xref: /OK3568_Linux_fs/kernel/arch/alpha/lib/ev6-stxncpy.S (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun/* SPDX-License-Identifier: GPL-2.0 */
2*4882a593Smuzhiyun/*
3*4882a593Smuzhiyun * arch/alpha/lib/ev6-stxncpy.S
4*4882a593Smuzhiyun * 21264 version contributed by Rick Gorton <rick.gorton@api-networks.com>
5*4882a593Smuzhiyun *
6*4882a593Smuzhiyun * Copy no more than COUNT bytes of the null-terminated string from
7*4882a593Smuzhiyun * SRC to DST.
8*4882a593Smuzhiyun *
9*4882a593Smuzhiyun * This is an internal routine used by strncpy, stpncpy, and strncat.
10*4882a593Smuzhiyun * As such, it uses special linkage conventions to make implementation
11*4882a593Smuzhiyun * of these public functions more efficient.
12*4882a593Smuzhiyun *
13*4882a593Smuzhiyun * On input:
14*4882a593Smuzhiyun *	t9 = return address
15*4882a593Smuzhiyun *	a0 = DST
16*4882a593Smuzhiyun *	a1 = SRC
17*4882a593Smuzhiyun *	a2 = COUNT
18*4882a593Smuzhiyun *
19*4882a593Smuzhiyun * Furthermore, COUNT may not be zero.
20*4882a593Smuzhiyun *
21*4882a593Smuzhiyun * On output:
22*4882a593Smuzhiyun *	t0  = last word written
23*4882a593Smuzhiyun *	t10 = bitmask (with one bit set) indicating the byte position of
24*4882a593Smuzhiyun *	      the end of the range specified by COUNT
25*4882a593Smuzhiyun *	t12 = bitmask (with one bit set) indicating the last byte written
26*4882a593Smuzhiyun *	a0  = unaligned address of the last *word* written
27*4882a593Smuzhiyun *	a2  = the number of full words left in COUNT
28*4882a593Smuzhiyun *
29*4882a593Smuzhiyun * Furthermore, v0, a3-a5, t11, and $at are untouched.
30*4882a593Smuzhiyun *
31*4882a593Smuzhiyun * Much of the information about 21264 scheduling/coding comes from:
32*4882a593Smuzhiyun *	Compiler Writer's Guide for the Alpha 21264
33*4882a593Smuzhiyun *	abbreviated as 'CWG' in other comments here
34*4882a593Smuzhiyun *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
35*4882a593Smuzhiyun * Scheduling notation:
36*4882a593Smuzhiyun *	E	- either cluster
37*4882a593Smuzhiyun *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
38*4882a593Smuzhiyun *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
39*4882a593Smuzhiyun * Try not to change the actual algorithm if possible for consistency.
40*4882a593Smuzhiyun */
41*4882a593Smuzhiyun
42*4882a593Smuzhiyun#include <asm/regdef.h>
43*4882a593Smuzhiyun
44*4882a593Smuzhiyun	.set noat
45*4882a593Smuzhiyun	.set noreorder
46*4882a593Smuzhiyun
47*4882a593Smuzhiyun	.text
48*4882a593Smuzhiyun
49*4882a593Smuzhiyun/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
