1*4882a593Smuzhiyun=============================== 2*4882a593SmuzhiyunPINCTRL (PIN CONTROL) subsystem 3*4882a593Smuzhiyun=============================== 4*4882a593Smuzhiyun 5*4882a593SmuzhiyunThis document outlines the pin control subsystem in Linux 6*4882a593Smuzhiyun 7*4882a593SmuzhiyunThis subsystem deals with: 8*4882a593Smuzhiyun 9*4882a593Smuzhiyun- Enumerating and naming controllable pins 10*4882a593Smuzhiyun 11*4882a593Smuzhiyun- Multiplexing of pins, pads, fingers (etc) see below for details 12*4882a593Smuzhiyun 13*4882a593Smuzhiyun- Configuration of pins, pads, fingers (etc), such as software-controlled 14*4882a593Smuzhiyun biasing and driving mode specific pins, such as pull-up/down, open drain, 15*4882a593Smuzhiyun load capacitance etc. 16*4882a593Smuzhiyun 17*4882a593SmuzhiyunTop-level interface 18*4882a593Smuzhiyun=================== 19*4882a593Smuzhiyun 20*4882a593SmuzhiyunDefinition of PIN CONTROLLER: 21*4882a593Smuzhiyun 22*4882a593Smuzhiyun- A pin controller is a piece of hardware, usually a set of registers, that 23*4882a593Smuzhiyun can control PINs. It may be able to multiplex, bias, set load capacitance, 24*4882a593Smuzhiyun set drive strength, etc. for individual pins or groups of pins. 25*4882a593Smuzhiyun 26*4882a593SmuzhiyunDefinition of PIN: 27*4882a593Smuzhiyun 28*4882a593Smuzhiyun- PINS are equal to pads, fingers, balls or whatever packaging input or 29*4882a593Smuzhiyun output line you want to control and these are denoted by unsigned integers 30*4882a593Smuzhiyun in the range 0..maxpin. This numberspace is local to each PIN CONTROLLER, so 31*4882a593Smuzhiyun there may be several such number spaces in a system. This pin space may 32*4882a593Smuzhiyun be sparse - i.e. there may be gaps in the space with numbers where no 33*4882a593Smuzhiyun pin exists. 34*4882a593Smuzhiyun 35*4882a593SmuzhiyunWhen a PIN CONTROLLER is instantiated, it will register a descriptor to the 36*4882a593Smuzhiyunpin control framework, and this descriptor contains an array of pin descriptors 37*4882a593Smuzhiyundescribing the pins handled by this specific pin controller. 38*4882a593Smuzhiyun 39*4882a593SmuzhiyunHere is an example of a PGA (Pin Grid Array) chip seen from underneath:: 40*4882a593Smuzhiyun 41*4882a593Smuzhiyun A B C D E F G H 42*4882a593Smuzhiyun 43*4882a593Smuzhiyun 8 o o o o o o o o 44*4882a593Smuzhiyun 45*4882a593Smuzhiyun 7 o o o o o o o o 46*4882a593Smuzhiyun 47*4882a593Smuzhiyun 6 o o o o o o o o 48*4882a593Smuzhiyun 49*4882a593Smuzhiyun 5 o o o o o o o o 50*4882a593Smuzhiyun 51*4882a593Smuzhiyun 4 o o o o o o o o 52*4882a593Smuzhiyun 53*4882a593Smuzhiyun 3 o o o o o o o o 54*4882a593Smuzhiyun 55*4882a593Smuzhiyun 2 o o o o o o o o 56*4882a593Smuzhiyun 57*4882a593Smuzhiyun 1 o o o o o o o o 58*4882a593Smuzhiyun 59*4882a593SmuzhiyunTo register a pin controller and name all the pins on this package we can do 60*4882a593Smuzhiyunthis in our driver:: 61*4882a593Smuzhiyun 62*4882a593Smuzhiyun #include <linux/pinctrl/pinctrl.h> 63*4882a593Smuzhiyun 64*4882a593Smuzhiyun const struct pinctrl_pin_desc foo_pins[] = { 65*4882a593Smuzhiyun PINCTRL_PIN(0, "A8"), 66*4882a593Smuzhiyun PINCTRL_PIN(1, "B8"), 67*4882a593Smuzhiyun PINCTRL_PIN(2, "C8"), 68*4882a593Smuzhiyun ... 69*4882a593Smuzhiyun PINCTRL_PIN(61, "F1"), 70*4882a593Smuzhiyun PINCTRL_PIN(62, "G1"), 71*4882a593Smuzhiyun PINCTRL_PIN(63, "H1"), 72*4882a593Smuzhiyun }; 73*4882a593Smuzhiyun 74*4882a593Smuzhiyun static struct pinctrl_desc foo_desc = { 75*4882a593Smuzhiyun .name = "foo", 76*4882a593Smuzhiyun .pins = foo_pins, 77*4882a593Smuzhiyun .npins = ARRAY_SIZE(foo_pins), 78*4882a593Smuzhiyun .owner = THIS_MODULE, 79*4882a593Smuzhiyun }; 80*4882a593Smuzhiyun 81*4882a593Smuzhiyun int __init foo_probe(void) 82*4882a593Smuzhiyun { 83*4882a593Smuzhiyun int error; 84*4882a593Smuzhiyun 85*4882a593Smuzhiyun struct pinctrl_dev *pctl; 86*4882a593Smuzhiyun 87*4882a593Smuzhiyun error = pinctrl_register_and_init(&foo_desc, <PARENT>, 88*4882a593Smuzhiyun NULL, &pctl); 89*4882a593Smuzhiyun if (error) 90*4882a593Smuzhiyun return error; 91*4882a593Smuzhiyun 92*4882a593Smuzhiyun return pinctrl_enable(pctl); 93*4882a593Smuzhiyun } 94*4882a593Smuzhiyun 95*4882a593SmuzhiyunTo enable the pinctrl subsystem and the subgroups for PINMUX and PINCONF and 96*4882a593Smuzhiyunselected drivers, you need to select them from your machine's Kconfig entry, 97*4882a593Smuzhiyunsince these are so tightly integrated with the machines they are used on. 98*4882a593SmuzhiyunSee for example arch/arm/mach-u300/Kconfig for an example. 99*4882a593Smuzhiyun 100*4882a593SmuzhiyunPins usually have fancier names than this. You can find these in the datasheet 101*4882a593Smuzhiyunfor your chip. Notice that the core pinctrl.h file provides a fancy macro 102*4882a593Smuzhiyuncalled PINCTRL_PIN() to create the struct entries. As you can see I enumerated 103*4882a593Smuzhiyunthe pins from 0 in the upper left corner to 63 in the lower right corner. 104*4882a593SmuzhiyunThis enumeration was arbitrarily chosen, in practice you need to think 105*4882a593Smuzhiyunthrough your numbering system so that it matches the layout of registers 106*4882a593Smuzhiyunand such things in your driver, or the code may become complicated. You must 107*4882a593Smuzhiyunalso consider matching of offsets to the GPIO ranges that may be handled by 108*4882a593Smuzhiyunthe pin controller. 109*4882a593Smuzhiyun 110*4882a593SmuzhiyunFor a padring with 467 pads, as opposed to actual pins, I used an enumeration 111*4882a593Smuzhiyunlike this, walking around the edge of the chip, which seems to be industry 112*4882a593Smuzhiyunstandard too (all these pads had names, too):: 113*4882a593Smuzhiyun 114*4882a593Smuzhiyun 115*4882a593Smuzhiyun 0 ..... 104 116*4882a593Smuzhiyun 466 105 117*4882a593Smuzhiyun . . 118*4882a593Smuzhiyun . . 119*4882a593Smuzhiyun 358 224 120*4882a593Smuzhiyun 357 .... 225 121*4882a593Smuzhiyun 122*4882a593Smuzhiyun 123*4882a593SmuzhiyunPin groups 124*4882a593Smuzhiyun========== 125*4882a593Smuzhiyun 126*4882a593SmuzhiyunMany controllers need to deal with groups of pins, so the pin controller 127*4882a593Smuzhiyunsubsystem has a mechanism for enumerating groups of pins and retrieving the 128*4882a593Smuzhiyunactual enumerated pins that are part of a certain group. 129*4882a593Smuzhiyun 130*4882a593SmuzhiyunFor example, say that we have a group of pins dealing with an SPI interface 131*4882a593Smuzhiyunon { 0, 8, 16, 24 }, and a group of pins dealing with an I2C interface on pins 132*4882a593Smuzhiyunon { 24, 25 }. 133*4882a593Smuzhiyun 134*4882a593SmuzhiyunThese two groups are presented to the pin control subsystem by implementing 135*4882a593Smuzhiyunsome generic pinctrl_ops like this:: 136*4882a593Smuzhiyun 137*4882a593Smuzhiyun #include <linux/pinctrl/pinctrl.h> 138*4882a593Smuzhiyun 139*4882a593Smuzhiyun struct foo_group { 140*4882a593Smuzhiyun const char *name; 141*4882a593Smuzhiyun const unsigned int *pins; 142*4882a593Smuzhiyun const unsigned num_pins; 143*4882a593Smuzhiyun }; 144*4882a593Smuzhiyun 145*4882a593Smuzhiyun static const unsigned int spi0_pins[] = { 0, 8, 16, 24 }; 146*4882a593Smuzhiyun static const unsigned int i2c0_pins[] = { 24, 25 }; 147*4882a593Smuzhiyun 148*4882a593Smuzhiyun static const struct foo_group foo_groups[] = { 149*4882a593Smuzhiyun { 150*4882a593Smuzhiyun .name = "spi0_grp", 151*4882a593Smuzhiyun .pins = spi0_pins, 152*4882a593Smuzhiyun .num_pins = ARRAY_SIZE(spi0_pins), 153*4882a593Smuzhiyun }, 154*4882a593Smuzhiyun { 155*4882a593Smuzhiyun .name = "i2c0_grp", 156*4882a593Smuzhiyun .pins = i2c0_pins, 157*4882a593Smuzhiyun .num_pins = ARRAY_SIZE(i2c0_pins), 158*4882a593Smuzhiyun }, 159*4882a593Smuzhiyun }; 160*4882a593Smuzhiyun 161*4882a593Smuzhiyun 162*4882a593Smuzhiyun static int foo_get_groups_count(struct pinctrl_dev *pctldev) 163*4882a593Smuzhiyun { 164*4882a593Smuzhiyun return ARRAY_SIZE(foo_groups); 165*4882a593Smuzhiyun } 166*4882a593Smuzhiyun 167*4882a593Smuzhiyun static const char *foo_get_group_name(struct pinctrl_dev *pctldev, 168*4882a593Smuzhiyun unsigned selector) 169*4882a593Smuzhiyun { 170*4882a593Smuzhiyun return foo_groups[selector].name; 171*4882a593Smuzhiyun } 172*4882a593Smuzhiyun 173*4882a593Smuzhiyun static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector, 174*4882a593Smuzhiyun const unsigned **pins, 175*4882a593Smuzhiyun unsigned *num_pins) 176*4882a593Smuzhiyun { 177*4882a593Smuzhiyun *pins = (unsigned *) foo_groups[selector].pins; 178*4882a593Smuzhiyun *num_pins = foo_groups[selector].num_pins; 179*4882a593Smuzhiyun return 0; 180*4882a593Smuzhiyun } 181*4882a593Smuzhiyun 182*4882a593Smuzhiyun static struct pinctrl_ops foo_pctrl_ops = { 183*4882a593Smuzhiyun .get_groups_count = foo_get_groups_count, 184*4882a593Smuzhiyun .get_group_name = foo_get_group_name, 185*4882a593Smuzhiyun .get_group_pins = foo_get_group_pins, 186*4882a593Smuzhiyun }; 187*4882a593Smuzhiyun 188*4882a593Smuzhiyun 189*4882a593Smuzhiyun static struct pinctrl_desc foo_desc = { 190*4882a593Smuzhiyun ... 191*4882a593Smuzhiyun .pctlops = &foo_pctrl_ops, 192*4882a593Smuzhiyun }; 193*4882a593Smuzhiyun 194*4882a593SmuzhiyunThe pin control subsystem will call the .get_groups_count() function to 195*4882a593Smuzhiyundetermine the total number of legal selectors, then it will call the other functions 196*4882a593Smuzhiyunto retrieve the name and pins of the group. Maintaining the data structure of 197*4882a593Smuzhiyunthe groups is up to the driver, this is just a simple example - in practice you 198*4882a593Smuzhiyunmay need more entries in your group structure, for example specific register 199*4882a593Smuzhiyunranges associated with each group and so on. 200*4882a593Smuzhiyun 201*4882a593Smuzhiyun 202*4882a593SmuzhiyunPin configuration 203*4882a593Smuzhiyun================= 204*4882a593Smuzhiyun 205*4882a593SmuzhiyunPins can sometimes be software-configured in various ways, mostly related 206*4882a593Smuzhiyunto their electronic properties when used as inputs or outputs. For example you 207*4882a593Smuzhiyunmay be able to make an output pin high impedance, or "tristate" meaning it is 208*4882a593Smuzhiyuneffectively disconnected. You may be able to connect an input pin to VDD or GND 209*4882a593Smuzhiyunusing a certain resistor value - pull up and pull down - so that the pin has a 210*4882a593Smuzhiyunstable value when nothing is driving the rail it is connected to, or when it's 211*4882a593Smuzhiyununconnected. 