xref: /OK3568_Linux_fs/kernel/arch/alpha/lib/stxncpy.S (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun/* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun/*
3*4882a593Smuzhiyun * arch/alpha/lib/stxncpy.S
4*4882a593Smuzhiyun * Contributed by Richard Henderson (rth@tamu.edu)
5*4882a593Smuzhiyun *
6*4882a593Smuzhiyun * Copy no more than COUNT bytes of the null-terminated string from
7*4882a593Smuzhiyun * SRC to DST.
8*4882a593Smuzhiyun *
9*4882a593Smuzhiyun * This is an internal routine used by strncpy, stpncpy, and strncat.
10*4882a593Smuzhiyun * As such, it uses special linkage conventions to make implementation
11*4882a593Smuzhiyun * of these public functions more efficient.
12*4882a593Smuzhiyun *
13*4882a593Smuzhiyun * On input:
14*4882a593Smuzhiyun *	t9 = return address
15*4882a593Smuzhiyun *	a0 = DST
16*4882a593Smuzhiyun *	a1 = SRC
17*4882a593Smuzhiyun *	a2 = COUNT
18*4882a593Smuzhiyun *
19*4882a593Smuzhiyun * Furthermore, COUNT may not be zero.
20*4882a593Smuzhiyun *
21*4882a593Smuzhiyun * On output:
22*4882a593Smuzhiyun *	t0  = last word written
23*4882a593Smuzhiyun *	t10 = bitmask (with one bit set) indicating the byte position of
24*4882a593Smuzhiyun *	      the end of the range specified by COUNT
25*4882a593Smuzhiyun *	t12 = bitmask (with one bit set) indicating the last byte written
26*4882a593Smuzhiyun *	a0  = unaligned address of the last *word* written
27*4882a593Smuzhiyun *	a2  = the number of full words left in COUNT
28*4882a593Smuzhiyun *
29*4882a593Smuzhiyun * Furthermore, v0, a3-a5, t11, and $at are untouched.
30*4882a593Smuzhiyun */
31*4882a593Smuzhiyun
32*4882a593Smuzhiyun#include <asm/regdef.h>
33*4882a593Smuzhiyun
34*4882a593Smuzhiyun	.set noat
35*4882a593Smuzhiyun	.set noreorder
36*4882a593Smuzhiyun
37*4882a593Smuzhiyun	.text
38*4882a593Smuzhiyun
39*4882a593Smuzhiyun/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
40*4882a593Smuzhiyun   doesn't like putting the entry point for a procedure somewhere in the
41*4882a593Smuzhiyun   middle of the procedure descriptor.  Work around this by putting the
42*4882a593Smuzhiyun   aligned copy in its own procedure descriptor */
43*4882a593Smuzhiyun
44*4882a593Smuzhiyun	.ent stxncpy_aligned
45*4882a593Smuzhiyun	.align 3
46*4882a593Smuzhiyunstxncpy_aligned:
47*4882a593Smuzhiyun	.frame sp, 0, t9, 0
48*4882a593Smuzhiyun	.prologue 0
49*4882a593Smuzhiyun
50*4882a593Smuzhiyun	/* On entry to this basic block:
51*4882a593Smuzhiyun	   t0 == the first destination word for masking back in
52*4882a593Smuzhiyun	   t1 == the first source word.  */
53*4882a593Smuzhiyun
54*4882a593Smuzhiyun	/* Create the 1st output word and detect 0's in the 1st input word.  */
55*4882a593Smuzhiyun	lda	t2, -1		# e1    : build a mask against false zero
56*4882a593Smuzhiyun	mskqh	t2, a1, t2	# e0    :   detection in the src word
57*4882a593Smuzhiyun	mskqh	t1, a1, t3	# e0    :
58*4882a593Smuzhiyun	ornot	t1, t2, t2	# .. e1 :
59*4882a593Smuzhiyun	mskql	t0, a1, t0	# e0    : assemble the first output word
60*4882a593Smuzhiyun	cmpbge	zero, t2, t8	# .. e1 : bits set iff null found
61*4882a593Smuzhiyun	or	t0, t3, t0	# e0    :
62*4882a593Smuzhiyun	beq	a2, $a_eoc	# .. e1 :
63*4882a593Smuzhiyun	bne	t8, $a_eos	# .. e1 :
64*4882a593Smuzhiyun
65*4882a593Smuzhiyun	/* On entry to this basic block:
66*4882a593Smuzhiyun	   t0 == a source word not containing a null.  */
67*4882a593Smuzhiyun
68*4882a593Smuzhiyun$a_loop:
69*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# e0    :
70*4882a593Smuzhiyun	addq	a0, 8, a0	# .. e1 :
71*4882a593Smuzhiyun	ldq_u	t0, 0(a1)	# e0    :
72*4882a593Smuzhiyun	addq	a1, 8, a1	# .. e1 :
73*4882a593Smuzhiyun	subq	a2, 1, a2	# e0    :
74*4882a593Smuzhiyun	cmpbge	zero, t0, t8	# .. e1 (stall)
75*4882a593Smuzhiyun	beq	a2, $a_eoc      # e1    :
76*4882a593Smuzhiyun	beq	t8, $a_loop	# e1    :
77*4882a593Smuzhiyun
78*4882a593Smuzhiyun	/* Take care of the final (partial) word store.  At this point
79*4882a593Smuzhiyun	   the end-of-count bit is set in t8 iff it applies.