50*4882a593Smuzhiyun   doesn't like putting the entry point for a procedure somewhere in the
51*4882a593Smuzhiyun   middle of the procedure descriptor.  Work around this by putting the
52*4882a593Smuzhiyun   aligned copy in its own procedure descriptor */
53*4882a593Smuzhiyun
54*4882a593Smuzhiyun
55*4882a593Smuzhiyun	.ent stxncpy_aligned
56*4882a593Smuzhiyun	.align 4
57*4882a593Smuzhiyunstxncpy_aligned:
58*4882a593Smuzhiyun	.frame sp, 0, t9, 0
59*4882a593Smuzhiyun	.prologue 0
60*4882a593Smuzhiyun
61*4882a593Smuzhiyun	/* On entry to this basic block:
62*4882a593Smuzhiyun	   t0 == the first destination word for masking back in
63*4882a593Smuzhiyun	   t1 == the first source word.  */
64*4882a593Smuzhiyun
65*4882a593Smuzhiyun	/* Create the 1st output word and detect 0's in the 1st input word.  */
66*4882a593Smuzhiyun	lda	t2, -1		# E : build a mask against false zero
67*4882a593Smuzhiyun	mskqh	t2, a1, t2	# U :   detection in the src word (stall)
68*4882a593Smuzhiyun	mskqh	t1, a1, t3	# U :
69*4882a593Smuzhiyun	ornot	t1, t2, t2	# E : (stall)
70*4882a593Smuzhiyun
71*4882a593Smuzhiyun	mskql	t0, a1, t0	# U : assemble the first output word
72*4882a593Smuzhiyun	cmpbge	zero, t2, t8	# E : bits set iff null found
73*4882a593Smuzhiyun	or	t0, t3, t0	# E : (stall)
74*4882a593Smuzhiyun	beq	a2, $a_eoc	# U :
75*4882a593Smuzhiyun
76*4882a593Smuzhiyun	bne	t8, $a_eos	# U :
77*4882a593Smuzhiyun	nop
78*4882a593Smuzhiyun	nop
79*4882a593Smuzhiyun	nop
80*4882a593Smuzhiyun
81*4882a593Smuzhiyun	/* On entry to this basic block:
82*4882a593Smuzhiyun	   t0 == a source word not containing a null.  */
83*4882a593Smuzhiyun
84*4882a593Smuzhiyun	/*
85*4882a593Smuzhiyun	 * nops here to:
86*4882a593Smuzhiyun	 *	separate store quads from load quads
87*4882a593Smuzhiyun	 *	limit of 1 bcond/quad to permit training
88*4882a593Smuzhiyun	 */
89*4882a593Smuzhiyun$a_loop:
90*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# L :
91*4882a593Smuzhiyun	addq	a0, 8, a0	# E :
92*4882a593Smuzhiyun	subq	a2, 1, a2	# E :
93*4882a593Smuzhiyun	nop
94*4882a593Smuzhiyun
95*4882a593Smuzhiyun	ldq_u	t0, 0(a1)	# L :
96*4882a593Smuzhiyun	addq	a1, 8, a1	# E :
97*4882a593Smuzhiyun	cmpbge	zero, t0, t8	# E :
98*4882a593Smuzhiyun	beq	a2, $a_eoc      # U :
99*4882a593Smuzhiyun
100*4882a593Smuzhiyun	beq	t8, $a_loop	# U :
101*4882a593Smuzhiyun	nop
102*4882a593Smuzhiyun	nop
103*4882a593Smuzhiyun	nop
104*4882a593Smuzhiyun
105*4882a593Smuzhiyun	/* Take care of the final (partial) word store.  At this point
106*4882a593Smuzhiyun	   the end-of-count bit is set in t8 iff it applies.
