xref: /OK3568_Linux_fs/kernel/Documentation/networking/can.rst (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyun===================================
2*4882a593SmuzhiyunSocketCAN - Controller Area Network
3*4882a593Smuzhiyun===================================
4*4882a593Smuzhiyun
5*4882a593SmuzhiyunOverview / What is SocketCAN
6*4882a593Smuzhiyun============================
7*4882a593Smuzhiyun
8*4882a593SmuzhiyunThe socketcan package is an implementation of CAN protocols
9*4882a593Smuzhiyun(Controller Area Network) for Linux.  CAN is a networking technology
10*4882a593Smuzhiyunwhich has widespread use in automation, embedded devices, and
11*4882a593Smuzhiyunautomotive fields.  While there have been other CAN implementations
12*4882a593Smuzhiyunfor Linux based on character devices, SocketCAN uses the Berkeley
13*4882a593Smuzhiyunsocket API, the Linux network stack and implements the CAN device
14*4882a593Smuzhiyundrivers as network interfaces.  The CAN socket API has been designed
15*4882a593Smuzhiyunas similar as possible to the TCP/IP protocols to allow programmers,
16*4882a593Smuzhiyunfamiliar with network programming, to easily learn how to use CAN
17*4882a593Smuzhiyunsockets.
18*4882a593Smuzhiyun
19*4882a593Smuzhiyun
20*4882a593Smuzhiyun.. _socketcan-motivation:
21*4882a593Smuzhiyun
22*4882a593SmuzhiyunMotivation / Why Using the Socket API
23*4882a593Smuzhiyun=====================================
24*4882a593Smuzhiyun
25*4882a593SmuzhiyunThere have been CAN implementations for Linux before SocketCAN so the
26*4882a593Smuzhiyunquestion arises, why we have started another project.  Most existing
27*4882a593Smuzhiyunimplementations come as a device driver for some CAN hardware, they
28*4882a593Smuzhiyunare based on character devices and provide comparatively little
29*4882a593Smuzhiyunfunctionality.  Usually, there is only a hardware-specific device
30*4882a593Smuzhiyundriver which provides a character device interface to send and
31*4882a593Smuzhiyunreceive raw CAN frames, directly to/from the controller hardware.
32*4882a593SmuzhiyunQueueing of frames and higher-level transport protocols like ISO-TP
33*4882a593Smuzhiyunhave to be implemented in user space applications.  Also, most
34*4882a593Smuzhiyuncharacter-device implementations support only one single process to
35*4882a593Smuzhiyunopen the device at a time, similar to a serial interface.  Exchanging
36*4882a593Smuzhiyunthe CAN controller requires employment of another device driver and
37*4882a593Smuzhiyunoften the need for adaption of large parts of the application to the
38*4882a593Smuzhiyunnew driver's API.
39*4882a593Smuzhiyun
40*4882a593SmuzhiyunSocketCAN was designed to overcome all of these limitations.  A new
41*4882a593Smuzhiyunprotocol family has been implemented which provides a socket interface
42*4882a593Smuzhiyunto user space applications and which builds upon the Linux network
43*4882a593Smuzhiyunlayer, enabling use all of the provided queueing functionality.  A device
44*4882a593Smuzhiyundriver for CAN controller hardware registers itself with the Linux
45*4882a593Smuzhiyunnetwork layer as a network device, so that CAN frames from the
46*4882a593Smuzhiyuncontroller can be passed up to the network layer and on to the CAN
47*4882a593Smuzhiyunprotocol family module and also vice-versa.  Also, the protocol family
48*4882a593Smuzhiyunmodule provides an API for transport protocol modules to register, so
49*4882a593Smuzhiyunthat any number of transport protocols can be loaded or unloaded
50*4882a593Smuzhiyundynamically.  In fact, the can core module alone does not provide any
51*4882a593Smuzhiyunprotocol and cannot be used without loading at least one additional
52*4882a593Smuzhiyunprotocol module.  Multiple sockets can be opened at the same time,
53*4882a593Smuzhiyunon different or the same protocol module and they can listen/send
54*4882a593Smuzhiyunframes on different or the same CAN IDs.  Several sockets listening on
55*4882a593Smuzhiyunthe same interface for frames with the same CAN ID are all passed the
56*4882a593Smuzhiyunsame received matching CAN frames.  An application wishing to
57*4882a593Smuzhiyuncommunicate using a specific transport protocol, e.g. ISO-TP, just
58*4882a593Smuzhiyunselects that protocol when opening the socket, and then can read and
59*4882a593Smuzhiyunwrite application data byte streams, without having to deal with
60*4882a593SmuzhiyunCAN-IDs, frames, etc.
61*4882a593Smuzhiyun
62*4882a593SmuzhiyunSimilar functionality visible from user-space could be provided by a
63*4882a593Smuzhiyuncharacter device, too, but this would lead to a technically inelegant
64*4882a593Smuzhiyunsolution for a couple of reasons:
65*4882a593Smuzhiyun
66*4882a593Smuzhiyun* **Intricate usage:**  Instead of passing a protocol argument to
67*4882a593Smuzhiyun  socket(2) and using bind(2) to select a CAN interface and CAN ID, an
68*4882a593Smuzhiyun  application would have to do all these operations using ioctl(2)s.
69*4882a593Smuzhiyun
70*4882a593Smuzhiyun* **Code duplication:**  A character device cannot make use of the Linux
71*4882a593Smuzhiyun  network queueing code, so all that code would have to be duplicated
72*4882a593Smuzhiyun  for CAN networking.
73*4882a593Smuzhiyun
74*4882a593Smuzhiyun* **Abstraction:**  In most existing character-device implementations, the
75*4882a593Smuzhiyun  hardware-specific device driver for a CAN controller directly
76*4882a593Smuzhiyun  provides the character device for the application to work with.
77*4882a593Smuzhiyun  This is at least very unusual in Unix systems for both, char and
78*4882a593Smuzhiyun  block devices.  For example you don't have a character device for a
79*4882a593Smuzhiyun  certain UART of a serial interface, a certain sound chip in your
80*4882a593Smuzhiyun  computer, a SCSI or IDE controller providing access to your hard
81*4882a593Smuzhiyun  disk or tape streamer device.  Instead, you have abstraction layers
82*4882a593Smuzhiyun  which provide a unified character or block device interface to the
83*4882a593Smuzhiyun  application on the one hand, and a interface for hardware-specific
84*4882a593Smuzhiyun  device drivers on the other hand.  These abstractions are provided
85*4882a593Smuzhiyun  by subsystems like the tty layer, the audio subsystem or the SCSI
86*4882a593Smuzhiyun  and IDE subsystems for the devices mentioned above.
87*4882a593Smuzhiyun
88*4882a593Smuzhiyun  The easiest way to implement a CAN device driver is as a character
89*4882a593Smuzhiyun  device without such a (complete) abstraction layer, as is done by most
90*4882a593Smuzhiyun  existing drivers.  The right way, however, would be to add such a
91*4882a593Smuzhiyun  layer with all the functionality like registering for certain CAN
92*4882a593Smuzhiyun  IDs, supporting several open file descriptors and (de)multiplexing
93*4882a593Smuzhiyun  CAN frames between them, (sophisticated) queueing of CAN frames, and
94*4882a593Smuzhiyun  providing an API for device drivers to register with.  However, then
95*4882a593Smuzhiyun  it would be no more difficult, or may be even easier, to use the
96*4882a593Smuzhiyun  networking framework provided by the Linux kernel, and this is what
97*4882a593Smuzhiyun  SocketCAN does.
98*4882a593Smuzhiyun
99*4882a593SmuzhiyunThe use of the networking framework of the Linux kernel is just the
100*4882a593Smuzhiyunnatural and most appropriate way to implement CAN for Linux.
101*4882a593Smuzhiyun
102*4882a593Smuzhiyun
103*4882a593Smuzhiyun.. _socketcan-concept:
104*4882a593Smuzhiyun
105*4882a593SmuzhiyunSocketCAN Concept
106*4882a593Smuzhiyun=================
107*4882a593Smuzhiyun
108*4882a593SmuzhiyunAs described in :ref:`socketcan-motivation` the main goal of SocketCAN is to
109*4882a593Smuzhiyunprovide a socket interface to user space applications which builds
110*4882a593Smuzhiyunupon the Linux network layer. In contrast to the commonly known
111*4882a593SmuzhiyunTCP/IP and ethernet networking, the CAN bus is a broadcast-only(!)
112*4882a593Smuzhiyunmedium that has no MAC-layer addressing like ethernet. The CAN-identifier
113*4882a593Smuzhiyun(can_id) is used for arbitration on the CAN-bus. Therefore the CAN-IDs
114*4882a593Smuzhiyunhave to be chosen uniquely on the bus. When designing a CAN-ECU
115*4882a593Smuzhiyunnetwork the CAN-IDs are mapped to be sent by a specific ECU.
116*4882a593SmuzhiyunFor this reason a CAN-ID can be treated best as a kind of source address.
117*4882a593Smuzhiyun
118*4882a593Smuzhiyun
119*4882a593Smuzhiyun.. _socketcan-receive-lists:
120*4882a593Smuzhiyun
121*4882a593SmuzhiyunReceive Lists
122*4882a593Smuzhiyun-------------
123*4882a593Smuzhiyun
124*4882a593SmuzhiyunThe network transparent access of multiple applications leads to the
125*4882a593Smuzhiyunproblem that different applications may be interested in the same
126*4882a593SmuzhiyunCAN-IDs from the same CAN network interface. The SocketCAN core
127*4882a593Smuzhiyunmodule - which implements the protocol family CAN - provides several
128*4882a593Smuzhiyunhigh efficient receive lists for this reason. If e.g. a user space
129*4882a593Smuzhiyunapplication opens a CAN RAW socket, the raw protocol module itself
130*4882a593Smuzhiyunrequests the (range of) CAN-IDs from the SocketCAN core that are
131*4882a593Smuzhiyunrequested by the user. The subscription and unsubscription of
132*4882a593SmuzhiyunCAN-IDs can be done for specific CAN interfaces or for all(!) known
133*4882a593SmuzhiyunCAN interfaces with the can_rx_(un)register() functions provided to
134*4882a593SmuzhiyunCAN protocol modules by the SocketCAN core (see :ref:`socketcan-core-module`).
135*4882a593SmuzhiyunTo optimize the CPU usage at runtime the receive lists are split up
136*4882a593Smuzhiyuninto several specific lists per device that match the requested
137*4882a593Smuzhiyunfilter complexity for a given use-case.
138*4882a593Smuzhiyun
139*4882a593Smuzhiyun
140*4882a593Smuzhiyun.. _socketcan-local-loopback1:
141*4882a593Smuzhiyun
142*4882a593SmuzhiyunLocal Loopback of Sent Frames
143*4882a593Smuzhiyun-----------------------------
144*4882a593Smuzhiyun
145*4882a593SmuzhiyunAs known from other networking concepts the data exchanging
146*4882a593Smuzhiyunapplications may run on the same or different nodes without any
147*4882a593Smuzhiyunchange (except for the according addressing information):
148*4882a593Smuzhiyun
149*4882a593Smuzhiyun.. code::
150*4882a593Smuzhiyun
151*4882a593Smuzhiyun	 ___   ___   ___                   _______   ___
152*4882a593Smuzhiyun	| _ | | _ | | _ |                 | _   _ | | _ |
153*4882a593Smuzhiyun	||A|| ||B|| ||C||                 ||A| |B|| ||C||
154*4882a593Smuzhiyun	|___| |___| |___|                 |_______| |___|
155*4882a593Smuzhiyun	  |     |     |                       |       |
156*4882a593Smuzhiyun	-----------------(1)- CAN bus -(2)---------------
157*4882a593Smuzhiyun
158*4882a593SmuzhiyunTo ensure that application A receives the same information in the
159*4882a593Smuzhiyunexample (2) as it would receive in example (1) there is need for
160*4882a593Smuzhiyunsome kind of local loopback of the sent CAN frames on the appropriate
161*4882a593Smuzhiyunnode.
162*4882a593Smuzhiyun
163*4882a593SmuzhiyunThe Linux network devices (by default) just can handle the
164*4882a593Smuzhiyuntransmission and reception of media dependent frames. Due to the
165*4882a593Smuzhiyunarbitration on the CAN bus the transmission of a low prio CAN-ID
166*4882a593Smuzhiyunmay be delayed by the reception of a high prio CAN frame. To
167*4882a593Smuzhiyunreflect the correct [#f1]_ traffic on the node the loopback of the sent
168*4882a593Smuzhiyundata has to be performed right after a successful transmission. If
169*4882a593Smuzhiyunthe CAN network interface is not capable of performing the loopback for
170*4882a593Smuzhiyunsome reason the SocketCAN core can do this task as a fallback solution.
171*4882a593SmuzhiyunSee :ref:`socketcan-local-loopback1` for details (recommended).
172*4882a593Smuzhiyun
173*4882a593SmuzhiyunThe loopback functionality is enabled by default to reflect standard
174*4882a593Smuzhiyunnetworking behaviour for CAN applications. Due to some requests from
175*4882a593Smuzhiyunthe RT-SocketCAN group the loopback optionally may be disabled for each
176*4882a593Smuzhiyunseparate socket. See sockopts from the CAN RAW sockets in :ref:`socketcan-raw-sockets`.