80*4882a593Smuzhiyun
81*4882a593Smuzhiyun	   On entry to this basic block we have:
82*4882a593Smuzhiyun	   t0 == the source word containing the null
83*4882a593Smuzhiyun	   t8 == the cmpbge mask that found it.  */
84*4882a593Smuzhiyun
85*4882a593Smuzhiyun$a_eos:
86*4882a593Smuzhiyun	negq	t8, t12		# e0    : find low bit set
87*4882a593Smuzhiyun	and	t8, t12, t12	# e1 (stall)
88*4882a593Smuzhiyun
89*4882a593Smuzhiyun	/* For the sake of the cache, don't read a destination word
90*4882a593Smuzhiyun	   if we're not going to need it.  */
91*4882a593Smuzhiyun	and	t12, 0x80, t6	# e0    :
92*4882a593Smuzhiyun	bne	t6, 1f		# .. e1 (zdb)
93*4882a593Smuzhiyun
94*4882a593Smuzhiyun	/* We're doing a partial word store and so need to combine
95*4882a593Smuzhiyun	   our source and original destination words.  */
96*4882a593Smuzhiyun	ldq_u	t1, 0(a0)	# e0    :
97*4882a593Smuzhiyun	subq	t12, 1, t6	# .. e1 :
98*4882a593Smuzhiyun	or	t12, t6, t8	# e0    :
99*4882a593Smuzhiyun	unop			#
100*4882a593Smuzhiyun	zapnot	t0, t8, t0	# e0    : clear src bytes > null
101*4882a593Smuzhiyun	zap	t1, t8, t1	# .. e1 : clear dst bytes <= null
102*4882a593Smuzhiyun	or	t0, t1, t0	# e1    :
103*4882a593Smuzhiyun
104*4882a593Smuzhiyun1:	stq_u	t0, 0(a0)	# e0    :
105*4882a593Smuzhiyun	ret	(t9)		# e1    :
106*4882a593Smuzhiyun
107*4882a593Smuzhiyun	/* Add the end-of-count bit to the eos detection bitmask.  */
108*4882a593Smuzhiyun$a_eoc:
109*4882a593Smuzhiyun	or	t10, t8, t8
110*4882a593Smuzhiyun	br	$a_eos
111*4882a593Smuzhiyun
112*4882a593Smuzhiyun	.end stxncpy_aligned
113*4882a593Smuzhiyun
114*4882a593Smuzhiyun	.align 3
115*4882a593Smuzhiyun	.ent __stxncpy
116*4882a593Smuzhiyun	.globl __stxncpy
117*4882a593Smuzhiyun__stxncpy:
118*4882a593Smuzhiyun	.frame sp, 0, t9, 0
119*4882a593Smuzhiyun	.prologue 0
120*4882a593Smuzhiyun
121*4882a593Smuzhiyun	/* Are source and destination co-aligned?  */
122*4882a593Smuzhiyun	xor	a0, a1, t1	# e0    :
123*4882a593Smuzhiyun	and	a0, 7, t0	# .. e1 : find dest misalignment
124*4882a593Smuzhiyun	and	t1, 7, t1	# e0    :
125*4882a593Smuzhiyun	addq	a2, t0, a2	# .. e1 : bias count by dest misalignment
126*4882a593Smuzhiyun	subq	a2, 1, a2	# e0    :
127*4882a593Smuzhiyun	and	a2, 7, t2	# e1    :
128*4882a593Smuzhiyun	srl	a2, 3, a2	# e0    : a2 = loop counter = (count - 1)/8
129*4882a593Smuzhiyun	addq	zero, 1, t10	# .. e1 :
130*4882a593Smuzhiyun	sll	t10, t2, t10	# e0    : t10 = bitmask of last count byte
131*4882a593Smuzhiyun	bne	t1, $unaligned	# .. e1 :
132*4882a593Smuzhiyun
133*4882a593Smuzhiyun	/* We are co-aligned; take care of a partial first word.  */
134*4882a593Smuzhiyun
135*4882a593Smuzhiyun	ldq_u	t1, 0(a1)	# e0    : load first src word
136*4882a593Smuzhiyun	addq	a1, 8, a1	# .. e1 :
137*4882a593Smuzhiyun
138*4882a593Smuzhiyun	beq	t0, stxncpy_aligned     # avoid loading dest word if not needed
139*4882a593Smuzhiyun	ldq_u	t0, 0(a0)	# e0    :
140*4882a593Smuzhiyun	br	stxncpy_aligned	# .. e1 :
141*4882a593Smuzhiyun
142*4882a593Smuzhiyun