107*4882a593Smuzhiyun
108*4882a593Smuzhiyun	   On entry to this basic block we have:
109*4882a593Smuzhiyun	   t0 == the source word containing the null
110*4882a593Smuzhiyun	   t8 == the cmpbge mask that found it.  */
111*4882a593Smuzhiyun
112*4882a593Smuzhiyun$a_eos:
113*4882a593Smuzhiyun	negq	t8, t12		# E : find low bit set
114*4882a593Smuzhiyun	and	t8, t12, t12	# E : (stall)
115*4882a593Smuzhiyun	/* For the sake of the cache, don't read a destination word
116*4882a593Smuzhiyun	   if we're not going to need it.  */
117*4882a593Smuzhiyun	and	t12, 0x80, t6	# E : (stall)
118*4882a593Smuzhiyun	bne	t6, 1f		# U : (stall)
119*4882a593Smuzhiyun
120*4882a593Smuzhiyun	/* We're doing a partial word store and so need to combine
121*4882a593Smuzhiyun	   our source and original destination words.  */
122*4882a593Smuzhiyun	ldq_u	t1, 0(a0)	# L :
123*4882a593Smuzhiyun	subq	t12, 1, t6	# E :
124*4882a593Smuzhiyun	or	t12, t6, t8	# E : (stall)
125*4882a593Smuzhiyun	zapnot	t0, t8, t0	# U : clear src bytes > null (stall)
126*4882a593Smuzhiyun
127*4882a593Smuzhiyun	zap	t1, t8, t1	# .. e1 : clear dst bytes <= null
128*4882a593Smuzhiyun	or	t0, t1, t0	# e1    : (stall)
129*4882a593Smuzhiyun	nop
130*4882a593Smuzhiyun	nop
131*4882a593Smuzhiyun
132*4882a593Smuzhiyun1:	stq_u	t0, 0(a0)	# L :
133*4882a593Smuzhiyun	ret	(t9)		# L0 : Latency=3
134*4882a593Smuzhiyun	nop
135*4882a593Smuzhiyun	nop
136*4882a593Smuzhiyun
137*4882a593Smuzhiyun	/* Add the end-of-count bit to the eos detection bitmask.  */
138*4882a593Smuzhiyun$a_eoc:
139*4882a593Smuzhiyun	or	t10, t8, t8	# E :
140*4882a593Smuzhiyun	br	$a_eos		# L0 : Latency=3
141*4882a593Smuzhiyun	nop
142*4882a593Smuzhiyun	nop
143*4882a593Smuzhiyun
144*4882a593Smuzhiyun	.end stxncpy_aligned
145*4882a593Smuzhiyun
146*4882a593Smuzhiyun	.align 4
147*4882a593Smuzhiyun	.ent __stxncpy
148*4882a593Smuzhiyun	.globl __stxncpy
149*4882a593Smuzhiyun__stxncpy:
150*4882a593Smuzhiyun	.frame sp, 0, t9, 0
151*4882a593Smuzhiyun	.prologue 0
152*4882a593Smuzhiyun
153*4882a593Smuzhiyun	/* Are source and destination co-aligned?  */
154*4882a593Smuzhiyun	xor	a0, a1, t1	# E :
155*4882a593Smuzhiyun	and	a0, 7, t0	# E : find dest misalignment
156*4882a593Smuzhiyun	and	t1, 7, t1	# E : (stall)
157*4882a593Smuzhiyun	addq	a2, t0, a2	# E : bias count by dest misalignment (stall)
158*4882a593Smuzhiyun
159*4882a593Smuzhiyun	subq	a2, 1, a2	# E :
160*4882a593Smuzhiyun	and	a2, 7, t2	# E : (stall)
161*4882a593Smuzhiyun	srl	a2, 3, a2	# U : a2 = loop counter = (count - 1)/8 (stall)
162*4882a593Smuzhiyun	addq	zero, 1, t10	# E :
163*4882a593Smuzhiyun
164*4882a593Smuzhiyun	sll	t10, t2, t10	# U : t10 = bitmask of last count byte
165*4882a593Smuzhiyun	bne	t1, $unaligned	# U :
166*4882a593Smuzhiyun	/* We are co-aligned; take care of a partial first word.  */
167*4882a593Smuzhiyun	ldq_u	t1, 0(a1)	# L : load first src word
168*4882a593Smuzhiyun	addq	a1, 8, a1	# E :
169*4882a593Smuzhiyun
170*4882a593Smuzhiyun	beq	t0, stxncpy_aligned     # U : avoid loading dest word if not needed
171*4882a593Smuzhiyun	ldq_u	t0, 0(a0)	# L :
172*4882a593Smuzhiyun	nop
173*4882a593Smuzhiyun	nop
174*4882a593Smuzhiyun
175*4882a593Smuzhiyun	br	stxncpy_aligned	# .. e1 :
176*4882a593Smuzhiyun	nop
177*4882a593Smuzhiyun	nop
178*4882a593Smuzhiyun	nop
179*4882a593Smuzhiyun
180*4882a593Smuzhiyun
181*4882a593Smuzhiyun
182*4882a593Smuzhiyun/* The source and destination are not co-aligned.  Align the destination
183*4882a593Smuzhiyun   and cope.  We have to be very careful about not reading too much and
184*4882a593Smuzhiyun   causing a SEGV.  */
185*4882a593Smuzhiyun
186*4882a593Smuzhiyun	.align 4
187*4882a593Smuzhiyun$u_head:
188*4882a593Smuzhiyun	/* We know just enough now to be able to assemble the first
189*4882a593Smuzhiyun	   full source word.  We can still find a zero at the end of it
190*4882a593Smuzhiyun	   that prevents us from outputting the whole thing.
