |        |
34*4882a593Smuzhiyun  * +--------+
35*4882a593Smuzhiyun  * |        |       +------------+ +0
36*4882a593Smuzhiyun  * +- - - - +       | Linux pt 0 |
37*4882a593Smuzhiyun  * |        |       +------------+ +1024
38*4882a593Smuzhiyun  * +--------+ +0    | Linux pt 1 |
39*4882a593Smuzhiyun  * |        |-----> +------------+ +2048
40*4882a593Smuzhiyun  * +- - - - + +4    |  h/w pt 0  |
41*4882a593Smuzhiyun  * |        |-----> +------------+ +3072
42*4882a593Smuzhiyun  * +--------+ +8    |  h/w pt 1  |
43*4882a593Smuzhiyun  * |        |       +------------+ +4096
44*4882a593Smuzhiyun  *
45*4882a593Smuzhiyun  * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
46*4882a593Smuzhiyun  * PTE_xxx for definitions of bits appearing in the "h/w pt".
47*4882a593Smuzhiyun  *
48*4882a593Smuzhiyun  * PMD_xxx definitions refer to bits in the first level page table.
49*4882a593Smuzhiyun  *
50*4882a593Smuzhiyun  * The "dirty" bit is emulated by only granting hardware write permission
51*4882a593Smuzhiyun  * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
52*4882a593Smuzhiyun  * means that a write to a clean page will cause a permission fault, and
53*4882a593Smuzhiyun  * the Linux MM layer will mark the page dirty via handle_pte_fault().
54*4882a593Smuzhiyun  * For the hardware to notice the permission change, the TLB entry must
55*4882a593Smuzhiyun  * be flushed, and ptep_set_access_flags() does that for us.
56*4882a593Smuzhiyun  *
57*4882a593Smuzhiyun  * The "accessed" or "young" bit is emulated by a similar method; we only
58*4882a593Smuzhiyun  * allow accesses to the page if the "young" bit is set.  Accesses to the
59*4882a593Smuzhiyun  * page will cause a fault, and handle_pte_fault() will set the young bit
60*4882a593Smuzhiyun  * for us as long as the page is marked present in the corresponding Linux
61*4882a593Smuzhiyun  * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
62*4882a593Smuzhiyun  * up to date.
63*4882a593Smuzhiyun  *
64*4882a593Smuzhiyun  * However, when the "young" bit is cleared, we deny access to the page
65*4882a593Smuzhiyun  * by clearing the hardware PTE.  Currently Linux does not flush the TLB
66*4882a593Smuzhiyun  * for us in this case, which means the TLB will retain the transation
67*4882a593Smuzhiyun  * until either the TLB entry is evicted under pressure, or a context
68*4882a593Smuzhiyun  * switch which changes the user space mapping occurs.
69*4882a593Smuzhiyun  */
70*4882a593Smuzhiyun #define PTRS_PER_PTE		512
71*4882a593Smuzhiyun #define PTRS_PER_PMD		1
72*4882a593Smuzhiyun #define PTRS_PER_PGD		2048
73*4882a593Smuzhiyun 
74*4882a593Smuzhiyun #define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
75*4882a593Smuzhiyun #define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
76*4882a593Smuzhiyun #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
77*4882a593Smuzhiyun 
78*4882a593Smuzhiyun #define MAX_POSSIBLE_PHYSMEM_BITS	32
79*4882a593Smuzhiyun 
80*4882a593Smuzhiyun /*
81*4882a593Smuzhiyun  * PMD_SHIFT determines the size of the area a second-level page table can map
82*4882a593Smuzhiyun  * PGDIR_SHIFT determines what a third-level page table entry can map
83*4882a593Smuzhiyun  */
84*4882a593Smuzhiyun #define PMD_SHIFT		21
85*4882a593Smuzhiyun #define PGDIR_SHIFT		21
86*4882a593Smuzhiyun 
87*4882a593Smuzhiyun #define PMD_SIZE		(1UL << PMD_SHIFT)
88*4882a593Smuzhiyun #define PMD_MASK		(~(PMD_SIZE-1))
89*4882a593Smuzhiyun #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
90*4882a593Smuzhiyun #define PGDIR_MASK		(~(PGDIR_SIZE-1))
91*4882a593Smuzhiyun 
92*4882a593Smuzhiyun /*
93*4882a593Smuzhiyun  * section address mask and size definitions.