177*4882a593Smuzhiyun
178*4882a593Smuzhiyun.. [#f1] you really like to have this when you're running analyser
179*4882a593Smuzhiyun       tools like 'candump' or 'cansniffer' on the (same) node.
180*4882a593Smuzhiyun
181*4882a593Smuzhiyun
182*4882a593Smuzhiyun.. _socketcan-network-problem-notifications:
183*4882a593Smuzhiyun
184*4882a593SmuzhiyunNetwork Problem Notifications
185*4882a593Smuzhiyun-----------------------------
186*4882a593Smuzhiyun
187*4882a593SmuzhiyunThe use of the CAN bus may lead to several problems on the physical
188*4882a593Smuzhiyunand media access control layer. Detecting and logging of these lower
189*4882a593Smuzhiyunlayer problems is a vital requirement for CAN users to identify
190*4882a593Smuzhiyunhardware issues on the physical transceiver layer as well as
191*4882a593Smuzhiyunarbitration problems and error frames caused by the different
192*4882a593SmuzhiyunECUs. The occurrence of detected errors are important for diagnosis
193*4882a593Smuzhiyunand have to be logged together with the exact timestamp. For this
194*4882a593Smuzhiyunreason the CAN interface driver can generate so called Error Message
195*4882a593SmuzhiyunFrames that can optionally be passed to the user application in the
196*4882a593Smuzhiyunsame way as other CAN frames. Whenever an error on the physical layer
197*4882a593Smuzhiyunor the MAC layer is detected (e.g. by the CAN controller) the driver
198*4882a593Smuzhiyuncreates an appropriate error message frame. Error messages frames can
199*4882a593Smuzhiyunbe requested by the user application using the common CAN filter
200*4882a593Smuzhiyunmechanisms. Inside this filter definition the (interested) type of
201*4882a593Smuzhiyunerrors may be selected. The reception of error messages is disabled
202*4882a593Smuzhiyunby default. The format of the CAN error message frame is briefly
203*4882a593Smuzhiyundescribed in the Linux header file "include/uapi/linux/can/error.h".
204*4882a593Smuzhiyun
205*4882a593Smuzhiyun
206*4882a593SmuzhiyunHow to use SocketCAN
207*4882a593Smuzhiyun====================
208*4882a593Smuzhiyun
209*4882a593SmuzhiyunLike TCP/IP, you first need to open a socket for communicating over a
210*4882a593SmuzhiyunCAN network. Since SocketCAN implements a new protocol family, you
211*4882a593Smuzhiyunneed to pass PF_CAN as the first argument to the socket(2) system
212*4882a593Smuzhiyuncall. Currently, there are two CAN protocols to choose from, the raw
213*4882a593Smuzhiyunsocket protocol and the broadcast manager (BCM). So to open a socket,
214*4882a593Smuzhiyunyou would write::
215*4882a593Smuzhiyun
216*4882a593Smuzhiyun    s = socket(PF_CAN, SOCK_RAW, CAN_RAW);
217*4882a593Smuzhiyun
218*4882a593Smuzhiyunand::
219*4882a593Smuzhiyun
220*4882a593Smuzhiyun    s = socket(PF_CAN, SOCK_DGRAM, CAN_BCM);
221*4882a593Smuzhiyun
222*4882a593Smuzhiyunrespectively.  After the successful creation of the socket, you would
223*4882a593Smuzhiyunnormally use the bind(2) system call to bind the socket to a CAN
224*4882a593Smuzhiyuninterface (which is different from TCP/IP due to different addressing
225*4882a593Smuzhiyun- see :ref:`socketcan-concept`). After binding (CAN_RAW) or connecting (CAN_BCM)
226*4882a593Smuzhiyunthe socket, you can read(2) and write(2) from/to the socket or use
227*4882a593Smuzhiyunsend(2), sendto(2), sendmsg(2) and the recv* counterpart operations
228*4882a593Smuzhiyunon the socket as usual. There are also CAN specific socket options
229*4882a593Smuzhiyundescribed below.
230*4882a593Smuzhiyun
231*4882a593SmuzhiyunThe basic CAN frame structure and the sockaddr structure are defined
232*4882a593Smuzhiyunin include/linux/can.h:
233*4882a593Smuzhiyun
234*4882a593Smuzhiyun.. code-block:: C
235*4882a593Smuzhiyun
236*4882a593Smuzhiyun    struct can_frame {
237*4882a593Smuzhiyun            canid_t can_id;  /* 32 bit CAN_ID + EFF/RTR/ERR flags */
238*4882a593Smuzhiyun            __u8    can_dlc; /* frame payload length in byte (0 .. 8) */
239*4882a593Smuzhiyun            __u8    __pad;   /* padding */
240*4882a593Smuzhiyun            __u8    __res0;  /* reserved / padding */
241*4882a593Smuzhiyun            __u8    __res1;  /* reserved / padding */
242*4882a593Smuzhiyun            __u8    data[8] __attribute__((aligned(8)));
243*4882a593Smuzhiyun    };
244*4882a593Smuzhiyun
245*4882a593SmuzhiyunThe alignment of the (linear) payload data[] to a 64bit boundary
246*4882a593Smuzhiyunallows the user to define their own structs and unions to easily access
247*4882a593Smuzhiyunthe CAN payload. There is no given byteorder on the CAN bus by
248*4882a593Smuzhiyundefault. A read(2) system call on a CAN_RAW socket transfers a
249*4882a593Smuzhiyunstruct can_frame to the user space.
250*4882a593Smuzhiyun
251*4882a593SmuzhiyunThe sockaddr_can structure has an interface index like the
252*4882a593SmuzhiyunPF_PACKET socket, that also binds to a specific interface:
253*4882a593Smuzhiyun
254*4882a593Smuzhiyun.. code-block:: C
255*4882a593Smuzhiyun
256*4882a593Smuzhiyun    struct sockaddr_can {
257*4882a593Smuzhiyun            sa_family_t can_family;
258*4882a593Smuzhiyun            int         can_ifindex;
259*4882a593Smuzhiyun            union {
260*4882a593Smuzhiyun                    /* transport protocol class address info (e.g. ISOTP) */
261*4882a593Smuzhiyun                    struct { canid_t rx_id, tx_id; } tp;
262*4882a593Smuzhiyun
263*4882a593Smuzhiyun                    /* reserved for future CAN protocols address information */
264*4882a593Smuzhiyun            } can_addr;
265*4882a593Smuzhiyun    };
266*4882a593Smuzhiyun
267*4882a593SmuzhiyunTo determine the interface index an appropriate ioctl() has to
268*4882a593Smuzhiyunbe used (example for CAN_RAW sockets without error checking):
269*4882a593Smuzhiyun
270*4882a593Smuzhiyun.. code-block:: C
271*4882a593Smuzhiyun
272*4882a593Smuzhiyun    int s;
273*4882a593Smuzhiyun    struct sockaddr_can addr;
274*4882a593Smuzhiyun    struct ifreq ifr;
275*4882a593Smuzhiyun
276*4882a593Smuzhiyun    s = socket(PF_CAN, SOCK_RAW, CAN_RAW);
277*4882a593Smuzhiyun
278*4882a593Smuzhiyun    strcpy(ifr.ifr_name, "can0" );
279*4882a593Smuzhiyun    ioctl(s, SIOCGIFINDEX, &ifr);
280*4882a593Smuzhiyun
281*4882a593Smuzhiyun    addr.can_family = AF_CAN;
282*4882a593Smuzhiyun    addr.can_ifindex = ifr.ifr_ifindex;
283*4882a593Smuzhiyun
284*4882a593Smuzhiyun    bind(s, (struct sockaddr *)&addr, sizeof(addr));
285*4882a593Smuzhiyun
286*4882a593Smuzhiyun    (..)
287*4882a593Smuzhiyun
288*4882a593SmuzhiyunTo bind a socket to all(!) CAN interfaces the interface index must
289*4882a593Smuzhiyunbe 0 (zero). In this case the socket receives CAN frames from every
290*4882a593Smuzhiyunenabled CAN interface. To determine the originating CAN interface
291*4882a593Smuzhiyunthe system call recvfrom(2) may be used instead of read(2). To send
292*4882a593Smuzhiyunon a socket that is bound to 'any' interface sendto(2) is needed to
293*4882a593Smuzhiyunspecify the outgoing interface.
294*4882a593Smuzhiyun
295*4882a593SmuzhiyunReading CAN frames from a bound CAN_RAW socket (see above) consists
296*4882a593Smuzhiyunof reading a struct can_frame:
297*4882a593Smuzhiyun
298*4882a593Smuzhiyun.. code-block:: C
299*4882a593Smuzhiyun
300*4882a593Smuzhiyun    struct can_frame frame;
301*4882a593Smuzhiyun
302*4882a593Smuzhiyun    nbytes = read(s, &frame, sizeof(struct can_frame));
303*4882a593Smuzhiyun
304*4882a593Smuzhiyun    if (nbytes < 0) {
305*4882a593Smuzhiyun            perror("can raw socket read");
306*4882a593Smuzhiyun            return 1;
307*4882a593Smuzhiyun    }
308*4882a593Smuzhiyun
309*4882a593Smuzhiyun    /* paranoid check ... */
310*4882a593Smuzhiyun    if (nbytes < sizeof(struct can_frame)) {
311*4882a593Smuzhiyun            fprintf(stderr, "read: incomplete CAN frame\n");
312*4882a593Smuzhiyun            return 1;
313*4882a593Smuzhiyun    }
314*4882a593Smuzhiyun
315*4882a593Smuzhiyun    /* do something with the received CAN frame */
316*4882a593Smuzhiyun
317*4882a593SmuzhiyunWriting CAN frames can be done similarly, with the write(2) system call::
318*4882a593Smuzhiyun
319*4882a593Smuzhiyun    nbytes = write(s, &frame, sizeof(struct can_frame));
320*4882a593Smuzhiyun
321*4882a593SmuzhiyunWhen the CAN interface is bound to 'any' existing CAN interface
322*4882a593Smuzhiyun(addr.can_ifindex = 0) it is recommended to use recvfrom(2) if the
323*4882a593Smuzhiyuninformation about the originating CAN interface is needed:
324*4882a593Smuzhiyun
325*4882a593Smuzhiyun.. code-block:: C
326*4882a593Smuzhiyun
327*4882a593Smuzhiyun    struct sockaddr_can addr;
328*4882a593Smuzhiyun    struct ifreq ifr;
329*4882a593Smuzhiyun    socklen_t len = sizeof(addr);
330*4882a593Smuzhiyun    struct can_frame frame;
331*4882a593Smuzhiyun
332*4882a593Smuzhiyun    nbytes = recvfrom(s, &frame, sizeof(struct can_frame),
333*4882a593Smuzhiyun                      0, (struct sockaddr*)&addr, &len);
334*4882a593Smuzhiyun
335*4882a593Smuzhiyun    /* get interface name of the received CAN frame */
336*4882a593Smuzhiyun    ifr.ifr_ifindex = addr.can_ifindex;
337*4882a593Smuzhiyun    ioctl(s, SIOCGIFNAME, &ifr);
338*4882a593Smuzhiyun    printf("Received a CAN frame from interface %s", ifr.ifr_name);
339*4882a593Smuzhiyun
340*4882a593SmuzhiyunTo write CAN frames on sockets bound to 'any' CAN interface the
341*4882a593Smuzhiyunoutgoing interface has to be defined certainly:
342*4882a593Smuzhiyun
343*4882a593Smuzhiyun.. code-block:: C
344*4882a593Smuzhiyun
345*4882a593Smuzhiyun    strcpy(ifr.ifr_name, "can0");
346*4882a593Smuzhiyun    ioctl(s, SIOCGIFINDEX, &ifr);
347*4882a593Smuzhiyun    addr.can_ifindex = ifr.ifr_ifindex;
348*4882a593Smuzhiyun    addr.can_family  = AF_CAN;
349*4882a593Smuzhiyun
350*4882a593Smuzhiyun    nbytes = sendto(s, &frame, sizeof(struct can_frame),
351*4882a593Smuzhiyun                    0, (struct sockaddr*)&addr, sizeof(addr));
352*4882a593Smuzhiyun
353*4882a593SmuzhiyunAn accurate timestamp can be obtained with an ioctl(2) call after reading
354*4882a593Smuzhiyuna message from the socket:
355*4882a593Smuzhiyun
356*4882a593Smuzhiyun.. code-block:: C
357*4882a593Smuzhiyun
358*4882a593Smuzhiyun    struct timeval tv;
359*4882a593Smuzhiyun    ioctl(s, SIOCGSTAMP, &tv);
360*4882a593Smuzhiyun
361*4882a593SmuzhiyunThe timestamp has a resolution of one microsecond and is set automatically
362*4882a593Smuzhiyunat the reception of a CAN frame.