191*4882a593Smuzhiyun
192*4882a593Smuzhiyun	   On entry to this basic block:
193*4882a593Smuzhiyun	   t0 == the first dest word, unmasked
194*4882a593Smuzhiyun	   t1 == the shifted low bits of the first source word
195*4882a593Smuzhiyun	   t6 == bytemask that is -1 in dest word bytes */
196*4882a593Smuzhiyun
197*4882a593Smuzhiyun	ldq_u	t2, 8(a1)	# L : Latency=3 load second src word
198*4882a593Smuzhiyun	addq	a1, 8, a1	# E :
199*4882a593Smuzhiyun	mskql	t0, a0, t0	# U : mask trailing garbage in dst
200*4882a593Smuzhiyun	extqh	t2, a1, t4	# U : (3 cycle stall on t2)
201*4882a593Smuzhiyun
202*4882a593Smuzhiyun	or	t1, t4, t1	# E : first aligned src word complete (stall)
203*4882a593Smuzhiyun	mskqh	t1, a0, t1	# U : mask leading garbage in src (stall)
204*4882a593Smuzhiyun	or	t0, t1, t0	# E : first output word complete (stall)
205*4882a593Smuzhiyun	or	t0, t6, t6	# E : mask original data for zero test (stall)
206*4882a593Smuzhiyun
207*4882a593Smuzhiyun	cmpbge	zero, t6, t8	# E :
208*4882a593Smuzhiyun	beq	a2, $u_eocfin	# U :
209*4882a593Smuzhiyun	lda	t6, -1		# E :
210*4882a593Smuzhiyun	nop
211*4882a593Smuzhiyun
212*4882a593Smuzhiyun	bne	t8, $u_final	# U :
213*4882a593Smuzhiyun	mskql	t6, a1, t6	# U : mask out bits already seen
214*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# L : store first output word
215*4882a593Smuzhiyun	or      t6, t2, t2	# E : (stall)
216*4882a593Smuzhiyun
217*4882a593Smuzhiyun	cmpbge	zero, t2, t8	# E : find nulls in second partial
218*4882a593Smuzhiyun	addq	a0, 8, a0	# E :
219*4882a593Smuzhiyun	subq	a2, 1, a2	# E :
220*4882a593Smuzhiyun	bne	t8, $u_late_head_exit	# U :
221*4882a593Smuzhiyun
222*4882a593Smuzhiyun	/* Finally, we've got all the stupid leading edge cases taken care
223*4882a593Smuzhiyun	   of and we can set up to enter the main loop.  */
224*4882a593Smuzhiyun	extql	t2, a1, t1	# U : position hi-bits of lo word
225*4882a593Smuzhiyun	beq	a2, $u_eoc	# U :
226*4882a593Smuzhiyun	ldq_u	t2, 8(a1)	# L : read next high-order source word
227*4882a593Smuzhiyun	addq	a1, 8, a1	# E :
228*4882a593Smuzhiyun
229*4882a593Smuzhiyun	extqh	t2, a1, t0	# U : position lo-bits of hi word (stall)
230*4882a593Smuzhiyun	cmpbge	zero, t2, t8	# E :
231*4882a593Smuzhiyun	nop
232*4882a593Smuzhiyun	bne	t8, $u_eos	# U :
233*4882a593Smuzhiyun
234*4882a593Smuzhiyun	/* Unaligned copy main loop.  In order to avoid reading too much,
235*4882a593Smuzhiyun	   the loop is structured to detect zeros in aligned source words.