212*4882a593Smuzhiyun 213*4882a593SmuzhiyunPin configuration can be programmed by adding configuration entries into the 214*4882a593Smuzhiyunmapping table; see section "Board/machine configuration" below. 215*4882a593Smuzhiyun 216*4882a593SmuzhiyunThe format and meaning of the configuration parameter, PLATFORM_X_PULL_UP 217*4882a593Smuzhiyunabove, is entirely defined by the pin controller driver. 218*4882a593Smuzhiyun 219*4882a593SmuzhiyunThe pin configuration driver implements callbacks for changing pin 220*4882a593Smuzhiyunconfiguration in the pin controller ops like this:: 221*4882a593Smuzhiyun 222*4882a593Smuzhiyun #include <linux/pinctrl/pinctrl.h> 223*4882a593Smuzhiyun #include <linux/pinctrl/pinconf.h> 224*4882a593Smuzhiyun #include "platform_x_pindefs.h" 225*4882a593Smuzhiyun 226*4882a593Smuzhiyun static int foo_pin_config_get(struct pinctrl_dev *pctldev, 227*4882a593Smuzhiyun unsigned offset, 228*4882a593Smuzhiyun unsigned long *config) 229*4882a593Smuzhiyun { 230*4882a593Smuzhiyun struct my_conftype conf; 231*4882a593Smuzhiyun 232*4882a593Smuzhiyun ... Find setting for pin @ offset ... 233*4882a593Smuzhiyun 234*4882a593Smuzhiyun *config = (unsigned long) conf; 235*4882a593Smuzhiyun } 236*4882a593Smuzhiyun 237*4882a593Smuzhiyun static int foo_pin_config_set(struct pinctrl_dev *pctldev, 238*4882a593Smuzhiyun unsigned offset, 239*4882a593Smuzhiyun unsigned long config) 240*4882a593Smuzhiyun { 241*4882a593Smuzhiyun struct my_conftype *conf = (struct my_conftype *) config; 242*4882a593Smuzhiyun 243*4882a593Smuzhiyun switch (conf) { 244*4882a593Smuzhiyun case PLATFORM_X_PULL_UP: 245*4882a593Smuzhiyun ... 246*4882a593Smuzhiyun } 247*4882a593Smuzhiyun } 248*4882a593Smuzhiyun } 249*4882a593Smuzhiyun 250*4882a593Smuzhiyun static int foo_pin_config_group_get (struct pinctrl_dev *pctldev, 251*4882a593Smuzhiyun unsigned selector, 252*4882a593Smuzhiyun unsigned long *config) 253*4882a593Smuzhiyun { 254*4882a593Smuzhiyun ... 255*4882a593Smuzhiyun } 256*4882a593Smuzhiyun 257*4882a593Smuzhiyun static int foo_pin_config_group_set (struct pinctrl_dev *pctldev, 258*4882a593Smuzhiyun unsigned selector, 259*4882a593Smuzhiyun unsigned long config) 260*4882a593Smuzhiyun { 261*4882a593Smuzhiyun ... 262*4882a593Smuzhiyun } 263*4882a593Smuzhiyun 264*4882a593Smuzhiyun static struct pinconf_ops foo_pconf_ops = { 265*4882a593Smuzhiyun .pin_config_get = foo_pin_config_get, 266*4882a593Smuzhiyun .pin_config_set = foo_pin_config_set, 267*4882a593Smuzhiyun .pin_config_group_get = foo_pin_config_group_get, 268*4882a593Smuzhiyun .pin_config_group_set = foo_pin_config_group_set, 269*4882a593Smuzhiyun }; 270*4882a593Smuzhiyun 271*4882a593Smuzhiyun /* Pin config operations are handled by some pin controller */ 272*4882a593Smuzhiyun static struct pinctrl_desc foo_desc = { 273*4882a593Smuzhiyun ... 274*4882a593Smuzhiyun .confops = &foo_pconf_ops, 275*4882a593Smuzhiyun }; 276*4882a593Smuzhiyun 277*4882a593SmuzhiyunInteraction with the GPIO subsystem 278*4882a593Smuzhiyun=================================== 279*4882a593Smuzhiyun 280*4882a593SmuzhiyunThe GPIO drivers may want to perform operations of various types on the same 281*4882a593Smuzhiyunphysical pins that are also registered as pin controller pins. 282*4882a593Smuzhiyun 283*4882a593SmuzhiyunFirst and foremost, the two subsystems can be used as completely orthogonal, 284*4882a593Smuzhiyunsee the section named "pin control requests from drivers" and 285*4882a593Smuzhiyun"drivers needing both pin control and GPIOs" below for details. But in some 286*4882a593Smuzhiyunsituations a cross-subsystem mapping between pins and GPIOs is needed. 287*4882a593Smuzhiyun 288*4882a593SmuzhiyunSince the pin controller subsystem has its pinspace local to the pin controller 289*4882a593Smuzhiyunwe need a mapping so that the pin control subsystem can figure out which pin 290*4882a593Smuzhiyuncontroller handles control of a certain GPIO pin. Since a single pin controller 291*4882a593Smuzhiyunmay be muxing several GPIO ranges (typically SoCs that have one set of pins, 292*4882a593Smuzhiyunbut internally several GPIO silicon blocks, each modelled as a struct 293*4882a593Smuzhiyungpio_chip) any number of GPIO ranges can be added to a pin controller instance 294*4882a593Smuzhiyunlike this:: 295*4882a593Smuzhiyun 296*4882a593Smuzhiyun struct gpio_chip chip_a; 297*4882a593Smuzhiyun struct gpio_chip chip_b; 298*4882a593Smuzhiyun 299*4882a593Smuzhiyun static struct pinctrl_gpio_range gpio_range_a = { 300*4882a593Smuzhiyun .name = "chip a", 301*4882a593Smuzhiyun .id = 0, 302*4882a593Smuzhiyun .base = 32, 303*4882a593Smuzhiyun .pin_base = 32, 304*4882a593Smuzhiyun .npins = 16, 305*4882a593Smuzhiyun .gc = &chip_a; 306*4882a593Smuzhiyun }; 307*4882a593Smuzhiyun 308*4882a593Smuzhiyun static struct pinctrl_gpio_range gpio_range_b = { 309*4882a593Smuzhiyun .name = "chip b", 310*4882a593Smuzhiyun .id = 0, 311*4882a593Smuzhiyun .base = 48, 312*4882a593Smuzhiyun .pin_base = 64, 313*4882a593Smuzhiyun .npins = 8, 314*4882a593Smuzhiyun .gc = &chip_b; 315*4882a593Smuzhiyun }; 316*4882a593Smuzhiyun 317*4882a593Smuzhiyun { 318*4882a593Smuzhiyun struct pinctrl_dev *pctl; 319*4882a593Smuzhiyun ... 320*4882a593Smuzhiyun pinctrl_add_gpio_range(pctl, &gpio_range_a); 321*4882a593Smuzhiyun pinctrl_add_gpio_range(pctl, &gpio_range_b); 322*4882a593Smuzhiyun } 323*4882a593Smuzhiyun 324*4882a593SmuzhiyunSo this complex system has one pin controller handling two different 325*4882a593SmuzhiyunGPIO chips. "chip a" has 16 pins and "chip b" has 8 pins. The "chip a" and 326*4882a593Smuzhiyun"chip b" have different .pin_base, which means a start pin number of the 327*4882a593SmuzhiyunGPIO range. 328*4882a593Smuzhiyun 329*4882a593SmuzhiyunThe GPIO range of "chip a" starts from the GPIO base of 32 and actual 330*4882a593Smuzhiyunpin range also starts from 32. However "chip b" has different starting 331*4882a593Smuzhiyunoffset for the GPIO range and pin range. The GPIO range of "chip b" starts 332*4882a593Smuzhiyunfrom GPIO number 48, while the pin range of "chip b" starts from 64. 333*4882a593Smuzhiyun 334*4882a593SmuzhiyunWe can convert a gpio number to actual pin number using this "pin_base". 335*4882a593SmuzhiyunThey are mapped in the global GPIO pin space at: 336*4882a593Smuzhiyun 337*4882a593Smuzhiyunchip a: 338*4882a593Smuzhiyun - GPIO range : [32 .. 47] 339*4882a593Smuzhiyun - pin range : [32 .. 47] 340*4882a593Smuzhiyunchip b: 341*4882a593Smuzhiyun - GPIO range : [48 .. 55] 342*4882a593Smuzhiyun - pin range : [64 .. 71] 343*4882a593Smuzhiyun 344*4882a593SmuzhiyunThe above examples assume the mapping between the GPIOs and pins is 345*4882a593Smuzhiyunlinear. If the mapping is sparse or haphazard, an array of arbitrary pin 346*4882a593Smuzhiyunnumbers can be encoded in the range like this:: 347*4882a593Smuzhiyun 348*4882a593Smuzhiyun static const unsigned range_pins[] = { 14, 1, 22, 17, 10, 8, 6, 2 }; 349*4882a593Smuzhiyun 350*4882a593Smuzhiyun static struct pinctrl_gpio_range gpio_range = { 351*4882a593Smuzhiyun .name = "chip", 352*4882a593Smuzhiyun .id = 0, 353*4882a593Smuzhiyun .base = 32, 354*4882a593Smuzhiyun .pins = &range_pins, 355*4882a593Smuzhiyun .npins = ARRAY_SIZE(range_pins), 356*4882a593Smuzhiyun .gc = &chip; 357*4882a593Smuzhiyun }; 358*4882a593Smuzhiyun 359*4882a593SmuzhiyunIn this case the pin_base property will be ignored. If the name of a pin 360*4882a593Smuzhiyungroup is known, the pins and npins elements of the above structure can be 361*4882a593Smuzhiyuninitialised using the function pinctrl_get_group_pins(), e.g. for pin 362*4882a593Smuzhiyungroup "foo":: 363*4882a593Smuzhiyun 364*4882a593Smuzhiyun pinctrl_get_group_pins(pctl, "foo", &gpio_range.pins, 365*4882a593Smuzhiyun &gpio_range.npins); 366*4882a593Smuzhiyun 367*4882a593SmuzhiyunWhen GPIO-specific functions in the pin control subsystem are called, these 368*4882a593Smuzhiyunranges will be used to look up the appropriate pin controller by inspecting 369*4882a593Smuzhiyunand matching the pin to the pin ranges across all controllers. When a 370*4882a593Smuzhiyunpin controller handling the matching range is found, GPIO-specific functions 371*4882a593Smuzhiyunwill be called on that specific pin controller. 372*4882a593Smuzhiyun 373*4882a593SmuzhiyunFor all functionalities dealing with pin biasing, pin muxing etc, the pin 374*4882a593Smuzhiyuncontroller subsystem will look up the corresponding pin number from the passed 375*4882a593Smuzhiyunin gpio number, and use the range's internals to retrieve a pin number. After 376*4882a593Smuzhiyunthat, the subsystem passes it on to the pin control driver, so the driver 377*4882a593Smuzhiyunwill get a pin number into its handled number range. Further it is also passed 378*4882a593Smuzhiyunthe range ID value, so that the pin controller knows which range it should 379*4882a593Smuzhiyundeal with. 380*4882a593Smuzhiyun 381*4882a593SmuzhiyunCalling pinctrl_add_gpio_range from pinctrl driver is DEPRECATED. Please see 382*4882a593Smuzhiyunsection 2.1 of Documentation/devicetree/bindings/gpio/gpio.txt on how to bind 383*4882a593Smuzhiyunpinctrl and gpio drivers. 384*4882a593Smuzhiyun 385*4882a593Smuzhiyun 386*4882a593SmuzhiyunPINMUX interfaces 387*4882a593Smuzhiyun================= 388*4882a593Smuzhiyun 389*4882a593SmuzhiyunThese calls use the pinmux_* naming prefix. No other calls should use that 390*4882a593Smuzhiyunprefix. 391*4882a593Smuzhiyun 392*4882a593Smuzhiyun 393*4882a593SmuzhiyunWhat is pinmuxing? 