143*4882a593Smuzhiyun/* The source and destination are not co-aligned.  Align the destination
144*4882a593Smuzhiyun   and cope.  We have to be very careful about not reading too much and
145*4882a593Smuzhiyun   causing a SEGV.  */
146*4882a593Smuzhiyun
147*4882a593Smuzhiyun	.align 3
148*4882a593Smuzhiyun$u_head:
149*4882a593Smuzhiyun	/* We know just enough now to be able to assemble the first
150*4882a593Smuzhiyun	   full source word.  We can still find a zero at the end of it
151*4882a593Smuzhiyun	   that prevents us from outputting the whole thing.
152*4882a593Smuzhiyun
153*4882a593Smuzhiyun	   On entry to this basic block:
154*4882a593Smuzhiyun	   t0 == the first dest word, unmasked
155*4882a593Smuzhiyun	   t1 == the shifted low bits of the first source word
156*4882a593Smuzhiyun	   t6 == bytemask that is -1 in dest word bytes */
157*4882a593Smuzhiyun
158*4882a593Smuzhiyun	ldq_u	t2, 8(a1)	# e0    : load second src word
159*4882a593Smuzhiyun	addq	a1, 8, a1	# .. e1 :
160*4882a593Smuzhiyun	mskql	t0, a0, t0	# e0    : mask trailing garbage in dst
161*4882a593Smuzhiyun	extqh	t2, a1, t4	# e0    :
162*4882a593Smuzhiyun	or	t1, t4, t1	# e1    : first aligned src word complete
163*4882a593Smuzhiyun	mskqh	t1, a0, t1	# e0    : mask leading garbage in src
164*4882a593Smuzhiyun	or	t0, t1, t0	# e0    : first output word complete
165*4882a593Smuzhiyun	or	t0, t6, t6	# e1    : mask original data for zero test
166*4882a593Smuzhiyun	cmpbge	zero, t6, t8	# e0    :
167*4882a593Smuzhiyun	beq	a2, $u_eocfin	# .. e1 :
168*4882a593Smuzhiyun	lda	t6, -1		# e0    :
169*4882a593Smuzhiyun	bne	t8, $u_final	# .. e1 :
170*4882a593Smuzhiyun
171*4882a593Smuzhiyun	mskql	t6, a1, t6	# e0    : mask out bits already seen
172*4882a593Smuzhiyun	nop			# .. e1 :
173*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# e0    : store first output word
174*4882a593Smuzhiyun	or      t6, t2, t2	# .. e1 :
175*4882a593Smuzhiyun	cmpbge	zero, t2, t8	# e0    : find nulls in second partial
176*4882a593Smuzhiyun	addq	a0, 8, a0	# .. e1 :
177*4882a593Smuzhiyun	subq	a2, 1, a2	# e0    :
178*4882a593Smuzhiyun	bne	t8, $u_late_head_exit	# .. e1 :
179*4882a593Smuzhiyun
180*4882a593Smuzhiyun	/* Finally, we've got all the stupid leading edge cases taken care
181*4882a593Smuzhiyun	   of and we can set up to enter the main loop.  */
182*4882a593Smuzhiyun
183*4882a593Smuzhiyun	extql	t2, a1, t1	# e0    : position hi-bits of lo word
184*4882a593Smuzhiyun	beq	a2, $u_eoc	# .. e1 :
185*4882a593Smuzhiyun	ldq_u	t2, 8(a1)	# e0    : read next high-order source word
186*4882a593Smuzhiyun	addq	a1, 8, a1	# .. e1 :
187*4882a593Smuzhiyun	extqh	t2, a1, t0	# e0    : position lo-bits of hi word (stall)
188*4882a593Smuzhiyun	cmpbge	zero, t2, t8	# .. e1 :
189*4882a593Smuzhiyun	nop			# e0    :
190*4882a593Smuzhiyun	bne	t8, $u_eos	# .. e1 :
191*4882a593Smuzhiyun
192*4882a593Smuzhiyun	/* Unaligned copy main loop.  In order to avoid reading too much,
193*4882a593Smuzhiyun	   the loop is structured to detect zeros in aligned source words.