236*4882a593Smuzhiyun	   This has, unfortunately, effectively pulled half of a loop
237*4882a593Smuzhiyun	   iteration out into the head and half into the tail, but it does
238*4882a593Smuzhiyun	   prevent nastiness from accumulating in the very thing we want
239*4882a593Smuzhiyun	   to run as fast as possible.
240*4882a593Smuzhiyun
241*4882a593Smuzhiyun	   On entry to this basic block:
242*4882a593Smuzhiyun	   t0 == the shifted low-order bits from the current source word
243*4882a593Smuzhiyun	   t1 == the shifted high-order bits from the previous source word
244*4882a593Smuzhiyun	   t2 == the unshifted current source word
245*4882a593Smuzhiyun
246*4882a593Smuzhiyun	   We further know that t2 does not contain a null terminator.  */
247*4882a593Smuzhiyun
248*4882a593Smuzhiyun	.align 4
249*4882a593Smuzhiyun$u_loop:
250*4882a593Smuzhiyun	or	t0, t1, t0	# E : current dst word now complete
251*4882a593Smuzhiyun	subq	a2, 1, a2	# E : decrement word count
252*4882a593Smuzhiyun	extql	t2, a1, t1	# U : extract low bits for next time
253*4882a593Smuzhiyun	addq	a0, 8, a0	# E :
254*4882a593Smuzhiyun
255*4882a593Smuzhiyun	stq_u	t0, -8(a0)	# U : save the current word
256*4882a593Smuzhiyun	beq	a2, $u_eoc	# U :
257*4882a593Smuzhiyun	ldq_u	t2, 8(a1)	# U : Latency=3 load high word for next time
258*4882a593Smuzhiyun	addq	a1, 8, a1	# E :
259*4882a593Smuzhiyun
260*4882a593Smuzhiyun	extqh	t2, a1, t0	# U : extract low bits (2 cycle stall)
261*4882a593Smuzhiyun	cmpbge	zero, t2, t8	# E : test new word for eos
262*4882a593Smuzhiyun	nop
263*4882a593Smuzhiyun	beq	t8, $u_loop	# U :
264*4882a593Smuzhiyun
265*4882a593Smuzhiyun	/* We've found a zero somewhere in the source word we just read.
266*4882a593Smuzhiyun	   If it resides in the lower half, we have one (probably partial)
267*4882a593Smuzhiyun	   word to write out, and if it resides in the upper half, we
268*4882a593Smuzhiyun	   have one full and one partial word left to write out.
269*4882a593Smuzhiyun
270*4882a593Smuzhiyun	   On entry to this basic block:
271*4882a593Smuzhiyun	   t0 == the shifted low-order bits from the current source word
272*4882a593Smuzhiyun	   t1 == the shifted high-order bits from the previous source word
273*4882a593Smuzhiyun	   t2 == the unshifted current source word.  */
274*4882a593Smuzhiyun$u_eos:
275*4882a593Smuzhiyun	or	t0, t1, t0	# E : first (partial) source word complete
276*4882a593Smuzhiyun	nop
277*4882a593Smuzhiyun	cmpbge	zero, t0, t8	# E : is the null in this first bit? (stall)
278*4882a593Smuzhiyun	bne	t8, $u_final	# U : (stall)
279*4882a593Smuzhiyun
280*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# L : the null was in the high-order bits
281*4882a593Smuzhiyun	addq	a0, 8, a0	# E :
282*4882a593Smuzhiyun	subq	a2, 1, a2	# E :
283*4882a593Smuzhiyun	nop
284*4882a593Smuzhiyun
285*4882a593Smuzhiyun$u_late_head_exit:
286*4882a593Smuzhiyun	extql	t2, a1, t0	# U :
287*4882a593Smuzhiyun	cmpbge	zero, t0, t8	# E :
288*4882a593Smuzhiyun	or	t8, t10, t6	# E : (stall)
289*4882a593Smuzhiyun	cmoveq	a2, t6, t8	# E : Latency=2, extra map slot (stall)
290*4882a593Smuzhiyun
291*4882a593Smuzhiyun	/* Take care of a final (probably partial) result word.