394*4882a593Smuzhiyun================== 395*4882a593Smuzhiyun 396*4882a593SmuzhiyunPINMUX, also known as padmux, ballmux, alternate functions or mission modes 397*4882a593Smuzhiyunis a way for chip vendors producing some kind of electrical packages to use 398*4882a593Smuzhiyuna certain physical pin (ball, pad, finger, etc) for multiple mutually exclusive 399*4882a593Smuzhiyunfunctions, depending on the application. By "application" in this context 400*4882a593Smuzhiyunwe usually mean a way of soldering or wiring the package into an electronic 401*4882a593Smuzhiyunsystem, even though the framework makes it possible to also change the function 402*4882a593Smuzhiyunat runtime. 403*4882a593Smuzhiyun 404*4882a593SmuzhiyunHere is an example of a PGA (Pin Grid Array) chip seen from underneath:: 405*4882a593Smuzhiyun 406*4882a593Smuzhiyun A B C D E F G H 407*4882a593Smuzhiyun +---+ 408*4882a593Smuzhiyun 8 | o | o o o o o o o 409*4882a593Smuzhiyun | | 410*4882a593Smuzhiyun 7 | o | o o o o o o o 411*4882a593Smuzhiyun | | 412*4882a593Smuzhiyun 6 | o | o o o o o o o 413*4882a593Smuzhiyun +---+---+ 414*4882a593Smuzhiyun 5 | o | o | o o o o o o 415*4882a593Smuzhiyun +---+---+ +---+ 416*4882a593Smuzhiyun 4 o o o o o o | o | o 417*4882a593Smuzhiyun | | 418*4882a593Smuzhiyun 3 o o o o o o | o | o 419*4882a593Smuzhiyun | | 420*4882a593Smuzhiyun 2 o o o o o o | o | o 421*4882a593Smuzhiyun +-------+-------+-------+---+---+ 422*4882a593Smuzhiyun 1 | o o | o o | o o | o | o | 423*4882a593Smuzhiyun +-------+-------+-------+---+---+ 424*4882a593Smuzhiyun 425*4882a593SmuzhiyunThis is not tetris. The game to think of is chess. Not all PGA/BGA packages 426*4882a593Smuzhiyunare chessboard-like, big ones have "holes" in some arrangement according to 427*4882a593Smuzhiyundifferent design patterns, but we're using this as a simple example. Of the 428*4882a593Smuzhiyunpins you see some will be taken by things like a few VCC and GND to feed power 429*4882a593Smuzhiyunto the chip, and quite a few will be taken by large ports like an external 430*4882a593Smuzhiyunmemory interface. The remaining pins will often be subject to pin multiplexing. 431*4882a593Smuzhiyun 432*4882a593SmuzhiyunThe example 8x8 PGA package above will have pin numbers 0 through 63 assigned 433*4882a593Smuzhiyunto its physical pins. It will name the pins { A1, A2, A3 ... H6, H7, H8 } using 434*4882a593Smuzhiyunpinctrl_register_pins() and a suitable data set as shown earlier. 435*4882a593Smuzhiyun 436*4882a593SmuzhiyunIn this 8x8 BGA package the pins { A8, A7, A6, A5 } can be used as an SPI port 437*4882a593Smuzhiyun(these are four pins: CLK, RXD, TXD, FRM). In that case, pin B5 can be used as 438*4882a593Smuzhiyunsome general-purpose GPIO pin. However, in another setting, pins { A5, B5 } can 439*4882a593Smuzhiyunbe used as an I2C port (these are just two pins: SCL, SDA). Needless to say, 440*4882a593Smuzhiyunwe cannot use the SPI port and I2C port at the same time. However in the inside 441*4882a593Smuzhiyunof the package the silicon performing the SPI logic can alternatively be routed 442*4882a593Smuzhiyunout on pins { G4, G3, G2, G1 }. 443*4882a593Smuzhiyun 444*4882a593SmuzhiyunOn the bottom row at { A1, B1, C1, D1, E1, F1, G1, H1 } we have something 445*4882a593Smuzhiyunspecial - it's an external MMC bus that can be 2, 4 or 8 bits wide, and it will 446*4882a593Smuzhiyunconsume 2, 4 or 8 pins respectively, so either { A1, B1 } are taken or 447*4882a593Smuzhiyun{ A1, B1, C1, D1 } or all of them. If we use all 8 bits, we cannot use the SPI 448*4882a593Smuzhiyunport on pins { G4, G3, G2, G1 } of course. 449*4882a593Smuzhiyun 450*4882a593SmuzhiyunThis way the silicon blocks present inside the chip can be multiplexed "muxed" 451*4882a593Smuzhiyunout on different pin ranges. Often contemporary SoC (systems on chip) will 452*4882a593Smuzhiyuncontain several I2C, SPI, SDIO/MMC, etc silicon blocks that can be routed to 453*4882a593Smuzhiyundifferent pins by pinmux settings. 454*4882a593Smuzhiyun 455*4882a593SmuzhiyunSince general-purpose I/O pins (GPIO) are typically always in shortage, it is 456*4882a593Smuzhiyuncommon to be able to use almost any pin as a GPIO pin if it is not currently 457*4882a593Smuzhiyunin use by some other I/O port. 458*4882a593Smuzhiyun 459*4882a593Smuzhiyun 460*4882a593SmuzhiyunPinmux conventions 461*4882a593Smuzhiyun================== 462*4882a593Smuzhiyun 463*4882a593SmuzhiyunThe purpose of the pinmux functionality in the pin controller subsystem is to 464*4882a593Smuzhiyunabstract and provide pinmux settings to the devices you choose to instantiate 465*4882a593Smuzhiyunin your machine configuration. It is inspired by the clk, GPIO and regulator 466*4882a593Smuzhiyunsubsystems, so devices will request their mux setting, but it's also possible 467*4882a593Smuzhiyunto request a single pin for e.g. GPIO. 468*4882a593Smuzhiyun 469*4882a593SmuzhiyunDefinitions: 470*4882a593Smuzhiyun 471*4882a593Smuzhiyun- FUNCTIONS can be switched in and out by a driver residing with the pin 472*4882a593Smuzhiyun control subsystem in the drivers/pinctrl/* directory of the kernel. The 473*4882a593Smuzhiyun pin control driver knows the possible functions. In the example above you can 474*4882a593Smuzhiyun identify three pinmux functions, one for spi, one for i2c and one for mmc. 475*4882a593Smuzhiyun 476*4882a593Smuzhiyun- FUNCTIONS are assumed to be enumerable from zero in a one-dimensional array. 477*4882a593Smuzhiyun In this case the array could be something like: { spi0, i2c0, mmc0 } 478*4882a593Smuzhiyun for the three available functions. 479*4882a593Smuzhiyun 480*4882a593Smuzhiyun- FUNCTIONS have PIN GROUPS as defined on the generic level - so a certain 481*4882a593Smuzhiyun function is *always* associated with a certain set of pin groups, could 482*4882a593Smuzhiyun be just a single one, but could also be many. In the example above the 483*4882a593Smuzhiyun function i2c is associated with the pins { A5, B5 }, enumerated as 484*4882a593Smuzhiyun { 24, 25 } in the controller pin space. 485*4882a593Smuzhiyun 486*4882a593Smuzhiyun The Function spi is associated with pin groups { A8, A7, A6, A5 } 487*4882a593Smuzhiyun and { G4, G3, G2, G1 }, which are enumerated as { 0, 8, 16, 24 } and 488*4882a593Smuzhiyun { 38, 46, 54, 62 } respectively. 489*4882a593Smuzhiyun 490*4882a593Smuzhiyun Group names must be unique per pin controller, no two groups on the same 491*4882a593Smuzhiyun controller may have the same name. 492*4882a593Smuzhiyun 493*4882a593Smuzhiyun- The combination of a FUNCTION and a PIN GROUP determine a certain function 494*4882a593Smuzhiyun for a certain set of pins. The knowledge of the functions and pin groups 495*4882a593Smuzhiyun and their machine-specific particulars are kept inside the pinmux driver, 496*4882a593Smuzhiyun from the outside only the enumerators are known, and the driver core can 497*4882a593Smuzhiyun request: 498*4882a593Smuzhiyun 499*4882a593Smuzhiyun - The name of a function with a certain selector (>= 0) 500*4882a593Smuzhiyun - A list of groups associated with a certain function 501*4882a593Smuzhiyun - That a certain group in that list to be activated for a certain function 502*4882a593Smuzhiyun 503*4882a593Smuzhiyun As already described above, pin groups are in turn self-descriptive, so 504*4882a593Smuzhiyun the core will retrieve the actual pin range in a certain group from the 505*4882a593Smuzhiyun driver. 506*4882a593Smuzhiyun 507*4882a593Smuzhiyun- FUNCTIONS and GROUPS on a certain PIN CONTROLLER are MAPPED to a certain 508*4882a593Smuzhiyun device by the board file, device tree or similar machine setup configuration 509*4882a593Smuzhiyun mechanism, similar to how regulators are connected to devices, usually by 510*4882a593Smuzhiyun name. Defining a pin controller, function and group thus uniquely identify 511*4882a593Smuzhiyun the set of pins to be used by a certain device. (If only one possible group 512*4882a593Smuzhiyun of pins is available for the function, no group name need to be supplied - 513*4882a593Smuzhiyun the core will simply select the first and only group available.) 514*4882a593Smuzhiyun 515*4882a593Smuzhiyun In the example case we can define that this particular machine shall 516*4882a593Smuzhiyun use device spi0 with pinmux function fspi0 group gspi0 and i2c0 on function 517*4882a593Smuzhiyun fi2c0 group gi2c0, on the primary pin controller, we get mappings 518*4882a593Smuzhiyun like these:: 519*4882a593Smuzhiyun 520*4882a593Smuzhiyun { 521*4882a593Smuzhiyun {"map-spi0", spi0, pinctrl0, fspi0, gspi0}, 522*4882a593Smuzhiyun {"map-i2c0", i2c0, pinctrl0, fi2c0, gi2c0} 523*4882a593Smuzhiyun } 524*4882a593Smuzhiyun 525*4882a593Smuzhiyun Every map must be assigned a state name, pin controller, device and 526*4882a593Smuzhiyun function. The group is not compulsory - if it is omitted the first group 527*4882a593Smuzhiyun presented by the driver as applicable for the function will be selected, 528*4882a593Smuzhiyun which is useful for simple cases. 529*4882a593Smuzhiyun 530*4882a593Smuzhiyun It is possible to map several groups to the same combination of device, 531*4882a593Smuzhiyun pin controller and function. This is for cases where a certain function on 532*4882a593Smuzhiyun a certain pin controller may use different sets of pins in different 533*4882a593Smuzhiyun configurations. 534*4882a593Smuzhiyun 535*4882a593Smuzhiyun- PINS for a certain FUNCTION using a certain PIN GROUP on a certain 536*4882a593Smuzhiyun PIN CONTROLLER are provided on a first-come first-serve basis, so if some 537*4882a593Smuzhiyun other device mux setting or GPIO pin request has already taken your physical 538*4882a593Smuzhiyun pin, you will be denied the use of it. To get (activate) a new setting, the 539*4882a593Smuzhiyun old one has to be put (deactivated) first. 540*4882a593Smuzhiyun 541*4882a593SmuzhiyunSometimes the documentation and hardware registers will be oriented around 542*4882a593Smuzhiyunpads (or "fingers") rather than pins - these are the soldering surfaces on the 543*4882a593Smuzhiyunsilicon inside the package, and may or may not match the actual number of 544*4882a593Smuzhiyunpins/balls underneath the capsule. Pick some enumeration that makes sense to 545*4882a593Smuzhiyunyou. Define enumerators only for the pins you can control if that makes sense. 