194*4882a593Smuzhiyun	   This has, unfortunately, effectively pulled half of a loop
195*4882a593Smuzhiyun	   iteration out into the head and half into the tail, but it does
196*4882a593Smuzhiyun	   prevent nastiness from accumulating in the very thing we want
197*4882a593Smuzhiyun	   to run as fast as possible.
198*4882a593Smuzhiyun
199*4882a593Smuzhiyun	   On entry to this basic block:
200*4882a593Smuzhiyun	   t0 == the shifted low-order bits from the current source word
201*4882a593Smuzhiyun	   t1 == the shifted high-order bits from the previous source word
202*4882a593Smuzhiyun	   t2 == the unshifted current source word
203*4882a593Smuzhiyun
204*4882a593Smuzhiyun	   We further know that t2 does not contain a null terminator.  */
205*4882a593Smuzhiyun
206*4882a593Smuzhiyun	.align 3
207*4882a593Smuzhiyun$u_loop:
208*4882a593Smuzhiyun	or	t0, t1, t0	# e0    : current dst word now complete
209*4882a593Smuzhiyun	subq	a2, 1, a2	# .. e1 : decrement word count
210*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# e0    : save the current word
211*4882a593Smuzhiyun	addq	a0, 8, a0	# .. e1 :
212*4882a593Smuzhiyun	extql	t2, a1, t1	# e0    : extract high bits for next time
213*4882a593Smuzhiyun	beq	a2, $u_eoc	# .. e1 :
214*4882a593Smuzhiyun	ldq_u	t2, 8(a1)	# e0    : load high word for next time
215*4882a593Smuzhiyun	addq	a1, 8, a1	# .. e1 :
216*4882a593Smuzhiyun	nop			# e0    :
217*4882a593Smuzhiyun	cmpbge	zero, t2, t8	# e1    : test new word for eos (stall)
218*4882a593Smuzhiyun	extqh	t2, a1, t0	# e0    : extract low bits for current word
219*4882a593Smuzhiyun	beq	t8, $u_loop	# .. e1 :
220*4882a593Smuzhiyun
221*4882a593Smuzhiyun	/* We've found a zero somewhere in the source word we just read.
222*4882a593Smuzhiyun	   If it resides in the lower half, we have one (probably partial)
223*4882a593Smuzhiyun	   word to write out, and if it resides in the upper half, we
224*4882a593Smuzhiyun	   have one full and one partial word left to write out.
225*4882a593Smuzhiyun
226*4882a593Smuzhiyun	   On entry to this basic block:
227*4882a593Smuzhiyun	   t0 == the shifted low-order bits from the current source word
228*4882a593Smuzhiyun	   t1 == the shifted high-order bits from the previous source word
229*4882a593Smuzhiyun	   t2 == the unshifted current source word.  */
230*4882a593Smuzhiyun$u_eos:
231*4882a593Smuzhiyun	or	t0, t1, t0	# e0    : first (partial) source word complete
232*4882a593Smuzhiyun	nop			# .. e1 :
233*4882a593Smuzhiyun	cmpbge	zero, t0, t8	# e0    : is the null in this first bit?