292*4882a593Smuzhiyun	   On entry to this basic block:
293*4882a593Smuzhiyun	   t0 == assembled source word
294*4882a593Smuzhiyun	   t8 == cmpbge mask that found the null.  */
295*4882a593Smuzhiyun$u_final:
296*4882a593Smuzhiyun	negq	t8, t6		# E : isolate low bit set
297*4882a593Smuzhiyun	and	t6, t8, t12	# E : (stall)
298*4882a593Smuzhiyun	and	t12, 0x80, t6	# E : avoid dest word load if we can (stall)
299*4882a593Smuzhiyun	bne	t6, 1f		# U : (stall)
300*4882a593Smuzhiyun
301*4882a593Smuzhiyun	ldq_u	t1, 0(a0)	# L :
302*4882a593Smuzhiyun	subq	t12, 1, t6	# E :
303*4882a593Smuzhiyun	or	t6, t12, t8	# E : (stall)
304*4882a593Smuzhiyun	zapnot	t0, t8, t0	# U : kill source bytes > null
305*4882a593Smuzhiyun
306*4882a593Smuzhiyun	zap	t1, t8, t1	# U : kill dest bytes <= null
307*4882a593Smuzhiyun	or	t0, t1, t0	# E : (stall)
308*4882a593Smuzhiyun	nop
309*4882a593Smuzhiyun	nop
310*4882a593Smuzhiyun
311*4882a593Smuzhiyun1:	stq_u	t0, 0(a0)	# L :
312*4882a593Smuzhiyun	ret	(t9)		# L0 : Latency=3
313*4882a593Smuzhiyun
314*4882a593Smuzhiyun	  /* Got to end-of-count before end of string.
315*4882a593Smuzhiyun	     On entry to this basic block:
316*4882a593Smuzhiyun	     t1 == the shifted high-order bits from the previous source word  */
317*4882a593Smuzhiyun$u_eoc:
318*4882a593Smuzhiyun	and	a1, 7, t6	# E : avoid final load if possible
319*4882a593Smuzhiyun	sll	t10, t6, t6	# U : (stall)
320*4882a593Smuzhiyun	and	t6, 0xff, t6	# E : (stall)
321*4882a593Smuzhiyun	bne	t6, 1f		# U : (stall)
322*4882a593Smuzhiyun
323*4882a593Smuzhiyun	ldq_u	t2, 8(a1)	# L : load final src word
324*4882a593Smuzhiyun	nop
325*4882a593Smuzhiyun	extqh	t2, a1, t0	# U : extract low bits for last word (stall)
326*4882a593Smuzhiyun	or	t1, t0, t1	# E : (stall)
327*4882a593Smuzhiyun
328*4882a593Smuzhiyun1:	cmpbge	zero, t1, t8	# E :
329*4882a593Smuzhiyun	mov	t1, t0		# E :
330*4882a593Smuzhiyun
331*4882a593Smuzhiyun$u_eocfin:			# end-of-count, final word
332*4882a593Smuzhiyun	or	t10, t8, t8	# E :
333*4882a593Smuzhiyun	br	$u_final	# L0 : Latency=3
334*4882a593Smuzhiyun
335*4882a593Smuzhiyun	/* Unaligned copy entry point.  */
336*4882a593Smuzhiyun	.align 4
337*4882a593Smuzhiyun$unaligned:
338*4882a593Smuzhiyun
339*4882a593Smuzhiyun	ldq_u	t1, 0(a1)	# L : load first source word
340*4882a593Smuzhiyun	and	a0, 7, t4	# E : find dest misalignment
341*4882a593Smuzhiyun	and	a1, 7, t5	# E : find src misalignment
342*4882a593Smuzhiyun	/* Conditionally load the first destination word and a bytemask
343*4882a593Smuzhiyun	   with 0xff indicating that the destination byte is sacrosanct.  */
344*4882a593Smuzhiyun	mov	zero, t0	# E :
345*4882a593Smuzhiyun
346*4882a593Smuzhiyun	mov	zero, t6	# E :