546*4882a593Smuzhiyun 547*4882a593SmuzhiyunAssumptions: 548*4882a593Smuzhiyun 549*4882a593SmuzhiyunWe assume that the number of possible function maps to pin groups is limited by 550*4882a593Smuzhiyunthe hardware. I.e. we assume that there is no system where any function can be 551*4882a593Smuzhiyunmapped to any pin, like in a phone exchange. So the available pin groups for 552*4882a593Smuzhiyuna certain function will be limited to a few choices (say up to eight or so), 553*4882a593Smuzhiyunnot hundreds or any amount of choices. This is the characteristic we have found 554*4882a593Smuzhiyunby inspecting available pinmux hardware, and a necessary assumption since we 555*4882a593Smuzhiyunexpect pinmux drivers to present *all* possible function vs pin group mappings 556*4882a593Smuzhiyunto the subsystem. 557*4882a593Smuzhiyun 558*4882a593Smuzhiyun 559*4882a593SmuzhiyunPinmux drivers 560*4882a593Smuzhiyun============== 561*4882a593Smuzhiyun 562*4882a593SmuzhiyunThe pinmux core takes care of preventing conflicts on pins and calling 563*4882a593Smuzhiyunthe pin controller driver to execute different settings. 564*4882a593Smuzhiyun 565*4882a593SmuzhiyunIt is the responsibility of the pinmux driver to impose further restrictions 566*4882a593Smuzhiyun(say for example infer electronic limitations due to load, etc.) to determine 567*4882a593Smuzhiyunwhether or not the requested function can actually be allowed, and in case it 568*4882a593Smuzhiyunis possible to perform the requested mux setting, poke the hardware so that 569*4882a593Smuzhiyunthis happens. 570*4882a593Smuzhiyun 571*4882a593SmuzhiyunPinmux drivers are required to supply a few callback functions, some are 572*4882a593Smuzhiyunoptional. Usually the set_mux() function is implemented, writing values into 573*4882a593Smuzhiyunsome certain registers to activate a certain mux setting for a certain pin. 574*4882a593Smuzhiyun 575*4882a593SmuzhiyunA simple driver for the above example will work by setting bits 0, 1, 2, 3 or 4 576*4882a593Smuzhiyuninto some register named MUX to select a certain function with a certain 577*4882a593Smuzhiyungroup of pins would work something like this:: 578*4882a593Smuzhiyun 579*4882a593Smuzhiyun #include <linux/pinctrl/pinctrl.h> 580*4882a593Smuzhiyun #include <linux/pinctrl/pinmux.h> 581*4882a593Smuzhiyun 582*4882a593Smuzhiyun struct foo_group { 583*4882a593Smuzhiyun const char *name; 584*4882a593Smuzhiyun const unsigned int *pins; 585*4882a593Smuzhiyun const unsigned num_pins; 586*4882a593Smuzhiyun }; 587*4882a593Smuzhiyun 588*4882a593Smuzhiyun static const unsigned spi0_0_pins[] = { 0, 8, 16, 24 }; 589*4882a593Smuzhiyun static const unsigned spi0_1_pins[] = { 38, 46, 54, 62 }; 590*4882a593Smuzhiyun static const unsigned i2c0_pins[] = { 24, 25 }; 591*4882a593Smuzhiyun static const unsigned mmc0_1_pins[] = { 56, 57 }; 592*4882a593Smuzhiyun static const unsigned mmc0_2_pins[] = { 58, 59 }; 593*4882a593Smuzhiyun static const unsigned mmc0_3_pins[] = { 60, 61, 62, 63 }; 594*4882a593Smuzhiyun 595*4882a593Smuzhiyun static const struct foo_group foo_groups[] = { 596*4882a593Smuzhiyun { 597*4882a593Smuzhiyun .name = "spi0_0_grp", 598*4882a593Smuzhiyun .pins = spi0_0_pins, 599*4882a593Smuzhiyun .num_pins = ARRAY_SIZE(spi0_0_pins), 600*4882a593Smuzhiyun }, 601*4882a593Smuzhiyun { 602*4882a593Smuzhiyun .name = "spi0_1_grp", 603*4882a593Smuzhiyun .pins = spi0_1_pins, 604*4882a593Smuzhiyun .num_pins = ARRAY_SIZE(spi0_1_pins), 605*4882a593Smuzhiyun }, 606*4882a593Smuzhiyun { 607*4882a593Smuzhiyun .name = "i2c0_grp", 608*4882a593Smuzhiyun .pins = i2c0_pins, 609*4882a593Smuzhiyun .num_pins = ARRAY_SIZE(i2c0_pins), 610*4882a593Smuzhiyun }, 611*4882a593Smuzhiyun { 612*4882a593Smuzhiyun .name = "mmc0_1_grp", 613*4882a593Smuzhiyun .pins = mmc0_1_pins, 614*4882a593Smuzhiyun .num_pins = ARRAY_SIZE(mmc0_1_pins), 615*4882a593Smuzhiyun }, 616*4882a593Smuzhiyun { 617*4882a593Smuzhiyun .name = "mmc0_2_grp", 618*4882a593Smuzhiyun .pins = mmc0_2_pins, 619*4882a593Smuzhiyun .num_pins = ARRAY_SIZE(mmc0_2_pins), 620*4882a593Smuzhiyun }, 621*4882a593Smuzhiyun { 622*4882a593Smuzhiyun .name = "mmc0_3_grp", 623*4882a593Smuzhiyun .pins = mmc0_3_pins, 624*4882a593Smuzhiyun .num_pins = ARRAY_SIZE(mmc0_3_pins), 625*4882a593Smuzhiyun }, 626*4882a593Smuzhiyun }; 627*4882a593Smuzhiyun 628*4882a593Smuzhiyun 629*4882a593Smuzhiyun static int foo_get_groups_count(struct pinctrl_dev *pctldev) 630*4882a593Smuzhiyun { 631*4882a593Smuzhiyun return ARRAY_SIZE(foo_groups); 632*4882a593Smuzhiyun } 633*4882a593Smuzhiyun 634*4882a593Smuzhiyun static const char *foo_get_group_name(struct pinctrl_dev *pctldev, 635*4882a593Smuzhiyun unsigned selector) 636*4882a593Smuzhiyun { 637*4882a593Smuzhiyun return foo_groups[selector].name; 638*4882a593Smuzhiyun } 639*4882a593Smuzhiyun 640*4882a593Smuzhiyun static int foo_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector, 641*4882a593Smuzhiyun const unsigned ** pins, 642*4882a593Smuzhiyun unsigned * num_pins) 643*4882a593Smuzhiyun { 644*4882a593Smuzhiyun *pins = (unsigned *) foo_groups[selector].pins; 645*4882a593Smuzhiyun *num_pins = foo_groups[selector].num_pins; 646*4882a593Smuzhiyun return 0; 647*4882a593Smuzhiyun } 648*4882a593Smuzhiyun 649*4882a593Smuzhiyun static struct pinctrl_ops foo_pctrl_ops = { 650*4882a593Smuzhiyun .get_groups_count = foo_get_groups_count, 651*4882a593Smuzhiyun .get_group_name = foo_get_group_name, 652*4882a593Smuzhiyun .get_group_pins = foo_get_group_pins, 653*4882a593Smuzhiyun }; 654*4882a593Smuzhiyun 655*4882a593Smuzhiyun struct foo_pmx_func { 656*4882a593Smuzhiyun const char *name; 657*4882a593Smuzhiyun const char * const *groups; 658*4882a593Smuzhiyun const unsigned num_groups; 659*4882a593Smuzhiyun }; 660*4882a593Smuzhiyun 661*4882a593Smuzhiyun static const char * const spi0_groups[] = { "spi0_0_grp", "spi0_1_grp" }; 662*4882a593Smuzhiyun static const char * const i2c0_groups[] = { "i2c0_grp" }; 663*4882a593Smuzhiyun static const char * const mmc0_groups[] = { "mmc0_1_grp", "mmc0_2_grp", 664*4882a593Smuzhiyun "mmc0_3_grp" }; 665*4882a593Smuzhiyun 666*4882a593Smuzhiyun static const struct foo_pmx_func foo_functions[] = { 667*4882a593Smuzhiyun { 668*4882a593Smuzhiyun .name = "spi0", 669*4882a593Smuzhiyun .groups = spi0_groups, 670*4882a593Smuzhiyun .num_groups = ARRAY_SIZE(spi0_groups), 671*4882a593Smuzhiyun }, 672*4882a593Smuzhiyun { 673*4882a593Smuzhiyun .name = "i2c0", 674*4882a593Smuzhiyun .groups = i2c0_groups, 675*4882a593Smuzhiyun .num_groups = ARRAY_SIZE(i2c0_groups), 676*4882a593Smuzhiyun }, 677*4882a593Smuzhiyun { 678*4882a593Smuzhiyun .name = "mmc0", 679*4882a593Smuzhiyun .groups = mmc0_groups, 680*4882a593Smuzhiyun .num_groups = ARRAY_SIZE(mmc0_groups), 681*4882a593Smuzhiyun }, 682*4882a593Smuzhiyun }; 683*4882a593Smuzhiyun 684*4882a593Smuzhiyun static int foo_get_functions_count(struct pinctrl_dev *pctldev) 685*4882a593Smuzhiyun { 686*4882a593Smuzhiyun return ARRAY_SIZE(foo_functions); 687*4882a593Smuzhiyun } 688*4882a593Smuzhiyun 689*4882a593Smuzhiyun static const char *foo_get_fname(struct pinctrl_dev *pctldev, unsigned selector) 690*4882a593Smuzhiyun { 691*4882a593Smuzhiyun return foo_functions[selector].name; 692*4882a593Smuzhiyun } 693*4882a593Smuzhiyun 694*4882a593Smuzhiyun static int foo_get_groups(struct pinctrl_dev *pctldev, unsigned selector, 695*4882a593Smuzhiyun const char * const **groups, 696*4882a593Smuzhiyun unsigned * const num_groups) 697*4882a593Smuzhiyun { 698*4882a593Smuzhiyun *groups = foo_functions[selector].groups; 699*4882a593Smuzhiyun *num_groups = foo_functions[selector].num_groups; 700*4882a593Smuzhiyun return 0; 701*4882a593Smuzhiyun } 702*4882a593Smuzhiyun 703*4882a593Smuzhiyun static int foo_set_mux(struct pinctrl_dev *pctldev, unsigned selector, 704*4882a593Smuzhiyun unsigned group) 705*4882a593Smuzhiyun { 706*4882a593Smuzhiyun u8 regbit = (1 << selector + group); 707*4882a593Smuzhiyun 708*4882a593Smuzhiyun writeb((readb(MUX)|regbit), MUX); 709*4882a593Smuzhiyun return 0; 710*4882a593Smuzhiyun } 711*4882a593Smuzhiyun 712*4882a593Smuzhiyun static struct pinmux_ops foo_pmxops = { 713*4882a593Smuzhiyun .get_functions_count = foo_get_functions_count, 714*4882a593Smuzhiyun .get_function_name = foo_get_fname, 715*4882a593Smuzhiyun .get_function_groups = foo_get_groups, 716*4882a593Smuzhiyun .set_mux = foo_set_mux, 717*4882a593Smuzhiyun .strict = true, 718*4882a593Smuzhiyun }; 719*4882a593Smuzhiyun 720*4882a593Smuzhiyun /* Pinmux operations are handled by some pin controller */ 721*4882a593Smuzhiyun static struct pinctrl_desc foo_desc = { 722*4882a593Smuzhiyun ... 723*4882a593Smuzhiyun .pctlops = &foo_pctrl_ops, 724*4882a593Smuzhiyun .pmxops = &foo_pmxops, 725*4882a593Smuzhiyun }; 726*4882a593Smuzhiyun 727*4882a593SmuzhiyunIn the example activating muxing 0 and 1 at the same time setting bits 728*4882a593Smuzhiyun0 and 1, uses one pin in common so they would collide. 729*4882a593Smuzhiyun 730*4882a593SmuzhiyunThe beauty of the pinmux subsystem is that since it keeps track of all 731*4882a593Smuzhiyunpins and who is using them, it will already have denied an impossible 732*4882a593Smuzhiyunrequest like that, so the driver does not need to worry about such 733*4882a593Smuzhiyunthings - when it gets a selector passed in, the pinmux subsystem makes 734*4882a593Smuzhiyunsure no other device or GPIO assignment is already using the selected 735*4882a593Smuzhiyunpins. Thus bits 0 and 1 in the control register will never be set at the 736*4882a593Smuzhiyunsame time. 737*4882a593Smuzhiyun 738*4882a593SmuzhiyunAll the above functions are mandatory to implement for a pinmux driver. 739*4882a593Smuzhiyun 740*4882a593Smuzhiyun 741*4882a593SmuzhiyunPin control interaction with the GPIO subsystem 742*4882a593Smuzhiyun=============================================== 743*4882a593Smuzhiyun 744*4882a593SmuzhiyunNote that the following implies that the use case is to use a certain pin 745*4882a593Smuzhiyunfrom the Linux kernel using the API in <linux/gpio.h> with gpio_request() 746*4882a593Smuzhiyunand similar functions. There are cases where you may be using something 747*4882a593Smuzhiyunthat your datasheet calls "GPIO mode", but actually is just an electrical 748*4882a593Smuzhiyunconfiguration for a certain device. See the section below named 749*4882a593Smuzhiyun"GPIO mode pitfalls" for more details on this scenario. 