94*4882a593Smuzhiyun  */
95*4882a593Smuzhiyun #define SECTION_SHIFT		20
96*4882a593Smuzhiyun #define SECTION_SIZE		(1UL << SECTION_SHIFT)
97*4882a593Smuzhiyun #define SECTION_MASK		(~(SECTION_SIZE-1))
98*4882a593Smuzhiyun 
99*4882a593Smuzhiyun /*
100*4882a593Smuzhiyun  * ARMv6 supersection address mask and size definitions.
101*4882a593Smuzhiyun  */
102*4882a593Smuzhiyun #define SUPERSECTION_SHIFT	24
103*4882a593Smuzhiyun #define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
104*4882a593Smuzhiyun #define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
105*4882a593Smuzhiyun 
106*4882a593Smuzhiyun #define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
107*4882a593Smuzhiyun 
108*4882a593Smuzhiyun /*
109*4882a593Smuzhiyun  * "Linux" PTE definitions.
110*4882a593Smuzhiyun  *
111*4882a593Smuzhiyun  * We keep two sets of PTEs - the hardware and the linux version.
112*4882a593Smuzhiyun  * This allows greater flexibility in the way we map the Linux bits
113*4882a593Smuzhiyun  * onto the hardware tables, and allows us to have YOUNG and DIRTY
114*4882a593Smuzhiyun  * bits.
115*4882a593Smuzhiyun  *
116*4882a593Smuzhiyun  * The PTE table pointer refers to the hardware entries; the "Linux"
117*4882a593Smuzhiyun  * entries are stored 1024 bytes below.
118*4882a593Smuzhiyun  */
119*4882a593Smuzhiyun #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
120*4882a593Smuzhiyun #define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
121*4882a593Smuzhiyun #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
122*4882a593Smuzhiyun #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
123*4882a593Smuzhiyun #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
124*4882a593Smuzhiyun #define L_PTE_USER		(_AT(pteval_t, 1) << 8)
125*4882a593Smuzhiyun #define L_PTE_XN		(_AT(pteval_t, 1) << 9)
126*4882a593Smuzhiyun #define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
127*4882a593Smuzhiyun #define L_PTE_NONE		(_AT(pteval_t, 1) << 11)
128*4882a593Smuzhiyun 
129*4882a593Smuzhiyun /*
130*4882a593Smuzhiyun  * These are the memory types, defined to be compatible with
131*4882a593Smuzhiyun  * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
132*4882a593Smuzhiyun  * ARMv6+ without TEX remapping, they are a table index.
133*4882a593Smuzhiyun  * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
134*4882a593Smuzhiyun  *
135*4882a593Smuzhiyun  * MT type		Pre-ARMv6	ARMv6+ type / cacheable status
136*4882a593Smuzhiyun  * UNCACHED		Uncached	Strongly ordered
137*4882a593Smuzhiyun  * BUFFERABLE		Bufferable	Normal memory / non-cacheable
138*4882a593Smuzhiyun  * WRITETHROUGH		Writethrough	Normal memory / write through
139*4882a593Smuzhiyun  * WRITEBACK		Writeback	Normal memory / write back, read alloc
140*4882a593Smuzhiyun  * MINICACHE		Minicache	N/A
141*4882a593Smuzhiyun  * WRITEALLOC		Writeback	Normal memory / write back, write alloc
142*4882a593Smuzhiyun  * DEV_SHARED		Uncached	Device memory (shared)
143*4882a593Smuzhiyun  * DEV_NONSHARED	Uncached	Device memory (non-shared)
144*4882a593Smuzhiyun  * DEV_WC		Bufferable	Normal memory / non-cacheable
145*4882a593Smuzhiyun  * DEV_CACHED		Writeback	Normal memory / write back, read alloc
146*4882a593Smuzhiyun  * VECTORS		Variable	Normal memory / variable
147*4882a593Smuzhiyun  *
148*4882a593Smuzhiyun  * All normal memory mappings have the following properties:
149*4882a593Smuzhiyun  * - reads can be repeated with no side effects
150*4882a593Smuzhiyun  * - repeated reads return the last value written
151*4882a593Smuzhiyun  * - reads can fetch additional locations without side effects
152*4882a593Smuzhiyun  * - writes can be repeated (in certain cases) with no side effects
153*4882a593Smuzhiyun  * - writes can be merged before accessing the target
154*4882a593Smuzhiyun  * - unaligned accesses can be supported
155*4882a593Smuzhiyun  *
156*4882a593Smuzhiyun  * All device mappings have the following properties:
157*4882a593Smuzhiyun  * - no access speculation
158*4882a593Smuzhiyun  * - no repetition (eg, on return from an exception)
159*4882a593Smuzhiyun  * - number, order and size of accesses are maintained
160*4882a593Smuzhiyun  * - unaligned accesses are "unpredictable"
161*4882a593Smuzhiyun  */
162*4882a593Smuzhiyun #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
163*4882a593Smuzhiyun #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
164*4882a593Smuzhiyun #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
165*4882a593Smuzhiyun #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
166*4882a593Smuzhiyun #define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
167*4882a593Smuzhiyun #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
168*4882a593Smuzhiyun #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
169*4882a593Smuzhiyun #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
170*4882a593Smuzhiyun #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
171*4882a593Smuzhiyun #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
172*4882a593Smuzhiyun #define L_PTE_MT_VECTORS	(_AT(pteval_t, 0x0f) << 2)	/* 1111 */
173*4882a593Smuzhiyun #define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
174*4882a593Smuzhiyun 
175*4882a593Smuzhiyun #ifndef __ASSEMBLY__
176*4882a593Smuzhiyun 
177*4882a593Smuzhiyun /*
178*4882a593Smuzhiyun  * The "pud_xxx()" functions here are trivial when the pmd is folded into
179*4882a593Smuzhiyun  * the pud: the pud entry is never bad, always exists, and can't be set or
180*4882a593Smuzhiyun  * cleared.