234*4882a593Smuzhiyun	bne	t8, $u_final	# .. e1 (zdb)
235*4882a593Smuzhiyun
236*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# e0    : the null was in the high-order bits
237*4882a593Smuzhiyun	addq	a0, 8, a0	# .. e1 :
238*4882a593Smuzhiyun	subq	a2, 1, a2	# e1    :
239*4882a593Smuzhiyun
240*4882a593Smuzhiyun$u_late_head_exit:
241*4882a593Smuzhiyun	extql	t2, a1, t0	# .. e0 :
242*4882a593Smuzhiyun	cmpbge	zero, t0, t8	# e0    :
243*4882a593Smuzhiyun	or	t8, t10, t6	# e1    :
244*4882a593Smuzhiyun	cmoveq	a2, t6, t8	# e0    :
245*4882a593Smuzhiyun	nop			# .. e1 :
246*4882a593Smuzhiyun
247*4882a593Smuzhiyun	/* Take care of a final (probably partial) result word.
248*4882a593Smuzhiyun	   On entry to this basic block:
249*4882a593Smuzhiyun	   t0 == assembled source word
250*4882a593Smuzhiyun	   t8 == cmpbge mask that found the null.  */
251*4882a593Smuzhiyun$u_final:
252*4882a593Smuzhiyun	negq	t8, t6		# e0    : isolate low bit set
253*4882a593Smuzhiyun	and	t6, t8, t12	# e1    :
254*4882a593Smuzhiyun
255*4882a593Smuzhiyun	and	t12, 0x80, t6	# e0    : avoid dest word load if we can
256*4882a593Smuzhiyun	bne	t6, 1f		# .. e1 (zdb)
257*4882a593Smuzhiyun
258*4882a593Smuzhiyun	ldq_u	t1, 0(a0)	# e0    :
259*4882a593Smuzhiyun	subq	t12, 1, t6	# .. e1 :
260*4882a593Smuzhiyun	or	t6, t12, t8	# e0    :
261*4882a593Smuzhiyun	zapnot	t0, t8, t0	# .. e1 : kill source bytes > null
262*4882a593Smuzhiyun	zap	t1, t8, t1	# e0    : kill dest bytes <= null
263*4882a593Smuzhiyun	or	t0, t1, t0	# e1    :
264*4882a593Smuzhiyun
265*4882a593Smuzhiyun1:	stq_u	t0, 0(a0)	# e0    :
266*4882a593Smuzhiyun	ret	(t9)		# .. e1 :
267*4882a593Smuzhiyun
268*4882a593Smuzhiyun	/* Got to end-of-count before end of string.
269*4882a593Smuzhiyun	   On entry to this basic block:
270*4882a593Smuzhiyun	   t1 == the shifted high-order bits from the previous source word  */
271*4882a593Smuzhiyun$u_eoc:
272*4882a593Smuzhiyun	and	a1, 7, t6	# e1    :
273*4882a593Smuzhiyun	sll	t10, t6, t6	# e0    :
274*4882a593Smuzhiyun	and	t6, 0xff, t6	# e0    :
275*4882a593Smuzhiyun	bne	t6, 1f		# .. e1 :
276*4882a593Smuzhiyun
277*4882a593Smuzhiyun	ldq_u	t2, 8(a1)	# e0    : load final src word
278*4882a593Smuzhiyun	nop			# .. e1 :
279*4882a593Smuzhiyun	extqh	t2, a1, t0	# e0    : extract low bits for last word
280*4882a593Smuzhiyun	or	t1, t0, t1	# e1    :
281*4882a593Smuzhiyun
282*4882a593Smuzhiyun1:	cmpbge	zero, t1, t8
283*4882a593Smuzhiyun	mov	t1, t0
284*4882a593Smuzhiyun
285*4882a593Smuzhiyun$u_eocfin:			# end-of-count, final word
286*4882a593Smuzhiyun	or	t10, t8, t8
287*4882a593Smuzhiyun	br	$u_final
288*4882a593Smuzhiyun
289*4882a593Smuzhiyun	/* Unaligned copy entry point.  */
290*4882a593Smuzhiyun	.align 3
291*4882a593Smuzhiyun$unaligned:
292*4882a593Smuzhiyun
293*4882a593Smuzhiyun	ldq_u	t1, 0(a1)	# e0    : load first source word
294*4882a593Smuzhiyun