347*4882a593Smuzhiyun	beq	t4, 1f		# U :
348*4882a593Smuzhiyun	ldq_u	t0, 0(a0)	# L :
349*4882a593Smuzhiyun	lda	t6, -1		# E :
350*4882a593Smuzhiyun
351*4882a593Smuzhiyun	mskql	t6, a0, t6	# U :
352*4882a593Smuzhiyun	nop
353*4882a593Smuzhiyun	nop
354*4882a593Smuzhiyun	subq	a1, t4, a1	# E : sub dest misalignment from src addr
355*4882a593Smuzhiyun
356*4882a593Smuzhiyun	/* If source misalignment is larger than dest misalignment, we need
357*4882a593Smuzhiyun	   extra startup checks to avoid SEGV.  */
358*4882a593Smuzhiyun
359*4882a593Smuzhiyun1:	cmplt	t4, t5, t12	# E :
360*4882a593Smuzhiyun	extql	t1, a1, t1	# U : shift src into place
361*4882a593Smuzhiyun	lda	t2, -1		# E : for creating masks later
362*4882a593Smuzhiyun	beq	t12, $u_head	# U : (stall)
363*4882a593Smuzhiyun
364*4882a593Smuzhiyun	extql	t2, a1, t2	# U :
365*4882a593Smuzhiyun	cmpbge	zero, t1, t8	# E : is there a zero?
366*4882a593Smuzhiyun	andnot	t2, t6, t2	# E : dest mask for a single word copy
367*4882a593Smuzhiyun	or	t8, t10, t5	# E : test for end-of-count too
368*4882a593Smuzhiyun
369*4882a593Smuzhiyun	cmpbge	zero, t2, t3	# E :
370*4882a593Smuzhiyun	cmoveq	a2, t5, t8	# E : Latency=2, extra map slot
371*4882a593Smuzhiyun	nop			# E : keep with cmoveq
372*4882a593Smuzhiyun	andnot	t8, t3, t8	# E : (stall)
373*4882a593Smuzhiyun
374*4882a593Smuzhiyun	beq	t8, $u_head	# U :
375*4882a593Smuzhiyun	/* At this point we've found a zero in the first partial word of
376*4882a593Smuzhiyun	   the source.  We need to isolate the valid source data and mask
377*4882a593Smuzhiyun	   it into the original destination data.  (Incidentally, we know
378*4882a593Smuzhiyun	   that we'll need at least one byte of that original dest word.) */
379*4882a593Smuzhiyun	ldq_u	t0, 0(a0)	# L :
380*4882a593Smuzhiyun	negq	t8, t6		# E : build bitmask of bytes <= zero
381*4882a593Smuzhiyun	mskqh	t1, t4, t1	# U :
382*4882a593Smuzhiyun
383*4882a593Smuzhiyun	and	t6, t8, t12	# E :
384*4882a593Smuzhiyun	subq	t12, 1, t6	# E : (stall)
385*4882a593Smuzhiyun	or	t6, t12, t8	# E : (stall)
386*4882a593Smuzhiyun	zapnot	t2, t8, t2	# U : prepare source word; mirror changes (stall)
387*4882a593Smuzhiyun
388*4882a593Smuzhiyun	zapnot	t1, t8, t1	# U : to source validity mask
389*4882a593Smuzhiyun	andnot	t0, t2, t0	# E : zero place for source to reside
390*4882a593Smuzhiyun	or	t0, t1, t0	# E : and put it there (stall both t0, t1)
391*4882a593Smuzhiyun	stq_u	t0, 0(a0)	# L : (stall)
392*4882a593Smuzhiyun
393*4882a593Smuzhiyun	ret	(t9)		# L0 : Latency=3
394*4882a593Smuzhiyun	nop
395*4882a593Smuzhiyun	nop
396*4882a593Smuzhiyun	nop
397*4882a593Smuzhiyun
398*4882a593Smuzhiyun	.end __stxncpy
399