750*4882a593Smuzhiyun 751*4882a593SmuzhiyunThe public pinmux API contains two functions named pinctrl_gpio_request() 752*4882a593Smuzhiyunand pinctrl_gpio_free(). These two functions shall *ONLY* be called from 753*4882a593Smuzhiyungpiolib-based drivers as part of their gpio_request() and 754*4882a593Smuzhiyungpio_free() semantics. Likewise the pinctrl_gpio_direction_[input|output] 755*4882a593Smuzhiyunshall only be called from within respective gpio_direction_[input|output] 756*4882a593Smuzhiyungpiolib implementation. 757*4882a593Smuzhiyun 758*4882a593SmuzhiyunNOTE that platforms and individual drivers shall *NOT* request GPIO pins to be 759*4882a593Smuzhiyuncontrolled e.g. muxed in. Instead, implement a proper gpiolib driver and have 760*4882a593Smuzhiyunthat driver request proper muxing and other control for its pins. 761*4882a593Smuzhiyun 762*4882a593SmuzhiyunThe function list could become long, especially if you can convert every 763*4882a593Smuzhiyunindividual pin into a GPIO pin independent of any other pins, and then try 764*4882a593Smuzhiyunthe approach to define every pin as a function. 765*4882a593Smuzhiyun 766*4882a593SmuzhiyunIn this case, the function array would become 64 entries for each GPIO 767*4882a593Smuzhiyunsetting and then the device functions. 768*4882a593Smuzhiyun 769*4882a593SmuzhiyunFor this reason there are two functions a pin control driver can implement 770*4882a593Smuzhiyunto enable only GPIO on an individual pin: .gpio_request_enable() and 771*4882a593Smuzhiyun.gpio_disable_free(). 772*4882a593Smuzhiyun 773*4882a593SmuzhiyunThis function will pass in the affected GPIO range identified by the pin 774*4882a593Smuzhiyuncontroller core, so you know which GPIO pins are being affected by the request 775*4882a593Smuzhiyunoperation. 776*4882a593Smuzhiyun 777*4882a593SmuzhiyunIf your driver needs to have an indication from the framework of whether the 778*4882a593SmuzhiyunGPIO pin shall be used for input or output you can implement the 779*4882a593Smuzhiyun.gpio_set_direction() function. As described this shall be called from the 780*4882a593Smuzhiyungpiolib driver and the affected GPIO range, pin offset and desired direction 781*4882a593Smuzhiyunwill be passed along to this function. 782*4882a593Smuzhiyun 783*4882a593SmuzhiyunAlternatively to using these special functions, it is fully allowed to use 784*4882a593Smuzhiyunnamed functions for each GPIO pin, the pinctrl_gpio_request() will attempt to 785*4882a593Smuzhiyunobtain the function "gpioN" where "N" is the global GPIO pin number if no 786*4882a593Smuzhiyunspecial GPIO-handler is registered. 787*4882a593Smuzhiyun 788*4882a593Smuzhiyun 789*4882a593SmuzhiyunGPIO mode pitfalls 790*4882a593Smuzhiyun================== 791*4882a593Smuzhiyun 792*4882a593SmuzhiyunDue to the naming conventions used by hardware engineers, where "GPIO" 793*4882a593Smuzhiyunis taken to mean different things than what the kernel does, the developer 794*4882a593Smuzhiyunmay be confused by a datasheet talking about a pin being possible to set 795*4882a593Smuzhiyuninto "GPIO mode". It appears that what hardware engineers mean with 796*4882a593Smuzhiyun"GPIO mode" is not necessarily the use case that is implied in the kernel 797*4882a593Smuzhiyuninterface <linux/gpio.h>: a pin that you grab from kernel code and then 798*4882a593Smuzhiyuneither listen for input or drive high/low to assert/deassert some 799*4882a593Smuzhiyunexternal line. 800*4882a593Smuzhiyun 801*4882a593SmuzhiyunRather hardware engineers think that "GPIO mode" means that you can 802*4882a593Smuzhiyunsoftware-control a few electrical properties of the pin that you would 803*4882a593Smuzhiyunnot be able to control if the pin was in some other mode, such as muxed in 804*4882a593Smuzhiyunfor a device. 805*4882a593Smuzhiyun 806*4882a593SmuzhiyunThe GPIO portions of a pin and its relation to a certain pin controller 807*4882a593Smuzhiyunconfiguration and muxing logic can be constructed in several ways. Here 808*4882a593Smuzhiyunare two examples:: 809*4882a593Smuzhiyun 810*4882a593Smuzhiyun (A) 811*4882a593Smuzhiyun pin config 812*4882a593Smuzhiyun logic regs 813*4882a593Smuzhiyun | +- SPI 814*4882a593Smuzhiyun Physical pins --- pad --- pinmux -+- I2C 815*4882a593Smuzhiyun | +- mmc 816*4882a593Smuzhiyun | +- GPIO 817*4882a593Smuzhiyun pin 818*4882a593Smuzhiyun multiplex 819*4882a593Smuzhiyun logic regs 820*4882a593Smuzhiyun 821*4882a593SmuzhiyunHere some electrical properties of the pin can be configured no matter 822*4882a593Smuzhiyunwhether the pin is used for GPIO or not. If you multiplex a GPIO onto a 823*4882a593Smuzhiyunpin, you can also drive it high/low from "GPIO" registers. 824*4882a593SmuzhiyunAlternatively, the pin can be controlled by a certain peripheral, while 825*4882a593Smuzhiyunstill applying desired pin config properties. GPIO functionality is thus 826*4882a593Smuzhiyunorthogonal to any other device using the pin. 827*4882a593Smuzhiyun 828*4882a593SmuzhiyunIn this arrangement the registers for the GPIO portions of the pin controller, 829*4882a593Smuzhiyunor the registers for the GPIO hardware module are likely to reside in a 830*4882a593Smuzhiyunseparate memory range only intended for GPIO driving, and the register 831*4882a593Smuzhiyunrange dealing with pin config and pin multiplexing get placed into a 832*4882a593Smuzhiyundifferent memory range and a separate section of the data sheet. 833*4882a593Smuzhiyun 834*4882a593SmuzhiyunA flag "strict" in struct pinmux_ops is available to check and deny 835*4882a593Smuzhiyunsimultaneous access to the same pin from GPIO and pin multiplexing 836*4882a593Smuzhiyunconsumers on hardware of this type. The pinctrl driver should set this flag 837*4882a593Smuzhiyunaccordingly. 838*4882a593Smuzhiyun 839*4882a593Smuzhiyun:: 840*4882a593Smuzhiyun 841*4882a593Smuzhiyun (B) 842*4882a593Smuzhiyun 843*4882a593Smuzhiyun pin config 844*4882a593Smuzhiyun logic regs 845*4882a593Smuzhiyun | +- SPI 846*4882a593Smuzhiyun Physical pins --- pad --- pinmux -+- I2C 847*4882a593Smuzhiyun | | +- mmc 848*4882a593Smuzhiyun | | 849*4882a593Smuzhiyun GPIO pin 850*4882a593Smuzhiyun multiplex 851*4882a593Smuzhiyun logic regs 852*4882a593Smuzhiyun 853*4882a593SmuzhiyunIn this arrangement, the GPIO functionality can always be enabled, such that 854*4882a593Smuzhiyune.g. a GPIO input can be used to "spy" on the SPI/I2C/MMC signal while it is 855*4882a593Smuzhiyunpulsed out. It is likely possible to disrupt the traffic on the pin by doing 856*4882a593Smuzhiyunwrong things on the GPIO block, as it is never really disconnected. It is 857*4882a593Smuzhiyunpossible that the GPIO, pin config and pin multiplex registers are placed into 858*4882a593Smuzhiyunthe same memory range and the same section of the data sheet, although that 859*4882a593Smuzhiyunneed not be the case. 860*4882a593Smuzhiyun 861*4882a593SmuzhiyunIn some pin controllers, although the physical pins are designed in the same 862*4882a593Smuzhiyunway as (B), the GPIO function still can't be enabled at the same time as the 863*4882a593Smuzhiyunperipheral functions. So again the "strict" flag should be set, denying 864*4882a593Smuzhiyunsimultaneous activation by GPIO and other muxed in devices. 865*4882a593Smuzhiyun 866*4882a593SmuzhiyunFrom a kernel point of view, however, these are different aspects of the 867*4882a593Smuzhiyunhardware and shall be put into different subsystems: 868*4882a593Smuzhiyun 869*4882a593Smuzhiyun- Registers (or fields within registers) that control electrical 870*4882a593Smuzhiyun properties of the pin such as biasing and drive strength should be 871*4882a593Smuzhiyun exposed through the pinctrl subsystem, as "pin configuration" settings. 872*4882a593Smuzhiyun 873*4882a593Smuzhiyun- Registers (or fields within registers) that control muxing of signals 874*4882a593Smuzhiyun from various other HW blocks (e.g. I2C, MMC, or GPIO) onto pins should 875*4882a593Smuzhiyun be exposed through the pinctrl subsystem, as mux functions. 876*4882a593Smuzhiyun 877*4882a593Smuzhiyun- Registers (or fields within registers) that control GPIO functionality 878*4882a593Smuzhiyun such as setting a GPIO's output value, reading a GPIO's input value, or 879*4882a593Smuzhiyun setting GPIO pin direction should be exposed through the GPIO subsystem, 880*4882a593Smuzhiyun and if they also support interrupt capabilities, through the irqchip 881*4882a593Smuzhiyun abstraction. 882*4882a593Smuzhiyun 883*4882a593SmuzhiyunDepending on the exact HW register design, some functions exposed by the 884*4882a593SmuzhiyunGPIO subsystem may call into the pinctrl subsystem in order to 885*4882a593Smuzhiyunco-ordinate register settings across HW modules. In particular, this may 886*4882a593Smuzhiyunbe needed for HW with separate GPIO and pin controller HW modules, where 887*4882a593Smuzhiyune.g. GPIO direction is determined by a register in the pin controller HW 888*4882a593Smuzhiyunmodule rather than the GPIO HW module. 889*4882a593Smuzhiyun 890*4882a593SmuzhiyunElectrical properties of the pin such as biasing and drive strength 891*4882a593Smuzhiyunmay be placed at some pin-specific register in all cases or as part 892*4882a593Smuzhiyunof the GPIO register in case (B) especially. This doesn't mean that such 893*4882a593Smuzhiyunproperties necessarily pertain to what the Linux kernel calls "GPIO". 