295*4882a593Smuzhiyun	and	a0, 7, t4	# .. e1 : find dest misalignment
296*4882a593Smuzhiyun	and	a1, 7, t5	# e0    : find src misalignment
297*4882a593Smuzhiyun
298*4882a593Smuzhiyun	/* Conditionally load the first destination word and a bytemask
299*4882a593Smuzhiyun	   with 0xff indicating that the destination byte is sacrosanct.  */
300*4882a593Smuzhiyun
301*4882a593Smuzhiyun	mov	zero, t0	# .. e1 :
302*4882a593Smuzhiyun	mov	zero, t6	# e0    :
303*4882a593Smuzhiyun	beq	t4, 1f		# .. e1 :
304*4882a593Smuzhiyun	ldq_u	t0, 0(a0)	# e0    :
305*4882a593Smuzhiyun	lda	t6, -1		# .. e1 :
306*4882a593Smuzhiyun	mskql	t6, a0, t6	# e0    :
307*4882a593Smuzhiyun	subq	a1, t4, a1	# .. e1 : sub dest misalignment from src addr
308*4882a593Smuzhiyun
309*4882a593Smuzhiyun	/* If source misalignment is larger than dest misalignment, we need
310*4882a593Smuzhiyun	   extra startup checks to avoid SEGV.  */
311*4882a593Smuzhiyun
312*4882a593Smuzhiyun1:	cmplt	t4, t5, t12	# e1    :
313*4882a593Smuzhiyun	extql	t1, a1, t1	# .. e0 : shift src into place
314*4882a593Smuzhiyun	lda	t2, -1		# e0    : for creating masks later
315*4882a593Smuzhiyun	beq	t12, $u_head	# .. e1 :
316*4882a593Smuzhiyun
317*4882a593Smuzhiyun	extql	t2, a1, t2	# e0    :
318*4882a593Smuzhiyun	cmpbge	zero, t1, t8	# .. e1 : is there a zero?
319*4882a593Smuzhiyun	andnot	t2, t6, t2	# e0    : dest mask for a single word copy
320*4882a593Smuzhiyun	or	t8, t10, t5	# .. e1 : test for end-of-count too
321*4882a593Smuzhiyun	cmpbge	zero, t2, t3	# e0    :
322*4882a593Smuzhiyun	cmoveq	a2, t5, t8	# .. e1 :
323*4882a593Smuzhiyun	andnot	t8, t3, t8	# e0    :
324*4882a593Smuzhiyun	beq	t8, $u_head	# .. e1 (zdb)
325*4882a593Smuzhiyun
326*4882a593Smuzhiyun	/* At this point we've found a zero in the first partial word of
327*4882a593Smuzhiyun	   the source.  We need to isolate the valid source data and mask
328*4882a593Smuzhiyun	   it into the original destination data.  (Incidentally, we know
329*4882a593Smuzhiyun	   that we'll need at least one byte of that original dest word.) */
330*4882a593Smuzhiyun
331*4882a593Smuzhiyun	ldq_u	t0, 0(a0)	# e0    :
332*4882a593Smuzhiyun	negq	t8, t6		# .. e1 : build bitmask of bytes <= zero
333*4882a593Smuzhiyun	mskqh	t1, t4, t1	# e0    :
334*4882a593Smuzhiyun	and	t6, t8, t12	# .. e1 :
335*4882a593Smuzhiyun	subq	t12, 1, t6	# e0    :
336*4882a593Smuzhiyun	or	t6, t12, t8	# e1    :
337*4882a593Smuzhiyun
338*4882a593Smuzhiyun	zapnot	t2, t8, t2	# e0    : prepare source word; mirror changes
339*4882a593Smuzhiyun	zapnot	t1, t8, t1	# .. e1 : to source validity mask
340*4882a593Smuzhiyun
341*4882a593Smuzhiyun	andnot	t0, t2, t0	# e0    : zero place for source to reside
342*4882a593Smuzhiyun	or	t0, t1, t0	# e1    : and put it there
343*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# e0    :
344*4882a593Smuzhiyun	ret	(t9)		# .. e1 :
345*4882a593Smuzhiyun
346*4882a593Smuzhiyun	.end __stxncpy
347