363*4882a593Smuzhiyun
364*4882a593SmuzhiyunRemark about CAN FD (flexible data rate) support:
365*4882a593Smuzhiyun
366*4882a593SmuzhiyunGenerally the handling of CAN FD is very similar to the formerly described
367*4882a593Smuzhiyunexamples. The new CAN FD capable CAN controllers support two different
368*4882a593Smuzhiyunbitrates for the arbitration phase and the payload phase of the CAN FD frame
369*4882a593Smuzhiyunand up to 64 bytes of payload. This extended payload length breaks all the
370*4882a593Smuzhiyunkernel interfaces (ABI) which heavily rely on the CAN frame with fixed eight
371*4882a593Smuzhiyunbytes of payload (struct can_frame) like the CAN_RAW socket. Therefore e.g.
372*4882a593Smuzhiyunthe CAN_RAW socket supports a new socket option CAN_RAW_FD_FRAMES that
373*4882a593Smuzhiyunswitches the socket into a mode that allows the handling of CAN FD frames
374*4882a593Smuzhiyunand (legacy) CAN frames simultaneously (see :ref:`socketcan-rawfd`).
375*4882a593Smuzhiyun
376*4882a593SmuzhiyunThe struct canfd_frame is defined in include/linux/can.h:
377*4882a593Smuzhiyun
378*4882a593Smuzhiyun.. code-block:: C
379*4882a593Smuzhiyun
380*4882a593Smuzhiyun    struct canfd_frame {
381*4882a593Smuzhiyun            canid_t can_id;  /* 32 bit CAN_ID + EFF/RTR/ERR flags */
382*4882a593Smuzhiyun            __u8    len;     /* frame payload length in byte (0 .. 64) */
383*4882a593Smuzhiyun            __u8    flags;   /* additional flags for CAN FD */
384*4882a593Smuzhiyun            __u8    __res0;  /* reserved / padding */
385*4882a593Smuzhiyun            __u8    __res1;  /* reserved / padding */
386*4882a593Smuzhiyun            __u8    data[64] __attribute__((aligned(8)));
387*4882a593Smuzhiyun    };
388*4882a593Smuzhiyun
389*4882a593SmuzhiyunThe struct canfd_frame and the existing struct can_frame have the can_id,
390*4882a593Smuzhiyunthe payload length and the payload data at the same offset inside their
391*4882a593Smuzhiyunstructures. This allows to handle the different structures very similar.
392*4882a593SmuzhiyunWhen the content of a struct can_frame is copied into a struct canfd_frame
393*4882a593Smuzhiyunall structure elements can be used as-is - only the data[] becomes extended.
394*4882a593Smuzhiyun
395*4882a593SmuzhiyunWhen introducing the struct canfd_frame it turned out that the data length
396*4882a593Smuzhiyuncode (DLC) of the struct can_frame was used as a length information as the
397*4882a593Smuzhiyunlength and the DLC has a 1:1 mapping in the range of 0 .. 8. To preserve
398*4882a593Smuzhiyunthe easy handling of the length information the canfd_frame.len element
399*4882a593Smuzhiyuncontains a plain length value from 0 .. 64. So both canfd_frame.len and
400*4882a593Smuzhiyuncan_frame.can_dlc are equal and contain a length information and no DLC.
401*4882a593SmuzhiyunFor details about the distinction of CAN and CAN FD capable devices and
402*4882a593Smuzhiyunthe mapping to the bus-relevant data length code (DLC), see :ref:`socketcan-can-fd-driver`.
403*4882a593Smuzhiyun
404*4882a593SmuzhiyunThe length of the two CAN(FD) frame structures define the maximum transfer
405*4882a593Smuzhiyununit (MTU) of the CAN(FD) network interface and skbuff data length. Two
406*4882a593Smuzhiyundefinitions are specified for CAN specific MTUs in include/linux/can.h:
407*4882a593Smuzhiyun
408*4882a593Smuzhiyun.. code-block:: C
409*4882a593Smuzhiyun
410*4882a593Smuzhiyun  #define CAN_MTU   (sizeof(struct can_frame))   == 16  => 'legacy' CAN frame
411*4882a593Smuzhiyun  #define CANFD_MTU (sizeof(struct canfd_frame)) == 72  => CAN FD frame
412*4882a593Smuzhiyun
413*4882a593Smuzhiyun
414*4882a593Smuzhiyun.. _socketcan-raw-sockets:
415*4882a593Smuzhiyun
416*4882a593SmuzhiyunRAW Protocol Sockets with can_filters (SOCK_RAW)
417*4882a593Smuzhiyun------------------------------------------------
418*4882a593Smuzhiyun
419*4882a593SmuzhiyunUsing CAN_RAW sockets is extensively comparable to the commonly
420*4882a593Smuzhiyunknown access to CAN character devices. To meet the new possibilities
421*4882a593Smuzhiyunprovided by the multi user SocketCAN approach, some reasonable
422*4882a593Smuzhiyundefaults are set at RAW socket binding time:
423*4882a593Smuzhiyun
424*4882a593Smuzhiyun- The filters are set to exactly one filter receiving everything
425*4882a593Smuzhiyun- The socket only receives valid data frames (=> no error message frames)
426*4882a593Smuzhiyun- The loopback of sent CAN frames is enabled (see :ref:`socketcan-local-loopback2`)
427*4882a593Smuzhiyun- The socket does not receive its own sent frames (in loopback mode)
428*4882a593Smuzhiyun
429*4882a593SmuzhiyunThese default settings may be changed before or after binding the socket.
430*4882a593SmuzhiyunTo use the referenced definitions of the socket options for CAN_RAW
431*4882a593Smuzhiyunsockets, include <linux/can/raw.h>.
432*4882a593Smuzhiyun
433*4882a593Smuzhiyun
434*4882a593Smuzhiyun.. _socketcan-rawfilter:
435*4882a593Smuzhiyun
436*4882a593SmuzhiyunRAW socket option CAN_RAW_FILTER
437*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
438*4882a593Smuzhiyun
439*4882a593SmuzhiyunThe reception of CAN frames using CAN_RAW sockets can be controlled
440*4882a593Smuzhiyunby defining 0 .. n filters with the CAN_RAW_FILTER socket option.
441*4882a593Smuzhiyun
442*4882a593SmuzhiyunThe CAN filter structure is defined in include/linux/can.h:
443*4882a593Smuzhiyun
444*4882a593Smuzhiyun.. code-block:: C
445*4882a593Smuzhiyun
446*4882a593Smuzhiyun    struct can_filter {
447*4882a593Smuzhiyun            canid_t can_id;
448*4882a593Smuzhiyun            canid_t can_mask;
449*4882a593Smuzhiyun    };
450*4882a593Smuzhiyun
451*4882a593SmuzhiyunA filter matches, when:
452*4882a593Smuzhiyun
453*4882a593Smuzhiyun.. code-block:: C
454*4882a593Smuzhiyun
455*4882a593Smuzhiyun    <received_can_id> & mask == can_id & mask
456*4882a593Smuzhiyun
457*4882a593Smuzhiyunwhich is analogous to known CAN controllers hardware filter semantics.
458*4882a593SmuzhiyunThe filter can be inverted in this semantic, when the CAN_INV_FILTER
459*4882a593Smuzhiyunbit is set in can_id element of the can_filter structure. In
460*4882a593Smuzhiyuncontrast to CAN controller hardware filters the user may set 0 .. n
461*4882a593Smuzhiyunreceive filters for each open socket separately:
462*4882a593Smuzhiyun
463*4882a593Smuzhiyun.. code-block:: C
464*4882a593Smuzhiyun
465*4882a593Smuzhiyun    struct can_filter rfilter[2];
466*4882a593Smuzhiyun
467*4882a593Smuzhiyun    rfilter[0].can_id   = 0x123;
468*4882a593Smuzhiyun    rfilter[0].can_mask = CAN_SFF_MASK;
469*4882a593Smuzhiyun    rfilter[1].can_id   = 0x200;
470*4882a593Smuzhiyun    rfilter[1].can_mask = 0x700;
471*4882a593Smuzhiyun
472*4882a593Smuzhiyun    setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, &rfilter, sizeof(rfilter));
473*4882a593Smuzhiyun
474*4882a593SmuzhiyunTo disable the reception of CAN frames on the selected CAN_RAW socket:
475*4882a593Smuzhiyun
476*4882a593Smuzhiyun.. code-block:: C
477*4882a593Smuzhiyun
478*4882a593Smuzhiyun    setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, NULL, 0);
479*4882a593Smuzhiyun
480*4882a593SmuzhiyunTo set the filters to zero filters is quite obsolete as to not read
481*4882a593Smuzhiyundata causes the raw socket to discard the received CAN frames. But
482*4882a593Smuzhiyunhaving this 'send only' use-case we may remove the receive list in the
483*4882a593SmuzhiyunKernel to save a little (really a very little!) CPU usage.
484*4882a593Smuzhiyun
485*4882a593SmuzhiyunCAN Filter Usage Optimisation
486*4882a593Smuzhiyun.............................
487*4882a593Smuzhiyun
488*4882a593SmuzhiyunThe CAN filters are processed in per-device filter lists at CAN frame
489*4882a593Smuzhiyunreception time. To reduce the number of checks that need to be performed
490*4882a593Smuzhiyunwhile walking through the filter lists the CAN core provides an optimized
491*4882a593Smuzhiyunfilter handling when the filter subscription focusses on a single CAN ID.
492*4882a593Smuzhiyun
493*4882a593SmuzhiyunFor the possible 2048 SFF CAN identifiers the identifier is used as an index
494*4882a593Smuzhiyunto access the corresponding subscription list without any further checks.
495*4882a593SmuzhiyunFor the 2^29 possible EFF CAN identifiers a 10 bit XOR folding is used as
496*4882a593Smuzhiyunhash function to retrieve the EFF table index.
497*4882a593Smuzhiyun
498*4882a593SmuzhiyunTo benefit from the optimized filters for single CAN identifiers the
499*4882a593SmuzhiyunCAN_SFF_MASK or CAN_EFF_MASK have to be set into can_filter.mask together
500*4882a593Smuzhiyunwith set CAN_EFF_FLAG and CAN_RTR_FLAG bits. A set CAN_EFF_FLAG bit in the
501*4882a593Smuzhiyuncan_filter.mask makes clear that it matters whether a SFF or EFF CAN ID is
502*4882a593Smuzhiyunsubscribed. E.g. in the example from above:
503*4882a593Smuzhiyun
504*4882a593Smuzhiyun.. code-block:: C
505*4882a593Smuzhiyun
506*4882a593Smuzhiyun    rfilter[0].can_id   = 0x123;
507*4882a593Smuzhiyun    rfilter[0].can_mask = CAN_SFF_MASK;
508*4882a593Smuzhiyun
509*4882a593Smuzhiyunboth SFF frames with CAN ID 0x123 and EFF frames with 0xXXXXX123 can pass.
510*4882a593Smuzhiyun
511*4882a593SmuzhiyunTo filter for only 0x123 (SFF) and 0x12345678 (EFF) CAN identifiers the
512*4882a593Smuzhiyunfilter has to be defined in this way to benefit from the optimized filters:
513*4882a593Smuzhiyun
514*4882a593Smuzhiyun.. code-block:: C
515*4882a593Smuzhiyun
516*4882a593Smuzhiyun    struct can_filter rfilter[2];
517*4882a593Smuzhiyun
518*4882a593Smuzhiyun    rfilter[0].can_id   = 0x123;
519*4882a593Smuzhiyun    rfilter[0].can_mask = (CAN_EFF_FLAG | CAN_RTR_FLAG | CAN_SFF_MASK);
520*4882a593Smuzhiyun    rfilter[1].can_id   = 0x12345678 | CAN_EFF_FLAG;
521*4882a593Smuzhiyun    rfilter[1].can_mask = (CAN_EFF_FLAG | CAN_RTR_FLAG | CAN_EFF_MASK);
522*4882a593Smuzhiyun
523*4882a593Smuzhiyun    setsockopt(s, SOL_CAN_RAW, CAN_RAW_FILTER, &rfilter, sizeof(rfilter));
524*4882a593Smuzhiyun
525*4882a593Smuzhiyun
526*4882a593SmuzhiyunRAW Socket Option CAN_RAW_ERR_FILTER
527*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
528*4882a593Smuzhiyun
529*4882a593SmuzhiyunAs described in :ref:`socketcan-network-problem-notifications` the CAN interface driver can generate so
530*4882a593Smuzhiyuncalled Error Message Frames that can optionally be passed to the user
531*4882a593Smuzhiyunapplication in the same way as other CAN frames. The possible
532*4882a593Smuzhiyunerrors are divided into different error classes that may be filtered
533*4882a593Smuzhiyunusing the appropriate error mask. To register for every possible
534*4882a593Smuzhiyunerror condition CAN_ERR_MASK can be used as value for the error mask.