181*4882a593Smuzhiyun  */
182*4882a593Smuzhiyun #define pud_none(pud)		(0)
183*4882a593Smuzhiyun #define pud_bad(pud)		(0)
184*4882a593Smuzhiyun #define pud_present(pud)	(1)
185*4882a593Smuzhiyun #define pud_clear(pudp)		do { } while (0)
186*4882a593Smuzhiyun #define set_pud(pud,pudp)	do { } while (0)
187*4882a593Smuzhiyun 
pmd_offset(pud_t * pud,unsigned long addr)188*4882a593Smuzhiyun static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
189*4882a593Smuzhiyun {
190*4882a593Smuzhiyun 	return (pmd_t *)pud;
191*4882a593Smuzhiyun }
192*4882a593Smuzhiyun #define pmd_offset pmd_offset
193*4882a593Smuzhiyun 
194*4882a593Smuzhiyun #define pmd_large(pmd)		(pmd_val(pmd) & 2)
195*4882a593Smuzhiyun #define pmd_leaf(pmd)		(pmd_val(pmd) & 2)
196*4882a593Smuzhiyun #define pmd_bad(pmd)		(pmd_val(pmd) & 2)
197*4882a593Smuzhiyun #define pmd_present(pmd)	(pmd_val(pmd))
198*4882a593Smuzhiyun 
199*4882a593Smuzhiyun #define copy_pmd(pmdpd,pmdps)		\
200*4882a593Smuzhiyun 	do {				\
201*4882a593Smuzhiyun 		pmdpd[0] = pmdps[0];	\
202*4882a593Smuzhiyun 		pmdpd[1] = pmdps[1];	\
203*4882a593Smuzhiyun 		flush_pmd_entry(pmdpd);	\
204*4882a593Smuzhiyun 	} while (0)
205*4882a593Smuzhiyun 
206*4882a593Smuzhiyun #define pmd_clear(pmdp)			\
207*4882a593Smuzhiyun 	do {				\
208*4882a593Smuzhiyun 		pmdp[0] = __pmd(0);	\
209*4882a593Smuzhiyun 		pmdp[1] = __pmd(0);	\
210*4882a593Smuzhiyun 		clean_pmd_entry(pmdp);	\
211*4882a593Smuzhiyun 	} while (0)
212*4882a593Smuzhiyun 
213*4882a593Smuzhiyun /* we don't need complex calculations here as the pmd is folded into the pgd */
214*4882a593Smuzhiyun #define pmd_addr_end(addr,end) (end)
215*4882a593Smuzhiyun 
216*4882a593Smuzhiyun #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
217*4882a593Smuzhiyun 
218*4882a593Smuzhiyun /*
219*4882a593Smuzhiyun  * We don't have huge page support for short descriptors, for the moment
220*4882a593Smuzhiyun  * define empty stubs for use by pin_page_for_write.
221*4882a593Smuzhiyun  */
222*4882a593Smuzhiyun #define pmd_hugewillfault(pmd)	(0)
223*4882a593Smuzhiyun #define pmd_thp_or_huge(pmd)	(0)
224*4882a593Smuzhiyun 
225*4882a593Smuzhiyun #endif /* __ASSEMBLY__ */
226*4882a593Smuzhiyun 
227*4882a593Smuzhiyun #endif /* _ASM_PGTABLE_2LEVEL_H */
228