894*4882a593Smuzhiyun 895*4882a593SmuzhiyunExample: a pin is usually muxed in to be used as a UART TX line. But during 896*4882a593Smuzhiyunsystem sleep, we need to put this pin into "GPIO mode" and ground it. 897*4882a593Smuzhiyun 898*4882a593SmuzhiyunIf you make a 1-to-1 map to the GPIO subsystem for this pin, you may start 899*4882a593Smuzhiyunto think that you need to come up with something really complex, that the 900*4882a593Smuzhiyunpin shall be used for UART TX and GPIO at the same time, that you will grab 901*4882a593Smuzhiyuna pin control handle and set it to a certain state to enable UART TX to be 902*4882a593Smuzhiyunmuxed in, then twist it over to GPIO mode and use gpio_direction_output() 903*4882a593Smuzhiyunto drive it low during sleep, then mux it over to UART TX again when you 904*4882a593Smuzhiyunwake up and maybe even gpio_request/gpio_free as part of this cycle. This 905*4882a593Smuzhiyunall gets very complicated. 906*4882a593Smuzhiyun 907*4882a593SmuzhiyunThe solution is to not think that what the datasheet calls "GPIO mode" 908*4882a593Smuzhiyunhas to be handled by the <linux/gpio.h> interface. Instead view this as 909*4882a593Smuzhiyuna certain pin config setting. Look in e.g. <linux/pinctrl/pinconf-generic.h> 910*4882a593Smuzhiyunand you find this in the documentation: 911*4882a593Smuzhiyun 912*4882a593Smuzhiyun PIN_CONFIG_OUTPUT: 913*4882a593Smuzhiyun this will configure the pin in output, use argument 914*4882a593Smuzhiyun 1 to indicate high level, argument 0 to indicate low level. 915*4882a593Smuzhiyun 916*4882a593SmuzhiyunSo it is perfectly possible to push a pin into "GPIO mode" and drive the 917*4882a593Smuzhiyunline low as part of the usual pin control map. So for example your UART 918*4882a593Smuzhiyundriver may look like this:: 919*4882a593Smuzhiyun 920*4882a593Smuzhiyun #include <linux/pinctrl/consumer.h> 921*4882a593Smuzhiyun 922*4882a593Smuzhiyun struct pinctrl *pinctrl; 923*4882a593Smuzhiyun struct pinctrl_state *pins_default; 924*4882a593Smuzhiyun struct pinctrl_state *pins_sleep; 925*4882a593Smuzhiyun 926*4882a593Smuzhiyun pins_default = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_DEFAULT); 927*4882a593Smuzhiyun pins_sleep = pinctrl_lookup_state(uap->pinctrl, PINCTRL_STATE_SLEEP); 928*4882a593Smuzhiyun 929*4882a593Smuzhiyun /* Normal mode */ 930*4882a593Smuzhiyun retval = pinctrl_select_state(pinctrl, pins_default); 931*4882a593Smuzhiyun /* Sleep mode */ 932*4882a593Smuzhiyun retval = pinctrl_select_state(pinctrl, pins_sleep); 933*4882a593Smuzhiyun 934*4882a593SmuzhiyunAnd your machine configuration may look like this: 935*4882a593Smuzhiyun-------------------------------------------------- 936*4882a593Smuzhiyun 937*4882a593Smuzhiyun:: 938*4882a593Smuzhiyun 939*4882a593Smuzhiyun static unsigned long uart_default_mode[] = { 940*4882a593Smuzhiyun PIN_CONF_PACKED(PIN_CONFIG_DRIVE_PUSH_PULL, 0), 941*4882a593Smuzhiyun }; 942*4882a593Smuzhiyun 943*4882a593Smuzhiyun static unsigned long uart_sleep_mode[] = { 944*4882a593Smuzhiyun PIN_CONF_PACKED(PIN_CONFIG_OUTPUT, 0), 945*4882a593Smuzhiyun }; 946*4882a593Smuzhiyun 947*4882a593Smuzhiyun static struct pinctrl_map pinmap[] __initdata = { 948*4882a593Smuzhiyun PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo", 949*4882a593Smuzhiyun "u0_group", "u0"), 950*4882a593Smuzhiyun PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_DEFAULT, "pinctrl-foo", 951*4882a593Smuzhiyun "UART_TX_PIN", uart_default_mode), 952*4882a593Smuzhiyun PIN_MAP_MUX_GROUP("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo", 953*4882a593Smuzhiyun "u0_group", "gpio-mode"), 954*4882a593Smuzhiyun PIN_MAP_CONFIGS_PIN("uart", PINCTRL_STATE_SLEEP, "pinctrl-foo", 955*4882a593Smuzhiyun "UART_TX_PIN", uart_sleep_mode), 956*4882a593Smuzhiyun }; 957*4882a593Smuzhiyun 958*4882a593Smuzhiyun foo_init(void) { 959*4882a593Smuzhiyun pinctrl_register_mappings(pinmap, ARRAY_SIZE(pinmap)); 960*4882a593Smuzhiyun } 961*4882a593Smuzhiyun 962*4882a593SmuzhiyunHere the pins we want to control are in the "u0_group" and there is some 963*4882a593Smuzhiyunfunction called "u0" that can be enabled on this group of pins, and then 964*4882a593Smuzhiyuneverything is UART business as usual. But there is also some function 965*4882a593Smuzhiyunnamed "gpio-mode" that can be mapped onto the same pins to move them into 966*4882a593SmuzhiyunGPIO mode. 967*4882a593Smuzhiyun 968*4882a593SmuzhiyunThis will give the desired effect without any bogus interaction with the 969*4882a593SmuzhiyunGPIO subsystem. It is just an electrical configuration used by that device 970*4882a593Smuzhiyunwhen going to sleep, it might imply that the pin is set into something the 971*4882a593Smuzhiyundatasheet calls "GPIO mode", but that is not the point: it is still used 972*4882a593Smuzhiyunby that UART device to control the pins that pertain to that very UART 973*4882a593Smuzhiyundriver, putting them into modes needed by the UART. GPIO in the Linux 974*4882a593Smuzhiyunkernel sense are just some 1-bit line, and is a different use case. 975*4882a593Smuzhiyun 976*4882a593SmuzhiyunHow the registers are poked to attain the push or pull, and output low 977*4882a593Smuzhiyunconfiguration and the muxing of the "u0" or "gpio-mode" group onto these 978*4882a593Smuzhiyunpins is a question for the driver. 979*4882a593Smuzhiyun 980*4882a593SmuzhiyunSome datasheets will be more helpful and refer to the "GPIO mode" as 981*4882a593Smuzhiyun"low power mode" rather than anything to do with GPIO. This often means 982*4882a593Smuzhiyunthe same thing electrically speaking, but in this latter case the 983*4882a593Smuzhiyunsoftware engineers will usually quickly identify that this is some 984*4882a593Smuzhiyunspecific muxing or configuration rather than anything related to the GPIO 985*4882a593SmuzhiyunAPI. 986*4882a593Smuzhiyun 987*4882a593Smuzhiyun 988*4882a593SmuzhiyunBoard/machine configuration 989*4882a593Smuzhiyun=========================== 990*4882a593Smuzhiyun 991*4882a593SmuzhiyunBoards and machines define how a certain complete running system is put 992*4882a593Smuzhiyuntogether, including how GPIOs and devices are muxed, how regulators are 993*4882a593Smuzhiyunconstrained and how the clock tree looks. Of course pinmux settings are also 994*4882a593Smuzhiyunpart of this. 995*4882a593Smuzhiyun 996*4882a593SmuzhiyunA pin controller configuration for a machine looks pretty much like a simple 997*4882a593Smuzhiyunregulator configuration, so for the example array above we want to enable i2c 998*4882a593Smuzhiyunand spi on the second function mapping:: 999*4882a593Smuzhiyun 1000*4882a593Smuzhiyun #include <linux/pinctrl/machine.h> 1001*4882a593Smuzhiyun 1002*4882a593Smuzhiyun static const struct pinctrl_map mapping[] __initconst = { 1003*4882a593Smuzhiyun { 1004*4882a593Smuzhiyun .dev_name = "foo-spi.0", 1005*4882a593Smuzhiyun .name = PINCTRL_STATE_DEFAULT, 1006*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1007*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1008*4882a593Smuzhiyun .data.mux.function = "spi0", 1009*4882a593Smuzhiyun }, 1010*4882a593Smuzhiyun { 1011*4882a593Smuzhiyun .dev_name = "foo-i2c.0", 1012*4882a593Smuzhiyun .name = PINCTRL_STATE_DEFAULT, 1013*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1014*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1015*4882a593Smuzhiyun .data.mux.function = "i2c0", 1016*4882a593Smuzhiyun }, 1017*4882a593Smuzhiyun { 1018*4882a593Smuzhiyun .dev_name = "foo-mmc.0", 1019*4882a593Smuzhiyun .name = PINCTRL_STATE_DEFAULT, 1020*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1021*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1022*4882a593Smuzhiyun .data.mux.function = "mmc0", 1023*4882a593Smuzhiyun }, 1024*4882a593Smuzhiyun }; 1025*4882a593Smuzhiyun 1026*4882a593SmuzhiyunThe dev_name here matches to the unique device name that can be used to look 1027*4882a593Smuzhiyunup the device struct (just like with clockdev or regulators). The function name 1028*4882a593Smuzhiyunmust match a function provided by the pinmux driver handling this pin range. 1029*4882a593Smuzhiyun 1030*4882a593SmuzhiyunAs you can see we may have several pin controllers on the system and thus 1031*4882a593Smuzhiyunwe need to specify which one of them contains the functions we wish to map. 1032*4882a593Smuzhiyun 1033*4882a593SmuzhiyunYou register this pinmux mapping to the pinmux subsystem by simply:: 1034*4882a593Smuzhiyun 1035*4882a593Smuzhiyun ret = pinctrl_register_mappings(mapping, ARRAY_SIZE(mapping)); 1036*4882a593Smuzhiyun 1037*4882a593SmuzhiyunSince the above construct is pretty common there is a helper macro to make 1038*4882a593Smuzhiyunit even more compact which assumes you want to use pinctrl-foo and position 1039*4882a593Smuzhiyun0 for mapping, for example:: 1040*4882a593Smuzhiyun 1041*4882a593Smuzhiyun static struct pinctrl_map mapping[] __initdata = { 1042*4882a593Smuzhiyun PIN_MAP_MUX_GROUP("foo-i2c.o", PINCTRL_STATE_DEFAULT, 1043*4882a593Smuzhiyun "pinctrl-foo", NULL, "i2c0"), 1044*4882a593Smuzhiyun }; 1045*4882a593Smuzhiyun 1046*4882a593SmuzhiyunThe mapping table may also contain pin configuration entries. It's common for 1047*4882a593Smuzhiyuneach pin/group to have a number of configuration entries that affect it, so 1048*4882a593Smuzhiyunthe table entries for configuration reference an array of config parameters 1049*4882a593Smuzhiyunand values. An example using the convenience macros is shown below:: 1050*4882a593Smuzhiyun 1051*4882a593Smuzhiyun static unsigned long i2c_grp_configs[] = { 1052*4882a593Smuzhiyun FOO_PIN_DRIVEN, 1053*4882a593Smuzhiyun FOO_PIN_PULLUP, 1054*4882a593Smuzhiyun }; 1055*4882a593Smuzhiyun 1056*4882a593Smuzhiyun static unsigned long i2c_pin_configs[] = { 1057*4882a593Smuzhiyun FOO_OPEN_COLLECTOR, 1058*4882a593Smuzhiyun FOO_SLEW_RATE_SLOW, 1059*4882a593Smuzhiyun }; 1060*4882a593Smuzhiyun 1061*4882a593Smuzhiyun static struct pinctrl_map mapping[] __initdata = { 1062*4882a593Smuzhiyun PIN_MAP_MUX_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT, 1063*4882a593Smuzhiyun "pinctrl-foo", "i2c0", "i2c0"), 1064*4882a593Smuzhiyun PIN_MAP_CONFIGS_GROUP("foo-i2c.0", PINCTRL_STATE_DEFAULT, 1065*4882a593Smuzhiyun "pinctrl-foo", "i2c0", i2c_grp_configs), 1066*4882a593Smuzhiyun PIN_MAP_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT, 1067*4882a593Smuzhiyun "pinctrl-foo", "i2c0scl", i2c_pin_configs), 1068*4882a593Smuzhiyun PIN_MAP_CONFIGS_PIN("foo-i2c.0", PINCTRL_STATE_DEFAULT, 1069*4882a593Smuzhiyun "pinctrl-foo", "i2c0sda", i2c_pin_configs), 1070*4882a593Smuzhiyun }; 1071*4882a593Smuzhiyun 1072*4882a593SmuzhiyunFinally, some devices expect the mapping table to contain certain specific 1073*4882a593Smuzhiyunnamed states. When running on hardware that doesn't need any pin controller 1074*4882a593Smuzhiyunconfiguration, the mapping table must still contain those named states, in 1075*4882a593Smuzhiyunorder to explicitly indicate that the states were provided and intended to 1076*4882a593Smuzhiyunbe empty. Table entry macro PIN_MAP_DUMMY_STATE serves the purpose of defining 1077*4882a593Smuzhiyuna named state without causing any pin controller to be programmed:: 1078*4882a593Smuzhiyun 1079*4882a593Smuzhiyun static struct pinctrl_map mapping[] __initdata = { 1080*4882a593Smuzhiyun PIN_MAP_DUMMY_STATE("foo-i2c.0", PINCTRL_STATE_DEFAULT), 1081*4882a593Smuzhiyun }; 1082*4882a593Smuzhiyun 1083*4882a593Smuzhiyun 1084*4882a593SmuzhiyunComplex mappings 1085*4882a593Smuzhiyun================ 1086*4882a593Smuzhiyun 1087*4882a593SmuzhiyunAs it is possible to map a function to different groups of pins an optional 1088*4882a593Smuzhiyun.group can be specified like this:: 1089*4882a593Smuzhiyun 1090*4882a593Smuzhiyun ... 