535*4882a593SmuzhiyunThe values for the error mask are defined in linux/can/error.h:
536*4882a593Smuzhiyun
537*4882a593Smuzhiyun.. code-block:: C
538*4882a593Smuzhiyun
539*4882a593Smuzhiyun    can_err_mask_t err_mask = ( CAN_ERR_TX_TIMEOUT | CAN_ERR_BUSOFF );
540*4882a593Smuzhiyun
541*4882a593Smuzhiyun    setsockopt(s, SOL_CAN_RAW, CAN_RAW_ERR_FILTER,
542*4882a593Smuzhiyun               &err_mask, sizeof(err_mask));
543*4882a593Smuzhiyun
544*4882a593Smuzhiyun
545*4882a593SmuzhiyunRAW Socket Option CAN_RAW_LOOPBACK
546*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
547*4882a593Smuzhiyun
548*4882a593SmuzhiyunTo meet multi user needs the local loopback is enabled by default
549*4882a593Smuzhiyun(see :ref:`socketcan-local-loopback1` for details). But in some embedded use-cases
550*4882a593Smuzhiyun(e.g. when only one application uses the CAN bus) this loopback
551*4882a593Smuzhiyunfunctionality can be disabled (separately for each socket):
552*4882a593Smuzhiyun
553*4882a593Smuzhiyun.. code-block:: C
554*4882a593Smuzhiyun
555*4882a593Smuzhiyun    int loopback = 0; /* 0 = disabled, 1 = enabled (default) */
556*4882a593Smuzhiyun
557*4882a593Smuzhiyun    setsockopt(s, SOL_CAN_RAW, CAN_RAW_LOOPBACK, &loopback, sizeof(loopback));
558*4882a593Smuzhiyun
559*4882a593Smuzhiyun
560*4882a593SmuzhiyunRAW socket option CAN_RAW_RECV_OWN_MSGS
561*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
562*4882a593Smuzhiyun
563*4882a593SmuzhiyunWhen the local loopback is enabled, all the sent CAN frames are
564*4882a593Smuzhiyunlooped back to the open CAN sockets that registered for the CAN
565*4882a593Smuzhiyunframes' CAN-ID on this given interface to meet the multi user
566*4882a593Smuzhiyunneeds. The reception of the CAN frames on the same socket that was
567*4882a593Smuzhiyunsending the CAN frame is assumed to be unwanted and therefore
568*4882a593Smuzhiyundisabled by default. This default behaviour may be changed on
569*4882a593Smuzhiyundemand:
570*4882a593Smuzhiyun
571*4882a593Smuzhiyun.. code-block:: C
572*4882a593Smuzhiyun
573*4882a593Smuzhiyun    int recv_own_msgs = 1; /* 0 = disabled (default), 1 = enabled */
574*4882a593Smuzhiyun
575*4882a593Smuzhiyun    setsockopt(s, SOL_CAN_RAW, CAN_RAW_RECV_OWN_MSGS,
576*4882a593Smuzhiyun               &recv_own_msgs, sizeof(recv_own_msgs));
577*4882a593Smuzhiyun
578*4882a593Smuzhiyun
579*4882a593Smuzhiyun.. _socketcan-rawfd:
580*4882a593Smuzhiyun
581*4882a593SmuzhiyunRAW Socket Option CAN_RAW_FD_FRAMES
582*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
583*4882a593Smuzhiyun
584*4882a593SmuzhiyunCAN FD support in CAN_RAW sockets can be enabled with a new socket option
585*4882a593SmuzhiyunCAN_RAW_FD_FRAMES which is off by default. When the new socket option is
586*4882a593Smuzhiyunnot supported by the CAN_RAW socket (e.g. on older kernels), switching the
587*4882a593SmuzhiyunCAN_RAW_FD_FRAMES option returns the error -ENOPROTOOPT.
588*4882a593Smuzhiyun
589*4882a593SmuzhiyunOnce CAN_RAW_FD_FRAMES is enabled the application can send both CAN frames
590*4882a593Smuzhiyunand CAN FD frames. OTOH the application has to handle CAN and CAN FD frames
591*4882a593Smuzhiyunwhen reading from the socket:
592*4882a593Smuzhiyun
593*4882a593Smuzhiyun.. code-block:: C
594*4882a593Smuzhiyun
595*4882a593Smuzhiyun    CAN_RAW_FD_FRAMES enabled:  CAN_MTU and CANFD_MTU are allowed
596*4882a593Smuzhiyun    CAN_RAW_FD_FRAMES disabled: only CAN_MTU is allowed (default)
597*4882a593Smuzhiyun
598*4882a593SmuzhiyunExample:
599*4882a593Smuzhiyun
600*4882a593Smuzhiyun.. code-block:: C
601*4882a593Smuzhiyun
602*4882a593Smuzhiyun    [ remember: CANFD_MTU == sizeof(struct canfd_frame) ]
603*4882a593Smuzhiyun
604*4882a593Smuzhiyun    struct canfd_frame cfd;
605*4882a593Smuzhiyun
606*4882a593Smuzhiyun    nbytes = read(s, &cfd, CANFD_MTU);
607*4882a593Smuzhiyun
608*4882a593Smuzhiyun    if (nbytes == CANFD_MTU) {
609*4882a593Smuzhiyun            printf("got CAN FD frame with length %d\n", cfd.len);
610*4882a593Smuzhiyun            /* cfd.flags contains valid data */
611*4882a593Smuzhiyun    } else if (nbytes == CAN_MTU) {
612*4882a593Smuzhiyun            printf("got legacy CAN frame with length %d\n", cfd.len);
613*4882a593Smuzhiyun            /* cfd.flags is undefined */
614*4882a593Smuzhiyun    } else {
615*4882a593Smuzhiyun            fprintf(stderr, "read: invalid CAN(FD) frame\n");
616*4882a593Smuzhiyun            return 1;
617*4882a593Smuzhiyun    }
618*4882a593Smuzhiyun
619*4882a593Smuzhiyun    /* the content can be handled independently from the received MTU size */
620*4882a593Smuzhiyun
621*4882a593Smuzhiyun    printf("can_id: %X data length: %d data: ", cfd.can_id, cfd.len);
622*4882a593Smuzhiyun    for (i = 0; i < cfd.len; i++)
623*4882a593Smuzhiyun            printf("%02X ", cfd.data[i]);
624*4882a593Smuzhiyun
625*4882a593SmuzhiyunWhen reading with size CANFD_MTU only returns CAN_MTU bytes that have
626*4882a593Smuzhiyunbeen received from the socket a legacy CAN frame has been read into the
627*4882a593Smuzhiyunprovided CAN FD structure. Note that the canfd_frame.flags data field is
628*4882a593Smuzhiyunnot specified in the struct can_frame and therefore it is only valid in
629*4882a593SmuzhiyunCANFD_MTU sized CAN FD frames.
630*4882a593Smuzhiyun
631*4882a593SmuzhiyunImplementation hint for new CAN applications:
632*4882a593Smuzhiyun
633*4882a593SmuzhiyunTo build a CAN FD aware application use struct canfd_frame as basic CAN
634*4882a593Smuzhiyundata structure for CAN_RAW based applications. When the application is
635*4882a593Smuzhiyunexecuted on an older Linux kernel and switching the CAN_RAW_FD_FRAMES
636*4882a593Smuzhiyunsocket option returns an error: No problem. You'll get legacy CAN frames
637*4882a593Smuzhiyunor CAN FD frames and can process them the same way.
638*4882a593Smuzhiyun
639*4882a593SmuzhiyunWhen sending to CAN devices make sure that the device is capable to handle
640*4882a593SmuzhiyunCAN FD frames by checking if the device maximum transfer unit is CANFD_MTU.
641*4882a593SmuzhiyunThe CAN device MTU can be retrieved e.g. with a SIOCGIFMTU ioctl() syscall.
642*4882a593Smuzhiyun
643*4882a593Smuzhiyun
644*4882a593SmuzhiyunRAW socket option CAN_RAW_JOIN_FILTERS
645*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
646*4882a593Smuzhiyun
647*4882a593SmuzhiyunThe CAN_RAW socket can set multiple CAN identifier specific filters that
648*4882a593Smuzhiyunlead to multiple filters in the af_can.c filter processing. These filters
649*4882a593Smuzhiyunare indenpendent from each other which leads to logical OR'ed filters when
650*4882a593Smuzhiyunapplied (see :ref:`socketcan-rawfilter`).
651*4882a593Smuzhiyun
652*4882a593SmuzhiyunThis socket option joines the given CAN filters in the way that only CAN
653*4882a593Smuzhiyunframes are passed to user space that matched *all* given CAN filters. The
654*4882a593Smuzhiyunsemantic for the applied filters is therefore changed to a logical AND.
655*4882a593Smuzhiyun
656*4882a593SmuzhiyunThis is useful especially when the filterset is a combination of filters
657*4882a593Smuzhiyunwhere the CAN_INV_FILTER flag is set in order to notch single CAN IDs or
658*4882a593SmuzhiyunCAN ID ranges from the incoming traffic.
659*4882a593Smuzhiyun
660*4882a593Smuzhiyun
661*4882a593SmuzhiyunRAW Socket Returned Message Flags
662*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
663*4882a593Smuzhiyun
664*4882a593SmuzhiyunWhen using recvmsg() call, the msg->msg_flags may contain following flags:
665*4882a593Smuzhiyun
666*4882a593SmuzhiyunMSG_DONTROUTE:
667*4882a593Smuzhiyun	set when the received frame was created on the local host.
668*4882a593Smuzhiyun
669*4882a593SmuzhiyunMSG_CONFIRM:
670*4882a593Smuzhiyun	set when the frame was sent via the socket it is received on.
671*4882a593Smuzhiyun	This flag can be interpreted as a 'transmission confirmation' when the
672*4882a593Smuzhiyun	CAN driver supports the echo of frames on driver level, see
673*4882a593Smuzhiyun	:ref:`socketcan-local-loopback1` and :ref:`socketcan-local-loopback2`.
674*4882a593Smuzhiyun	In order to receive such messages, CAN_RAW_RECV_OWN_MSGS must be set.
675*4882a593Smuzhiyun
676*4882a593Smuzhiyun
677*4882a593SmuzhiyunBroadcast Manager Protocol Sockets (SOCK_DGRAM)
678*4882a593Smuzhiyun-----------------------------------------------
679*4882a593Smuzhiyun
680*4882a593SmuzhiyunThe Broadcast Manager protocol provides a command based configuration
681*4882a593Smuzhiyuninterface to filter and send (e.g. cyclic) CAN messages in kernel space.
682*4882a593Smuzhiyun
683*4882a593SmuzhiyunReceive filters can be used to down sample frequent messages; detect events
684*4882a593Smuzhiyunsuch as message contents changes, packet length changes, and do time-out
685*4882a593Smuzhiyunmonitoring of received messages.
686*4882a593Smuzhiyun
687*4882a593SmuzhiyunPeriodic transmission tasks of CAN frames or a sequence of CAN frames can be
688*4882a593Smuzhiyuncreated and modified at runtime; both the message content and the two
689*4882a593Smuzhiyunpossible transmit intervals can be altered.
690*4882a593Smuzhiyun
691*4882a593SmuzhiyunA BCM socket is not intended for sending individual CAN frames using the
692*4882a593Smuzhiyunstruct can_frame as known from the CAN_RAW socket. Instead a special BCM
693*4882a593Smuzhiyunconfiguration message is defined. The basic BCM configuration message used
694*4882a593Smuzhiyunto communicate with the broadcast manager and the available operations are
695*4882a593Smuzhiyundefined in the linux/can/bcm.h include. The BCM message consists of a
696*4882a593Smuzhiyunmessage header with a command ('opcode') followed by zero or more CAN frames.
697*4882a593SmuzhiyunThe broadcast manager sends responses to user space in the same form:
698*4882a593Smuzhiyun
699*4882a593Smuzhiyun.. code-block:: C
700*4882a593Smuzhiyun
701*4882a593Smuzhiyun    struct bcm_msg_head {
702*4882a593Smuzhiyun            __u32 opcode;                   /* command */
703*4882a593Smuzhiyun            __u32 flags;                    /* special flags */
704*4882a593Smuzhiyun            __u32 count;                    /* run 'count' times with ival1 */
705*4882a593Smuzhiyun            struct timeval ival1, ival2;    /* count and subsequent interval */
706*4882a593Smuzhiyun            canid_t can_id;                 /* unique can_id for task */
707*4882a593Smuzhiyun            __u32 nframes;                  /* number of can_frames following */
708*4882a593Smuzhiyun            struct can_frame frames[0];
709*4882a593Smuzhiyun    };
710*4882a593Smuzhiyun
711*4882a593SmuzhiyunThe aligned payload 'frames' uses the same basic CAN frame structure defined
712*4882a593Smuzhiyunat the beginning of :ref:`socketcan-rawfd` and in the include/linux/can.h include. All
713*4882a593Smuzhiyunmessages to the broadcast manager from user space have this structure.
