1*4882a593Smuzhiyun.. SPDX-License-Identifier: GPL-2.0 2*4882a593Smuzhiyun 3*4882a593Smuzhiyun====================== 4*4882a593SmuzhiyunMemory Protection Keys 5*4882a593Smuzhiyun====================== 6*4882a593Smuzhiyun 7*4882a593SmuzhiyunMemory Protection Keys for Userspace (PKU aka PKEYs) is a feature 8*4882a593Smuzhiyunwhich is found on Intel's Skylake (and later) "Scalable Processor" 9*4882a593SmuzhiyunServer CPUs. It will be available in future non-server Intel parts 10*4882a593Smuzhiyunand future AMD processors. 11*4882a593Smuzhiyun 12*4882a593SmuzhiyunFor anyone wishing to test or use this feature, it is available in 13*4882a593SmuzhiyunAmazon's EC2 C5 instances and is known to work there using an Ubuntu 14*4882a593Smuzhiyun17.04 image. 15*4882a593Smuzhiyun 16*4882a593SmuzhiyunMemory Protection Keys provides a mechanism for enforcing page-based 17*4882a593Smuzhiyunprotections, but without requiring modification of the page tables 18*4882a593Smuzhiyunwhen an application changes protection domains. It works by 19*4882a593Smuzhiyundedicating 4 previously ignored bits in each page table entry to a 20*4882a593Smuzhiyun"protection key", giving 16 possible keys. 21*4882a593Smuzhiyun 22*4882a593SmuzhiyunThere is also a new user-accessible register (PKRU) with two separate 23*4882a593Smuzhiyunbits (Access Disable and Write Disable) for each key. Being a CPU 24*4882a593Smuzhiyunregister, PKRU is inherently thread-local, potentially giving each 25*4882a593Smuzhiyunthread a different set of protections from every other thread. 26*4882a593Smuzhiyun 27*4882a593SmuzhiyunThere are two new instructions (RDPKRU/WRPKRU) for reading and writing 28*4882a593Smuzhiyunto the new register. The feature is only available in 64-bit mode, 29*4882a593Smuzhiyuneven though there is theoretically space in the PAE PTEs. These 30*4882a593Smuzhiyunpermissions are enforced on data access only and have no effect on 31*4882a593Smuzhiyuninstruction fetches. 32*4882a593Smuzhiyun 33*4882a593SmuzhiyunSyscalls 34*4882a593Smuzhiyun======== 35*4882a593Smuzhiyun 36*4882a593SmuzhiyunThere are 3 system calls which directly interact with pkeys:: 37*4882a593Smuzhiyun 38*4882a593Smuzhiyun int pkey_alloc(unsigned long flags, unsigned long init_access_rights) 39*4882a593Smuzhiyun int pkey_free(int pkey); 40*4882a593Smuzhiyun int pkey_mprotect(unsigned long start, size_t len, 41*4882a593Smuzhiyun unsigned long prot, int pkey); 42*4882a593Smuzhiyun 43*4882a593SmuzhiyunBefore a pkey can be used, it must first be allocated with 44*4882a593Smuzhiyunpkey_alloc(). An application calls the WRPKRU instruction 45*4882a593Smuzhiyundirectly in order to change access permissions to memory covered 46*4882a593Smuzhiyunwith a key. In this example WRPKRU is wrapped by a C function 47*4882a593Smuzhiyuncalled pkey_set(). 48*4882a593Smuzhiyun:: 49*4882a593Smuzhiyun 50*4882a593Smuzhiyun int real_prot = PROT_READ|PROT_WRITE; 51*4882a593Smuzhiyun pkey = pkey_alloc(0, PKEY_DISABLE_WRITE); 52*4882a593Smuzhiyun ptr = mmap(NULL, PAGE_SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 53*4882a593Smuzhiyun ret = pkey_mprotect(ptr, PAGE_SIZE, real_prot, pkey); 54*4882a593Smuzhiyun ... application runs here 55*4882a593Smuzhiyun 56*4882a593SmuzhiyunNow, if the application needs to update the data at 'ptr', it can 57*4882a593Smuzhiyungain access, do the update, then remove its write access:: 58*4882a593Smuzhiyun 59*4882a593Smuzhiyun pkey_set(pkey, 0); // clear PKEY_DISABLE_WRITE 60*4882a593Smuzhiyun *ptr = foo; // assign something 61*4882a593Smuzhiyun pkey_set(pkey, PKEY_DISABLE_WRITE); // set PKEY_DISABLE_WRITE again 62*4882a593Smuzhiyun 63*4882a593SmuzhiyunNow when it frees the memory, it will also free the pkey since it 64*4882a593Smuzhiyunis no longer in use:: 65*4882a593Smuzhiyun 66*4882a593Smuzhiyun munmap(ptr, PAGE_SIZE); 67*4882a593Smuzhiyun pkey_free(pkey); 68*4882a593Smuzhiyun 69*4882a593Smuzhiyun.. note:: pkey_set() is a wrapper for the RDPKRU and WRPKRU instructions. 70*4882a593Smuzhiyun An example implementation can be found in 71*4882a593Smuzhiyun tools/testing/selftests/x86/protection_keys.c. 72*4882a593Smuzhiyun 73*4882a593SmuzhiyunBehavior 74*4882a593Smuzhiyun======== 75*4882a593Smuzhiyun 76*4882a593SmuzhiyunThe kernel attempts to make protection keys consistent with the 77*4882a593Smuzhiyunbehavior of a plain mprotect(). For instance if you do this:: 78*4882a593Smuzhiyun 79*4882a593Smuzhiyun mprotect(ptr, size, PROT_NONE); 80*4882a593Smuzhiyun something(ptr); 81*4882a593Smuzhiyun 82*4882a593Smuzhiyunyou can expect the same effects with protection keys when doing this:: 83*4882a593Smuzhiyun 84*4882a593Smuzhiyun pkey = pkey_alloc(0, PKEY_DISABLE_WRITE | PKEY_DISABLE_READ); 85*4882a593Smuzhiyun pkey_mprotect(ptr, size, PROT_READ|PROT_WRITE, pkey); 86*4882a593Smuzhiyun something(ptr); 87*4882a593Smuzhiyun 88*4882a593SmuzhiyunThat should be true whether something() is a direct access to 'ptr' 89*4882a593Smuzhiyunlike:: 90*4882a593Smuzhiyun 91*4882a593Smuzhiyun *ptr = foo; 92*4882a593Smuzhiyun 93*4882a593Smuzhiyunor when the kernel does the access on the application's behalf like 94*4882a593Smuzhiyunwith a read():: 95*4882a593Smuzhiyun 96*4882a593Smuzhiyun read(fd, ptr, 1); 97*4882a593Smuzhiyun 98*4882a593SmuzhiyunThe kernel will send a SIGSEGV in both cases, but si_code will be set 99*4882a593Smuzhiyunto SEGV_PKERR when violating protection keys versus SEGV_ACCERR when 100*4882a593Smuzhiyunthe plain mprotect() permissions are violated. 101