1091*4882a593Smuzhiyun { 1092*4882a593Smuzhiyun .dev_name = "foo-spi.0", 1093*4882a593Smuzhiyun .name = "spi0-pos-A", 1094*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1095*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1096*4882a593Smuzhiyun .function = "spi0", 1097*4882a593Smuzhiyun .group = "spi0_0_grp", 1098*4882a593Smuzhiyun }, 1099*4882a593Smuzhiyun { 1100*4882a593Smuzhiyun .dev_name = "foo-spi.0", 1101*4882a593Smuzhiyun .name = "spi0-pos-B", 1102*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1103*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1104*4882a593Smuzhiyun .function = "spi0", 1105*4882a593Smuzhiyun .group = "spi0_1_grp", 1106*4882a593Smuzhiyun }, 1107*4882a593Smuzhiyun ... 1108*4882a593Smuzhiyun 1109*4882a593SmuzhiyunThis example mapping is used to switch between two positions for spi0 at 1110*4882a593Smuzhiyunruntime, as described further below under the heading "Runtime pinmuxing". 1111*4882a593Smuzhiyun 1112*4882a593SmuzhiyunFurther it is possible for one named state to affect the muxing of several 1113*4882a593Smuzhiyungroups of pins, say for example in the mmc0 example above, where you can 1114*4882a593Smuzhiyunadditively expand the mmc0 bus from 2 to 4 to 8 pins. If we want to use all 1115*4882a593Smuzhiyunthree groups for a total of 2+2+4 = 8 pins (for an 8-bit MMC bus as is the 1116*4882a593Smuzhiyuncase), we define a mapping like this:: 1117*4882a593Smuzhiyun 1118*4882a593Smuzhiyun ... 1119*4882a593Smuzhiyun { 1120*4882a593Smuzhiyun .dev_name = "foo-mmc.0", 1121*4882a593Smuzhiyun .name = "2bit" 1122*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1123*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1124*4882a593Smuzhiyun .function = "mmc0", 1125*4882a593Smuzhiyun .group = "mmc0_1_grp", 1126*4882a593Smuzhiyun }, 1127*4882a593Smuzhiyun { 1128*4882a593Smuzhiyun .dev_name = "foo-mmc.0", 1129*4882a593Smuzhiyun .name = "4bit" 1130*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1131*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1132*4882a593Smuzhiyun .function = "mmc0", 1133*4882a593Smuzhiyun .group = "mmc0_1_grp", 1134*4882a593Smuzhiyun }, 1135*4882a593Smuzhiyun { 1136*4882a593Smuzhiyun .dev_name = "foo-mmc.0", 1137*4882a593Smuzhiyun .name = "4bit" 1138*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1139*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1140*4882a593Smuzhiyun .function = "mmc0", 1141*4882a593Smuzhiyun .group = "mmc0_2_grp", 1142*4882a593Smuzhiyun }, 1143*4882a593Smuzhiyun { 1144*4882a593Smuzhiyun .dev_name = "foo-mmc.0", 1145*4882a593Smuzhiyun .name = "8bit" 1146*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1147*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1148*4882a593Smuzhiyun .function = "mmc0", 1149*4882a593Smuzhiyun .group = "mmc0_1_grp", 1150*4882a593Smuzhiyun }, 1151*4882a593Smuzhiyun { 1152*4882a593Smuzhiyun .dev_name = "foo-mmc.0", 1153*4882a593Smuzhiyun .name = "8bit" 1154*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1155*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1156*4882a593Smuzhiyun .function = "mmc0", 1157*4882a593Smuzhiyun .group = "mmc0_2_grp", 1158*4882a593Smuzhiyun }, 1159*4882a593Smuzhiyun { 1160*4882a593Smuzhiyun .dev_name = "foo-mmc.0", 1161*4882a593Smuzhiyun .name = "8bit" 1162*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1163*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1164*4882a593Smuzhiyun .function = "mmc0", 1165*4882a593Smuzhiyun .group = "mmc0_3_grp", 1166*4882a593Smuzhiyun }, 1167*4882a593Smuzhiyun ... 1168*4882a593Smuzhiyun 1169*4882a593SmuzhiyunThe result of grabbing this mapping from the device with something like 1170*4882a593Smuzhiyunthis (see next paragraph):: 1171*4882a593Smuzhiyun 1172*4882a593Smuzhiyun p = devm_pinctrl_get(dev); 1173*4882a593Smuzhiyun s = pinctrl_lookup_state(p, "8bit"); 1174*4882a593Smuzhiyun ret = pinctrl_select_state(p, s); 1175*4882a593Smuzhiyun 1176*4882a593Smuzhiyunor more simply:: 1177*4882a593Smuzhiyun 1178*4882a593Smuzhiyun p = devm_pinctrl_get_select(dev, "8bit"); 1179*4882a593Smuzhiyun 1180*4882a593SmuzhiyunWill be that you activate all the three bottom records in the mapping at 1181*4882a593Smuzhiyunonce. Since they share the same name, pin controller device, function and 1182*4882a593Smuzhiyundevice, and since we allow multiple groups to match to a single device, they 1183*4882a593Smuzhiyunall get selected, and they all get enabled and disable simultaneously by the 1184*4882a593Smuzhiyunpinmux core. 1185*4882a593Smuzhiyun 1186*4882a593Smuzhiyun 1187*4882a593SmuzhiyunPin control requests from drivers 1188*4882a593Smuzhiyun================================= 1189*4882a593Smuzhiyun 1190*4882a593SmuzhiyunWhen a device driver is about to probe the device core will automatically 1191*4882a593Smuzhiyunattempt to issue pinctrl_get_select_default() on these devices. 1192*4882a593SmuzhiyunThis way driver writers do not need to add any of the boilerplate code 1193*4882a593Smuzhiyunof the type found below. However when doing fine-grained state selection 1194*4882a593Smuzhiyunand not using the "default" state, you may have to do some device driver 1195*4882a593Smuzhiyunhandling of the pinctrl handles and states. 1196*4882a593Smuzhiyun 1197*4882a593SmuzhiyunSo if you just want to put the pins for a certain device into the default 1198*4882a593Smuzhiyunstate and be done with it, there is nothing you need to do besides 1199*4882a593Smuzhiyunproviding the proper mapping table. The device core will take care of 1200*4882a593Smuzhiyunthe rest. 1201*4882a593Smuzhiyun 1202*4882a593SmuzhiyunGenerally it is discouraged to let individual drivers get and enable pin 1203*4882a593Smuzhiyuncontrol. So if possible, handle the pin control in platform code or some other 1204*4882a593Smuzhiyunplace where you have access to all the affected struct device * pointers. In 1205*4882a593Smuzhiyunsome cases where a driver needs to e.g. switch between different mux mappings 1206*4882a593Smuzhiyunat runtime this is not possible. 1207*4882a593Smuzhiyun 1208*4882a593SmuzhiyunA typical case is if a driver needs to switch bias of pins from normal 1209*4882a593Smuzhiyunoperation and going to sleep, moving from the PINCTRL_STATE_DEFAULT to 1210*4882a593SmuzhiyunPINCTRL_STATE_SLEEP at runtime, re-biasing or even re-muxing pins to save 1211*4882a593Smuzhiyuncurrent in sleep mode. 1212*4882a593Smuzhiyun 1213*4882a593SmuzhiyunA driver may request a certain control state to be activated, usually just the 1214*4882a593Smuzhiyundefault state like this:: 1215*4882a593Smuzhiyun 1216*4882a593Smuzhiyun #include <linux/pinctrl/consumer.h> 1217*4882a593Smuzhiyun 1218*4882a593Smuzhiyun struct foo_state { 1219*4882a593Smuzhiyun struct pinctrl *p; 1220*4882a593Smuzhiyun struct pinctrl_state *s; 1221*4882a593Smuzhiyun ... 1222*4882a593Smuzhiyun }; 1223*4882a593Smuzhiyun 1224*4882a593Smuzhiyun foo_probe() 1225*4882a593Smuzhiyun { 1226*4882a593Smuzhiyun /* Allocate a state holder named "foo" etc */ 1227*4882a593Smuzhiyun struct foo_state *foo = ...; 1228*4882a593Smuzhiyun 1229*4882a593Smuzhiyun foo->p = devm_pinctrl_get(&device); 1230*4882a593Smuzhiyun if (IS_ERR(foo->p)) { 1231*4882a593Smuzhiyun /* FIXME: clean up "foo" here */ 1232*4882a593Smuzhiyun return PTR_ERR(foo->p); 1233*4882a593Smuzhiyun } 1234*4882a593Smuzhiyun 1235*4882a593Smuzhiyun foo->s = pinctrl_lookup_state(foo->p, PINCTRL_STATE_DEFAULT); 1236*4882a593Smuzhiyun if (IS_ERR(foo->s)) { 1237*4882a593Smuzhiyun /* FIXME: clean up "foo" here */ 1238*4882a593Smuzhiyun return PTR_ERR(s); 1239*4882a593Smuzhiyun } 1240*4882a593Smuzhiyun 1241*4882a593Smuzhiyun ret = pinctrl_select_state(foo->s); 1242*4882a593Smuzhiyun if (ret < 0) { 1243*4882a593Smuzhiyun /* FIXME: clean up "foo" here */ 1244*4882a593Smuzhiyun return ret; 1245*4882a593Smuzhiyun } 1246*4882a593Smuzhiyun } 1247*4882a593Smuzhiyun 1248*4882a593SmuzhiyunThis get/lookup/select/put sequence can just as well be handled by bus drivers 1249*4882a593Smuzhiyunif you don't want each and every driver to handle it and you know the 1250*4882a593Smuzhiyunarrangement on your bus. 1251*4882a593Smuzhiyun 1252*4882a593SmuzhiyunThe semantics of the pinctrl APIs are: 1253*4882a593Smuzhiyun 1254*4882a593Smuzhiyun- pinctrl_get() is called in process context to obtain a handle to all pinctrl 1255*4882a593Smuzhiyun information for a given client device. It will allocate a struct from the 1256*4882a593Smuzhiyun kernel memory to hold the pinmux state. All mapping table parsing or similar 1257*4882a593Smuzhiyun slow operations take place within this API. 1258*4882a593Smuzhiyun 1259*4882a593Smuzhiyun- devm_pinctrl_get() is a variant of pinctrl_get() that causes pinctrl_put() 1260*4882a593Smuzhiyun to be called automatically on the retrieved pointer when the associated 1261*4882a593Smuzhiyun device is removed. It is recommended to use this function over plain 1262*4882a593Smuzhiyun pinctrl_get(). 