714*4882a593Smuzhiyun
715*4882a593SmuzhiyunNote a CAN_BCM socket must be connected instead of bound after socket
716*4882a593Smuzhiyuncreation (example without error checking):
717*4882a593Smuzhiyun
718*4882a593Smuzhiyun.. code-block:: C
719*4882a593Smuzhiyun
720*4882a593Smuzhiyun    int s;
721*4882a593Smuzhiyun    struct sockaddr_can addr;
722*4882a593Smuzhiyun    struct ifreq ifr;
723*4882a593Smuzhiyun
724*4882a593Smuzhiyun    s = socket(PF_CAN, SOCK_DGRAM, CAN_BCM);
725*4882a593Smuzhiyun
726*4882a593Smuzhiyun    strcpy(ifr.ifr_name, "can0");
727*4882a593Smuzhiyun    ioctl(s, SIOCGIFINDEX, &ifr);
728*4882a593Smuzhiyun
729*4882a593Smuzhiyun    addr.can_family = AF_CAN;
730*4882a593Smuzhiyun    addr.can_ifindex = ifr.ifr_ifindex;
731*4882a593Smuzhiyun
732*4882a593Smuzhiyun    connect(s, (struct sockaddr *)&addr, sizeof(addr));
733*4882a593Smuzhiyun
734*4882a593Smuzhiyun    (..)
735*4882a593Smuzhiyun
736*4882a593SmuzhiyunThe broadcast manager socket is able to handle any number of in flight
737*4882a593Smuzhiyuntransmissions or receive filters concurrently. The different RX/TX jobs are
738*4882a593Smuzhiyundistinguished by the unique can_id in each BCM message. However additional
739*4882a593SmuzhiyunCAN_BCM sockets are recommended to communicate on multiple CAN interfaces.
740*4882a593SmuzhiyunWhen the broadcast manager socket is bound to 'any' CAN interface (=> the
741*4882a593Smuzhiyuninterface index is set to zero) the configured receive filters apply to any
742*4882a593SmuzhiyunCAN interface unless the sendto() syscall is used to overrule the 'any' CAN
743*4882a593Smuzhiyuninterface index. When using recvfrom() instead of read() to retrieve BCM
744*4882a593Smuzhiyunsocket messages the originating CAN interface is provided in can_ifindex.
745*4882a593Smuzhiyun
746*4882a593Smuzhiyun
747*4882a593SmuzhiyunBroadcast Manager Operations
748*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~
749*4882a593Smuzhiyun
750*4882a593SmuzhiyunThe opcode defines the operation for the broadcast manager to carry out,
751*4882a593Smuzhiyunor details the broadcast managers response to several events, including
752*4882a593Smuzhiyunuser requests.
753*4882a593Smuzhiyun
754*4882a593SmuzhiyunTransmit Operations (user space to broadcast manager):
755*4882a593Smuzhiyun
756*4882a593SmuzhiyunTX_SETUP:
757*4882a593Smuzhiyun	Create (cyclic) transmission task.
758*4882a593Smuzhiyun
759*4882a593SmuzhiyunTX_DELETE:
760*4882a593Smuzhiyun	Remove (cyclic) transmission task, requires only can_id.
761*4882a593Smuzhiyun
762*4882a593SmuzhiyunTX_READ:
763*4882a593Smuzhiyun	Read properties of (cyclic) transmission task for can_id.
764*4882a593Smuzhiyun
765*4882a593SmuzhiyunTX_SEND:
766*4882a593Smuzhiyun	Send one CAN frame.
767*4882a593Smuzhiyun
768*4882a593SmuzhiyunTransmit Responses (broadcast manager to user space):
769*4882a593Smuzhiyun
770*4882a593SmuzhiyunTX_STATUS:
771*4882a593Smuzhiyun	Reply to TX_READ request (transmission task configuration).
772*4882a593Smuzhiyun
773*4882a593SmuzhiyunTX_EXPIRED:
774*4882a593Smuzhiyun	Notification when counter finishes sending at initial interval
775*4882a593Smuzhiyun	'ival1'. Requires the TX_COUNTEVT flag to be set at TX_SETUP.
776*4882a593Smuzhiyun
777*4882a593SmuzhiyunReceive Operations (user space to broadcast manager):
778*4882a593Smuzhiyun
779*4882a593SmuzhiyunRX_SETUP:
780*4882a593Smuzhiyun	Create RX content filter subscription.
781*4882a593Smuzhiyun
782*4882a593SmuzhiyunRX_DELETE:
783*4882a593Smuzhiyun	Remove RX content filter subscription, requires only can_id.
784*4882a593Smuzhiyun
785*4882a593SmuzhiyunRX_READ:
786*4882a593Smuzhiyun	Read properties of RX content filter subscription for can_id.
787*4882a593Smuzhiyun
788*4882a593SmuzhiyunReceive Responses (broadcast manager to user space):
789*4882a593Smuzhiyun
790*4882a593SmuzhiyunRX_STATUS:
791*4882a593Smuzhiyun	Reply to RX_READ request (filter task configuration).
792*4882a593Smuzhiyun
793*4882a593SmuzhiyunRX_TIMEOUT:
794*4882a593Smuzhiyun	Cyclic message is detected to be absent (timer ival1 expired).
795*4882a593Smuzhiyun
796*4882a593SmuzhiyunRX_CHANGED:
797*4882a593Smuzhiyun	BCM message with updated CAN frame (detected content change).
798*4882a593Smuzhiyun	Sent on first message received or on receipt of revised CAN messages.
799*4882a593Smuzhiyun
800*4882a593Smuzhiyun
801*4882a593SmuzhiyunBroadcast Manager Message Flags
802*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
803*4882a593Smuzhiyun
804*4882a593SmuzhiyunWhen sending a message to the broadcast manager the 'flags' element may
805*4882a593Smuzhiyuncontain the following flag definitions which influence the behaviour:
806*4882a593Smuzhiyun
807*4882a593SmuzhiyunSETTIMER:
808*4882a593Smuzhiyun	Set the values of ival1, ival2 and count
809*4882a593Smuzhiyun
810*4882a593SmuzhiyunSTARTTIMER:
811*4882a593Smuzhiyun	Start the timer with the actual values of ival1, ival2
812*4882a593Smuzhiyun	and count. Starting the timer leads simultaneously to emit a CAN frame.
813*4882a593Smuzhiyun
814*4882a593SmuzhiyunTX_COUNTEVT:
815*4882a593Smuzhiyun	Create the message TX_EXPIRED when count expires
816*4882a593Smuzhiyun
817*4882a593SmuzhiyunTX_ANNOUNCE:
818*4882a593Smuzhiyun	A change of data by the process is emitted immediately.
819*4882a593Smuzhiyun
820*4882a593SmuzhiyunTX_CP_CAN_ID:
821*4882a593Smuzhiyun	Copies the can_id from the message header to each
822*4882a593Smuzhiyun	subsequent frame in frames. This is intended as usage simplification. For
823*4882a593Smuzhiyun	TX tasks the unique can_id from the message header may differ from the
824*4882a593Smuzhiyun	can_id(s) stored for transmission in the subsequent struct can_frame(s).
825*4882a593Smuzhiyun
826*4882a593SmuzhiyunRX_FILTER_ID:
827*4882a593Smuzhiyun	Filter by can_id alone, no frames required (nframes=0).
828*4882a593Smuzhiyun
829*4882a593SmuzhiyunRX_CHECK_DLC:
830*4882a593Smuzhiyun	A change of the DLC leads to an RX_CHANGED.
831*4882a593Smuzhiyun
832*4882a593SmuzhiyunRX_NO_AUTOTIMER:
833*4882a593Smuzhiyun	Prevent automatically starting the timeout monitor.
834*4882a593Smuzhiyun
835*4882a593SmuzhiyunRX_ANNOUNCE_RESUME:
836*4882a593Smuzhiyun	If passed at RX_SETUP and a receive timeout occurred, a
837*4882a593Smuzhiyun	RX_CHANGED message will be generated when the (cyclic) receive restarts.
838*4882a593Smuzhiyun
839*4882a593SmuzhiyunTX_RESET_MULTI_IDX:
840*4882a593Smuzhiyun	Reset the index for the multiple frame transmission.
841*4882a593Smuzhiyun
842*4882a593SmuzhiyunRX_RTR_FRAME:
843*4882a593Smuzhiyun	Send reply for RTR-request (placed in op->frames[0]).
844*4882a593Smuzhiyun
845*4882a593Smuzhiyun
846*4882a593SmuzhiyunBroadcast Manager Transmission Timers
847*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
848*4882a593Smuzhiyun
849*4882a593SmuzhiyunPeriodic transmission configurations may use up to two interval timers.
850*4882a593SmuzhiyunIn this case the BCM sends a number of messages ('count') at an interval
851*4882a593Smuzhiyun'ival1', then continuing to send at another given interval 'ival2'. When
852*4882a593Smuzhiyunonly one timer is needed 'count' is set to zero and only 'ival2' is used.
853*4882a593SmuzhiyunWhen SET_TIMER and START_TIMER flag were set the timers are activated.
854*4882a593SmuzhiyunThe timer values can be altered at runtime when only SET_TIMER is set.
855*4882a593Smuzhiyun
856*4882a593Smuzhiyun
857*4882a593SmuzhiyunBroadcast Manager message sequence transmission
858*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
859*4882a593Smuzhiyun
860*4882a593SmuzhiyunUp to 256 CAN frames can be transmitted in a sequence in the case of a cyclic
861*4882a593SmuzhiyunTX task configuration. The number of CAN frames is provided in the 'nframes'
862*4882a593Smuzhiyunelement of the BCM message head. The defined number of CAN frames are added
863*4882a593Smuzhiyunas array to the TX_SETUP BCM configuration message:
864*4882a593Smuzhiyun
865*4882a593Smuzhiyun.. code-block:: C
866*4882a593Smuzhiyun
867*4882a593Smuzhiyun    /* create a struct to set up a sequence of four CAN frames */
868*4882a593Smuzhiyun    struct {
869*4882a593Smuzhiyun            struct bcm_msg_head msg_head;
870*4882a593Smuzhiyun            struct can_frame frame[4];
871*4882a593Smuzhiyun    } mytxmsg;
872*4882a593Smuzhiyun
873*4882a593Smuzhiyun    (..)
874*4882a593Smuzhiyun    mytxmsg.msg_head.nframes = 4;
875*4882a593Smuzhiyun    (..)
876*4882a593Smuzhiyun
877*4882a593Smuzhiyun    write(s, &mytxmsg, sizeof(mytxmsg));
878*4882a593Smuzhiyun
879*4882a593SmuzhiyunWith every transmission the index in the array of CAN frames is increased
880*4882a593Smuzhiyunand set to zero at index overflow.
881*4882a593Smuzhiyun
882*4882a593Smuzhiyun
883*4882a593SmuzhiyunBroadcast Manager Receive Filter Timers
884*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
885*4882a593Smuzhiyun
886*4882a593SmuzhiyunThe timer values ival1 or ival2 may be set to non-zero values at RX_SETUP.
887*4882a593SmuzhiyunWhen the SET_TIMER flag is set the timers are enabled:
888*4882a593Smuzhiyun
889*4882a593Smuzhiyunival1:
890*4882a593Smuzhiyun	Send RX_TIMEOUT when a received message is not received again within
891*4882a593Smuzhiyun	the given time. When START_TIMER is set at RX_SETUP the timeout detection
892*4882a593Smuzhiyun	is activated directly - even without a former CAN frame reception.
893*4882a593Smuzhiyun
894*4882a593Smuzhiyunival2:
895*4882a593Smuzhiyun	Throttle the received message rate down to the value of ival2. This
896*4882a593Smuzhiyun	is useful to reduce messages for the application when the signal inside the
897*4882a593Smuzhiyun	CAN frame is stateless as state changes within the ival2 periode may get
898*4882a593Smuzhiyun	lost.
899*4882a593Smuzhiyun
900*4882a593SmuzhiyunBroadcast Manager Multiplex Message Receive Filter
901*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
902*4882a593Smuzhiyun
903*4882a593SmuzhiyunTo filter for content changes in multiplex message sequences an array of more
904*4882a593Smuzhiyunthan one CAN frames can be passed in a RX_SETUP configuration message. The
905*4882a593Smuzhiyundata bytes of the first CAN frame contain the mask of relevant bits that
906*4882a593Smuzhiyunhave to match in the subsequent CAN frames with the received CAN frame.
907*4882a593SmuzhiyunIf one of the subsequent CAN frames is matching the bits in that frame data
908*4882a593Smuzhiyunmark the relevant content to be compared with the previous received content.
909*4882a593SmuzhiyunUp to 257 CAN frames (multiplex filter bit mask CAN frame plus 256 CAN
910*4882a593Smuzhiyunfilters) can be added as array to the TX_SETUP BCM configuration message:
911*4882a593Smuzhiyun
912*4882a593Smuzhiyun.. code-block:: C
913*4882a593Smuzhiyun
914*4882a593Smuzhiyun    /* usually used to clear CAN frame data[] - beware of endian problems! */
915*4882a593Smuzhiyun    #define U64_DATA(p) (*(unsigned long long*)(p)->data)
916*4882a593Smuzhiyun
917*4882a593Smuzhiyun    struct {
918*4882a593Smuzhiyun            struct bcm_msg_head msg_head;
919*4882a593Smuzhiyun            struct can_frame frame[5];
920*4882a593Smuzhiyun    } msg;
921*4882a593Smuzhiyun
922*4882a593Smuzhiyun    msg.msg_head.opcode  = RX_SETUP;
923*4882a593Smuzhiyun    msg.msg_head.can_id  = 0x42;
924*4882a593Smuzhiyun    msg.msg_head.flags   = 0;
925*4882a593Smuzhiyun    msg.msg_head.nframes = 5;
926*4882a593Smuzhiyun    U64_DATA(&msg.frame[0]) = 0xFF00000000000000ULL; /* MUX mask */
927*4882a593Smuzhiyun    U64_DATA(&msg.frame[1]) = 0x01000000000000FFULL; /* data mask (MUX 0x01) */
928*4882a593Smuzhiyun    U64_DATA(&msg.frame[2]) = 0x0200FFFF000000FFULL; /* data mask (MUX 0x02) */
929*4882a593Smuzhiyun    U64_DATA(&msg.frame[3]) = 0x330000FFFFFF0003ULL; /* data mask (MUX 0x33) */
930*4882a593Smuzhiyun    U64_DATA(&msg.frame[4]) = 0x4F07FC0FF0000000ULL; /* data mask (MUX 0x4F) */
931*4882a593Smuzhiyun
932*4882a593Smuzhiyun    write(s, &msg, sizeof(msg));
933*4882a593Smuzhiyun
934*4882a593Smuzhiyun
935*4882a593SmuzhiyunBroadcast Manager CAN FD Support
936*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
937*4882a593Smuzhiyun
938*4882a593SmuzhiyunThe programming API of the CAN_BCM depends on struct can_frame which is
939*4882a593Smuzhiyungiven as array directly behind the bcm_msg_head structure. To follow this
940*4882a593Smuzhiyunschema for the CAN FD frames a new flag 'CAN_FD_FRAME' in the bcm_msg_head
941*4882a593Smuzhiyunflags indicates that the concatenated CAN frame structures behind the
942*4882a593Smuzhiyunbcm_msg_head are defined as struct canfd_frame:
943*4882a593Smuzhiyun
944*4882a593Smuzhiyun.. code-block:: C
945*4882a593Smuzhiyun
946*4882a593Smuzhiyun    struct {
947*4882a593Smuzhiyun            struct bcm_msg_head msg_head;
948*4882a593Smuzhiyun            struct canfd_frame frame[5];
949*4882a593Smuzhiyun    } msg;
950*4882a593Smuzhiyun
951*4882a593Smuzhiyun    msg.msg_head.opcode  = RX_SETUP;
952*4882a593Smuzhiyun    msg.msg_head.can_id  = 0x42;
953*4882a593Smuzhiyun    msg.msg_head.flags   = CAN_FD_FRAME;
954*4882a593Smuzhiyun    msg.msg_head.nframes = 5;
955*4882a593Smuzhiyun    (..)
956*4882a593Smuzhiyun
957*4882a593SmuzhiyunWhen using CAN FD frames for multiplex filtering the MUX mask is still
958*4882a593Smuzhiyunexpected in the first 64 bit of the struct canfd_frame data section.
959*4882a593Smuzhiyun
960*4882a593Smuzhiyun
961*4882a593SmuzhiyunConnected Transport Protocols (SOCK_SEQPACKET)
962*4882a593Smuzhiyun----------------------------------------------
963*4882a593Smuzhiyun
964*4882a593Smuzhiyun(to be written)
965*4882a593Smuzhiyun
966*4882a593Smuzhiyun
967*4882a593SmuzhiyunUnconnected Transport Protocols (SOCK_DGRAM)
968*4882a593Smuzhiyun--------------------------------------------
969*4882a593Smuzhiyun
970*4882a593Smuzhiyun(to be written)
971*4882a593Smuzhiyun
972*4882a593Smuzhiyun
973*4882a593Smuzhiyun.. _socketcan-core-module:
974*4882a593Smuzhiyun
975*4882a593SmuzhiyunSocketCAN Core Module
976*4882a593Smuzhiyun=====================
977*4882a593Smuzhiyun
978*4882a593SmuzhiyunThe SocketCAN core module implements the protocol family
979*4882a593SmuzhiyunPF_CAN. CAN protocol modules are loaded by the core module at
980*4882a593Smuzhiyunruntime. The core module provides an interface for CAN protocol
981*4882a593Smuzhiyunmodules to subscribe needed CAN IDs (see :ref:`socketcan-receive-lists`).
982*4882a593Smuzhiyun
983*4882a593Smuzhiyun
984*4882a593Smuzhiyuncan.ko Module Params
985*4882a593Smuzhiyun--------------------
986*4882a593Smuzhiyun
987*4882a593Smuzhiyun- **stats_timer**:
988*4882a593Smuzhiyun  To calculate the SocketCAN core statistics
989*4882a593Smuzhiyun  (e.g. current/maximum frames per second) this 1 second timer is
990*4882a593Smuzhiyun  invoked at can.ko module start time by default. This timer can be
991*4882a593Smuzhiyun  disabled by using stattimer=0 on the module commandline.
992*4882a593Smuzhiyun
993*4882a593Smuzhiyun- **debug**:
994*4882a593Smuzhiyun  (removed since SocketCAN SVN r546)
995*4882a593Smuzhiyun
996*4882a593Smuzhiyun
997*4882a593Smuzhiyunprocfs content
998*4882a593Smuzhiyun--------------
999*4882a593Smuzhiyun
1000*4882a593SmuzhiyunAs described in :ref:`socketcan-receive-lists` the SocketCAN core uses several filter
1001*4882a593Smuzhiyunlists to deliver received CAN frames to CAN protocol modules. These
1002*4882a593Smuzhiyunreceive lists, their filters and the count of filter matches can be
1003*4882a593Smuzhiyunchecked in the appropriate receive list. All entries contain the
1004*4882a593Smuzhiyundevice and a protocol module identifier::
1005*4882a593Smuzhiyun
1006*4882a593Smuzhiyun    foo@bar:~$ cat /proc/net/can/rcvlist_all
1007*4882a593Smuzhiyun
1008*4882a593Smuzhiyun    receive list 'rx_all':
1009*4882a593Smuzhiyun      (vcan3: no entry)
1010*4882a593Smuzhiyun      (vcan2: no entry)
1011*4882a593Smuzhiyun      (vcan1: no entry)
1012*4882a593Smuzhiyun      device   can_id   can_mask  function  userdata   matches  ident
1013*4882a593Smuzhiyun       vcan0     000    00000000  f88e6370  f6c6f400         0  raw
1014*4882a593Smuzhiyun      (any: no entry)
1015*4882a593Smuzhiyun
1016*4882a593SmuzhiyunIn this example an application requests any CAN traffic from vcan0::
1017*4882a593Smuzhiyun
1018*4882a593Smuzhiyun    rcvlist_all - list for unfiltered entries (no filter operations)
1019*4882a593Smuzhiyun    rcvlist_eff - list for single extended frame (EFF) entries
1020*4882a593Smuzhiyun    rcvlist_err - list for error message frames masks
1021*4882a593Smuzhiyun    rcvlist_fil - list for mask/value filters
1022*4882a593Smuzhiyun    rcvlist_inv - list for mask/value filters (inverse semantic)
1023*4882a593Smuzhiyun    rcvlist_sff - list for single standard frame (SFF) entries
1024*4882a593Smuzhiyun
1025*4882a593SmuzhiyunAdditional procfs files in /proc/net/can::
1026*4882a593Smuzhiyun
1027*4882a593Smuzhiyun    stats       - SocketCAN core statistics (rx/tx frames, match ratios, ...)
1028*4882a593Smuzhiyun    reset_stats - manual statistic reset
1029*4882a593Smuzhiyun    version     - prints the SocketCAN core version and the ABI version
1030*4882a593Smuzhiyun
1031*4882a593Smuzhiyun
1032*4882a593SmuzhiyunWriting Own CAN Protocol Modules
1033*4882a593Smuzhiyun--------------------------------
1034*4882a593Smuzhiyun
1035*4882a593SmuzhiyunTo implement a new protocol in the protocol family PF_CAN a new
1036*4882a593Smuzhiyunprotocol has to be defined in include/linux/can.h .
1037*4882a593SmuzhiyunThe prototypes and definitions to use the SocketCAN core can be
1038*4882a593Smuzhiyunaccessed by including include/linux/can/core.h .
1039*4882a593SmuzhiyunIn addition to functions that register the CAN protocol and the
1040*4882a593SmuzhiyunCAN device notifier chain there are functions to subscribe CAN
1041*4882a593Smuzhiyunframes received by CAN interfaces and to send CAN frames::
1042*4882a593Smuzhiyun
1043*4882a593Smuzhiyun    can_rx_register   - subscribe CAN frames from a specific interface
1044*4882a593Smuzhiyun    can_rx_unregister - unsubscribe CAN frames from a specific interface
1045*4882a593Smuzhiyun    can_send          - transmit a CAN frame (optional with local loopback)
1046*4882a593Smuzhiyun
1047*4882a593SmuzhiyunFor details see the kerneldoc documentation in net/can/af_can.c or
1048*4882a593Smuzhiyunthe source code of net/can/raw.c or net/can/bcm.c .
1049*4882a593Smuzhiyun
1050*4882a593Smuzhiyun
1051*4882a593SmuzhiyunCAN Network Drivers
1052*4882a593Smuzhiyun===================
1053*4882a593Smuzhiyun
1054*4882a593SmuzhiyunWriting a CAN network device driver is much easier than writing a
1055*4882a593SmuzhiyunCAN character device driver. Similar to other known network device
1056*4882a593Smuzhiyundrivers you mainly have to deal with:
1057*4882a593Smuzhiyun
1058*4882a593Smuzhiyun- TX: Put the CAN frame from the socket buffer to the CAN controller.
1059*4882a593Smuzhiyun- RX: Put the CAN frame from the CAN controller to the socket buffer.
1060*4882a593Smuzhiyun
1061*4882a593SmuzhiyunSee e.g. at Documentation/networking/netdevices.rst . The differences
1062*4882a593Smuzhiyunfor writing CAN network device driver are described below:
1063*4882a593Smuzhiyun
1064*4882a593Smuzhiyun
1065*4882a593SmuzhiyunGeneral Settings
1066*4882a593Smuzhiyun----------------
1067*4882a593Smuzhiyun
1068*4882a593Smuzhiyun.. code-block:: C
1069*4882a593Smuzhiyun
1070*4882a593Smuzhiyun    dev->type  = ARPHRD_CAN; /* the netdevice hardware type */
1071*4882a593Smuzhiyun    dev->flags = IFF_NOARP;  /* CAN has no arp */
1072*4882a593Smuzhiyun
1073*4882a593Smuzhiyun    dev->mtu = CAN_MTU; /* sizeof(struct can_frame) -> legacy CAN interface */
1074*4882a593Smuzhiyun
1075*4882a593Smuzhiyun    or alternative, when the controller supports CAN with flexible data rate:
1076*4882a593Smuzhiyun    dev->mtu = CANFD_MTU; /* sizeof(struct canfd_frame) -> CAN FD interface */
1077*4882a593Smuzhiyun
1078*4882a593SmuzhiyunThe struct can_frame or struct canfd_frame is the payload of each socket
1079*4882a593Smuzhiyunbuffer (skbuff) in the protocol family PF_CAN.
1080*4882a593Smuzhiyun
1081*4882a593Smuzhiyun
1082*4882a593Smuzhiyun.. _socketcan-local-loopback2:
1083*4882a593Smuzhiyun
1084*4882a593SmuzhiyunLocal Loopback of Sent Frames
1085*4882a593Smuzhiyun-----------------------------
1086*4882a593Smuzhiyun
1087*4882a593SmuzhiyunAs described in :ref:`socketcan-local-loopback1` the CAN network device driver should
1088*4882a593Smuzhiyunsupport a local loopback functionality similar to the local echo
1089*4882a593Smuzhiyune.g. of tty devices. In this case the driver flag IFF_ECHO has to be
1090*4882a593Smuzhiyunset to prevent the PF_CAN core from locally echoing sent frames
1091*4882a593Smuzhiyun(aka loopback) as fallback solution::
1092*4882a593Smuzhiyun
1093*4882a593Smuzhiyun    dev->flags = (IFF_NOARP | IFF_ECHO);
1094*4882a593Smuzhiyun
1095*4882a593Smuzhiyun
1096*4882a593SmuzhiyunCAN Controller Hardware Filters
1097*4882a593Smuzhiyun-------------------------------
1098*4882a593Smuzhiyun
1099*4882a593SmuzhiyunTo reduce the interrupt load on deep embedded systems some CAN
1100*4882a593Smuzhiyuncontrollers support the filtering of CAN IDs or ranges of CAN IDs.
1101*4882a593SmuzhiyunThese hardware filter capabilities vary from controller to
1102*4882a593Smuzhiyuncontroller and have to be identified as not feasible in a multi-user
1103*4882a593Smuzhiyunnetworking approach. The use of the very controller specific
1104*4882a593Smuzhiyunhardware filters could make sense in a very dedicated use-case, as a
1105*4882a593Smuzhiyunfilter on driver level would affect all users in the multi-user
1106*4882a593Smuzhiyunsystem. The high efficient filter sets inside the PF_CAN core allow
1107*4882a593Smuzhiyunto set different multiple filters for each socket separately.