1263*4882a593Smuzhiyun 1264*4882a593Smuzhiyun- pinctrl_lookup_state() is called in process context to obtain a handle to a 1265*4882a593Smuzhiyun specific state for a client device. This operation may be slow, too. 1266*4882a593Smuzhiyun 1267*4882a593Smuzhiyun- pinctrl_select_state() programs pin controller hardware according to the 1268*4882a593Smuzhiyun definition of the state as given by the mapping table. In theory, this is a 1269*4882a593Smuzhiyun fast-path operation, since it only involved blasting some register settings 1270*4882a593Smuzhiyun into hardware. However, note that some pin controllers may have their 1271*4882a593Smuzhiyun registers on a slow/IRQ-based bus, so client devices should not assume they 1272*4882a593Smuzhiyun can call pinctrl_select_state() from non-blocking contexts. 1273*4882a593Smuzhiyun 1274*4882a593Smuzhiyun- pinctrl_put() frees all information associated with a pinctrl handle. 1275*4882a593Smuzhiyun 1276*4882a593Smuzhiyun- devm_pinctrl_put() is a variant of pinctrl_put() that may be used to 1277*4882a593Smuzhiyun explicitly destroy a pinctrl object returned by devm_pinctrl_get(). 1278*4882a593Smuzhiyun However, use of this function will be rare, due to the automatic cleanup 1279*4882a593Smuzhiyun that will occur even without calling it. 1280*4882a593Smuzhiyun 1281*4882a593Smuzhiyun pinctrl_get() must be paired with a plain pinctrl_put(). 1282*4882a593Smuzhiyun pinctrl_get() may not be paired with devm_pinctrl_put(). 1283*4882a593Smuzhiyun devm_pinctrl_get() can optionally be paired with devm_pinctrl_put(). 1284*4882a593Smuzhiyun devm_pinctrl_get() may not be paired with plain pinctrl_put(). 1285*4882a593Smuzhiyun 1286*4882a593SmuzhiyunUsually the pin control core handled the get/put pair and call out to the 1287*4882a593Smuzhiyundevice drivers bookkeeping operations, like checking available functions and 1288*4882a593Smuzhiyunthe associated pins, whereas select_state pass on to the pin controller 1289*4882a593Smuzhiyundriver which takes care of activating and/or deactivating the mux setting by 1290*4882a593Smuzhiyunquickly poking some registers. 1291*4882a593Smuzhiyun 1292*4882a593SmuzhiyunThe pins are allocated for your device when you issue the devm_pinctrl_get() 1293*4882a593Smuzhiyuncall, after this you should be able to see this in the debugfs listing of all 1294*4882a593Smuzhiyunpins. 1295*4882a593Smuzhiyun 1296*4882a593SmuzhiyunNOTE: the pinctrl system will return -EPROBE_DEFER if it cannot find the 1297*4882a593Smuzhiyunrequested pinctrl handles, for example if the pinctrl driver has not yet 1298*4882a593Smuzhiyunregistered. Thus make sure that the error path in your driver gracefully 1299*4882a593Smuzhiyuncleans up and is ready to retry the probing later in the startup process. 1300*4882a593Smuzhiyun 1301*4882a593Smuzhiyun 1302*4882a593SmuzhiyunDrivers needing both pin control and GPIOs 1303*4882a593Smuzhiyun========================================== 1304*4882a593Smuzhiyun 1305*4882a593SmuzhiyunAgain, it is discouraged to let drivers lookup and select pin control states 1306*4882a593Smuzhiyunthemselves, but again sometimes this is unavoidable. 1307*4882a593Smuzhiyun 1308*4882a593SmuzhiyunSo say that your driver is fetching its resources like this:: 1309*4882a593Smuzhiyun 1310*4882a593Smuzhiyun #include <linux/pinctrl/consumer.h> 1311*4882a593Smuzhiyun #include <linux/gpio.h> 1312*4882a593Smuzhiyun 1313*4882a593Smuzhiyun struct pinctrl *pinctrl; 1314*4882a593Smuzhiyun int gpio; 1315*4882a593Smuzhiyun 1316*4882a593Smuzhiyun pinctrl = devm_pinctrl_get_select_default(&dev); 1317*4882a593Smuzhiyun gpio = devm_gpio_request(&dev, 14, "foo"); 1318*4882a593Smuzhiyun 1319*4882a593SmuzhiyunHere we first request a certain pin state and then request GPIO 14 to be 1320*4882a593Smuzhiyunused. If you're using the subsystems orthogonally like this, you should 1321*4882a593Smuzhiyunnominally always get your pinctrl handle and select the desired pinctrl 1322*4882a593Smuzhiyunstate BEFORE requesting the GPIO. This is a semantic convention to avoid 1323*4882a593Smuzhiyunsituations that can be electrically unpleasant, you will certainly want to 1324*4882a593Smuzhiyunmux in and bias pins in a certain way before the GPIO subsystems starts to 1325*4882a593Smuzhiyundeal with them. 1326*4882a593Smuzhiyun 1327*4882a593SmuzhiyunThe above can be hidden: using the device core, the pinctrl core may be 1328*4882a593Smuzhiyunsetting up the config and muxing for the pins right before the device is 1329*4882a593Smuzhiyunprobing, nevertheless orthogonal to the GPIO subsystem. 1330*4882a593Smuzhiyun 1331*4882a593SmuzhiyunBut there are also situations where it makes sense for the GPIO subsystem 1332*4882a593Smuzhiyunto communicate directly with the pinctrl subsystem, using the latter as a 1333*4882a593Smuzhiyunback-end. This is when the GPIO driver may call out to the functions 1334*4882a593Smuzhiyundescribed in the section "Pin control interaction with the GPIO subsystem" 1335*4882a593Smuzhiyunabove. This only involves per-pin multiplexing, and will be completely 1336*4882a593Smuzhiyunhidden behind the gpio_*() function namespace. In this case, the driver 1337*4882a593Smuzhiyunneed not interact with the pin control subsystem at all. 1338*4882a593Smuzhiyun 1339*4882a593SmuzhiyunIf a pin control driver and a GPIO driver is dealing with the same pins 1340*4882a593Smuzhiyunand the use cases involve multiplexing, you MUST implement the pin controller 1341*4882a593Smuzhiyunas a back-end for the GPIO driver like this, unless your hardware design 1342*4882a593Smuzhiyunis such that the GPIO controller can override the pin controller's 1343*4882a593Smuzhiyunmultiplexing state through hardware without the need to interact with the 1344*4882a593Smuzhiyunpin control system. 1345*4882a593Smuzhiyun 1346*4882a593Smuzhiyun 1347*4882a593SmuzhiyunSystem pin control hogging 1348*4882a593Smuzhiyun========================== 1349*4882a593Smuzhiyun 1350*4882a593SmuzhiyunPin control map entries can be hogged by the core when the pin controller 1351*4882a593Smuzhiyunis registered. This means that the core will attempt to call pinctrl_get(), 1352*4882a593Smuzhiyunlookup_state() and select_state() on it immediately after the pin control 1353*4882a593Smuzhiyundevice has been registered. 1354*4882a593Smuzhiyun 1355*4882a593SmuzhiyunThis occurs for mapping table entries where the client device name is equal 1356*4882a593Smuzhiyunto the pin controller device name, and the state name is PINCTRL_STATE_DEFAULT:: 1357*4882a593Smuzhiyun 1358*4882a593Smuzhiyun { 1359*4882a593Smuzhiyun .dev_name = "pinctrl-foo", 1360*4882a593Smuzhiyun .name = PINCTRL_STATE_DEFAULT, 1361*4882a593Smuzhiyun .type = PIN_MAP_TYPE_MUX_GROUP, 1362*4882a593Smuzhiyun .ctrl_dev_name = "pinctrl-foo", 1363*4882a593Smuzhiyun .function = "power_func", 1364*4882a593Smuzhiyun }, 1365*4882a593Smuzhiyun 1366*4882a593SmuzhiyunSince it may be common to request the core to hog a few always-applicable 1367*4882a593Smuzhiyunmux settings on the primary pin controller, there is a convenience macro for 1368*4882a593Smuzhiyunthis:: 1369*4882a593Smuzhiyun 1370*4882a593Smuzhiyun PIN_MAP_MUX_GROUP_HOG_DEFAULT("pinctrl-foo", NULL /* group */, 1371*4882a593Smuzhiyun "power_func") 1372*4882a593Smuzhiyun 1373*4882a593SmuzhiyunThis gives the exact same result as the above construction. 1374*4882a593Smuzhiyun 1375*4882a593Smuzhiyun 1376*4882a593SmuzhiyunRuntime pinmuxing 1377*4882a593Smuzhiyun================= 1378*4882a593Smuzhiyun 1379*4882a593SmuzhiyunIt is possible to mux a certain function in and out at runtime, say to move 1380*4882a593Smuzhiyunan SPI port from one set of pins to another set of pins. Say for example for 1381*4882a593Smuzhiyunspi0 in the example above, we expose two different groups of pins for the same 1382*4882a593Smuzhiyunfunction, but with different named in the mapping as described under 1383*4882a593Smuzhiyun"Advanced mapping" above. So that for an SPI device, we have two states named 1384*4882a593Smuzhiyun"pos-A" and "pos-B". 1385*4882a593Smuzhiyun 1386*4882a593SmuzhiyunThis snippet first initializes a state object for both groups (in foo_probe()), 1387*4882a593Smuzhiyunthen muxes the function in the pins defined by group A, and finally muxes it in 1388*4882a593Smuzhiyunon the pins defined by group B:: 1389*4882a593Smuzhiyun 1390*4882a593Smuzhiyun #include <linux/pinctrl/consumer.h> 1391*4882a593Smuzhiyun 1392*4882a593Smuzhiyun struct pinctrl *p; 1393*4882a593Smuzhiyun struct pinctrl_state *s1, *s2; 1394*4882a593Smuzhiyun 1395*4882a593Smuzhiyun foo_probe() 1396*4882a593Smuzhiyun { 1397*4882a593Smuzhiyun /* Setup */ 1398*4882a593Smuzhiyun p = devm_pinctrl_get(&device); 1399*4882a593Smuzhiyun if (IS_ERR(p)) 1400*4882a593Smuzhiyun ... 1401*4882a593Smuzhiyun 1402*4882a593Smuzhiyun s1 = pinctrl_lookup_state(foo->p, "pos-A"); 1403*4882a593Smuzhiyun if (IS_ERR(s1)) 1404*4882a593Smuzhiyun ... 1405*4882a593Smuzhiyun 1406*4882a593Smuzhiyun s2 = pinctrl_lookup_state(foo->p, "pos-B"); 1407*4882a593Smuzhiyun if (IS_ERR(s2)) 1408*4882a593Smuzhiyun ... 1409*4882a593Smuzhiyun } 1410*4882a593Smuzhiyun 1411*4882a593Smuzhiyun foo_switch() 1412*4882a593Smuzhiyun { 1413*4882a593Smuzhiyun /* Enable on position A */ 1414*4882a593Smuzhiyun ret = pinctrl_select_state(s1); 1415*4882a593Smuzhiyun if (ret < 0) 1416*4882a593Smuzhiyun ... 1417*4882a593Smuzhiyun 1418*4882a593Smuzhiyun ... 1419*4882a593Smuzhiyun 1420*4882a593Smuzhiyun /* Enable on position B */ 1421*4882a593Smuzhiyun ret = pinctrl_select_state(s2); 1422*4882a593Smuzhiyun if (ret < 0) 1423*4882a593Smuzhiyun ... 1424*4882a593Smuzhiyun 1425*4882a593Smuzhiyun ... 1426*4882a593Smuzhiyun } 1427*4882a593Smuzhiyun 1428*4882a593SmuzhiyunThe above has to be done from process context. The reservation of the pins 1429*4882a593Smuzhiyunwill be done when the state is activated, so in effect one specific pin 1430*4882a593Smuzhiyuncan be used by different functions at different times on a running system. 1431