1108*4882a593SmuzhiyunTherefore the use of hardware filters goes to the category 'handmade
1109*4882a593Smuzhiyuntuning on deep embedded systems'. The author is running a MPC603e
1110*4882a593Smuzhiyun@133MHz with four SJA1000 CAN controllers from 2002 under heavy bus
1111*4882a593Smuzhiyunload without any problems ...
1112*4882a593Smuzhiyun
1113*4882a593Smuzhiyun
1114*4882a593SmuzhiyunThe Virtual CAN Driver (vcan)
1115*4882a593Smuzhiyun-----------------------------
1116*4882a593Smuzhiyun
1117*4882a593SmuzhiyunSimilar to the network loopback devices, vcan offers a virtual local
1118*4882a593SmuzhiyunCAN interface. A full qualified address on CAN consists of
1119*4882a593Smuzhiyun
1120*4882a593Smuzhiyun- a unique CAN Identifier (CAN ID)
1121*4882a593Smuzhiyun- the CAN bus this CAN ID is transmitted on (e.g. can0)
1122*4882a593Smuzhiyun
1123*4882a593Smuzhiyunso in common use cases more than one virtual CAN interface is needed.
1124*4882a593Smuzhiyun
1125*4882a593SmuzhiyunThe virtual CAN interfaces allow the transmission and reception of CAN
1126*4882a593Smuzhiyunframes without real CAN controller hardware. Virtual CAN network
1127*4882a593Smuzhiyundevices are usually named 'vcanX', like vcan0 vcan1 vcan2 ...
1128*4882a593SmuzhiyunWhen compiled as a module the virtual CAN driver module is called vcan.ko
1129*4882a593Smuzhiyun
1130*4882a593SmuzhiyunSince Linux Kernel version 2.6.24 the vcan driver supports the Kernel
1131*4882a593Smuzhiyunnetlink interface to create vcan network devices. The creation and
1132*4882a593Smuzhiyunremoval of vcan network devices can be managed with the ip(8) tool::
1133*4882a593Smuzhiyun
1134*4882a593Smuzhiyun  - Create a virtual CAN network interface:
1135*4882a593Smuzhiyun       $ ip link add type vcan
1136*4882a593Smuzhiyun
1137*4882a593Smuzhiyun  - Create a virtual CAN network interface with a specific name 'vcan42':
1138*4882a593Smuzhiyun       $ ip link add dev vcan42 type vcan
1139*4882a593Smuzhiyun
1140*4882a593Smuzhiyun  - Remove a (virtual CAN) network interface 'vcan42':
1141*4882a593Smuzhiyun       $ ip link del vcan42
1142*4882a593Smuzhiyun
1143*4882a593Smuzhiyun
1144*4882a593SmuzhiyunThe CAN Network Device Driver Interface
1145*4882a593Smuzhiyun---------------------------------------
1146*4882a593Smuzhiyun
1147*4882a593SmuzhiyunThe CAN network device driver interface provides a generic interface
1148*4882a593Smuzhiyunto setup, configure and monitor CAN network devices. The user can then
1149*4882a593Smuzhiyunconfigure the CAN device, like setting the bit-timing parameters, via
1150*4882a593Smuzhiyunthe netlink interface using the program "ip" from the "IPROUTE2"
1151*4882a593Smuzhiyunutility suite. The following chapter describes briefly how to use it.
1152*4882a593SmuzhiyunFurthermore, the interface uses a common data structure and exports a
1153*4882a593Smuzhiyunset of common functions, which all real CAN network device drivers
1154*4882a593Smuzhiyunshould use. Please have a look to the SJA1000 or MSCAN driver to
1155*4882a593Smuzhiyununderstand how to use them. The name of the module is can-dev.ko.
1156*4882a593Smuzhiyun
1157*4882a593Smuzhiyun
1158*4882a593SmuzhiyunNetlink interface to set/get devices properties
1159*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1160*4882a593Smuzhiyun
1161*4882a593SmuzhiyunThe CAN device must be configured via netlink interface. The supported
1162*4882a593Smuzhiyunnetlink message types are defined and briefly described in
1163*4882a593Smuzhiyun"include/linux/can/netlink.h". CAN link support for the program "ip"
1164*4882a593Smuzhiyunof the IPROUTE2 utility suite is available and it can be used as shown
1165*4882a593Smuzhiyunbelow:
1166*4882a593Smuzhiyun
1167*4882a593SmuzhiyunSetting CAN device properties::
1168*4882a593Smuzhiyun
1169*4882a593Smuzhiyun    $ ip link set can0 type can help
1170*4882a593Smuzhiyun    Usage: ip link set DEVICE type can
1171*4882a593Smuzhiyun        [ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |
1172*4882a593Smuzhiyun        [ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1
1173*4882a593Smuzhiyun          phase-seg2 PHASE-SEG2 [ sjw SJW ] ]
1174*4882a593Smuzhiyun
1175*4882a593Smuzhiyun        [ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |
1176*4882a593Smuzhiyun        [ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1
1177*4882a593Smuzhiyun          dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]
1178*4882a593Smuzhiyun
1179*4882a593Smuzhiyun        [ loopback { on | off } ]
1180*4882a593Smuzhiyun        [ listen-only { on | off } ]
1181*4882a593Smuzhiyun        [ triple-sampling { on | off } ]
1182*4882a593Smuzhiyun        [ one-shot { on | off } ]
1183*4882a593Smuzhiyun        [ berr-reporting { on | off } ]
1184*4882a593Smuzhiyun        [ fd { on | off } ]
1185*4882a593Smuzhiyun        [ fd-non-iso { on | off } ]
1186*4882a593Smuzhiyun        [ presume-ack { on | off } ]
1187*4882a593Smuzhiyun
1188*4882a593Smuzhiyun        [ restart-ms TIME-MS ]
1189*4882a593Smuzhiyun        [ restart ]
1190*4882a593Smuzhiyun
1191*4882a593Smuzhiyun        Where: BITRATE       := { 1..1000000 }
1192*4882a593Smuzhiyun               SAMPLE-POINT  := { 0.000..0.999 }
1193*4882a593Smuzhiyun               TQ            := { NUMBER }
1194*4882a593Smuzhiyun               PROP-SEG      := { 1..8 }
1195*4882a593Smuzhiyun               PHASE-SEG1    := { 1..8 }
1196*4882a593Smuzhiyun               PHASE-SEG2    := { 1..8 }
1197*4882a593Smuzhiyun               SJW           := { 1..4 }
1198*4882a593Smuzhiyun               RESTART-MS    := { 0 | NUMBER }
1199*4882a593Smuzhiyun
1200*4882a593SmuzhiyunDisplay CAN device details and statistics::
1201*4882a593Smuzhiyun
1202*4882a593Smuzhiyun    $ ip -details -statistics link show can0
1203*4882a593Smuzhiyun    2: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 16 qdisc pfifo_fast state UP qlen 10
1204*4882a593Smuzhiyun      link/can
1205*4882a593Smuzhiyun      can <TRIPLE-SAMPLING> state ERROR-ACTIVE restart-ms 100
1206*4882a593Smuzhiyun      bitrate 125000 sample_point 0.875
1207*4882a593Smuzhiyun      tq 125 prop-seg 6 phase-seg1 7 phase-seg2 2 sjw 1
1208*4882a593Smuzhiyun      sja1000: tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1
1209*4882a593Smuzhiyun      clock 8000000
1210*4882a593Smuzhiyun      re-started bus-errors arbit-lost error-warn error-pass bus-off
1211*4882a593Smuzhiyun      41         17457      0          41         42         41
1212*4882a593Smuzhiyun      RX: bytes  packets  errors  dropped overrun mcast
1213*4882a593Smuzhiyun      140859     17608    17457   0       0       0
1214*4882a593Smuzhiyun      TX: bytes  packets  errors  dropped carrier collsns
1215*4882a593Smuzhiyun      861        112      0       41      0       0
1216*4882a593Smuzhiyun
1217*4882a593SmuzhiyunMore info to the above output:
1218*4882a593Smuzhiyun
1219*4882a593Smuzhiyun"<TRIPLE-SAMPLING>"
1220*4882a593Smuzhiyun	Shows the list of selected CAN controller modes: LOOPBACK,
1221*4882a593Smuzhiyun	LISTEN-ONLY, or TRIPLE-SAMPLING.
1222*4882a593Smuzhiyun
1223*4882a593Smuzhiyun"state ERROR-ACTIVE"
1224*4882a593Smuzhiyun	The current state of the CAN controller: "ERROR-ACTIVE",
1225*4882a593Smuzhiyun	"ERROR-WARNING", "ERROR-PASSIVE", "BUS-OFF" or "STOPPED"
1226*4882a593Smuzhiyun
1227*4882a593Smuzhiyun"restart-ms 100"
1228*4882a593Smuzhiyun	Automatic restart delay time. If set to a non-zero value, a
1229*4882a593Smuzhiyun	restart of the CAN controller will be triggered automatically
1230*4882a593Smuzhiyun	in case of a bus-off condition after the specified delay time
1231*4882a593Smuzhiyun	in milliseconds. By default it's off.
1232*4882a593Smuzhiyun
1233*4882a593Smuzhiyun"bitrate 125000 sample-point 0.875"
1234*4882a593Smuzhiyun	Shows the real bit-rate in bits/sec and the sample-point in the
1235*4882a593Smuzhiyun	range 0.000..0.999. If the calculation of bit-timing parameters
1236*4882a593Smuzhiyun	is enabled in the kernel (CONFIG_CAN_CALC_BITTIMING=y), the
1237*4882a593Smuzhiyun	bit-timing can be defined by setting the "bitrate" argument.
1238*4882a593Smuzhiyun	Optionally the "sample-point" can be specified. By default it's
1239*4882a593Smuzhiyun	0.000 assuming CIA-recommended sample-points.
1240*4882a593Smuzhiyun
1241*4882a593Smuzhiyun"tq 125 prop-seg 6 phase-seg1 7 phase-seg2 2 sjw 1"
1242*4882a593Smuzhiyun	Shows the time quanta in ns, propagation segment, phase buffer
1243*4882a593Smuzhiyun	segment 1 and 2 and the synchronisation jump width in units of
1244*4882a593Smuzhiyun	tq. They allow to define the CAN bit-timing in a hardware
1245*4882a593Smuzhiyun	independent format as proposed by the Bosch CAN 2.0 spec (see
1246*4882a593Smuzhiyun	chapter 8 of http://www.semiconductors.bosch.de/pdf/can2spec.pdf).
1247*4882a593Smuzhiyun
1248*4882a593Smuzhiyun"sja1000: tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1 clock 8000000"
1249*4882a593Smuzhiyun	Shows the bit-timing constants of the CAN controller, here the
1250*4882a593Smuzhiyun	"sja1000". The minimum and maximum values of the time segment 1
1251*4882a593Smuzhiyun	and 2, the synchronisation jump width in units of tq, the
1252*4882a593Smuzhiyun	bitrate pre-scaler and the CAN system clock frequency in Hz.
1253*4882a593Smuzhiyun	These constants could be used for user-defined (non-standard)
1254*4882a593Smuzhiyun	bit-timing calculation algorithms in user-space.
1255*4882a593Smuzhiyun
1256*4882a593Smuzhiyun"re-started bus-errors arbit-lost error-warn error-pass bus-off"
1257*4882a593Smuzhiyun	Shows the number of restarts, bus and arbitration lost errors,
1258*4882a593Smuzhiyun	and the state changes to the error-warning, error-passive and
1259*4882a593Smuzhiyun	bus-off state. RX overrun errors are listed in the "overrun"
1260*4882a593Smuzhiyun	field of the standard network statistics.
1261*4882a593Smuzhiyun
1262*4882a593SmuzhiyunSetting the CAN Bit-Timing
1263*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~
1264*4882a593Smuzhiyun
1265*4882a593SmuzhiyunThe CAN bit-timing parameters can always be defined in a hardware
1266*4882a593Smuzhiyunindependent format as proposed in the Bosch CAN 2.0 specification
1267*4882a593Smuzhiyunspecifying the arguments "tq", "prop_seg", "phase_seg1", "phase_seg2"
1268*4882a593Smuzhiyunand "sjw"::
1269*4882a593Smuzhiyun
1270*4882a593Smuzhiyun    $ ip link set canX type can tq 125 prop-seg 6 \
1271*4882a593Smuzhiyun				phase-seg1 7 phase-seg2 2 sjw 1
1272*4882a593Smuzhiyun
1273*4882a593SmuzhiyunIf the kernel option CONFIG_CAN_CALC_BITTIMING is enabled, CIA
1274*4882a593Smuzhiyunrecommended CAN bit-timing parameters will be calculated if the bit-
1275*4882a593Smuzhiyunrate is specified with the argument "bitrate"::
1276*4882a593Smuzhiyun
1277*4882a593Smuzhiyun    $ ip link set canX type can bitrate 125000
1278*4882a593Smuzhiyun
1279*4882a593SmuzhiyunNote that this works fine for the most common CAN controllers with
1280*4882a593Smuzhiyunstandard bit-rates but may *fail* for exotic bit-rates or CAN system
1281*4882a593Smuzhiyunclock frequencies. Disabling CONFIG_CAN_CALC_BITTIMING saves some
1282*4882a593Smuzhiyunspace and allows user-space tools to solely determine and set the
1283*4882a593Smuzhiyunbit-timing parameters. The CAN controller specific bit-timing
1284*4882a593Smuzhiyunconstants can be used for that purpose. They are listed by the
1285*4882a593Smuzhiyunfollowing command::
1286*4882a593Smuzhiyun
1287*4882a593Smuzhiyun    $ ip -details link show can0
1288*4882a593Smuzhiyun    ...
1289*4882a593Smuzhiyun      sja1000: clock 8000000 tseg1 1..16 tseg2 1..8 sjw 1..4 brp 1..64 brp-inc 1
1290*4882a593Smuzhiyun
1291*4882a593Smuzhiyun
1292*4882a593SmuzhiyunStarting and Stopping the CAN Network Device
1293*4882a593Smuzhiyun~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1294*4882a593Smuzhiyun
1295*4882a593SmuzhiyunA CAN network device is started or stopped as usual with the command
1296*4882a593Smuzhiyun"ifconfig canX up/down" or "ip link set canX up/down". Be aware that
1297*4882a593Smuzhiyunyou *must* define proper bit-timing parameters for real CAN devices
1298*4882a593Smuzhiyunbefore you can start it to avoid error-prone default settings::
1299*4882a593Smuzhiyun
1300*4882a593Smuzhiyun    $ ip link set canX up type can bitrate 125000
1301*4882a593Smuzhiyun
1302*4882a593SmuzhiyunA device may enter the "bus-off" state if too many errors occurred on
1303*4882a593Smuzhiyunthe CAN bus. Then no more messages are received or sent. An automatic
1304*4882a593Smuzhiyunbus-off recovery can be enabled by setting the "restart-ms" to a
1305*4882a593Smuzhiyunnon-zero value, e.g.::
1306*4882a593Smuzhiyun
1307*4882a593Smuzhiyun    $ ip link set canX type can restart-ms 100
1308*4882a593Smuzhiyun
1309*4882a593SmuzhiyunAlternatively, the application may realize the "bus-off" condition
1310*4882a593Smuzhiyunby monitoring CAN error message frames and do a restart when
1311*4882a593Smuzhiyunappropriate with the command::
1312*4882a593Smuzhiyun
1313*4882a593Smuzhiyun    $ ip link set canX type can restart
1314*4882a593Smuzhiyun
1315*4882a593SmuzhiyunNote that a restart will also create a CAN error message frame (see
1316*4882a593Smuzhiyunalso :ref:`socketcan-network-problem-notifications`).
1317*4882a593Smuzhiyun
1318*4882a593Smuzhiyun
1319*4882a593Smuzhiyun.. _socketcan-can-fd-driver:
1320*4882a593Smuzhiyun
1321*4882a593SmuzhiyunCAN FD (Flexible Data Rate) Driver Support
1322*4882a593Smuzhiyun------------------------------------------
1323*4882a593Smuzhiyun
1324*4882a593SmuzhiyunCAN FD capable CAN controllers support two different bitrates for the
1325*4882a593Smuzhiyunarbitration phase and the payload phase of the CAN FD frame. Therefore a
1326*4882a593Smuzhiyunsecond bit timing has to be specified in order to enable the CAN FD bitrate.
1327*4882a593Smuzhiyun
1328*4882a593SmuzhiyunAdditionally CAN FD capable CAN controllers support up to 64 bytes of
1329*4882a593Smuzhiyunpayload. The representation of this length in can_frame.can_dlc and
1330*4882a593Smuzhiyuncanfd_frame.len for userspace applications and inside the Linux network
1331*4882a593Smuzhiyunlayer is a plain value from 0 .. 64 instead of the CAN 'data length code'.
1332*4882a593SmuzhiyunThe data length code was a 1:1 mapping to the payload length in the legacy
1333*4882a593SmuzhiyunCAN frames anyway. The payload length to the bus-relevant DLC mapping is
1334*4882a593Smuzhiyunonly performed inside the CAN drivers, preferably with the helper
1335*4882a593Smuzhiyunfunctions can_dlc2len() and can_len2dlc().
1336*4882a593Smuzhiyun
1337*4882a593SmuzhiyunThe CAN netdevice driver capabilities can be distinguished by the network
1338*4882a593Smuzhiyundevices maximum transfer unit (MTU)::
1339*4882a593Smuzhiyun
1340*4882a593Smuzhiyun  MTU = 16 (CAN_MTU)   => sizeof(struct can_frame)   => 'legacy' CAN device
1341*4882a593Smuzhiyun  MTU = 72 (CANFD_MTU) => sizeof(struct canfd_frame) => CAN FD capable device
1342*4882a593Smuzhiyun
1343*4882a593SmuzhiyunThe CAN device MTU can be retrieved e.g. with a SIOCGIFMTU ioctl() syscall.
1344*4882a593SmuzhiyunN.B. CAN FD capable devices can also handle and send legacy CAN frames.
1345*4882a593Smuzhiyun
1346*4882a593SmuzhiyunWhen configuring CAN FD capable CAN controllers an additional 'data' bitrate
1347*4882a593Smuzhiyunhas to be set. This bitrate for the data phase of the CAN FD frame has to be
1348*4882a593Smuzhiyunat least the bitrate which was configured for the arbitration phase. This
1349*4882a593Smuzhiyunsecond bitrate is specified analogue to the first bitrate but the bitrate
1350*4882a593Smuzhiyunsetting keywords for the 'data' bitrate start with 'd' e.g. dbitrate,
1351*4882a593Smuzhiyundsample-point, dsjw or dtq and similar settings. When a data bitrate is set
1352*4882a593Smuzhiyunwithin the configuration process the controller option "fd on" can be
1353*4882a593Smuzhiyunspecified to enable the CAN FD mode in the CAN controller. This controller
1354*4882a593Smuzhiyunoption also switches the device MTU to 72 (CANFD_MTU).
1355*4882a593Smuzhiyun
1356*4882a593SmuzhiyunThe first CAN FD specification presented as whitepaper at the International
1357*4882a593SmuzhiyunCAN Conference 2012 needed to be improved for data integrity reasons.
1358*4882a593SmuzhiyunTherefore two CAN FD implementations have to be distinguished today:
1359*4882a593Smuzhiyun
1360*4882a593Smuzhiyun- ISO compliant:     The ISO 11898-1:2015 CAN FD implementation (default)
1361*4882a593Smuzhiyun- non-ISO compliant: The CAN FD implementation following the 2012 whitepaper
1362*4882a593Smuzhiyun
1363*4882a593SmuzhiyunFinally there are three types of CAN FD controllers:
1364*4882a593Smuzhiyun
1365*4882a593Smuzhiyun1. ISO compliant (fixed)
1366*4882a593Smuzhiyun2. non-ISO compliant (fixed, like the M_CAN IP core v3.0.1 in m_can.c)
1367*4882a593Smuzhiyun3. ISO/non-ISO CAN FD controllers (switchable, like the PEAK PCAN-USB FD)
1368*4882a593Smuzhiyun
1369*4882a593SmuzhiyunThe current ISO/non-ISO mode is announced by the CAN controller driver via
1370*4882a593Smuzhiyunnetlink and displayed by the 'ip' tool (controller option FD-NON-ISO).
1371*4882a593SmuzhiyunThe ISO/non-ISO-mode can be altered by setting 'fd-non-iso {on|off}' for
1372*4882a593Smuzhiyunswitchable CAN FD controllers only.
1373*4882a593Smuzhiyun
1374*4882a593SmuzhiyunExample configuring 500 kbit/s arbitration bitrate and 4 Mbit/s data bitrate::
1375*4882a593Smuzhiyun
1376*4882a593Smuzhiyun    $ ip link set can0 up type can bitrate 500000 sample-point 0.75 \
1377*4882a593Smuzhiyun                                   dbitrate 4000000 dsample-point 0.8 fd on
1378*4882a593Smuzhiyun    $ ip -details link show can0
1379*4882a593Smuzhiyun    5: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 72 qdisc pfifo_fast state UNKNOWN \
1380*4882a593Smuzhiyun             mode DEFAULT group default qlen 10
1381*4882a593Smuzhiyun    link/can  promiscuity 0
1382*4882a593Smuzhiyun    can <FD> state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0
1383*4882a593Smuzhiyun          bitrate 500000 sample-point 0.750
1384*4882a593Smuzhiyun          tq 50 prop-seg 14 phase-seg1 15 phase-seg2 10 sjw 1
1385*4882a593Smuzhiyun          pcan_usb_pro_fd: tseg1 1..64 tseg2 1..16 sjw 1..16 brp 1..1024 \
1386*4882a593Smuzhiyun          brp-inc 1
1387*4882a593Smuzhiyun          dbitrate 4000000 dsample-point 0.800
1388*4882a593Smuzhiyun          dtq 12 dprop-seg 7 dphase-seg1 8 dphase-seg2 4 dsjw 1
1389*4882a593Smuzhiyun          pcan_usb_pro_fd: dtseg1 1..16 dtseg2 1..8 dsjw 1..4 dbrp 1..1024 \
1390*4882a593Smuzhiyun          dbrp-inc 1
1391*4882a593Smuzhiyun          clock 80000000
1392*4882a593Smuzhiyun
1393*4882a593SmuzhiyunExample when 'fd-non-iso on' is added on this switchable CAN FD adapter::
1394*4882a593Smuzhiyun
1395*4882a593Smuzhiyun   can <FD,FD-NON-ISO> state ERROR-ACTIVE (berr-counter tx 0 rx 0) restart-ms 0
1396*4882a593Smuzhiyun
1397*4882a593Smuzhiyun
1398*4882a593SmuzhiyunSupported CAN Hardware
1399*4882a593Smuzhiyun----------------------
1400*4882a593Smuzhiyun
1401*4882a593SmuzhiyunPlease check the "Kconfig" file in "drivers/net/can" to get an actual
1402*4882a593Smuzhiyunlist of the support CAN hardware. On the SocketCAN project website
1403*4882a593Smuzhiyun(see :ref:`socketcan-resources`) there might be further drivers available, also for
1404*4882a593Smuzhiyunolder kernel versions.
1405*4882a593Smuzhiyun
1406*4882a593Smuzhiyun
1407*4882a593Smuzhiyun.. _socketcan-resources:
1408*4882a593Smuzhiyun
1409*4882a593SmuzhiyunSocketCAN Resources
1410*4882a593Smuzhiyun===================
1411*4882a593Smuzhiyun
1412*4882a593SmuzhiyunThe Linux CAN / SocketCAN project resources (project site / mailing list)
1413*4882a593Smuzhiyunare referenced in the MAINTAINERS file in the Linux source tree.
1414*4882a593SmuzhiyunSearch for CAN NETWORK [LAYERS|DRIVERS].
1415*4882a593Smuzhiyun
1416*4882a593SmuzhiyunCredits
1417*4882a593Smuzhiyun=======
1418*4882a593Smuzhiyun
1419*4882a593Smuzhiyun- Oliver Hartkopp (PF_CAN core, filters, drivers, bcm, SJA1000 driver)
1420*4882a593Smuzhiyun- Urs Thuermann (PF_CAN core, kernel integration, socket interfaces, raw, vcan)
1421*4882a593Smuzhiyun- Jan Kizka (RT-SocketCAN core, Socket-API reconciliation)
1422*4882a593Smuzhiyun- Wolfgang Grandegger (RT-SocketCAN core & drivers, Raw Socket-API reviews, CAN device driver interface, MSCAN driver)
1423*4882a593Smuzhiyun- Robert Schwebel (design reviews, PTXdist integration)
1424*4882a593Smuzhiyun- Marc Kleine-Budde (design reviews, Kernel 2.6 cleanups, drivers)
1425*4882a593Smuzhiyun- Benedikt Spranger (reviews)
1426*4882a593Smuzhiyun- Thomas Gleixner (LKML reviews, coding style, posting hints)
1427*4882a593Smuzhiyun- Andrey Volkov (kernel subtree structure, ioctls, MSCAN driver)
1428*4882a593Smuzhiyun- Matthias Brukner (first SJA1000 CAN netdevice implementation Q2/2003)
1429*4882a593Smuzhiyun- Klaus Hitschler (PEAK driver integration)
1430*4882a593Smuzhiyun- Uwe Koppe (CAN netdevices with PF_PACKET approach)
1431*4882a593Smuzhiyun- Michael Schulze (driver layer loopback requirement, RT CAN drivers review)
1432*4882a593Smuzhiyun- Pavel Pisa (Bit-timing calculation)
1433*4882a593Smuzhiyun- Sascha Hauer (SJA1000 platform driver)
1434*4882a593Smuzhiyun- Sebastian Haas (SJA1000 EMS PCI driver)
1435*4882a593Smuzhiyun- Markus Plessing (SJA1000 EMS PCI driver)
1436*4882a593Smuzhiyun- Per Dalen (SJA1000 Kvaser PCI driver)
1437*4882a593Smuzhiyun- Sam Ravnborg (reviews, coding style, kbuild help)
1438